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Abstract
This work introduces a refinement of the Parsimonious Model for fitting a Gaussian Mixture. The improvement is based on
the consideration of clusters of the involved covariance matrices according to a criterion, such as sharing Principal Directions.
This and other similarity criteria that arise from the spectral decomposition of a matrix are the bases of the Parsimonious
Model. We show that such groupings of covariance matrices can be achieved through simple modifications of the CEM
(Classification Expectation Maximization) algorithm. Our approach leads to propose Gaussian Mixture Models for model-
based clustering and discriminant analysis, in which covariance matrices are clustered according to a parsimonious criterion,
creating intermediate steps between the fourteen widely known parsimonious models. The added versatility not only allows
us to obtain models with fewer parameters for fitting the data, but also provides greater interpretability. We show its usefulness
for model-based clustering and discriminant analysis, providing algorithms to find approximate solutions verifying suitable
size, shape and orientation constraints, and applying them to both simulation and real data examples.

Keywords Parsimonious model · Gaussian mixture model · Bayesian information criterion · Model-based classification ·
EM algorithm

1 Introduction

1In this paper we introducemethodological applications aris-
ing of cluster analysis of covariance matrices. Throughout,
we will show that appropriate clustering criteria on these
objects provide useful tools in the analysis of classic prob-
lems in Multivariate Analysis. The chosen framework is
that of multivariate classification under a Gaussian Mixture
Model, a setting where a suitable reduction of the involved
parameters is a fundamental goal leading to the Parsimo-
nious Model. We focus on this hierarchized model, designed
to explain data with a minimum number of parameters, by
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introducing intermediate categories associated with clusters
of covariance matrices.

GaussianMixtureModels approaches to discriminant and
cluster analysis are well-established and powerful tools in
multivariate statistics. For a fixed number K , both methods
aim to fit K multivariate Gaussian distributed components to
a data set inRd , with the key difference that labels providing
the source group of the data are known (supervised clas-
sification) or unknown (unsupervised classification). In the
supervised problem,wehandle a data setwith N observations
y1, . . . , yN on R

d and associated labels zi,k, i = 1, . . . , N ,
k = 1, . . . , K , where zi,k = 1 if the observation yi belongs
to the group k and 0 otherwise. Denoting by φ(·|μ,�) the
density of a multivariate Gaussian distribution on R

d with
mean μ and covariance matrix �, we seek to maximize the
complete log-likelihood function

CL
(
πππ,μμμ,���

)
=

N∑
i=1

K∑
k=1

zi,k log

(
πkφ(yi |μk, �k)

)
, (1)

with respect to theweightsπππ = (π1, . . . , πK )with 0 ≤ πk ≤
1,

∑K
k=1 πk = 1, the means μμμ = (μ1, . . . , μK ) and the

covariancematrices��� = (�1, . . . , �K ). In the unsupervised
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problem the labels zi,k are unknown, and fitting the model
involves the maximization of the log-likelihood function

L
(
πππ,μμμ,���

)
=

N∑
i=1

log

( K∑
k=1

πkφ(yi |μk, �k)

)
(2)

with respect to the same parameters. This maximization is
more complex, and it is usually performed via the EM algo-
rithm (Dempster et al. 1977), where we repeat iteratively the
following two steps. The E step, which consists in computing
the expected values of the unobserved variables zi,k given the
current parameters, and the M step, in which we are looking
for the parameters maximizing the complete log-likelihood
(1) for the values zi,k computed in the E step. Therefore, both
model-based techniques require the maximization of (1), for
which optimal values of the weights and the mean are easily
computed:

nk =
N∑
i=1

zi,k πk = nk
N

μk =
∑N

i=1 zi,k yi
nk

. (3)

With these optimal values, ifwedenote Sk = (1/nk)
∑N

i=1 zi,k
(yi − μk)(yi − μk)

T , the problem of maximizing (1) with
respect to �1, . . . , �K is equivalent to the problem of max-
imizing

(�1, . . . , �K ) �→
K∑

k=1

log
(
Wd

(
nk Sk |nk, �k

))
(4)

where Wd( · |nk, �k) is the d-dimensional Wishart distribu-
tion with parameters nk, �k . For even moderate dimension
d, the large number of involved parameters in relation with
the size of the data set could result in a poor behavior of stan-
dard unrestricted methods. In order to improve the solutions,
regularization techniques are often invoked. In particular,
many authors have proposed estimating the maximum like-
lihood parameters under some additional constraints on the
covariance matrices �1, . . . , �K , which lead us to solve the
maximization of (4) under these constraints. Between these
proposals, a prominent place is occupied by the so called
ParsimoniousModel, a broad set of hierarchized constraints
capable of adapting to conceptual situations that may occur
in practice.

A common practice in multivariate statistics consists in
assuming that covariance matrices share a common part of
their structure. For example, if �1 = . . . = �K = Id , the
clustering method described in (2) gives just the k-means. If
we assume common covariance matrices �1 = . . . = �K =
�, the procedure coincides with linear discriminant analysis
(LDA) in the supervised case (1), and with the method pro-
posed in Friedman andRubin (1967) in the unsupervised case

(2). General theory to organize these relationships between
covariance matrices is based on the spectral decomposition,
beginning with the analysis of Common Principal Compo-
nents (Flury 1984, 1988). In the discriminant analysis setting,
the use of the spectral decomposition was first proposed in
Flury et al. (1994), and in the clustering setting in Banfield
and Raftery (1993). The term “Parsimonious model" and the
fourteen levels given in Table 1 were introduced in Celeux
and Govaert (1995) for the clustering setting and later, in
Bensmail and Celeux (1996), for the discriminant setup.

Given a positive definite covariance matrix �k , the spec-
tral decomposition of reference is

�k = γkβk�kβ
T
k

where γk = det(�k)
1/d > 0 governs the size of the groups,

�k is a diagonal matrix with positive entries and determinant
equal to 1 that controls the shape, and βk is an orthogo-
nal matrix that controls the orientation. Given K covariance
matrices �1, . . . , �K , the spectral decomposition enables to
establish the fourteen different parsimonious levels in Table
1, allowing differences or not in the parameters associated to
size, shape and orientation. To fit a Gaussian Mixture Model
under a parsimonious level M in the Table 1, we must face
the maximization of (4) under the parsimonious restriction.
That is, we should find

�̂�� = argmax
���∈M

K∑
k=1

log
(
Wd

(
nk Sk |nk, �k

))
, (5)

where we say that��� = (�1, . . . , �K ) ∈ M if the K covari-
ance matrices verify the level. We should remark that the
Common Principal Components model (Flury 1984, 1988)
plays a key role in this hierarchy, which in any case is based
on simple geometric interpretations.

Restrictions are also often used to solve a well-known
problem that appears inmodel-based clustering, the unbound-
edness of the log-likelihood function (2). With no additional
constraints, the problem of maximizing (2) is not even well
defined, a fact that could lead to uninteresting spurious solu-
tions, where some groups would be associated to a few,
almost collinear, observations. Although we will also use
these restrictions, we will not discuss on this line in this
work. A review of approaches for dealing with this problem
can be found in García-Escudero et al. (2017).

The aim of this paper is to introduce a generalization of
equation (5), that allows us to give a likelihood-based clas-
sification associated to intermediate parsimonious levels.
Let G ∈ {1, . . . , K } and uuu = (u1, . . . , uK ) be any vec-
tor in {1, . . . ,G}K . Given a parsimonious level M , we can
formulate a model in which we assume that the theoretical
covariance matrices�1, . . . , �K verify a parsimonious level
M within each of theG classes defined byuuu. For instance, let
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Table 1 Parsimonious levels based on the spectral decomposition of �1, . . . , �K .

Name �k Size Shape Orientation Parameters

EII γ I Equal Spherical – 1

VII γk I Variable Spherical – K

EEI γ� Equal Equal Canonical 1 + (d − 1)

EVI γ�k Equal Variable Canonical 1 + K (d − 1)

VEI γk� Variable Equal Canonical K + (d − 1)

VVI γk�k Variable Variable Canonical K + K (d − 1)

EEE γβ�βT Equal Equal Equal 1 + (d − 1) + d(d − 1)/2

EEV γβk�βT
k Equal Equal Variable 1 + (d − 1) + Kd(d − 1)/2

EVE γβ�kβ
T Equal Variable Equal 1 + K (d − 1) + d(d − 1)/2

VEE γkβ�βT Variable Equal Equal K + (d − 1) + d(d − 1)/2

VVE γkβ�kβ
T Variable Variable Equal K + K (d − 1) + d(d − 1)/2

EVV γβk�kβ
T
k Equal Variable Variable 1 + K (d − 1) + Kd(d − 1)/2

VEV γkβk�βT
k Variable Equal Variable K + (d − 1) + Kd(d − 1)/2

VVV γkβk�kβ
T
k Variable Variable Variable K (1 + (d − 1) + d(d − 1)/2)

K = 7, G = 3,M = VVE and take uuu = (1, 1, 2, 3, 1, 2, 1).
This implies

�k = γkβ1�kβ
T
1 , k = 1, 2, 5, 7,

�k = γkβ2�kβ
T
2 , k = 3, 6,

�k = γkβ3�kβ
T
3 , k = 4 .

Following (5), the estimation of the original covariance
matrices involves maximizing (4) within Muuu , the set of
covariance matrices satisfying {�k : uk = g} ∈ M for all
g = 1, . . . ,G. Using themaximized log-likelihood as amea-
sure for the appropriateness ofuuu, the optimal ûuuwould provide
a classification for S1, . . . , SK according to the levelM . Pre-
cise definitions will be provided in Sect. 2. We will present
an iterative procedure to simultaneously compute the optimal
classification and covariance matrix estimators through the
modification of equation (5) given by

(
û, �̂

)
(6)

= argmax
uuu,���∈Muuu

( G∑
g=1

∑
k:uk=g

log
(
Wd(nk Sk |nk, �k)

))
.

Solving this equation will allow us to fit GaussianMixture
Models with intermediate parsimonious levels, in which the
common parameters of a parsimonious level will be shared
within each of the G classes given by the vector of indexes
û̂ûu, but varying between the different classes. In the previous
example, we obtain three classes of covariance matrices that
share their principal directions within each class, resulting in
a better interpretation of the final classification and allowing
a considerable reduction of the number of parameters to be

estimated. We will use these ideas for fitting Gaussian Mix-
ture Models in discriminant analysis and cluster analysis. To
avoid unboundedness of the objective function in the clus-
tering framework, we will impose the determinant and shape
constraints of García-Escudero et al. (2020), which are fully
implemented in the MATLAB toolbox FSDA (Riani et al.
2012). We will analyze some examples where the proposed
models result in less parameters and more interpretability fit-
ting the data, being better suited when compared with the 14
parsimonious models. We point out that, as it is becoming
usual in the literature, to carry out the comparisons between
different models, we will use the Bayesian Information Cri-
terion (BIC). This applies to all examples considered in the
text. It has been noticed by many authors that BIC selec-
tion works properly in model based clustering, as well as in
discriminant analysis. Fraley and Raftery (2002) includes a
detailed justification for the use of BIC, based on previous
references. A summary of the comparison of BIC with other
techniques formodel selection can also be found inBiernacki
and Govaert (1999).

The paper is organized as follows. Section2 approaches
the problem of the parsimonious classification of covariance
matrices given by equation (6), focusing on its computation
for themost interesting restrictions in termsof dimensionality
reduction and interpretability. Throughout,wewill onlywork
with models based on the parsimonious levels of propor-
tionality (VEE) and common principal components (VVE),
although the extension to other levels is straightforward.
Section3 applies the previous theory for the estimation of
Gaussian Mixture Models in cluster analysis and discrimi-
nant analysis, including some simulation examples for their
illustration. Section4 includes real data examples, where we
will see the gain in interpretability that can arise from these
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solutions. Some conclusions are outlined in Sect. 5. Finally,
Appendix A includes theoretical results, Appendix B pro-
vides some additional simulation examples and Appendix C
explains technical details about the algorithms. Additional
graphical material is provided in the Online Supplementary
Figures document.

2 Parsimonious classification of covariance
matrices

Given n1, . . . , nK independent observations from K groups
with different distributions, and S1, . . . , SK the sample
covariance matrices, a group classification may be provided
according to different similarity criteria. In the general case,
given a similarity criterion f depending on the sample
covariance matrices and the sample lengths, the problem of
classifying K covariance matrices inG classes, 1 ≤ G ≤ K ,
typically would consist in solving the equation

ûuu = argmax
uuu∈H

G∑
g=1

f
({

(Sk, nk) : uk = g
})

,

where H = {
uuu = (u1, . . . , uK ) ∈ {1, . . . ,G}K : ∀ g =

1, . . . ,G ∃ k verifying uk = g
}
. In this work, we focus

on the Gaussian case, proposing different similarity criteria
based on the parsimonious levels that arise from the spectral
decomposition of a covariance matrix.

Multivariate procedures based on parsimonious decom-
positions assume that the theoretical covariance matrices
�1, . . . , �K jointly verify one level M out of the four-
teen in Table 1. To elaborate on this idea, we include now
some useful notation. In a parsimonious modelM , we write
(�1, . . . , �K ) ∈ M if these matrices share some com-
mon parameters C , and they have variable parameters VVV =
(V1, . . . , VK ) (specified in the modelM ). We will denote by
�(Vk,C) the covariance matrix with the size, shape and ori-
entation parameters associated to (Vk,C). Therefore, under
the parsimonious level M , we are assuming that

�k = �(Vk,C) k = 1, . . . , K .

If the nk observations of group k are independent and arise
from a distribution N (μk, �k), according to the arguments
in the introduction, it is natural to consider the maximized
log-likelihood (5) under the parsimonious levelM as a sim-
ilarity criterion for the covariance matrices. This allows us to
measure their resemblance in the features associated to the
common part of the decomposition in the theoretical model.
Thus, the similarity criterion for the parsimonious level M

is

fM
({

(Sk, nk), k = 1, . . . , r
})

= max
V1,...,Vr ,C

r∑
k=1

log
(
Wd

(
nk Sk |nk, �(Vk,C)

))
.

Consequently, given a level of parsimonyM , the covariance
matrix classification problem inG classes consists in solving
the equation

ûuu = argmax
uuu∈H

G∑
g=1

fM
({

(Sk, nk) : uk = g
})

= argmax
uuu∈H

(
max

V1,...,VK ,C1,...,CG

G∑
g=1

∑
k:uk=g

log
(
Wd

(
nk Sk |nk, �(Vk,Cg)

)))
. (7)

In order to avoid the combinatorial problem of max-
imizing within H , denoting the variable parameters by
VVV = (V1, . . . , VK ) and the common parameters by CCC =
(C1, . . . ,CG), we focus on the problem of maximizing

W (uuu,VVV ,CCC)

=
G∑

g=1

∑
k:uk=g

log

(
Wd

(
nk Sk |nk, �(Vk,Cg)

))
,

since the value uuu maximizing this function agrees with the
optimal ûuu in (7). This problem will be referred to as Clas-
sification GGG-MMM . From the expression of the d-dimensional
Wishart density, we can see that maximizing W is equiva-
lent to minimizing with respect to the same parameters the
function

G∑
g=1

∑
k:uk=g

nk

(
log

(
|�(Vk,Cg)

∣∣ + tr
(
�(Vk,Cg)

−1Sk
))

.

Maximization can be achieved through a simplemodification
of theCEMalgorithm (ClassificationExpectationMaximiza-
tion, introduced in Celeux and Govaert (1992)), for any of
the fourteen parsimonious levels. A sketch of the algorithm
is presented here:
Classification GGG-M :M :M : Starting from an initial estimation
C0C0C0 = (C0

1 , . . . ,C
0
G) of the common parameters, which may

be taken as the parameters of G different matrices Sk ran-
domly chosen between S1, . . . , SK , themth iteration consists
of the following steps:
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• u-Vstep:Given the commonparametersCmCmCm = (Cm
1 , . . . ,

Cm
G ), we maximize with respect to the partition uuu and the

variable parameters VVV . For each k = 1, . . . , K , we com-
pute

Ṽk,g = argmax
V

Wd

(
nk Sk

∣∣nk, �(V ,Cg)
)

for 1 ≤ g ≤ G, and we define:

um+1
k = argmax

g∈{1,...,G}
Wd

(
nk Sk

∣∣nk, �(Ṽk,g,Cg)
)
.

• V-C step: Given the partition um+1um+1um+1, we compute the
values (Vm+1Vm+1Vm+1,Cm+1Cm+1Cm+1)maximizingW (um+1um+1um+1,VVV ,CCC). The
maximization can be done individually for each of the
groups created, by maximizing for each g = 1, . . . ,G
the function

({Vk}k:uk=g,Cg)

�−→
∑

k:uk=g

log
(
Wd

(
nk Sk |nk, �(Vk,Cg)

))
,

The maximization for each of the 14 parsimonious lev-
els can be done, for instance, with the techniques in
Celeux and Govaert (Celeux and Govaert 1995). The
methodology proposed therein for common orientation
models uses modifications of the Flury algorithm (Flury
and Gautschi 1986). However, for these models we will
use the algorithms subsequently developed by Browne
and McNicholas (2014a, b), often implemented the soft-
ware available for parsimonious model fitting, which
allow more efficient estimation of the common orien-
tation parameters.

For each of the fourteen parsimonious models, the variable
parameters in the solution V̂̂V̂V may be computed as a func-
tion of the parameters (û̂ûu, Ĉ̂ĈC), the sample covariancematrices
S1, . . . , SK and the sample lengths n1, . . . , nK . Therefore,
the function W could be written as W (uuu,CCC), and the maxi-
mization could be seen as a particular case of the coordinate
descent algorithm explained in Bezdek et al. (1987).

As it was already noted, we focus on the development
of the algorithm only for two particular (the most interest-
ing) parsimonious levels. First of all, we are going to keep
models flexible enough to enable the solution of (6), when
takingG = K (no grouping is assumed), to coincide with the
unrestricted solution, �̂k = Sk . The first six models do not
verify this condition. For the last eight models, the numbers
of parameters are

δVOL · 1 + δSHAPE · (d − 1) + δORIENT · d(d − 1)

2

Table 2 Number of parameters associated with each feature when
k = 6, d = 9

Size Shape Orientation

Common 1 8 36

Variable 6 48 216

where δVOL, δSHAPE and δORIENT take the value 1 if the given
parameter is assumed to be common, and K if it is assumed
to be variable between groups. When d and K are large,
the main source of variation in the number of parameters
is related to considering common or variable orientation,
followed by considering common or variable shape. For
example, if d = 9, k = 6, the number of parameters related
to each constraint are detailed in Table 2.

Our primary motivation is exemplified through Table 2:
to raise alternatives for the models with variable orientation.
For that, we look for models with orientation varying in G
classes, with 1 ≤ G ≤ K . We consider the case where size
and shape are variable across all groups (G different Com-
mon Principal Components, G-CPC) and also the case where
shape parameters are additionally commonwithin each of the
G classes (proportionality toG different matrices, G-PROP).
Apart from the parameter reduction, these models can pro-
vide an easier interpretation of the variables involved in the
problem,which is often a hard task inmultidimensional prob-
lems with several groups. We keep the size variable, since it
does not cause a major increase in the number of parame-
ters, and it is easy to interpret. Therefore, the models we are
considering are:

• Classification G-CPC:We are looking forG orthogonal
matrices βββ = (β1, . . . , βG) and a vector of indexes uuu =
(u1, . . . , uK ) ∈ H such that

�k = γkβuk�kβ
T
uk k = 1, . . . , K

where γγγ = (γ1, . . . , γK ) and ��� = (�1, . . . , �K ) are
the variable size and shape parameters. The number of
parameters is K+K (d−1)+Gd(d−1)/2. In the situation
of Table 2, takingG = 2 the number of parameters is 126,
while allowing for variable orientation it is 270. To solve
(7), we have to find a vector of indexes û̂ûu, G orthogonal
matrices β̂̂β̂β and variable parameters γ̂̂γ̂γ and �̂̂�̂� minimizing

(uuu,���,γγγ ,βββ)

�−→
G∑

g=1

∑
k:uk=g

nk

(
d log

(
γk

) + 1

γk
tr

(
�−1

k βT
g Skβg

))
.

(8)
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• Classification G-PROP: We are looking for G orthog-
onal matrices βββ = (β1, . . . , βG), G shape matrices
��� = (�1, . . . , �G) and uuu = (u1, . . . , uK ) ∈ H such
that

�k = γkβuk�ukβ
T
uk k = 1, . . . , K

whereγγγ = (γ1, . . . , γK ) are the variable size parameters.
The number of parameters is K+G(d−1)+Gd(d−1)/2.
In the situation of Table 2, the number of parameters if
we takeG = 2 is 94. To solve (7), we have to find a vector
of indexes û̂ûu, G orthogonal matrices β̂̂β̂β, G shape matrices
�̂̂�̂� and the variable size parameters γ̂̂γ̂γ minimizing

(uuu,���,γγγ ,βββ)

�−→
G∑

g=1

∑
k:uk=g

nk

(
d log

(
γk

) + 1

γk
tr

(
�−1

g βT
g Skβg

))
.

(9)

Explicit algorithms for finding the minimum of (8) and (9)
are given in Section C.2 in the Appendix. The results given
by both algorithms are illustrated in the following example,
where we have randomly created 100 covariance matrices
�1, . . . , �100 according:

�k = X
(
U(α)Diag(1,Y )U(α)T

)
k = 1, . . . , 100

where U(α) represents the rotation of angle α, Diag(1,Y ) is
the diagonal matrix with entries 1,Y , and X ,Y , α are uni-
formly distributed random variables with distributions:

X ∼ U
(
0.5, 2

)
Y ∼ U

(
0, 0.5

)
α ∼ U

(
0, π

)
.

For each k = 1, . . . , 100, we have taken Sk as the sample
covariance matrix computed from 200 independent obser-
vations from a distribution N (0, �k), and we have applied
4-CPC and 4-PROP to obtain different classifications of
S1, . . . , S100. The partitions obtained by both methods allow
us to classify the covariance matrices according to both
criteria. Figure1 shows the 95% confident ellipses represent-
ing the sample covariance matrices associated to each class
(coloured lines) together with the estimations of the com-
mon axes or the common proportional matrix within each
class (black lines).

3 Gaussianmixture models

In a Gaussian Mixture Model (GMM), data are assumed to
be generated by a random vector with probability density
function:

f (y) =
K∑

k=1

πkφ(y|μk, �k)

where 0 ≤ πk ≤ 1,
∑K

k=1 πk = 1. The idea of introducing
covariancematrix restrictions given by parsimonious decom-
position in the estimation of GMMs has become a common
tool for statisticians, and methods are implemented in the
software R in many packages. In this paper we use for the
comparison the results given by the package mclust (Fraley
and Raftery 2002; Scrucca et al. 2016), although there exists
many others widely known (Rmixmod: Lebret et al. (2015);
mixtools: Benaglia et al. (2009)). The aim of this section is
to explore how we can fit GMMs in different contexts with
the intermediate parsimonious models explained in Sect. 2,
allowing the common part of the covariance matrices in the
decomposition to vary between G classes. That is, with the
same notation as in Sect. 2, we want to study GMMs with
density function

f (y) =
G∑

g=1

∑
k:uk=g

πkφ
(
y
∣∣μk, �(Vk,Cg)

)
(10)

where uuu = (u1, . . . , uK ) ∈ H is a fixed vector of
indexes, VVV = (V1, . . . , VK ) are the variable parameters,
CCC = (C1, . . . ,CG) are the common parameters among
classes and �(Vk,Cg) is the covariance matrix with the
parameters given by (Vk,Cg). The following subsections
exploit the potential of these particular GMMs for cluster
analysis and discriminant analysis. A more general situation
where only part of the labels are known could also be con-
sidered, following the same line as in Dean et al. (2006), but
it will not be discussed in this work.

As already noted in the Introduction, the criterion we are
going to use for model selection between all the estimated
models is BIC (Bayesian Information Criterion), choosing
themodelwith a higher value of theBIC approximation given
by

BIC = 2 · loglikelihood − log(N ) · p

where N is the number of observations and p is the num-
ber of independent parameters to be estimated in the model.
This criterion is used for the comparison of the intermediate
models G-CPC and G-PROPwith the fourteen parsimonious
models estimated in the software R with the functions in the
mclust package. In addition, within the framework of dis-
criminant analysis, the quality of the classification given by
the best models, in terms of BIC, is also compared using
cross validation techniques.
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Fig. 1 Classification of S1, . . . , S100, represented by their 95% confidence ellipses. The first row shows the classes and axes estimations given by
the 4-CPC model, and the second row shows the classes and proportional matrix estimations given by the 4-PROP model

3.1 Model-based clustering

Given y1, . . . , yN independent observations of ad-dimensional
random vector, clustering methods based on fitting a GMM
with K groups seek to maximize the log-likelihood func-
tion (2). From the fourteen possible restrictions considered
in Celeux and Govaert (1995), we can compute fourteen dif-
ferent maximum likelihood solutions in which size, shape
and orientation are common or not between the K covari-
ance matrices. For a particular levelM in Table 1, the fitting
requires the maximization of the log-likelihood

L
(
πππ,μμμ,VVV ,C

∣∣∣y1, . . . , yN
)

=
N∑
i=1

log

( K∑
k=1

πkφ
(
yi

∣∣μk, �(Vk,C)
))

,

where πππ = (π1, . . . , πK ) are the weights, with 0 ≤ πk ≤
1,

∑K
k=1 πk = 1, μμμ = (μ1, . . . , μK ) the means, VVV =

(V1, . . . , VK ) the variable parameters and C the common
parameters. Estimation under the parsimonious restriction is
performed via the EM algorithm. In the GMM context, we
can see the complete data as pairs (yi , zi ), where zi is an
unobserved random vector such that zi,k = 1 if the observa-
tion yi comes from distribution k, and zi,k = 0 otherwise.

With the ideas of Sect. 2, we are going to fit Gaussian
MixtureModels with parsimonious restrictions, but allowing
the common parameters to vary between different classes.
Assuming a parsimonious level of decomposition M and a
numberG ∈ {1, . . . , K } of classes, we are supposing that our

data are independent observations from a distribution with
density function (10). The log-likelihood function given a
fixed vector of indexes uuu is

Luuu

(
πππ,μμμ,VVV ,CCC

∣∣∣y1, . . . , yN
)

=
N∑
i=1

log

( G∑
g=1

∑
k:uk=g

πkφ
(
yi

∣∣μk, �(Vk,Cg)
))

.

For each uuu ∈ H , we can fit a model. In order to choose
the best value for the vector of indexes uuu, we should compare
the BIC values given by the different models estimated. As
the number of parameters is the same, the best value for uuu
can be obtained by taking

ûuu = argmax
uuu∈H

[
max

πππ,μμμ,VVV ,CCC
Luuu

(
πππ,μμμ,VVV ,CCC

∣∣∣y1, . . . , yN
)]

.

In order to avoid the combinatorial problemofmaximizing
within H , we can take uuu as if it were a parameter, and we
are going to focus on the problem of maximizing

L
(
πππ,μμμ,uuu,VVV ,CCC

∣∣∣y1, . . . , yN
)

=
N∑
i=1

log

( G∑
g=1

∑
k:uk=g

πkφ
(
yi

∣∣μk, �(Vk,Cg)
))

,

(11)
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that will be referred to asClusteringG-MMM . Therefore, given
the unobserved variables zi,k , for k = 1, . . . , K and i =
1, . . . , N , the complete log-likelihood is

CL
(
πππ,μμμ,uuu,VVV ,CCC

∣∣∣y1, . . . , yN , z1,1, . . . , zN ,K

)

=
N∑
i=1

⎡
⎣

G∑
g=1

∑
k:uk=g

zi,k log

(
πkφ

(
yi

∣∣μk, �(Vk,Cg)
))⎤

⎦ .

(12)

The proposal of this section is to fit this model given
a parsimonious level M and fixed values of K and G ∈
{1, . . . , K }, introducing also constraints to avoid theunbound-
edness of the log-likelihood function (11). For this purpose,
we introduce the determinant and shape constraints studied
in García-Escudero et al. (2020). For k = 1, . . . , K , denote
by (λk,1, . . . , λk,d) the diagonal elements of the shapematrix
�k (which may be the same within classes). We impose K
constraints controlling the shape of each group, in order to
avoid solutions that are almost contained in a subspace of
lower dimension, and a size constraint in order to avoid the
presence of very small clusters. Given csh, cvol ≥ 1, we
impose:

max
l=1,...,d

λk,l

min
l=1,...,d

λk,l
≤ csh, k = 1, . . . , K ,

max
k=1,...,K

γk

min
k=1,...,K

γk
≤ cvol (13)

Remark 1 With these restrictions, the theoretical problem of
maximizing (11) is well defined. If Y is a random vector fol-
lowing a distribution P, the problem consists in maximizing

E

[
log

( G∑
g=1

∑
k:uk=g

πkφ
(
Y

∣∣μk, �
(
Vk,Cg

)))]

=
∫

log

( G∑
g=1

∑
k:uk=g

πkφ
(
y
∣∣μk, �

(
Vk,Cg

)))
dP(y)

(14)

with respect to πππ,μμμ,uuu,VVV ,CCC , defined as above, and veri-
fying (13). If PN stands for the empirical measure PN =
(1/N )

∑N
i=1 δ{yi }, by replacing P by PN , we recover the

original sample problem of maximizing (11) under the deter-
minant and shape constraints (13). This approach guarantees
that the objective function is bounded, allowing results to be
stated in terms of existence and consistence of the solutions
(see Section A in the Appendix).

Now, we are going to give a sketch of the EM algorithm
used for the estimation of these intermediate parsimonious
clustering models, for each of the fourteen levels.

Clustering G-M :M :M : Starting from an initial solution of the
parametersπ0π0π0,μ0μ0μ0,u0u0u0,V 0V 0V 0,C0C0C0, we have to repeat the follow-
ing steps until convergence:

• E step: Given the current values of the parameters
πmπmπm,μmμmμm,umumum , VmVmVm,CmCmCm , we compute the posterior prob-
abilities

zi,k =
πm
k φ

(
yi |μm

k , �
(
Vm
k ,Cm

uk

))

∑K
l=1 πm

l φ
(
yi |μm

l , �
(
Vm
l ,Cm

ul

)) (15)

for k = 1, . . . , K , i = 1, . . . , N .
• M step: In this step, we have to maximize (12) given
the expected values {zi,k}i,k . The optimal values for
πm+1πm+1πm+1,μm+1μm+1μm+1 are given by (3). With these optimal
values, if we denote Sk = (1/nk)

∑N
i=1 zi,k(yi −

μm+1
k )(yi − μm+1

k )T , then we have to find the values
um+1um+1um+1, Vm+1Vm+1Vm+1,Cm+1Cm+1Cm+1 verifying the determinant and shape
constraints (13) maximizing

(uuu,VVV ,CCC) �−→ CL
(
πm+1πm+1πm+1,

μm+1μm+1μm+1,uuu,VVV ,CCC
∣∣∣y1, . . . , yN , z1,1, . . . , zN ,K

)
.

If we remove the determinant and shape constraints, the
solution of this maximization coincides with the clas-
sification problem presented in Sect. 2 for the computed
values ofn1, . . . , nK and S1, . . . , SK . A simplemodifica-
tion of that algorithm, computing on each step the optimal
size and shape constrained parameters (instead of the
unconstrained version) with the optimal truncation algo-
rithm presented in García-Escudero et al. (2020) allows
the maximization to be completed. Determinant and
shape constraints can be incorporated in the algorithms
together with the parsimonious constraints following the
lines developed in García-Escudero et al. (2022).

As already noted in Sect. 2, we keep only the clustering
models G-CPC and G-PROP, the most interesting in terms
of parameter reduction and interpretability. For these mod-
els, explicit algorithms are explained in Section C.3 in the
Appendix. Now, we are going to illustrate the results of the
algorithms in two simulation experiments:

• Clustering G-CPC: In this example, we simulate n =
100 observations from each of 6 Gaussian distributions,
with means μ1, . . . , μ6 and covariance matrices verify-
ing

�k =γkβ1�kβ
T
1 , k = 1, 2, 3,

�k =γkβ2�kβ
T
2 , k = 4, 5, 6 .

123



Statistics and Computing (2024) 34 :100 Page 9 of 21 100

In Fig. 2, we can see in the first plot the 95 % confidence
ellipses of the six theoretical Gaussian distributions
together with the 100 independent observations simu-
lated from these distributions. The second plot represents
the clusters created by the maximum likelihood solu-
tion for the 2-CPC model, taking csh = cvol = 100.
The numbers labeling the ellipses represent the class
of covariance matrices sharing the orientation. Finally,
the third plot represents the best solution estimated by
mclust for K = 6, corresponding to the parsimonious
model VEV, with equal shape and variable size and ori-
entation. The BIC value in the 2-CPC model (31 d.f.) is
−3937.08, whereas the best model VEV (30 d.f.) esti-
mated with mclust has BIC value −3960.07. Therefore,
theGMMestimatedwith the 2-CPC restriction has higher
BIC than all the parsimonious models. Finally, the num-
ber of observations assigned to different clusters from the
original ones is 82 for the 2-CPC model and 91 for the
VEV model.

• Clustering G-PROP: In this example, we simulate n =
100 observations from each of 6 Gaussian distributions,
with means μ1, . . . , μ6 and covariance matrices verify-
ing:

�k =γk A1, k = 1, 2, 3,

�k =γk A2, k = 4, 5, 6 .

Figure3 is analogous to Fig. 2, but in the proportional-
ity case. The BIC value for the 2-PROP model (27 d.f.)
with csh = cvol = 100 is −3873.127, whereas the BIC
value for the best model fitted by mclust is −3919.796,
which corresponds to the unrestricted model VVV (35
d.f.). Now, the number of observations wrongly assigned
to the source groups is 64 for the 2-PROP model, while
it is 71 for the VVV model.

Remark 2 Note that, by imposing appropriate constraints in
the clustering problem, we can significantly decrease the
number of parameters while keeping a good fit of the data.
Figure3 shows this effect. However, constraints also have
a clear interpretation in cluster analysis problems, since we
are looking for groups that are forced to have a particular
shape. Therefore, different constraints can lead to clusters
with different shapes. This iswhat happens inFig. 2,where by
introducing the right constraints we have managed to make
the clusters created more similar to the original ones. Of
course, in the absence of prior information, it is not possible
to know the appropriate constraints, and the most reasonable
approach is to select a model according to a criterion that
penalizes the fit with the number of parameters such as the
BIC.

Table 3 Proportions of times in which clustering 2-CPC or 2-PROP
model improves the bestmclust model in terms of BIC, for each sample
size n

Example n=50 n=100 n=200

2-CPC 0.570 0.927 1.000

2-PROP 0.933 0.999 1.000

To evaluate the sensitivity of BIC for the detection of the
true underlying model, we have used the models described
in the two previous examples. Once a model and a partic-
ular sample size n (=50, 100, 200) have been chosen, the
simulation planning produces a sample containing n random
elements generated from each N (μk, �k), k = 1, . . . , 6.
We repeated every simulation plan 1000 times, comparing
for every sample the BIC obtained for the underlying clus-
tering model vs the best parsimonious model estimated by
mclust. Table 3 includes the proportions of times in which
2-CPC or 2-PROP model improves the best mclust model in
terms of BIC for each value of n. Of course, the accuracy of
the approach should depend on the dimension, the number
of groups, the overlapping... However, even in the case of a
large overlapping, as in the present examples, the proportions
reported in Table 3 show that moderate values of n suffice to
get very high proportions of success. Appendix B contains
additional simulations supporting the suitability of BIC in
this framework.

3.2 Discriminant analysis

The parsimonious model introduced in Bensmail and Celeux
(1996) for discriminant analysis has been developed in con-
junction with model-based clustering. The R packagemclust
(Fraley and Raftery 2002; Scrucca et al. 2016) also includes
functions for fitting these models, denoted by EDDA (Eigen-
valueDecompositionDiscriminantAnalysis). In this context,
given a parsimonious level M and a number G of classes,
we can also consider fitting an intermediate model for each
fixed uuu ∈ H , by maximizing the complete log-likelihood

CLuuu

(
πππ,μμμ,VVV ,CCC

∣∣∣y1, . . . , yN , z1,1, . . . , zN ,K

)

=
N∑
i=1

⎡
⎣

G∑
g=1

∑
k:uk=g

zi,k log

(
πkφ

(
yi |μk, �(Vk,Cg)

))⎤
⎦ .

(16)

Model comparison is done throughBIC, and consequently
we could try to chooseuuu maximizing the log-likelihood (11).
However, given that in the model fitting we are maximizing
the complete log-likelihood (16), it is not unreasonable try-
ing to find the value of uuu maximizing (16). Proceeding in this
manner, we can think of uuu as a parameter, and the problem
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Mclust: VEV model

Fig. 2 From left to right: 1. Theoretical Gaussian distributions and observations simulated from each distribution. 2. Solution estimated by clustering
through 2-CPC model. 3. Best clustering solution estimated by mclust in terms of BIC
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Mclust: VVV model

Fig. 3 From left to right: 1. Theoretical Gaussian distributions and observations simulated from each distribution. 2. Solution estimated by clustering
through 2-PROP model. 3. Best clustering solution estimated by mclust in terms of BIC

consists inmaximizing (12).Model estimation is simple from
model-based clustering algorithms: with a single iteration of
the M step, we can compute the values of the parameters. A
new set of observations can be classified computing the pos-
terior probabilities, with the formula (15) of the E step, and
assigning each new observation to the groupwith higher pos-
terior probability. Since the groups are known, the complete
log-likelihood (12) is bounded under mild conditions, and it
is not required to impose eigenvalue constraints, although it
may be interesting in some examples with almost degener-
ated variables. To summarize the quality of the classification
given by the best models (selected through BIC) in the differ-
ent examples, other indicators based directly on classification
errors are provided:

– MM: Model Misclassification, or training error. Propor-
tion of observationsmisclassified by themodel fittedwith
all observations.

– LOO: Leave One Out error.

– CV(R,p): Cross Validation error. Considering each
observation as labeled or unlabeled with probability p
and 1− p, we compute the proportion of unlabeled obser-
vations misclassified by the model fitted with the labeled
observations. The indicator CV(R,p) represents the mean
of the proportions obtained in R repetitions of the pro-
cess. When several classification methods are compared,
the same R random partitions are used to compute the
values of this indicator.

In the line of the previous section, only the discriminant anal-
ysis models G-CPC andG-PROP are considered. Table 4 and
5 show the results of applying these models to the simulation
examples of Figs. 2, 3. In both situations, the classification
obtained with our model slightly improves that given by
mclust.

As we did in the clustering setting, in order to evaluate
the sensitivity of BIC for the detection of the true underlying
model, simulations have been repeated 1000 times, for each
sample size n (=30, 50, 100, 200). Table 6 shows the propor-
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Table 4 Classification results
for data in Fig. 2 for the best
mclust model and 2-CPC

Model Loglik df BIC MM LOO CV(300,0.9)

mclust: VVV −1874.865 30 −3941.637 66/600 71/600 0.1187

2-CPC −1874.74 26 −3915.801 65/600 69/600 0.1161

Table 5 Classification results
for data in Fig. 3 for the best
mclust model and 2-PROP

Model Loglik df BIC MM LOO CV(300,0.9)

mclust: VVV −1852.765 30 −3897.439 62/600 69/600 0.1102

2-PROP −1853.056 22 −3846.845 64/600 68/600 0.1083

Table 6 Proportions of times in which discriminant analysis 2-CPC
or 2-PROP model improves the best mclust model in terms of BIC, for
each sample size n

Example n=30 n=50 n=100 n=200

2-CPC 0.443 0.782 0.975 1.000

2-PROP 0.971 1.000 1.000 1.000

tions of times in which 2-CPC or 2-PROP model improves
the best mclust model in terms of BIC for each value of n.

Remark 3 In discriminant analysis, the weights πππ = (π1,

. . . , πK ) might not be considered as parameters. Model-
based methods assume that observations from the kth group
follow a distribution with density function f (·, θk). If πk is
the proportion of observations of group k, the classifier mini-
mizing the expected misclassification rate is known as Bayes
classifier, and it assigns an observation y to the group with
higher posterior probability

P
(
y ∈ Group k

) = πk f (y, θk)∑K
l=1 πl f (y, θl)

. (17)

The values of πππ, θ1, . . . , θK are usually unknown, and the
classification is performed with estimations π̂̂π̂π, θ̂1, . . . , θ̂K .
Whereas θ̂1, . . . , θ̂K are always parameters estimated from
the sample, the values of π̂̂π̂π may be seen as part of the clas-
sification rule, if we think that they represent a characteristic
of a particular sample we are classifying, or real parameters,
if we assume that the observations (zi , yi ) arise from aGMM
such that

zi ∼ mult
(
1, {1, . . . , K },{π1, . . . , πK }

)

yi
∣∣zi ∼ f

(·, θzi
)
,

where mult() denotes the multinomial distribution, and the
weights verify 0 ≤ πk ≤ 1,

∑K
k=1 πk = 1. In accordance

withmclust, for model comparison we are not consideringπππ

as parameters, although its consideration would only mean
adding a constant to all BIC values computed. However, in
order to define the theoretical problem, the situationwherewe

are consideringπππ as a parameter ismore interesting. If (Z , Y )

is a random vector following a distribution P in {1, . . . , K }×
R
d , the theoretical problem consists in maximizing

E

[ G∑
g=1

∑
k:uk=g

I(Z = k) log

(
πkφ

(
Y |μk, �(Vk,Cg)

))]
=

∫ G∑
g=1

∑
k:uk=g

I(z = k) log

(
πkφ

(
y|μk, �(Vk,Cg)

))
dP(z, y)

(18)

with respect to the parameters πππ,μμμ,uuu,VVV ,CCC . Given N
observations (zi , yi ), i = 1, . . . , N of P, the problem of
maximizing (18) agrees with the sample problem presented
above the remark when taking the empirical measure PN ,
with the obvious relation zi,k = I(zi = k). Arguments like
those presented in Section A in the Appendix for the cluster
analysis problem would give existence and consistency of
solutions also in this setting.

4 Real data examples

To illustrate the usefulness of the G-CPC and G-PROP mod-
els in both settings, we show four real data examples inwhich
our models outperform the best parsimonious models fit-
ted by mclust, in terms of BIC. The two first examples are
intended to illustrate the methods in simple and well-known
data sets, while the latter involve greater complexity.

4.1 Cluster analysis: IRIS

Here we revisit the famous Iris data set, which consists of
observations of four features (length and width of sepals and
petals) of 50 samples of three species of Iris (setosa, versi-
color and virginica), and is available in the base package of R.
We apply the functions of package mclust for model-based
clustering, letting the number of clusters to search equal to
3, to obtain the best parsimonious model in terms of BIC
value. Table 7 compares this model with the models 2-CPC
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Table 7 Iris data solutions for clustering with mclust, 2-CPC and 2-
PROP

Model Loglik df BIC MM

mclust: VEV −186.074 38 −562.550 5/150

2-CPC −185.538 38 −561.480 5/150

2-PROP −192.177 35 −559.727 4/150

and 2-PROP, fitted with csh = cvol = 100. With some abuse
of notation, we include in the table the Model Misclassifi-
cation (MM), representing here the number of observations
assigned to different clusters than the originals, after iden-
tifying the clusters created with the originals in a logical
manner.

From Table 7 we can appreciate that the best clustering
model in terms of BIC is the 2-PROPmodel. In Fig. 4 we can
see the clusters created by this model. These clusters coin-
cide with the real groups, except for four observations. From
this example, we can also see the advantage of the intermedi-
ate models G-CPC and G-PROP in terms of interpretability.
In the solution found with G-PROP the covariance matri-
ces associated to two of the three clusters are proportional.
Each cluster represents a group of individuals with similar
features, which in absence of labels, we could see as a sub-
classification within the Iris specie. In this subclassification
associated to the groups with proportional covariance matri-
ces, both groups share not only the principal directions, but
also the sameproportionof variability between thedirections.
Inmany biological studies, principal components are of great
importance. When working with phenotypic variables, prin-
cipal componentsmay be interpreted as “growing directions"
(see e.g. Thorpe 1983). From the estimated model, we can
conclude that in the Iris data, it is reasonable to think that there
are three groups, two of themwith similar “growing pattern",
since not only the principal components are the same, but also
the shape is common. However, this biological interpretation
will become even more evident in the following example.

4.2 Discriminant analysis: CRABS

The data set consists of measures of 5 features over a set of
200 crabs from two species, orange and blue, and from both
sexes, and it is available in the R package MASS (Venables
and Ripley 2002). For each specie and sex (labeled OF, OM,
BF, BM) there are 50 observations. The variables are mea-
sures in mm of the following features: frontal lobe (FL), rear
width (RW), carapace length (CL), carapace width (CW) and
body depth (BD). Applying the classification function of the
mclust library, the best parsimonious model in terms of BIC
is EEV. Table 8 shows the result for the EEVmodel, together
with the discriminant analysis models 2-CPC and 2-PROP,

with csh = cvol = 100000 (with these values, the solutions
agrees with the unrestricted solutions).

The results show that the comparison given by BIC can
differ from those obtained by cross validation techniques,
partially because BIC mainly measures the fit of the data
to the model. However, in the parsimonious context, model
selection is usually performed via BIC, in order to avoid the
very time-consuming process of evaluating every possible
model with cross validation techniques.

Figure 1 in the Online Supplementary Figures represents
the solution estimated by 2-PROPmodel. The solution given
by this model allows for a better biological interpretation
than the one given by the parsimonious model EEV, where
orientation varies along the 4 groups, making the comparison
quite complex. In the 2-PROP model, the groups of males of
both species share proportional matrices, and the same is true
for the females. Returning to the biological interpretation of
the previous example, under the 2-PROPmodel, we can state
that crabs of the same sex have the same “growing pattern”,
despite of being from different species.

4.3 Cluster analysis: gene expression cancer

In this example, we work with the Gene expression cancer
RNA-Seq Data Set, which can be downloaded from the UCI
Machine LearningRepository. This data set is part of the data
collected by “The Cancer Genome Atlas Pan-Cancer anal-
ysis project"" (Weinstein et al. 2013). The considered data
set consists of a random extraction of gene expressions of
patients having different types of tumor: BRCA (breast car-
cinoma), KIRC (kidney renal clear-cell carcinoma), COAD
(colon adenocarcinoma), LUAD (lung squamous carcinoma)
and PRAD (prostate adenocarcinoma). In total, the data set
contains the information of 801 patients, and for each patient
we have information of 20531 variables, which are the RNA
sequencing values of 20531 genes. To reduce the dimen-
sionality and to apply model-based clustering algorithms,
we have removed the genes with almost zero sum of squares
(< 10−5) and applied PCA to the remaining genes. We have
taken the first 14 principal components, the minimum num-
ber of components retaining more than 50 % of the total
variance. Applying model-based clustering methods looking
for 5 groups to this reduced data set, we have found that
3-CPC, fitted with csh = cvol = 1000, improves the BIC
value obtained by the best parsimonious model estimated
by mclust. The results obtained from 3-CPC, presented in
Table 9, significantly improve the assignment error made by
mclust . Figure 2 in theOnline Supplementary Figures shows
the projection of the solution obtained by 3-CPC onto the
first six principal components computed in the preprocess-
ing steps.
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Fig. 4 Clustering obtained from
2-PROP model in the Iris data
set. Color represents the clusters
created. The ellipses are the
contours of the estimated
mixture densities, grouped into
the classes given by indexes in
black. Point shapes represent the
original groups. Observations
lying on different clusters from
the originals are marked with
red circles
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Table 8 Crabs data solutions
for discriminant analysis with
mclust, 2-CPC and 2-PROP

Model Loglik df BIC MM LOO CV(300,0.8) CV(300,0.95)

mclust: EEV −1247.693 65 −2839.776 8/200 9/200 0.0513 0.0521

2-CPC −1271.470 60 −2860.839 7/200 9/200 0.0536 0.0514

2-PROP −1278.906 52 −2833.324 8/200 11/200 0.0546 0.0613

Table 9 Cancer data solutions for clustering with mclust and 3-CPC

Model Loglik df BIC MM

mclust: VVV −44121.24 599 −92247.32 64/801

3-CPC −44561.12 417 −91910.25 6/801

4.4 Discriminant analysis: Italian olive oil

The data set contains information about the composition in
percentage of eight fatty acids (palmitic, palmitoleic, stearic,
oleic, linoleic, linolenic, arachidic and eicosenoic) found in
the lipid fraction of 572 Italian olive oils, and it is available in
the R package pdfCluster (Azzalini and Menardi 2014). The
olive oils are labeled according to a two level classification:
9 different areas that are grouped at the same time in three
different regions.

• SOUTH: Apulia North, Calabria, Apulia South, Sicily.
• SARDINIA: Sardinia inland, Sardinia coast.
• CENTRE-NORTH: Umbria, Liguria east, Liguria west.

In this example, we have evaluated the performance of
different discriminant analysis models, for the problem of
classifying the olive oils between areas. The best parsi-
monious model fitted with mclust is the VVE model, with
variable size and shape and equal orientation. Note that due
to the dimension d = 8, there is a significant difference in
the number of parameters between models with common or
variable orientation. Therefore, BIC selection will tend to
choose models with common orientation, despite the fact
that this hypothesis might not be very precise. This sug-
gests that intermediate models could be of great interest also
in this example. Given that the last variable eicosenoic is
almost degenerated in some areas, we fit the models with
csh = cvol = 10000, and the shape constraints are effective

Table 10 Olive oil discriminant
analysis with mclust, 2-CPC,
3-CPC and 3-PROP

Model Loglik df BIC MM LOO CV(300,0.8) CV(300,0.95)

mclust: VVE −20595.49 172 −42283.03 12/572 20/572 0.0375 0.0363

2-CPC −20452.64 200 −42175.11 10/572 18/572 0.0369 0.0281

3-CPC −20332.93 228 −42113.47 9/572 16/572 0.0365 0.0278

3-PROP −20521.33 186 −42223.60 16/172 27/572 0.0464 0.0463
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in some groups.We have found 3 different intermediatemod-
els improving the BIC value obtained with mclust. Results
are displayed in Table 10.

The best solution found in terms of BIC is given by the 3-
CPCmodel, which is also the solutionwith the best values for
the other indicators. The classification of the areas in classes
given in this solution is:

• CLASS 1: Umbria.
• CLASS 2: Apulia North, Calabria, Apulia South, Sicily.
• CLASS 3: Sardinia inland, Sardinia coast, Liguria east,
Liguria west.

Note that areas in class 2 exactly agree with areas from the
South Region. This classification coincides with the sepa-
ration in classes given by 3-PROP, whereas 2-PROP model
grouped together class 1 and class 3. These facts support that
our intermediate models have been able to take advantage
of the apparent difference in the structure of the covariance
matrices from the South region and the others. When we
are looking for a three-class separation, instead of splitting
the areas from the Centre-North and Sardinia into these two
regions, all Centre-North and Sardinia areas are grouped
together, except Umbria, which forms a group alone. Fig-
ure 3 in the Online Supplementary Figures represents the
solution in the principal components of the group Umbria,
and we can appreciate the characteristics of this area. The
plot corresponding to the second and third variables allows
us to see clear differences in some of its principal compo-
nents. Additionally, we can see that it is also the area with
less variability in many directions. In conclusion, a differ-
ent behavior of the variability in the olive oils from this area
seems to be clear. This could be related to the geographical
situation of Umbria (the only non-insular and non-coastal
area under consideration).

5 Conclusions and further directions

Cluster analysis of structured data opens up interesting
research prospects. This fact is widely known and used in
applications where the data themselves share some common
structure, and thus clustering techniques are a key tool in
functional data analysis. More recently, the underlying struc-
tures of the data have increased in complexity, leading, for
example, to consider probability distributions as data, and
to use innovative metrics, such as earth-mover or Wasser-
stein distances. This configuration has been used in cluster
analysis, for example, in del Barrio et al. (2019), from a
classical perspective, but also including new perspectives:
meta-analysis of procedures, aggregation facilities.... Never-
theless, to the best of our knowledge, this is the first occasion
in which a clustering procedure is used as a selection (of

an intermediate model) step in an estimation problem. Our
proposal allows improvements in the estimation process and,
arguably, often a gain in the interpretability of the estimation
thanks to the chosen framework: Classification through the
Gaussian Mixture Model.

The presented methodology enhances the so-called par-
simonious model leading to the inclusion of intermediate
models. They are linked to geometrical considerations on
the ellipsoids associated to the covariance matrices of the
underlying populations that compose themixture. These con-
siderations are precisely the essence of the parsimonious
model. The intermediatemodels arise from clustering covari-
ance matrices, considered as structured data, and using a
similaritymeasure based in the likelihood. The consideration
of clustering these objects through other similarities could be
appropriate looking for tools for different goals. In particu-
lar, we emphasize on the possibility of clustering based on
metrics like the Bures–Wasserstein distance. The role played
here by the BIC would have to be tested in the correspond-
ing configurations or, alternatively, replaced by appropriate
penalties for choosing between other hierarchical models.

Feasibility of the proposal is an essential requirement for a
serious essay of a statistical tool. The algorithms considered
in the paper are simple adaptations of Classification Expec-
tation Maximization algorithm, but we think that they could
be still improved. We will pursuit on this challenge, looking
also for feasible computations for similarities associated to
new pre-established objectives.

In summary, through the paper we have used clustering to
explore similarities between groups according to predeter-
mined patterns. In this wider setup, clustering is not a goal
in itself, it can be an important tool for specialized analyses.

6 Supplementary material

Supplementary figures: Online document with additional
graphs for the real data examples. Repository: Github repos-
itory containing the R scripts with the algorithms and
workflow necessary to reproduce the results of this work.
Simulation data of the examples are also included. (https://
github.com/rvitores/ImprovingModelChoice).

Supplementary Information The online version contains supplemen-
tary material available at https://doi.org/10.1007/s11222-024-10410-
y.
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Appendix A Theoretical results

In this section we are going to further on the comments of
Remark 1. Given a parsimonious modelM and fixed values
of K ,G, cvol and csh , the problem consists inmaximizing the
function (14) in�

M ,G
cvol ,csh , the set of parametersπππ,μμμ,uuu,VVV ,CCC

associated with the clustering modelG-M verifying the size
and shape constraints (13). Using the same notation as in
García-Escudero et al. (2020), denote

�cvol ,csh =
{
(πππ,μμμ,���) ∈ [0, 1]K × R

dK × (Sd>0)
K

verifying the constraints (13)}

where Sd>0 is the set of positive definite symmetric real matri-
ces. If we define the map

�
M ,G
cvol ,csh

T−→ [0, 1]K × R
dK × (Sd>0)

K(
πππ,μμμ,uuu,VVV ,CCC

)
�−→

(
πππ,μμμ,���

(
uuu,VVV ,CCC

))

where ���
(
uuu,VVV ,CCC

)
is the collection of K covariance matri-

ces created from the parameters uuu,VVV ,CCC , it is obvious that
T (�

M ,G
cvol ,csh ) ⊂ �cvol ,csh . This and Lemma 1 in García-

Escudero et al. (2020) allow us to replicate the proofs of
Proposition 1 and Proposition 2 in García-Escudero et al.
(2015) to prove the following theorems on the existence and
consistence of the solutions.

Theorem 1 IfP is a probability that is not concentrated on K
points, and EP || · ||2 < ∞, the maximum of (14) is achieved
at some (π̂̂π̂π, μ̂̂μ̂μ, û̂ûu, V̂̂V̂V , Ĉ̂ĈC) ∈ �

M ,G
cvol ,csh .

Given {yi }∞i=1 independent observations of the distribu-
tion P, for each N we can define the empirical distribution
PN = (1/N )

∑N
i=1 δ{yi }. The sample problemofmaximizing

(14) under the constraint (13) coincides with the distribu-
tional problem presented here, when we take the probability
PN . Therefore, Theorem 1 also guarantees the existence of
the solution of the empirical problem corresponding to large

enough samples drawn from an absolutely continuous distri-
bution.

We use the notation θ0 for any constrained maximizer of
the theoretical problem for the underlying distribution P, and
let

θn = (
πnπnπn,μnμnμn,ununun,V nV nV n,CnCnCn)

be a sequence of empirical solutions for the sequence
of empirical sample distributions {PN }∞N=1. The following
result states consistency under similar assumptions as in The-
orem1 if themaximizer of the theoretical problem is assumed
to be unique.

Theorem 2 Let us assume that P is not concentrated on K
points, EP || · ||2 < ∞ and that θ0 ∈ �

M ,G
cvol ,csh is the unique

constrained maximizer of (14) for P. If {θn}∞n=1 is a sequence

of empirical maximizers of (14) with θn ∈ �
M ,G
cvol ,csh , then

θn −→ θ0 almost surely.

Appendix B Additional simulations

At the suggestion of a reviewer, we present two additional
simulation examples that reinforce the ideas presented in
Sect. 3.1. For the sake of brevity, we only give the results
for the more involved clustering problem. We point out two
basic ideas. Since we have introduced a broader family of
models,model selectionwill bemore challenging thanwithin
the fourteen parsimonious models. This is clearly seen in the
former example, but with a sufficiently large sample size,
BIC is still able to select the true model. In the latter exam-
ple, we emphasize that our extension of the parsimonious
model is not redundant.

First, we repeat the two-dimensional simulation experi-
ment described in Sect. 3.1, but assuming the VVE model:

�k = γkβ�kβ
T , k = 1, . . . , 6.

This example allows us to deal with two different situa-
tions. The true underlying model verifies the VVE (1-CPC)
model, so it also verifies the 2-CPC model, but it does not
verify the 2-PROP model. For a sample with n = 50 obser-
vations from each group, we compute the VVE, 2-CPC and
2-PROP solutions for clustering. Results are shown in Fig. 5,
where we can appreciate that both VVE and 2-CPC models
fit the data perfectly, while the constraint of 2-PROP does not
allow a good fitting of the data. This is also reflected in Table
11, where the BIC values are computed. The best model in
terms of BIC is VVE, but 2-CPC is also competitive. 2-PROP
gives much worse BIC values.
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Fig. 5 From left to right: 1. Theoretical Gaussian distributions and observations simulated from each distribution in the VVE example. 2. Solution
estimated by clustering through 2-CPC model. 3. Solution estimated by clustering through 2-PROP model. 4. VVE clustering solution estimated
with mclust

Table 11 Clustering results in the VVE example for VVE, 2-CPC and
2-PROP models

model loglik df BIC

mclust: VVE −2116.478 30 −4424.864

2-CPC −2115.219 31 −4428.742

2-PROP −2212.407 27 −4597.531

Finally, as we did in Table 3, simulations have been
repeated 1000 times, for different sample sizes n. In each
simulation, we are comparing the BIC value obtained for 2-
CPC and 2-PROP with the BIC value obtained for the true
underlying model VVE. Results are shown in Table 12.

The results are consistent with the ideas set out above.
Since 2-PROP model is not verified, the clustering models
fitted with this constraint give lower BIC value than VVE.
2-CPC model is verified, it is more flexible than VVE, and
the difference in the number of parameters is only one. Thus,
this is a rather complicated setting for model selection. Even
in this case, if the sample size n is large enough, BIC is able
to select the true model in almost all cases.

The second example is similar to the 2-CPC example in
3.1, but now in dimension d = 10. We consider K = 6
distributions, with G = 2 classes given by

�k = γkβ1�kβ
T
1 , k = 1, 2, 3,

�k = γkβ2�kβ
T
2 , k = 4, 5, 6 .

Parameters were created so that we get a favorable but not
trivial situation for applying clustering algorithms. Figure 4
in the Online Supplementary Figures shows a sample created
with n = 100 observations from each group. For this sam-
ple, we fit the clustering model 2-CPC, and we compare it
with the best model estimated by mclust . The results of this
simulation are given in Table 13.

Themain advantage of considering our intermediate mod-
els against the 14 parsimonious models estimated bymclust
in this particular example is thatmclust is selecting themodel

Table 12 Proportions of times in which clustering 2-CPC or 2-PROP
model improves the model VVE in terms of BIC, for each sample size
n

Example n=50 n=100 n=500

2-CPC 0.208 0.141 0.031

2-PROP 0.001 0 0

Table 13 Clustering results in the 10-dimensional example for the best
mclust model and 2-CPC

Model Loglik df BIC

mclust: VVE −7310.521 170 −15708.52

2-CPC −6714.553 215 −14804.45

VVE,which it is not exactly verified, because theVVVmodel
involves a substantially larger number of parameters (395
for clustering, 390 for discriminant analysis). This leads to
a significant improvement in the BIC value of the 2-CPC
model. As a result of this, when we repeated the simulation
1000 times with different sample sizes n(= 50, 100, 200),
our model 2-CPC improved in terms of BIC the best model
estimated by mclust in 100% of the simulations, for all the
values of n considered.

Appendix C Algorithms

C.1 Optimal truncation

In the algorithms presented, we will repeatedly use the
optimal truncation algorithm explained in Section 3.1 in
García-Escudero et al. (2020), which was introduced in Fritz
et al. (2013).
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Given d ≥ 0 and a fixed restriction constant c ≥ 1, the
m-truncated value is defined by

dm =

⎧⎪⎨
⎪⎩

d if d ∈ [m, cm]
m if d < m

cm if d > cm

.

Given
{
n j

}J
j=1 ∈ R

J
>0 and

{
d j1, . . . , d j L

}J
j=1 ∈ [0,

∞)J×L , we define the operator

OTc

({
n j

}J
j=1 ; {

d j1, . . . , d j L
}J
j=1

)

which returns
{
d∗
j1, . . . , d

∗
j L

}J

j=1
∈ [0,∞)J×L with d∗

jl =
d
mopt
jl for mopt being the optimal threshold value obtained as

mopt = argmin
m

J∑
j=1

n j

L∑
l=1

(
log

(
dmjl

)
+ d jl

dmjl

)
.

Obtaining that optimal threshold value only requires the
maximization of a real-valued function and mopt can be effi-
ciently obtained by performing only 2 · J · L + 1 evaluations
through a procedurewhich can be fully vectorized (Fritz et al.
2013).

In the algorithms of the following sections, when work-
ing with proportionality models, we will minimize in several
situations a function of the type

(β, γ1, . . . ,γr , λ1, . . . , λd) �−→
r∑

k=1

nk

d∑
l=1

(
log(γkλl) + βT

l Skβl
γkλl

)
,

being β an orthogonal matrix and βl , l = 1, . . . , d its
columns, γ1, . . . , γr size parameters verifying the size con-
straint for cvol and λ1, . . . , λd the common shape parameters
verifying the shape constraint for csh and

∏d
l=1 λl = 1. In

this situation, the minimization can be made iteratively, tak-
ing into account that:

• Fixed the sizes and shapes, theminimization with respect
to β can be done with the algorithms proposed in Browne
and McNicholas (2014b).

• Fixed the orientation and shapes, the optimal uncon-
strained values of the size are

γ
opt
k = 1

d

d∑
l=1

βT
l Skβl
λl

k = 1, . . . , r .

Therefore, the optimal restricted values for the size are

OTcvol

(
{nk}rk=1; {γ opt

k }rk=1

)
.

• Fixed the orientation and sizes, the optimal unconstrained
values of the shapes are:

λ
opt
l = 1

N

r∑
k=1

nk
βT
l Skβl
γk

l = 1, . . . , d.

The optimal values verifying the constraint csh are

OTcsh

(
{1}; {λopt1 , . . . , λ

opt
d }

)
, and because of the reason-

ing in Section 3.3 in García-Escudero et al. (2020), the
optimal values verifying also

∏d
l=1 λl = 1 are obtained

normalizing the result of the optimal truncation operator.

When working with CPC models, many times we will come
to the conclusion that we have tominimize a slightly different
type of function:

(β, γ1, . . ., γr , λ1,1, . . . , λ1,d , . . . , λr ,d) �−→
r∑

k=1

nk

d∑
l=1

(
log(γkλk,l) + βT

l Skβl
γkλk,l

)
.

In this case, we can repeat analogous comments for the mini-
mization with respect to the sizes and the orientation matrix.
For the shape matrices:

• Fixed the orientation and sizes, the optimal unconstrained
values of the shapes are

λ
opt
k,l = βT

l Skβl
γk

k = 1, . . . , r , l = 1, . . . , d.

For each k = 1, . . . , r , the optimal values verify-
ing the constraint csh are the result of the operator

OTcsh

(
{1}; {λoptk,1 . . . , λ

opt
k,d }

)
, and the optimal values ver-

ifying also
∏d

l=1 λl = 1 are obtained normalizing the
result of that truncation.

C.2 Classification G-CPC/G-PROP

In this section we are going to develop the algorithms for
the covariance matrices classification models G-CPC and G-
PROP minimizing (8) and (9). Since these algorithms are
included in the algorithms for cluster analysis, determinant
and shape constraints are also included. When focusing on
the original problem of Sect. 2, these constraints should be
omitted, which can be done taking cvol = csh = ∞. The
input of the algorithm is

Classification G-CPC/PROP(
S1, . . . , SK , n1, . . . , nK ,G, csh,cvol , nstart1

)
,
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where S1, . . . , SK are the sample covariance matrices,
n1, . . . , nK the sample lengths, G the number of classes,
csh, cvol the values of the constants for the determinant and
shape constraints and nstart1 the number of random ini-
tializations. The parameters of the minimization are uuu =
(u1, . . . , uK ), γγγ = (γ1, . . . , γK ) βββ = (β1, . . . , βG) and
��� = (�1, . . . , �s), where s = K in G-CPC and s = G
in G-PROP, and they are also the output of the algorithm. A
detailed presentation of the algorithm is given as follows:

1. Initialization: We start taking a random vector of
indexes u0u0u0 ∈ H . Then we take:

β0 :β0 :β0 : For each g = 1, . . . ,G,we take k such thatu0k = g,
and we define βg as the eigenvectors of Sk .

�0 :�0 :�0 : → G-PROP: For each g = 1, . . . , K , taking the
same k as before,

�0
g =OTcsh

(
{1}; diag(βT

g Skβg)
)
,

�0
g = �0

g

prod(�0
g)

1/d .

→ G-CPC: For each k = 1, . . . , K ,

�0
k =OTcsh

(
{1}; diag(βT

u0k
Skβu0k

))
,

�0
k = �0

k

prod(�0
k)

1/d
.

γ 0 :γ 0 :γ 0 : For each k = 1, . . . , K ,

→ G-PROP: γ 0
k = 1

d
tr
(
(�0

u0k
)−1βT

u0k
Skβu0k

)

→ G-CPC: γ 0
k = 1

d
tr
(
(�0

k)
−1βT

u0k
Skβu0k

)
.

Constrained values:

(γ 0
1 , . . . , γ 0

d ) = OTcvol

(
{nk}Kk=1; {γ 0

k }Kk=1

)
.

2. Iterations:The following steps are repeated until con-
vergence:

u-V step: Based on the current parameters umumum,γmγmγm,βmβmβm,

�m�m�m , we are going to optimize with respect to uuu and the
variable parameters of each parsimonious model. The
variable parameters will be also optimized in the follow-
ing step, thus its value will not be updated here. Size
parameters γγγ don’t affect the selection of the best uuu, thus
it is enough to find for each k = 1, . . . , K the value
of uk for which taking the common parameters Cuk we
obtain a lower value in the minimization with respect to

the variable parameters of

R(β,�) =
d∑

l=1

βT
l Skβl
λl

.

→ G-PROP: The parameters ���,βββ are common, we
are only minimizing with respect to uuu. For each k =
1, . . . , K ,

um+1
k = argmin

g∈{1,...,G}
R(βm

g ,�m
g ) .

→G-CPC: The parametersβββ are common. For each k =
1, . . . , K ,

�̃k,g =OTcsh

(
{1}; diag((βm

g )T Skβ
m
g

))
,

�̃k,g = �̃k,g

prod(�̃k,g)1/d
,

um+1
k = argmin

g∈{1,...,G}
R(βm

g , �̃k,g) .

V-Cstep:Basedon the current parametersum+1um+1um+1,γmγmγm,βmβmβm,

�m�m�m , we are going to optimize with respect to γγγ ,βββ,���.
This optimization requires iterations. Setting s = 0, and
considering the initial solutions

γ̄ 0γ̄ 0γ̄ 0 = γmγmγm β̄0β̄0β̄0 = βmβmβm �̄0�̄0�̄0 = �m�m�m

the following steps are repeated until convergence:

s :s :s : s = s + 1
γ̄ s :γ̄ s :γ̄ s : Update the size parameters. For each k = 1, . . . , K ,

→ G-PROP:

γ̄ s
k = 1

d
tr
(
(�̄s−1

um+1
k

)−1(β̄s−1
um+1
k

)T Sk β̄
s−1
um+1
k

)
.

→ G-CPC:

γ̄ s
k = 1

d
tr
(
(�̄s−1

k )−1(β̄s−1
um+1
k

)T Sk β̄
s−1
um+1
k

)
.

Then we apply the size constraint:

γ̄ sγ̄ sγ̄ s = OTcvol

(
{nk}rk=1; {γ̄ s

k }Kk=1

)
.

�̄s :�̄s :�̄s : Update the shape parameters.

→ G-PROP: For each g = 1, . . . ,G,

�̄s
g = OTcsh

(
{1};
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diag

(
1

N

∑

k:um+1
k =g

nk
(β̄s−1

g )T Sk β̄s−1
g

γ̄ s
k

))
,

�̄s
g = �̄s

g

prod(�̄s
g)

1/d
.

→ G-CPC: For each k = 1, . . . , K ,

�̄s
k =OTcsh

(
{1}; diag

( (β̄s−1
ukm+1)

T Sk β̄
s−1
ukm+1

γ̄ s
k

))
,

�̄s
k = �̄s

k

det(�̄s
k)

1/d
.

β̄s :β̄s :β̄s : Update the rotationparameters. For each g = 1, . . . ,G,
the algorithms in Browne and McNicholas (2014b)
allow us to find, for each g = 1, . . . ,G, a rotation
matrix β̄s

g minimizing:

→ G-PROP: β �→
∑

k:um+1
k =g

nk

d∑
l=1

βT
l Skβl

γ̄ s
k λ̄sg,l

.

→ G-CPC: β �→
∑

k:um+1
k =g

nk

d∑
l=1

βT
l Skβl

γ̄ s
k λ̄sk,l

.

Once the iterations havefinished,weupdate the param-
eters

γm+1γm+1γm+1 = γ̄ sγ̄ sγ̄ s βm+1βm+1βm+1 = β̄sβ̄sβ̄s �m+1�m+1�m+1 = �̄s�̄s�̄s .

3. Evaluate the target function: Steps 1 and 2 are
repeated nstart1 times. At each step, we evaluate the
target function (8) or (9), and we keep the parameters
estimated in the iteration with the best value of the
target function.

C.3 Clustering G-CPC/G-PROP

In this section we are going to give a detailed explanation
of the algorithms for model-based clustering G-CPC and
G-PROP presented in Sect. 3.1 for minimizing (11). The
algorithms for fitting the corresponding discriminant anal-
ysis models can be easily deduced from these. The input of
the clustering algorithm is:

clustering G-CPC/PROP(
X ,G, K , csh, cvol ,nstart1, nstart2

)
,

where X is the matrix with N observations of d variables,
G is the number of classes, K is the number of clusters,

csh, cvol are the values for the determinant and shape con-
straints, nstart1 is the number of random initializations in the
classification algorithm, andnstart2 is the number of random
initialization in the clustering algorithm. The parameters of
theminimization areπππ = (π1, . . . , πK ),μμμ = (μ1, . . . , μK ),
uuu = (u1, . . . , uK ),γγγ = (γ1, . . . , γK )βββ = (β1, . . . , βG) and
��� = (�1, . . . , �s), where s = K in G-CPC and s = G in
G-PROP. A detailed presentation of the algorithm is given as
follows:

1. Initialization:Westart taking a randomvector of indexes
u0u0u0 ∈ H . Then we take:

π0 :π0 :π0 : Equal weights: π0
k = 1

K k = 1, . . . , K .

μ0 :μ0 :μ0 : Denote by (μ̄1, . . . , μ̄K ) the solution obtained by
the R function tclust (García-Escudero et al. 2008;
Fritz et al. 2012) for a random sample of length
N/2 of X , number of groups K , eigenvalue con-
straint given by c = min{csh, cvol} and a suitable
number of starts.We are considering as initial solu-
tion a random perturbation of the values obtained.
If S = cov(X), we are considering

μ0
k = μ̄k + 1

10
N (0, S) k = 1, . . . , K .

β0 :β0 :β0 : β0
g = Id , g = 1, . . . ,G.

�0 :�0 :�0 : �0
k = (1, . . . , 1), k = 1, . . . ,G in G-PROP, and

k = 1, . . . , K in G-CPC.
γ 0 :γ 0 :γ 0 : γ 0

k = 1, k = 1, . . . , K .

(This simple initial solution verifies determinant
and shape constraint independently of the csh and
cvol values)

2. Iterations: The E and M steps are repeated until
convergence:

• E step: Given the current values of the parameters
πmπmπm,μmμmμm,umumum , VmVmVm,CmCmCm , we compute the posterior prob-
abilities

zi,k =
πk φ

(
yi

∣∣∣μm
k , �m

k

)

∑K
l=1 πl φ

(
yi |μm

l , �m
l

)

for k = 1, . . . , K i = 1, . . . , N , where the matrix �m
k

is defined by

→ G-PROP: �m
k = γm

k βumk
�m

umk
βT
umk

.

→ G-CPC: �m
k = γm

k βumk
�m

k βT
umk

.

• M step: In this step, we have to maximize the complete
log-likelihood (12) given the expected values {zi,k}i,k .
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n :n :n : nk = ∑N
i=1 zi,k k = 1, . . . , K .

πm+1 :πm+1 :πm+1 : πm+1
k = nk

N k = 1, . . . , K .

μm+1 :μm+1 :μm+1 : μm+1
k =

∑N
i=1 zi,k yi
nk

k = 1, . . . , K .

S :S :S : For k = 1, . . . , K :

Sk = 1

nk

N∑
i=1

zi,k(yi − μm+1
k )(yi − μm+1

k )T .

Class. :Class. :Class. : We solve the covariance matrix classification prob-
lem for the computed values:

(um+1um+1um+1,γm+1γm+1γm+1,�m+1�m+1�m+1,βm+1βm+1βm+1) =
Classification G-CPC/PROP(

S1, . . . , SK , n1, . . . , nK ,G, csh, cvol , nstart1
)

.

3. Evaluate the target function: Steps 1 and 2 are repeated
nstart2 times. At the end of each different initialization,
we evaluate the target function (11), and we keep the
parameters estimated in the iteration with the best value
of the target function.
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