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Abstract
This paper studies Abelian and consta-Abelian polyadic codes over rings defined as affine
algebras over chain rings. For this purpose, we use the classical construction via splittings
and multipliers of the underlying Abelian group. We also derive some results on the structure
of the associated polyadic codes and the number of codes under these conditions.
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1 Introduction

Polyadic codes were first introduced in [1]. There is a rich literature on these type of codes,
see for example [2, 10, 12] and the references therein. They generalize quadratic residue
codes, duadic codes, triadic codes and m-adic residue codes. In the case of codes over rings,
in [4] there were considered quadratic residue codes over the non-chain ring Fp[u]/〈um −u〉
and, the same authors in [5] considered the case of codes over Fq [u]/〈 f (u)〉, where q is a
prime power, and f , is a polynomial which splits into distinct linear factors over Fq . In [9],
m-adic residue codes over Fp[u]/〈u2 −u〉were described using their idempotent generators.
All of these approaches have in common that the base ring is a univariate affine algebra with
a finite field as the coefficient ring. Recently M. Goyal and M. Raka [6, 7] have extended
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some of these ideas to codes over base rings that are multivariate affine algebras with a finite
field as coefficient ring, but in that work the authors assume that the polynomials defining
the algebra completely split into linear factors on the base field.

In this paper, we extend those previous results in a twofold way: first, we answer some
questions settled in [12], namely the generalization of polyadic Abelian codes to the case of
chain rings, and secondly we take as base rings a class of serial rings defined by polynomials
that do not entirely split into linear factors. To our knowledge, serial rings have been con-
sidered only in the case where the defining polynomials split completely into linear factors
over finite fields [6, 7]. Note that general linear codes over this type of rings, namely affine
algebras with a finite commutative chain coefficient ring were already studied in [16] and a
concrete example of those ambient spaces was studied in [8], that is closely related to the
construction in [6, 7]. But in [16] only general linear codes were studied and there was no
advantage taken of the underlying group structure as in the present paper.

The outline of the paper is as follows. In Section 2, we introduce some preliminaries on
finite chain rings and serial polynomial rings over them and their idempotents. Section 3 is
devoted to codes over those types of rings, we will take particular care of the structure of
constacyclic codes and multiconstacyclic codes. In Section 4, we define Abelian and consta-
Abelian polyadic codes over chain rings via splittings and multipliers. Sections 5 and 6 are
the core part of the paper where we study Abelian and consta-Abelian polyadic codes over
affine algebra rings with a finite commutative chain coefficient ring. We finish with some
conclusions in Section 7.

List of Symbols

The following list describes several symbols that will be later used within the body of the
document.

R Finite chain ring with maximal ideal m
Fq Finite field R/m with q elements.

.̄ Natural ring homomorphism from R to Fq given by r �→ r̄ = r + m

R Serial ring R = R[X1, . . . , Xs]/I where I = 〈t1(X1), . . . , ts(Xs)〉, ti (Xi ) ∈
R[Xi ] (i = 1, . . . , s) are monic polynomials such that each t̄i (Xi ) ∈ Fq [Xi ] is
a square-free polynomial.

C Cyclotomic classes associated with the ideal I .
eC , C ∈ C Primitive orthogonal idempotents elements of the ring R.

K Linear code over R
KC Projection of the linear code over K provided by the idempotent eC .
A Abelian group A = ∏δ

i=1 Zi where, for each i , Zi is a cyclic group and r =
∏δ

i=1 ri where ri is the size of the cyclic component Zi and gcd(ri , q) = 1 for
each i = 1, . . . , δ.

IA Ideal 〈Yr1
1 − 1, . . . , Yrδ

δ − 1〉 ⊂ R[Y1, . . . , Yδ] associated to the abelian group
A.

CA Set of the cyclotomic classes associated to IA.
A� = (A, �) Group given by the component-wise multiplication � in A derived from the

multiplication in the components Zi � Z/Zri .
A∗

� Group of units in A�.
u�, u ∈ A∗

� For u = (u1, . . . , uδ) ∈ A∗
� , it defines an action u� over A given by a =

(a1, . . . , aδ) �→ u�(a) = (u1a1, . . . , uδaδ) for all a in A .
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S For an integer m ≥ 2, the m-splitting S = (S∞, S0, S1, ..., Sm−1) of A.
Ki Even like polyadic codes given by the ideals I(S′∞∩Si )c over the chain ring R.
K̂i Even like polyadic codes IS′∞∩Si over the chain ring R.
Li Odd like polyadic codes IS∞∩Si over the chain ring R.
L̂i Odd like polyadic codes I(S∞∩Si )c over the chain ring R.
K̃ Ideal K .IS∞
Ei Idempotent generator of Ki .
E ′
i Idempotent generator of K̂i .

Di Idempotent generator of Li .
D′
i Idempotent generator of L̂i .

Ai The set {Ai }mi=1 is a partition of the classes in C.
θAi Sum of idempotents eCAi

.
D j Odd like idempotent generator of polyadic code over serial ring R.
E j Even like idempotent generator of polyadic code over serial ring R.

P j , P̂ j Odd-like pairs of polyadic code over serial ring R.
Q j , Q̂ j Even-like pairs of polyadic code over serial ring R.
Rep(n) Repetition code of length n.

2 Preliminaries

In this section, we will fix our notation and recall some basic facts about finite chain rings
(see for example [17] for a complete account on finite rings) and serial polynomial rings over
a chain ring (see [13]). In this paper, all rings will be associative, commutative, and with
identity. A ring R is called a local ring if it has a unique maximal ideal. A local ring is a
chain ring if its lattice of ideals is a chain under inclusion. In this case, since the ideals are
linearly ordered by inclusion, the ring is also called uniserial. It can be shown [3, Proposition
2.1] that R is a finite commutative chain ring if and only if R is a local ring and its maximal
ideal is principal. We will denote by a ∈ R a fixed generator of the maximal ideal m, and
let t be its nilpotency index, thus the ideals of R are mi = 〈ai 〉 for i = 0, . . . , t . Also, we
will denote the residue field of R by Fq = R/m, where q = pl , for a prime number p. We
will denote the polynomial ring in the indeterminates Xi , i = 1, . . . s with coefficients in
R by R[X1, . . . , Xs]. We can extend the natural ring homomorphism .̄ from R to Fq given
by r �→ r̄ = r + m to the polynomial rings R[X1, . . . , Xs] and Fq [X1, . . . , Xs] just by
applying .̄ on each coefficient of the polynomial. Let ti (Xi ) ∈ R[Xi ] (i = 1, . . . , s) be
monic polynomials such that each t̄i (Xi ) ∈ Fq [Xi ] is a square-free polynomial. During this
paper, we are interested in codes over the following alphabet

R = R[X1, . . . , Xs]/I where I = 〈t1(X1), . . . , ts(Xs)〉. (1)

This type of rings include as a particular case the coding alphabet considered in [6–8]. In
[13] the ideals of R have been described explicitly, they have been also studied in [18, 19]
for the case where the ring R is the finite field Fq . In the finite field case, the square-free
condition on the polynomials ti (Xi ) is known as the “semisimple condition” because of the
structure of the ringR (it can be decomposed as a direct sum of simple ideals). In the general
case, the square-free condition on the polynomials ti (Xi ) leads to a decomposition of the ring
R as a direct sum of finite chain rings, and therefore it is a serial ring [19]. In the remaining
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part of the preliminaries, we will follow [13] to explicitly show decomposition in terms of
primitive idempotents.

Let Hi with i = 1, . . . , s be the set of roots of t̄i (Xi ) in a suitable extension of Fq

where the polynomial splits in linear factors. For each ν ∈ H = ∏s
i=1 Hi we define the

class of ν as C(ν) = {(νq j

1 , . . . , ν
q j

s ) | j ∈ N}. We will denote the set of all the classes as
C = C(t1, . . . , ts), the elements of C form a partition of H and for any ideal I � R/m the set
of the common zeros of the elements in I is a union of classes. Also the size of each class is
given by |C(ν)| = l.c.m.(d1, . . . , ds) = [Fq(ν1, . . . , νs) : Fq ] where di is the degree of the
irreducible polynomial of νi over Fq .

For all i = 1, . . . , s and a class C , let pC,i (Xi ) denote the polynomial Irr(νi , Fq) and
(ν1, . . . , νs) ∈ C . Also, for all i = 2, . . . , s we consider the polynomials bC,i (Xi ) =
Irr(νi , Fq(ν1, . . . , νi−1)) ∈ Fq(ν1, . . . , νi−1)[Xi ] and b̃C,i (Xi ) = pC,i (Xi)

bC,i (Xi)
. Note that the

polynomials above are independent of which the element ν is chosen in each class C for
their definition and that bC,i (Xi ) and b̃C,i (Xi ) are coprime polynomials. Then, define the
multivariable polynomialswC,i (X1, . . . , Xi ), and πC,i (X1, . . . , Xi ) obtained from bC,i (Xi )

and b̃C,i (Xi ) respectively by substituting νi by Xi . One has that

Fq [X1, . . . , Xn]/〈pC,1, wC,2, . . . , wC,n〉 � Fq(ν1, . . . , νn),

and we denote the Hensel lifts to R of the polynomials pC,i , wC,i and πC,i by qC,i , zC,i

and σC,i respectively. If we denote by IC = 〈qC,1, zC,2, . . . , zC,s〉 then the ring TC =
R[X1, . . . , Xs]/IC is a chain ringwithmaximal idealM = 〈a, qC,1, zC,2, . . . , zC,s〉+ IC and
TC/M � Fq(ν1, . . . , νs) (see [13, Remark 4, & Lemma 3.5]). Now consider the polynomial

hC (X1, X2, ..., Xs) =
s∏

i=1

ti (Xi )

qC,i (Xi )

s∏

i=1

σqC,i
(X2, . . . , Xi ),

then IC + I = Ann(〈hC + I 〉), 〈hC + I 〉 � R[X1, . . . , Xs]/IC and R � ⊕
C∈C〈hC + I 〉 (

for a proof see [13, Proposition 3.7, Lemma 3.8 & Theorem 3.9]). This decomposition of the
ring R is equivalent to the existence of primitive orthogonal idempotents elements eC ∈ R
where C ∈ C such that 1R = ∑

C∈C eC and eCR � 〈hC + I 〉, i.e. there exists a polynomial
gC such that the idempotent eC is the element gChC + I and gChC + IC = 1+ IC . Any ideal
ofR is principally generated by G + I where G = ∑t−1

i=0 a
iGi and Gi is a sum of primitive

idempotents eC described before (see [13, Corollary 3.12]).

Remark 1 This decomposition includes the cases given in [6, 8]. In [6], R = Fq , there are
two variables and t1, t2 split completely into linear factors over Fq [X ] whereas, in [8] there
is one polynomial in R = Fq whose roots are all the elements in the field.

3 Structure of codes overR
A linear code K of length n over the ring R as an R-submodule ofRn . The Euclidean dual
of K will be denoted by K⊥ and it is given by the set {x ∈ Rn | x · k = 0 for all k ∈ K},
where · is the Euclidean inner product in Rn . Note that, since R = ∑

C∈C eCR, for each
x ∈ Rn we can define the projection of x by eC ′ as xC ′ = (x1,C ′ , . . . , xn,C ′) ∈ Rn where
xi = ∑

C∈C xi,CeC and xi,C ∈ R for i = 1, . . . , n. Indeed, xC ′ = x · eC ′ for each C ∈ C and
for a given linear code K of length n over the ring R we can define the following codes

KC = {xC | x ∈ K} , (2)
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where C ranges in the set of classes in C. It is clear that KC is an R-linear code and K =⊕
C∈C KCeC .Moreover, ifK = ⊕

C∈C KCeC thenK⊥ = ⊕
C∈C K⊥

CeC (note thatwe slightly
abuse the notation since first orthogonality is in R and the second one in R).

Example 2 (Toy Example) Consider the serial ring defined over Z4 by the ideal I = 〈x21 +
x1 + 1, x22 − x2〉 as

R = Z4[x1, x2]/〈x21 + x1 + 1, x22 − x2〉.
Note that the polynomial x21 + x1 + 1 is irreducible over F2 and has three roots over

F8. The set of these roots is H1 = {ν, ν2, ν3} ⊂ F8. On the other hand, the polynomial
x22 − x2 has two roots and the set of roots is H2 = {0, 1} ⊂ F2. Thus, the setH = H1×H2 =
{{ν, ν2, ν3}×{0}, {ν, ν2, ν3}×{1}}has two classes. Ifwe compute the orthogonal idempotents
associated with each class we have

eC1
(x1, x2) = x2, and eC2

(x1, x2) = 3x2 + 1.

It is clear that e2Ci
= eCi

mod I for i = 1, 2, eC1
+eC2

= 1mod I and that eC1
·eC2

= 0mod I .
In this case, since it is a toy example, this could also be noticed directly from the fact that
Z4[x1]/〈x21 + x1 + 1〉 = GR(4, 3), the Galois ring of characteristic 4 and 43 elements,
therefore R = GR(4, 3)[x2]/〈x22 − x2〉.
For example, if we consider a linear code on the module K in R2 generated by G = (x1 +
x2x21 , x1 + x2 + 1) then we can decompose G in terms of the idempotents eC1 = x2 and
eC2 = 3x2 + 1 as

((x1 + x21 )eC1 + x1eC2 , (x1 + 2)eC1 + (x1 + 1)eC2).

Henceforth, by the orthogonality of the idempotents we have the decomposition stated in (2).

3.1 Constacyclic codes overR

A λ-constacyclic code K of length n over R can be regarded as an ideal of R[x]/〈xn − λ〉
where λ is a unit inR (if λ = 1 is called a cyclic code). It is clear that ifK is a λ-constacyclic
code of length n then K⊥ is a λ−1-constacyclic code of length n. Note that, as stated above,
λ = ∑

C∈C λC · eC where λC ∈ R and λ is a unit if λC is a unit in R for each C ∈ C.
Henceforth, K is λ-constacyclic code of length n in R if KC is λC -constacyclic code of
length n in R for each C ∈ C. Thus the following result can be proven in the same fashion as
[6, Theorem 3].

Proposition 3 If K = ⊕
C∈C KCeC is a λ-constacyclic code of length n over R, then K⊥

is a λ−1-constacyclic code of length n over R where K⊥ = ⊕
C∈C K⊥

CeC and λ−1
C = λ⊥

C .
Moreover, for K to be self-dual it is necessary that λ = ∑

C∈C ±eC , i.e. λ2 = 1R.

The following lemma that characterizes constacyclic codes over chain rings, it can be
found in [18] or in a more general way that can be also used for the multivariable case in the
language of Canonical Sets of Generators in [14].

Lemma 4 ([18]) A non-zero λC-constacyclic code KC over the chain ring R with maximal
ideal m = 〈a〉 and nilpotency index t has a generating set in standard form

S = {ab0gb0 , ab1gb1 , . . . , abu gbu } (3)

such that KC = 〈S〉 � R[X ]/〈Xn − λC 〉 and
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1. 0 ≤ b0 < b1 < . . . < bu < t ,
2. gbi is a monic polynomial in R[x] for i = 0, . . . , u,
3. deg gbi > deg gbi+1 for i = 1, . . . , u − 1,
4. gbu |gbu−1 | . . . |gb0 |Xn − λC .

Moreover, if di = deg gbi for i = 1, . . . , u, then |KλC | = |R/m|
∑u

i=0(s−bi )(di−1−di ) and the
code is principal as ideal

KC =
〈
GC =

u∑

i=0

abi gbi

〉
� R[X ]/〈Xn − λC 〉.

Taking into account the previous lemma, one can characterize in a polynomial way the
class of constacyclic codes over R.

Proposition 5 Let K = ⊕
C∈C KCeC be a λ-constacyclic of length n over R and suppose

that the λC-constacyclic codesKC are generated by GC (x) defined as in the previous Lemma
for each C ∈ C. Then there exists a polynomial

G(X) =
∑

C∈C
GCeC

in R[X ] such that K =
〈
G
〉
� R[X ]/〈Xn − λ〉, and |K| = ∏

C∈C |KC |.

Proof It is straightforward from Lemma 4. ��

3.2 Consta-Abelian codes overR

Given an Abelian group A of size r , one can write it as A = ∏δ
i=1 Zi where, for each i , Zi

is a cyclic group and r = ∏δ
i=1 ri , where ri is the size of the cyclic component Zi .

Definition 6 An Abelian code over the ring R with underlying group A = ∏δ
i=1 Zi is an

ideal of the ring R[Y1, . . . , Yδ]/IA, where IA = 〈Yr1
1 − 1, . . . , Yrδ

δ − 1〉 ⊂ R[Y1, . . . , Yδ].
Consider now the ambient space

RA,λ = R[Y1, . . . , Yδ]/IA,λ = R[Y1, . . . , Yδ]/〈Yr1
1 − λ1, . . . , Y

rδ
δ − λδ〉, (4)

where the element λi is an invertible element in R for each i = 1, . . . , δ. An ideal in RA,λ

is called a λ = (λ1, . . . , λδ)-consta-Abelian code with underlying group A.

We could state a similar result as Lemma 4 in the case of Abelian codes over finite chain
rings in terms of Canonical Set of Generators [13, 14] but, as it was pointed in [15, Corollary
1], Abelian codes are principal if the length of the code is coprime with the characteristic of
the chain ring, thus we will restrict ourselves to that case stated in [13, Sections 4 and 5].
In the case of consta-Abelian, that is not the general case (see [15, Example 1] where it is
shown that negacyclic codes over Z4 defined by a multiple root polynomial can be seen as
principal ideals). Since our purpose is defining polyadic codes using splittings of the roots
we will restrict our focus on simple root codes. In other words, in both cases (Abelian and
consta-Abelian), we will assume that gcd(ri , q) = 1 for each i = 1, . . . , δ. The following
result is a straightforward generalization of Proposition 3.
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Proposition 7 If K = ⊕
C∈C KCeC is the decomposition in (2) of a λ consta-Abelian code

with underlying group A over R, then K⊥ is a λ−1 = (λ−1
1 , . . . , λ−1

δ ) consta-Abelian code
with underlying group A overR, whereK⊥ = ⊕

C∈C K⊥
CeC and λ−1

C = (λ−1
1,C , . . . , λ−1

δ,C ) =
λ⊥
C . Moreover, for K to be self-dual it is necessary that λ2 = (λ21, . . . , λ

2
δ ) = 1RA,λ

.

Aparticular version ofTheorem3.13 in [13] (and [13,Corollary 3.14] for devising the sizes
of the ideals) suited to our setting provides us the following analogous results to Lemma 4
and Proposition 5.

Lemma 8 A non-zero λC consta-Abelian code KC over the chain ring R with maximal ideal
m = 〈a〉 and nilpotency index s has a generating set in standard form

S = {ab0Gb0 , a
b1Gb1 , . . . , a

buGbu } ⊂ R[Y1, . . . , Yδ] (5)

such that KC = 〈S〉 � R[Y1, . . . , Yδ] and
1. 0 ≤ b0 < b1 < . . . < bu < t ,
2. Gbi is a monic polynomial in R[Y1, . . . , Yδ] for i = 1, . . . , u.

Moreover, |KλC | = |R/m|
∑t−1

i=0(t−i)Ni (where Ni is the number of zeros in H1×· · ·××Hr

of Ḡbi ) and the code is principal as ideal

KC =
〈
GC =

u∑

j=0

abi Gbi

〉
� R[Y1, . . . , Yδ]/〈Yr1

1 − λ1, . . . , Y
rδ
δ − λδ〉.

Proposition 9 LetK = ⊕
C∈C KCeC be a λ = (λ1, . . . , λδ)-consta-Abelian code of length n

with underlying group A overR and suppose that the λC-constacyclic codeKC are generated
by GC (x) defined in the previous Lemma for each C ∈ C. Then there exists a polynomial

G(X) = ∑
C∈C GCeC such that K =

〈
G
〉
� RA,λ and |K| = ∏

C∈C |KλC |.

4 Polyadic codes over chain ring

4.1 Splittings andmultipliers

Let A be a finite Abelian group of size r with the previous decomposition A = ∏δ
i=1 Zi

as a product of cyclic groups, r = ∏δ
i=1 ri where ri = |Zi | and gcd(ri , q) = 1 for each

i = 1, . . . , δ. We will associate to A the ideal IA = 〈Yr1
1 −1, . . . , Yrδ

δ −1〉 ⊂ R[Y1, . . . , Yδ],
and it is clear that R[A] � R[Y1, . . . , Yδ]/IA. We will denote by CA the set of the cyclotomic
classes associated with the ideal IA as described in Section 2.

Now, we will define a splitting of A following the notation in [12]. For that, we will
consider the commutative group A� = (A, �) given by the component-wise multiplication �

in A arising from the multiplication in each of the components Zi � Z/Zri , i = 1, . . . , δ.
A∗

� will denote the group of units of A�. Any u = (u1, . . . , uδ) ∈ A∗
� defines an action u�

over A given by a = (a1, . . . , aδ) �→ u�(a) = (u1a1, . . . , uδaδ) for all a in A . We can apply
u�(a) to C a union of cyclotomic classes in CA, defining u�(C) as the union of the exponents
of the images of the elements u�(a) where a ∈ A is associated to an element in C . We call
this application u� a multiplier on the Abelian group A.

Definition 10 For a positive integer m ≥ 2 and a nonempty set S∞ ⊂ A, an m− splitting of
A is a m-tuple S = (S∞, S0, S1, ..., Sm−1) which satisfies the following conditions:
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1. Each set S∞, S0, S1, ..., Sm−1 is a union of cyclotomic classes in CA,
2. The sets S∞, S0, S1, ..., Sm−1 are disjoint and form a partition of CA,
3. There exists u ∈ A∗

� such that u∗(S∞) = S∞ and u�(Si ) = Si+1 where u� is a multiplier.

Note that in the literature, splittings are usually defined over cyclotomic cosets of modular
integers. In our case, there is a one-to-one correspondence between cyclotomic cosets and the
equivalence classes defined over the roots of the polynomials so our definition is equivalent
to the usual one. Note also that it is clear that in a splitting the class given by {0} is contained
in the set S∞.

Fixed a chain ring R with quotient field Fq , for a set S given as a union of cyclo-
tomic classes we will denote the ideal on R[Y1, . . . , Yδ]/IA by IS the ideal given by
IS = ⋂

C∈CA,C∈S IC . Note that in the case that R is a finite field, IS denotes the poly-
nomial ideal in R[Y1, . . . , Yδ]/IA whose elements vanish when evaluated in all the elements
in S.

4.2 Polyadic Abelian codes over chain rings

Definition 11 (Polyadic Abelian codes over a chain ring) Let R be a chain ring and let A be a
finite Abelian group. If S = (S∞, S0, S1, ..., Sm−1) is am-splitting of the cyclotomic classes
CA associated to IA and S′∞ = S∞ \ {0}. The ideals (codes)

Ki = I(S′∞∪Si )c , K̂i = IS′∞∪Si , Li = IS∞∪Si , L̂i = I(S∞∪Si )c (6)

in R[Y1, . . . , Yδ]/IA are called polyadic codes. Ki and K̂i are called even-like codes and Li ,
L̂i are called odd-like codes.

The following result follows directly from the definition of polyadic codes. The reader
can find in [12, Theorem 2.1] its counterpart for cyclic polyadic codes over finite fields.

Proposition 12 For i �= j , i, j ∈ {0, 1, . . . ,m − 1}
• The following identities hold

1. Ki ∩ K j = IS′∞c and K0 + K1 + . . . + Km−1 = I{0}.
2. K̂i + K̂ j = IS′∞ and K̂0 ∩ K̂1 ∩ . . . ∩ K̂m−1 = I{0}c .
3. Li + L j = IS∞ and L0 ∩ L1 ∩ . . . ∩ Lm−1 = {0}.
4. L̂i ∪ L̂ j = IS∞c and L̂0 + L̂1 + . . . + L̂m−1 = R[Y1, . . . , Yδ]/IA.

• Ki + K̂i = R[Y1, . . . , Yδ]/IA = Li + L̂i .
• For 0 ≤ i ≤ m − 1, all the codes Ki are equivalent codes. The same is true for the other

families of codes K̂i , Li , and L̂i .

The last fact of the proposition is a straightforward consequence of u∗(Si ) = Si+1. Since
each Ki is uniquely determined by the m-splitting set Si it can be regarded as a permutation
thus each code Ki is equivalent to the other Ki+1.

Proposition 13 For an m-adic code K over a finite chain ring R, let K̃ = K · IS∞ , is an ideal
in R[Y1, . . . , Yδ]/IA. Then, for all i ∈ {0, 1, . . . ,m − 1} we have

K̃i = ˜̂Li and ˜̂Ki = L̃i = Li .
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The code K̃ = IS∞ in the proposition above is called the even-like subcode of K when
S∞ = {0} and the codewords in K \ K̃ are called odd-like in that case.

For 0 ≤ i ≤ m−1, let ēi and ē′
i be the even-like idempotent generators of even-like codes

Ki and K̂i respectively, d̄i and d̄ ′
i be the odd-like idempotent generators of even-like codes

Li and L̂i respectively in R[Y1, . . . , Yδ]/IA, given in Section 2.
If we take the element σ = −1 ∈ A� it is clear that it induces a permutation of the

cyclotomic cosets but it could be the case that it does not induce a permutation on the sets
S0, . . . , Sm−1 of an m-splitting. The following result follows directly form the finite field
case in [12, Proposition 2.2] and the characterization of the dual of an Abelian code over a
chain ring in [13, Sections 4 & 5].

Proposition 14 Suppose σ�(S∞) = S∞ and that σ� is a permutation of S0, . . . , Sm−1 such
that σ�(Xi ) = X σ̃ (i), for i ∈ {1, . . . ,m − 1}. Then

K⊥
i = K̂σ̃ (i) and L⊥

i = L̂ σ̃ (i).

Remark 15 Note that the existence of polyadic Abelian codes over the finite chain ring R
relies on the existence of polyadic Abelian codes over Fq = R/m since we used the same
cyclotomic classes. We refer to [12, Section 3] for that study.

4.3 Polyadic Consta-Abelian codes over chain rings

In this section, we will follow mainly the ideas in [11] for describing consta-Abelian serial
codes over a chain ring R. As before, the Abelian group will be A = ∏δ

i=1 Zi and λ =
(λ1, . . . , λδ) ∈ (R∗)δ . The ambient space for the codes is given by

RA,λ = R[Y1, . . . , Yδ]/IA,λ = R[Y1, . . . , Yδ]/〈Yr1
1 − λ1, . . . , Y

rδ
δ − λδ〉.

If we consider the set of roots of the polynomials Yr1
1 − λ1, . . . , Y

rδ
δ − λδ in an extension

field of R/m they are given by (β1ξ
i1
1 , . . . , βδξ

iδ
δ ) where β j is a primitive r j -th root of λ̄ j ,

and ξ j is a primitive r j -th root of unity and 0 ≤ i j ≤ n − 1 for j = 1, . . . , δ.
As before, we will consider the commutative group A� = (A, �). For each set S ⊂ A one

can define S̄ = {1 + r(s − 1) | s ∈ S}. We say that S ⊂ A defines an orbit with respect to
r if S̄ is a cyclotomic coset of A, in other words, once the root of unity is fixed, the set S̄
defines the exponents of that root in a cyclotomic class of the associated Abelian code R[A].
We will denote CS̄ as the class related to S̄.

Definition 16 Let � be a union of orbits in A w.r.t. r . For a positive integer m ≥ 2 and a
set S∞ ⊂ �, an m− splitting of � w.r.t. r is a m-tuple S = (S∞, S0, S1, ..., Sm−1) which
satisfies the follow conditions:

1. Each set S∞, S0, S1, ..., Sm−1 is a union of orbits in A w.r.t. r ,
2. The sets S∞, S0, S1, ..., Sm−1 are disjoint and form a partition of �,
3. There exists u ∈ A∗

� such that u∗(CS̄∞) = CS̄∞ and u∗(CS̄i
) = CS̄i+1

where u∗ is a
multiplier.

We say that the splitting is non-trivial if S∞ � �, that is Si �= ∅ for i = 0, . . . , n − 1.
Given a splitting of � w.r.t. r as stated above, the ideals (codes) given by its defining sets

Ki = I(S̄i )c , K̂i = IS̄i , Li = IS̄∞∪S̄i
, L̂i = I(S̄∞∪S̄i )c

(7)
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defined in R[Y1, . . . , Yδ]/IA are called polyadic codes. Ki and K̂i are called even-like codes
and Li , L̂i are called odd-like codes.

Note that in the case of A being a cyclic group and � = A we are in the case of splittings
for constacyclic codes, moreover in that case if S∞ = ∅ they are called Type I, otherwise
they are called Type II (See for example [2]). Now we have a similar result to Proposition 12
that can be stated for chain rings. The reader can check [11, Theorem 7.2] for a proof in the
finite field case.

Proposition 17 For i �= j , i, j ∈ {0, 1, . . . ,m − 1}
• The following identities hold

1. Li + L j = IS∞ and L0 ∩ L1 ∩ . . . ∩ Lm−1 = {0}.
2. L̂i ∪ L̂ j = IS∞c and L̂0 + L̂1 + . . . + L̂m−1 = R[Y1, . . . , Yδ]/IA,λ.

• R[Y1, . . . , Yδ]/IA,λ = Li + L̂i .
• For 0 ≤ i ≤ m − 1, all the codes Li are equivalent codes. The same statement is true

for the family of codes L̂i .

5 Polyadic Abelian codes over serial rings

In this section, we describe polyadic codes of length n over the ring R expressed as in (1)
by using the primitive idempotents eC of R given in Section 1. Let us divide the classes of
C from {1, . . . , |C|} into m disjoint sets denoted as Ai for i = 1, . . . ,m. C can be written as
follows:

C = {Ci | i = 1, . . . , |C|} = A1 ∪ · · · ∪ Am (8)

Consider the condition that each Ai is non-empty set if |C| ≥ m. Moreover, in this case
|Ai | = ti , 1 ≤ ti ≤ |C| − m + 1. Otherwise, |C| sets in the partition are non-empty having
only one element, and the remaining m − |C| are the empty set. Thus, |Ai | = ti = 1 if
Ai is a non-empty set and |Ai | = ti = 0 if Ai is the empty set. It can be easily seen that
|C| = ∑m

i=1 ti .
We define θAi = ∑

C j∈Ai
eC j for each i = 1, . . . ,m. Assume that θAi = 0 when Ai = ∅.

It is easily seen that
∑m

i=1 θAi = ∑
eC = 1R, θ2Ai

= θAi and θAi .θA j = 0 for all i �= j .
Also, note that these idempotents inR can be seen as generators corresponding to a disjoint
decomposition of R as a sum of serial codes.

Let Ei , E ′
i , Di , D′

i be the idempotent generators of polyadic codes over R[A] defined as
in the Section 4.1 for i = 1, . . . ,m. Ei and E ′

i ’s are even-like ones, while the others are
odd-like ones.

From now on, we can define the idempotents to obtain polyadic codes over the serial ring
R[A] = R[X1, . . . , Xs, Y1, . . . , Yδ]/〈I , IA〉. These idempotents can be written as follows:

Note that the following index number ki j we will use to enumerate all idempotents is the
smallest positive integer which is equivalent to the number i − j + 1 (i.e ki j = i − j + 1
mod (m)) and the structure of the positive integer ki j forces the cyclicity of the mapping u�

over the new idempotents.

• Odd-like idempotent generators over the ring R[A] for each j = 2, . . . ,m

– D1 = ∑m
i=1 θAi Di where Di is the idempotent generator for Li .

– D j = u∗(D j−1) = ∑m
i=1 θAi Dki j
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– D′
1 = ∑m

i=1 θAi D
′
i where D′

i is the idempotent generator for L̂i .
– D′

j = u∗(D′
j−1) = ∑m

i=1 θAi D
′
ki j

• Even-like idempotent generators over the ring R[A] for each j = 2, . . . ,m

– E1 = ∑m
i=1 θAi Ei where Ei is the idempotent generator for Ki .

– E j = u∗(E j−1) = ∑m
i=1 θAi Eki j

– E′
1 = ∑m

i=1 θAi E
′
i where Ei is the idempotent generator for K̂i .

– E′
j = u∗(E′

j−1) = ∑m
i=1 θAi E

′
ki j

Therefore, we can obtain odd-like (or even-like) polyadic codes overR by using the odd-
like idempotents D j and D′

j (or even-like idempotents E j and E′
j ) for j = 1, . . . ,m. Let the

polyadic codes associated with the idempotents D j , D′
j , E j and E′

j over R be called as P j ,

P̂ j ,Q j and Q̂ j , respectively. So, the desired polyadic codes are generated by the idempotents
such that P j = 〈D j 〉, P̂ j = 〈D′

j 〉, Q j = 〈E j 〉 and Q̂ j = 〈E′
j 〉.

Example 18 (Continuation of Example 2) ConsiderR = Z4[x1, x2]/〈x21 + x1 + 1, x22 − x2〉
as in Example 2, and consider the ambient space R[y]/〈y17 − 1〉, i.e. we are con-
sidering the cyclic group of order 17. The 2-cyclotomic cosets modulo 17 are {0},
{1, 2, 4, 8, 9, 13, 15, 16}, and {3, 5, 6, 7, 10, 11, 12, 14}. It is well known that, over the field
F2 = Z4/〈2〉, the even-like idempotents are e0(y) = 0, e1(y) = y + y2 + y4 + y8 +
y9 + y13 + y15 + y16, e2(y) = y3 + y5 + y6 + y7 + y10 + y11 + y12 + y14, and
e3(y) = y+ y2+ y3+ y4+ y5+ y6+ y7+ y8+ y9+ y10+ y11+ y12+ y13+ y14+ y15+ y16.
Note that e0(y) generates the space given by 0 and e3(y) generates the whole space.
So the only possible generating idempotents for even-like duadic codes are e1(y) and
e2(y)e1(y) + e2(y) = 1 − j(y), where j(y) is the idempotent associate to the repetition
code. Also, if we apply the multiplier 3� to e1(y) we get e2(y) and applied to e2(y) we
get e1(y). Thus it is a pair of even-like duadic codes of length 17 over F2 with associated
odd-like pair having generating idempotents 1− e1(y) and 1− e2(y). Now one can lift those
idempotents to GR(4, 2) and use the decomposition of R in Example 2 to multiply them
by the idempotents in R and provide duadic codes in R[y]/〈y17 − 1〉. From the previous
Example 2, w get θAi = eCi , i.e θA1 = eC1 = x2 and θA2 = eC2 = 3x2 + 1. If we denote
by E1, E2 the lifted of the idempotents e1(y), e2(y) to Z4, the even-like idempotents are
E1 = ∑2

i=1 θAi Ei = θA1E1 + θA2E2 and E2 = 3�(E1) that generate the even like duadic
codes over the serial ring. Odd-like idempotents and associated odd-like duadic codes can
be obtained similarly.

Remark 19 If we fix the partition Ai i = 1, . . . ,m, we get idempotents that define a polyadic
code (odd-like or even-like) and one can easily see that the polyadic codes obtained by taking
the image of these idempotents under the multiplier u∗ are all equivalent codes. But if we
change our choice for the partition Ai we will get a new odd-like (or even-like) polyadic
code that is inequivalent code to the other codes obtained from the previous arrangement.
A counting procedure for the number of inequivalent codes can be found in the following
theorem.

Theorem 20 (Number of polyadic codes) The following statements hold:

1. If |C| ≥ m, then the number of inequivalent odd-like (or even-like) polyadic codes over
the ring R is equal to

2

m

|C|−Tm−2−1∑

tm−1=1

. . .

|C|−T1−(m−2)∑

t2=1

|C|−(m−1)∑

t1=1

(|C|
t1

)(|C| − T1
t2

)

. . .

(|C| − Tm−2

tm−1

)

,
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where Ti = ∑i
j=1 t j .

2. If |C| < m, then the number of inequivalent odd-like (or even-like) polyadic codes over
the ring R is equal to

2

m
(|C|)!

(
m

|C|
)

.

Proof 1. First, we will tackle the case |C| ≥ m. To count the odd-like polyadic codes
one should compute the number of idempotent generators given by D j = u∗(D j−1) =∑m

i=1 θAi Dki j and D1 = ∑m
i=1 θAi Di for j = 2, . . . ,m. The total number of odd-like

idempotent generators is determined by the number of choices of θAi for i = 1, . . . ,m.
Recall that |θAi | = ti and the total number of idempotents of type eC is |C|. θA1 can

be chosen in
(|C|
t1

)
different ways out of |C| idempotents. θA2 can be chosen in

(|C|−t1
t2

)

different ways out of |C| − t1 remained idempotents. In the same fashion, θAm−1 can be

chosen in
(|C|−(t1+t2+...+tm−2)

tm−1

)
different ways and finally there is only one choice for θAm .

Thus, the total number of odd-like idempotent generators is equal to

|C|−Tm−2−1∑

tm−1=1

. . .

|C|−T1−(m−2)∑

t2=1

|C|−(m−1)∑

t1=1

(|C|
t1

)(|C| − T1
t2

)

. . .

(|C| − Tm−2

tm−1

)

.

Since D1 = ∑m
i=1 θAi Di , D j = u∗(D j−1) = ∑m

i=1 θAi Dki j for j = 2, . . . ,m and
the fact that u∗ only permutes the idempotents Di , the number of idempotent generators
obtained by D j is equal to each other for all j = 1, . . . ,m. Since there are m D j , only
one D j generates

1

m

|C|−Tm−2−1∑

tm−1=1

. . .

|C|−T1−(m−2)∑

t2=1

|C|−(m−1)∑

t1=1

(|C|
t1

)(|C| − T1
t2

)

. . .

(|C| − Tm−2

tm−1

)

odd-like idempotent generators (i.e. 1/m of the total number) and similarly the number
of idempotent generators generated by D′

j . Therefore we get the expression stated in the
theorem.
The same quantity is valid for the number of even-like inequivalent polyadic codes (For
that consider E j ’s instead ofD j ). Hence, the number of idempotent generators is obtained
as desired in the first statement of the theorem.

2. Now consider the case |C| < m. Since each non-empty sets of the partition Ai has only
one element, the total number of choices Ai is equal to

( m
|C|

)
and the number of their

different arrangements is (|C|)!, the total number of odd-like idempotent generators is
(|C|)!( m

|C|
)
. The number of inequivalent ones is 1

m (|C|)!( m
|C|

)
by using the same argument

as the previous case. Considering the equality of quantities for each D j and D′
j , the

total number of inequivalent odd-like polyadic codes is 2
m (|C|)!( m

|C|
)
. The same counting

procedure can be done to compute the number of inequivalent even-like polyadic codes.
��

Definition 21 We will denote by Rep(n) the repetition code of length n, that is, the code
generated by the polynomial

∑
i Y

i ∈ R[A] (i.e. the polynomialwith all ones as coefficients),
and, as usual, the even weight code is just Rep(n)⊥.

The following two theorems extend the results given in [7] to affine algebra rings and
Abelian codes.
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Theorem 22 Let B be a subset of {1, 2, . . . ,m} with at least two elements. The following
propositions are satisfied for the polyadic codes Pi , Qi over R defined as above.

1.
⋂m

i=1 Pi = Rep(n), the repetition code over R.
2.

∑m
i=1 Pi = ∑

j∈B P j .
3.

⋂m
i=1 Qi = ⋂

j∈B Q j

4.
∑m

i=1 Qi = Rep(n)⊥, the even weight code over R.
5. Qi ∩ Rep(n) = {0} and Pi ∩ Rep(n) = Rep(n) for 1 ≤ i ≤ m.
6. Pi + Qi = R[A] and Pi ∩ Qi = {0} for 1 ≤ i ≤ m.

If we consider P̂i ’s and Q̂i ’s instead ofPi ’s andQi ’s respectively, the previous statements
also hold.

Proof For proving the first statement of the theorem, recall that for any pair of Abelian codes
C and D, the defining set of the Abelian code C ∩ D is the union of the defining set of C and
D. So the union of all defining sets of Pi generates the repetition code. Recall also that for
any two Abelian codes C and D whose idempotent generators of these codes are E1 and E2

respectively, the idempotent generators of C ∩ D and C + D are E1E2 and E1 + E2 − E1E2

respectively. By generalizing these properties, we can obtain the second statement of the
theorem. By using that the idempotent generators of Pi are Di as above if we consider
the basic properties of idempotents and the fact that D j = u∗(D j−1) = ∑m

i=1 θAi Dki j
( j = 2, ...,m), we get the following expression for j = 2

D1D2 = D1u∗(D1) =
m∑

i=1

θAi Di

m∑

i=1

θAi Dki2 =
m∑

i=1

θAi Di Dm−i+1

=
m∑

i=1

⎛

⎝θAi

m∏

j=1

Dj

⎞

⎠ =
(

m∑

i=1

θAi

) ⎛

⎝
m∏

j=1

Dj

⎞

⎠ =
m∏

j=1

Dj .

Applying a similar reasoning one can obtain the following equality
∏

j∈B D j = ∏m
j=1 Dj

and therefore 3) is proved. The expression in 4) can easily be obtained by considering 1).
Now, Let the idempotent generator of the Rep(n) be iRep. By using that the idempotent

generators ofQi are Ei as stated above and the fact that Ei ·iRep = 0,we get thatQi∩Rep(n) =
0. Now using the equalityDi · iRep = (1−Ei ) · iRep = iRep −Ei · iRep and the previous result,
the equality Di · iRep = iRep arises. Therefore, Pi ∩ Rep(n) = Rep(n). Therefore we have
proven statement 5) in the theorem.

For proving the last properties in the theorem, we will take i = 1 for convenience.
Note that the idempotent generators of the code P1 + Q1 and P1 ∩ Q1 can be written as
D1 + E1 − D1E1 and D1E1, respectively. Since D1E1 = ∑m

i=1 θAi Di Ei = 0 and D1 +
E1 = ∑m

i=1 θAi (Di + Ei ) = ∑m
i=1 θAi = 1, we get that P1 ∩ Q1 = 〈DiEi 〉 = {0} and

P1 + Q1 = 〈Di + Ei − DiEi 〉 = 〈1〉. ��

Theorem 23 Let B be a subset of {1, 2, . . . ,m} with at least two elements. The following
statements are satisfied by the polyadic codes Pi and Qi over R defined as above.

1. Qi + Rep(n) = P̂i and Q̂i + Rep(n) = Pi

2. Qi + Q̂i = Rep(n)⊥ and Qi ∩ Q̂i = {0}
3. Pi + P̂i = R[A] and Pi ∩ P̂i = Rep(n)
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Proof Let Ei and iRep be the generator idempotents ofQi and Rep(n) respectively. Then the
idempotent generator of the code Qi + Rep(n) can be written as

Ei + iRep − Ei · iRep = Ei + iRep =
m∑

j=1

θA j E j + iRep

=
m∑

j=1

θA j E j + iRep ·
m∑

j=1

θA j

=
m∑

j=1

θA j (E j + iRep) =
m∑

j=1

θA j D
′
j = D′

j .

Hence Qi + Rep(n) = P̂i is satisfied. The remaining parts of the result can be proven
similarly. ��

A Linear Complementary Dual (LCD) code is a code whose intersection with its dual
codes is trivial. Consider u = (−1, . . . ,−1) = −1, then u� given by a = (a1, . . . , aδ) �→
u�(a) = (−a1, . . . ,−aδ) for all a in A and we will denote it by −1�.

Theorem 24 (LCD codes) Let Qi and Q̂i be a pair of even-like polyadic codes with the
associated odd-like polyadic codes Pi and P̂i over the ringR for 1 ≤ i ≤ m. The following
statements hold.

1. Q⊥
i = −1�(Pi ) and Q̂i

⊥ = −1�(P̂i )

2. If −1�(Ei ) = Ei then Q⊥
i = Pi , Q̂i

⊥ = P̂i and Qi , Q̂i ,Pi , P̂i are LCD codes over R,
for 1 ≤ i ≤ m.

Proof Without loss of generality we will assume that i = 1. The idempotent generator of
Q⊥

1 is given by

1 − (−1�) (E1) =
m∑

j=1

θA j − (−1�)

⎛

⎝
m∑

j=1

θA j E j

⎞

⎠ =
m∑

j=1

[
θA j (1 − (−1�) (E j ))

]

= (−1�)

⎛

⎝
m∑

j=1

θA j D j

⎞

⎠ = (−1�) (D1).

Hence,Q⊥
1 = 〈1−(−1�) (E1)〉 = 〈(−1�) (D1)〉 = (−1�) (〈D1〉) = (−1�) (P1). The equality

Q̂i
⊥ = −1�(P̂i ) can be proven in a similar way. For proving the second statement in the

theorem we consider Theorem 22 6) and the equalities there for P̂i and Q̂i . If−1�(Ei ) = Ei

then Qi ∩ Q⊥
i = Qi ∩ Pi = {0} and Q̂i ∩ Q̂⊥

i = Q̂i ∩ P̂i = {0}. So Qi and Q̂i are LCD
codes over R, for 1 ≤ i ≤ m. Similarly, the case for Pi , P̂i also holds. ��

6 Polyadic consta-Abelian codes over serial rings

In this section, we will take � = A and we will consider splitting as in Definition 16. Recall
the set S̄ = {1 + r(s − 1)|s ∈ S} Section 4.3 and the associated cyclotomic class CS̄ . As in
the previous Section 5 we have the partition of the class CS̄ as

CS̄ = {Ci | i = 1, . . . , |CS̄ |} = A1 ∪ · · · ∪ Am (9)
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We have two different cases depending on whether the |CS | is greater than m or not. Let
|Ai | = ti , i = 1, . . . , |CS̄ |.
• If |CS̄ | ≥ m for 1 ≤ ti ≤ |CS̄ | − m + 1, each Ai is non-empty set.
• Otherwise, |CS̄ | sets in the partition in (9) are non-empty and they have only one element
and the remaining m − |CS̄ | sets are empty.

It can be easily checked that |CS̄ | = ∑m
i=1 ti . We will represent the idempotents of polyadic

consta-Abelian codes defined on R[A,λ]with Di , D̂i , Ei and Êi . In the case of Type I, recall
that there should be only one single idempotent and its pair, say Di and D̂i . Now we can
define the polyadic consta-Abelian codes overR using polyadic consta-Abelian codes over a
chain ring R Thus we get the following codes (in this case, also, we have Type I codes since
S∞ can be the empty set) over R[A,λ] = R[X1, . . . , Xs, Y1, . . . , Yδ]/〈I , IA,λ〉.
Definition 25 Let � = A and S = (S∞, S0, S1, ..., Sm−1) be an m− splitting of � w.r.t. r .
Let ki j be integers such that ki j = i − j + 1 mod (m). Let Li , L̂i , Ki and K̂i be defined as
in Section 4.3.

1. Type I codes
The idempotent generators of the polyadic codes over the ring R[A,λ] for each j =
2, . . . ,m

• D1 = ∑m
i=1 θAi Di where Di is the idempotent generator for Li .

• D j = u∗(D j−1) = ∑m
i=1 θAi Dki j

Let the polyadic consta-Abelian codes associated with the idempotentsD j overR[A,λ]
be called as P j . So, the desired polyadic consta-Abelian code is generated by the idem-
potent such that P j = 〈D j 〉.

2. Type II codes

• Odd-like idempotent generators over the ring R[A,λ] for each j = 2, . . . ,m
– D1 = ∑m

i=1 θAi Di where Di is the idempotent generator for Li .
– D j = u∗(D j−1) = ∑m

i=1 θAi Dki j

– D′
1 = ∑m

i=1 θAi D
′
i where D′

i is the idempotent generator for L̂i .
– D′

j = u∗(D′
j−1) = ∑m

i=1 θAi D
′
ki j• Even-like idempotent generators over the ring R[A,λ] for each j = 2, . . . ,m

– E1 = ∑m
i=1 θAi Ei where Ei is the idempotent generator for Ki .

– E j = u∗(E j−1) = ∑m
i=1 θAi Eki j

– E′
1 = ∑m

i=1 θAi E
′
i where Ei is the idempotent generator for K̂i .

– E′
j = u∗(E′

j−1) = ∑m
i=1 θAi E

′
ki j

Let the polyadic consta-Abelian codes associated with the idempotents D j , D′
j , E j and

E′
j over R[A,λ] be called as P j , P̂ j , Q j and Q̂ j , respectively. So, the desired polyadic

consta-Abelian codes are generated by the idempotents such thatP j = 〈D j 〉, P̂ j = 〈D′
j 〉,

Q j = 〈E j 〉 and Q̂ j = 〈E′
j 〉.

It is a straightforward exercise to check that the following results can be proven in the same
fashion as the Abelian case in Section 5 above since they only rely on the decomposition of
the idempotents in the polynomial rings R[X1, . . . , Xs]/〈I 〉 and R[Y1, . . . , Yδ]/〈IA,λ〉. The
first two theorems are related to Type I codes and the remaining ones to Type II codes.
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Theorem 26 (Number of polyadic consta Abelian codes of Type I) Let R[A,λ] be the ring
defined in Definition 25 and |CS̄ | be the cyclotomic classes related to a splitting of the abelian
group A as in (9). The following statements hold.

1. If |CS̄ | ≥ m, then the number of inequivalent polyadic consta Abelian codes of Type I in
R[A,λ] is equal to

1

m

|CS̄ |−Tm−2−1∑

tm−1=1

. . .

|CS̄ |−T1−(m−2)∑

t2=1

|CS̄ |−(m−1)∑

t1=1

(|CS̄ |
t1

)(|CS̄ | − t1
t2

)

. . .

(|CS̄ | − (Tm−2)

tm−1

)

where Ti = ∑i
j=1 t j .

2. If |CS̄ | < m, then the number of inequivalent polyadic consta-Abelian codes of Type I in
R[A,λ] is equal to

1

m
(|CS̄ |)!

(
m

|CS̄ |
)

Proof Considering the same counting argument as in Theorem 20, it can be seen that the
number of the polyadic consta-Abelian codes of Type I is equal to half of the number for old
ones since there is only one single idempotent. ��
Theorem 27 Let B be a subset of {1, 2, . . . ,m} with at least two elements. The following
propositions are satisfied for polyadic consta-Abelian codes of Type IPi overR[A,λ] defined
as above.

1.
⋂m

i=1 Pi = ⋂
j∈B P j = {0}

2.
∑m

i=1 Pi = R[A,λ]
3.

∏m
i=1 Di = ∏

j∈B D j = {0}
4.

∑m
i=1 Di = 1

Theorem 28 (Number of polyadic consta-Abelian codes of Type II) LetR[A,λ] be the ring
defined in Definition 25 and |CS̄ | be the cyclotomic classes related to a splitting of the abelian
group A as in (9). The following statements hold.

1. If |CS̄ | ≥ m, then the number of inequivalent odd-like (or even-like) polyadic codes of
Type II in R[A,λ] is equal to

2

m

|CS̄ |−Tm−2−1∑

tm−1=1

. . .

|CS̄ |−T1−(m−2)∑

t2=1

|CS̄ |−(m−1)∑

t1=1

(|CS̄ |
t1

)(|CS̄ | − T1
t2

)

. . .

(|CS̄ | − Tm−2

tm−1

)

,

where Ti = ∑i
j=1 t j .

2. If |CS̄ | < m, then the number of inequivalent odd-like (or even-like) polyadic codes of
Type II in R[A,λ] is equal to

2

m
(|CS̄ |)!

(
m

|CS̄ |
)

.

Theorem 29 Let B be a subset of {1, 2, . . . ,m} with at least two elements. The following
propositions are satisfied for polyadic consta-Abelian codes of Type IIPi andQi overR[A,λ]
given in Definition 25.

1.
⋂m

i=1 Pi = Rep(n), the repetition code over R[A,λ]
2.

∑m
i=1 Pi = ∑

j∈B P j = R[A,λ].

123



Cryptography and Communications (2024) 16:889–907 905

3.
⋂m

i=1 Qi = ⋂
j∈B Q j = {0}.

4.
∑m

i=1 Qi = Rep(n)⊥ .
5. Qi ∩ Rep(n) = {0} and Pi ∩ Rep(n) = Rep(n) for 1 ≤ i ≤ m.
6. Pi + Qi = R[A,λ] and Pi ∩ Qi = {0} for 1 ≤ i ≤ m.

If we consider P̂i ’s and Q̂i ’s instead of Pi ’s and Qi ’s respectively, the previous statements
also hold.

Proof Just follow the proof of Theorem 22 using consta-Abelian polyadic code definition. ��
Theorem 30 Let B be a subset of {1, 2, . . . ,m} with at least two elements. The following
statements are satisfied for polyadic consta-Abelian codes of Type II Pi andQi overR given
in Definition 25.

1. Qi + Rep(n) = P̂i and Q̂i + Rep(n) = Pi

2. Qi ∩ Q̂i = Rep(n)⊥ and Qi ∩ Q̂i = {0}
3. Pi + P̂i = R[A,λ] and Pi ∩ P̂i = Rep(n)

In the nega-Abelian case, that is if λ = (−1, . . . ,−1), an analogous result to Theorem 24
in the previous section can be proven.

Theorem 31 (Nega-Abelian LCD codes) Let Qi and Q̂i be a pair of even-like polyadic
negacyclic codes of Type II with the associated odd-like polyadic negacyclic codes of Type
II Pi and P̂i over the ring R[A,λ] for 1 ≤ i ≤ m. The following statements hold:

1. Q⊥
i = −1�(Pi ) and Q̂i

⊥ = −1�(P̂i )

2. If −1�(Ei ) = Ei then Q⊥
i = Pi , Q̂i

⊥ = P̂i and Qi , Q̂i ,Pi , P̂i are LCD codes over
R[A,λ], for 1 ≤ i ≤ m.

7 Conclusions

In this paper we have studied polyadic Abelian codes and consta-Abelian codes defined over
some serial rings given by affine algebras of a certain type with a finite commutative chain
coefficient ring. We have completely described them in terms of their generators associated
with the concrete splitting of the Abelian group underlying the structure. As a follow-up
applied work, it will be nice to check if the Gray mappings associated with the idempotent
decomposition of these codes (see [6–8]) provide codes with good properties over the base
chain ring.
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