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INTRO DUC TIO N

Artificial intelligence (AI) seeks to imitate human thought 
in a previously unprogrammed way through the manipula-
tion of data through different machine learning (ML) algo-
rithms, deep learning (DL) and a variety of neural networks 
(NNs).1 In the fields of optometry and ophthalmology, 

there has been strong interest from researchers because 
AI can improve the diagnosis, therapeutic management 
and care of several eye conditions,2 primarily related to 
posterior eye disorders (such as diabetic retinopathy, age-
related macular degeneration and glaucoma but also to 
detect retinopathy of prematurity3 or macular hole assess-
ment4). Additionally, AI can be applied to anterior segment 

O R I G I N A L  A R T I C L E

Artificial intelligence virtual assistants in primary eye 
care practice

Leandro Stuermer1,2   |    Sabrina Braga1,2   |    Raul Martin2,3   |    James S. Wolffsohn4

Received: 21 September 2024  |  Accepted: 16 December 2024  |  Published online: 26 December 2024

DOI: 10.1111/opo.13435  

1Department of Optometry, University of 
Contestado, Canoinhas, Brazil
2Optometry Research Group, School of 
Optometry, IOBA Eye Institute, University of 
Valladolid, Valladolid, Spain
3Departamento de Física Teórica, Atómica 
y Óptica, Universidad de Valladolid, 
Valladolid, Spain
4Optometry and Vision Sciences Research 
Group, Aston University, Birmingham, UK

Correspondence
Raul Martin, IOBA Eye Institute, University of 
Valladolid, Valladolid, Spain.
Email: raul@ioba.med.uva.es

Abstract
Purpose: To propose a novel artificial intelligence (AI)-based virtual assistant 
trained on tabular clinical data that can provide decision-making support in pri-
mary eye care practice and optometry education programmes.
Method: Anonymised clinical data from 1125 complete optometric examinations 
(2250 eyes; 63% women, 37% men) were used to train different machine learning 
algorithm models to predict eye examination classification (refractive, binocular 
vision dysfunction, ocular disorder or any combination of these three options). 
After modelling, adjustment, mining and preprocessing (one-hot encoding and 
SMOTE techniques), 75 input (preliminary data, history, oculomotor test and ocular 
examinations) and three output (refractive, binocular vision status and eye disease) 
features were defined. The data were split into training (80%) and test (20%) sets. 
Five machine learning algorithms were trained, and the best algorithms were sub-
jected to fivefold cross-validation. Model performance was evaluated for accuracy, 
precision, sensitivity, F1 score and specificity.
Results: The random forest algorithm was the best for classifying eye examination 
results with a performance >95.2% (based on 35 input features from preliminary 
data and history), to propose a subclassification of ocular disorders with a perfor-
mance >98.1% (based on 65 features from preliminary data, history and ocular ex-
aminations) and to differentiate binocular vision dysfunctions with a performance 
>99.7% (based on 30 features from preliminary data and oculomotor tests). These 
models were integrated into a responsive web application, available in three lan-
guages, allowing intuitive access to the AI models via conventional clinical terms.
Conclusions: An AI-based virtual assistant that performed well in predicting pa-
tient classification, eye disorders or binocular vision dysfunction has been devel-
oped with potential use in primary eye care practice and education programmes.
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abnormalities5 (such as keratoconus, infectious keratitis, 
cataracts, corneal topography assessment or surgical pro-
cedures such as corneal transplant and refractive surgery).6 
Furthermore, AI has applications in ocular refraction7 (e.g., 
after cataract surgery)8 and visual development in paediat-
ric patients3 (such as amblyopia, binocular vision disorders 
and strabismus).

However, AI has not been widely used in clinical prac-
tice because of its availability and heterogeneity in im-
aging techniques (typically fundus photography, optical 
coherence tomography (OCT), corneal topography and 
tomography and even slit-lamp photography).9 This results 
in a gap in AI applications that utilise clinical findings in pri-
mary eye care practice.

This study aimed to create a novel AI-based virtual as-
sistant trained on tabular clinical data to provide decision-
making support in primary eye care practice and preclinical 
support to eye care professionals and eye care professional 
education programmes.

MATE R IAL S AN D M ETHO DS

Clinical data

Anonymised clinical data corresponding to 1125 complete 
optometric examinations (2250 eyes; 708 [63%] women 
and 417 [37%] men; mean age 35 ± 20 years) conducted 
between 2012 and 2021 were retrieved from the University 
of Contestado Visual Health Clinic, Brazil. Only complete 
records with clear diagnoses and management strate-
gies were included. This study followed the principles of 
the Declaration of Helsinki, and the study protocol was 
approved by the ethics committee of the University of 
Contestado, Brazil.

Data modelling

Excel and Access 365 (Micro​soft.​com) and Orange Data 
Mining 3.32.0 (orang​edata​mining.​com) software were 
used for data adjustment, mining and modelling on an in-
dividual eye basis, checking for incorrect data, inconsistent 
entries, typing mistakes, etc., to ensure the integrity of the 
data for evaluating different AI algorithms.

Experienced optometrists classified all cases appropri-
ately into three output features: refractive, ocular segment 
disorder or binocular vision dysfunction or any combina-
tion of these options. Suspected ocular disorders were 
also classified as related to the anterior eye, posterior eye 
or both. If the patient presented with any binocular vision 
dysfunction, it was further classified as accommodation 
dysfunction, fusional vergence dysfunction or both possi-
bilities (Figure 1). In all cases, specific concurrences for each 
eye were separated.

Clinical data were classified into 75 input features dis-
tributed across the preliminary data and history of the 

patient (general characteristics, visual acuity, symptoms, 
personal and family history), ocular motility (including ac-
commodation, cover test, fusional vergences, Hirschberg 
test and near point of convergence), ocular examinations 
of ophthalmoscopy (signs of the optic disc and macula), 
and biomicroscopic evaluation of the anterior eye (eyelids, 
conjunctiva and cornea), as summarised in Figure 1.

Three models were trained with machine learning algo-
rithms: Model 1 to predict the most likely case classification 
(M1), Model 2 to predict pathology in different ocular seg-
ments (M2) and Model 3 to predict any type of binocular vi-
sion dysfunction. Table 1 summarises the input and output 
features used in the three models.

Preprocessing

The input features used to train each model were se-
lected, excluding records with missing values or outliers. 
Categorical variables were handled using the one-hot en-
coding technique.10 To mitigate the sensitivity of machine 
learning algorithms to numerical variations and sample 
imbalance, four versions of the base data set were gener-
ated: original unbalanced data (Ou), original balanced data 
(Ob), unbalanced normalised data (Nu) and balanced nor-
malised data (Nb).11 Figure 2 overviews the data processing 
and model validation steps.

Balancing was performed using the synthetic mi-
nority oversampling technique (SMOTE), which gener-
ates synthetic examples for minority output classes to 
balance the data distribution.12 Normalisation, in turn, 
adjusts the numerical values to a common scale be-
tween 0 and 1. Testing these different data versions is 
essential, as machine learning algorithms can be sensi-
tive to data distribution and scale. These variations allow 
for the identification of the most effective approach for 
each model.11

Key points

•	 Artificial intelligence is of significant interest in 
eye care practice, as it can improve diagnosis, 
therapeutic management and patient care in 
several ocular conditions.

•	 Artificial intelligence applications have not been 
widely applied in clinical practice, highlighting a 
gap in applications using clinical data to provide 
decision-making support in primary eye care 
practice.

•	 A novel artificial intelligence-based virtual assis-
tant trained on tabular clinical data is proposed 
to support primary eye care practice decision-
making and be used in education programmes.
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AI algorithms training and validation

Each model was trained with five different machine learn-
ing algorithms for multiclass classification tasks: (Random 
Forest [RF], Decision Tree [DT], Neural Network [NN], Support 
Vector Machine [SVM] and Logistic Regression [LR]) using 
Python (3.9.7) (Python Software Foundation, python.​org) 

and the Pandas (1.5.3) (Pandas Development Team, pandas.​
pydata.​org/​ ), NumPy (1.26.4) (NumPy Developers, numpy.​
org/​) and Scikit-Learn (1.3.0) (Scikit-learn Developers, sciki​
t-​learn.​org/​) libraries. The test was performed with each da-
tabase version, using 80% of the data for training and 20% 
for testing, which were randomly allocated. The accuracy 
performance of each algorithm was compared.

F I G U R E  1   Names and formats of the features used to classify the eyes. ISNT, inferior, superior, nasal, temporal; NPC, near point of convergence.
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The two best algorithms for each model were subse-
quently subjected to fivefold cross-validation, where the 
training data set was randomly partitioned into five subsa-
mples of equal size. In each iteration, one subsample was 
used as a validation set to test the model, while the other 
four subsamples were used for training. This process was 
repeated five times, ensuring each subsample was used 
once as validation data. Cross-validation is essential for 
assessing the generalisability of the model. It follows the 
recommendation of using a significant fraction of the train-
ing data to drive a well-performing model.7 An additional 
purity-based feature importance analysis13 was included 
in the best-performing algorithm to examine the most im-
pactful predictors on the model.

Statistical analysis

The number of features necessary to train the machine 
learning algorithm is determined by the data set size. 
Because a fivefold cross-validation technique was applied 
to train the algorithms, with a sample size of 2250 eyes, the 
effective training size must be 1800, and it is accepted that 
the maximum number of parameters for optimal model 
performance is limited to one-tenth of the effective size.7 

In all the trained models, the number of variables was sig-
nificantly lower, indicating that the sample size was suffi-
cient for testing the ML algorithms.

The performance of the models was evaluated using 
five different indicators: accuracy (Ac), defined as the pro-
portion of correct predictions in relation to the total pre-
dictions; precision (Pr) and sensitivity (Se), defined as the 
weighted average of the proportions of true positives in re-
lation to the total positives (true and false, respectively) for 
each class; the F1 score (Fs), defined as the harmonic mean 
between precision and sensitivity for each class, weighted 
by the proportion of each class and specificity (Sp), defined 
as the simple average of the proportions of true negatives 
relative to the total true negatives for each class. In addi-
tion, for each metric, a paired t-test was conducted be-
tween the results of each iteration of the cross-validation 
of the two algorithms tested, considering a p-value < 0.05 
as statistically significant.14

Implementation of the assistant

The implementation of the virtual assistant was carried 
out, encompassing the creation of the operational inter-
face to facilitate interaction with the AI models, allowing 

T A B L E  1   Summary of input and output features used to develop the models.

Model 1 Model 2 Model 3

Features (IN/OUT) 35/1 65/1 30/1

Aim Case classification? Where could a possible 
pathological ocular problem be?

Vergence or accommodation 
dysfunction?

Input (group predictor variables) Preliminary examinations
History

Preliminary examinations
History
Ocular tests

Preliminary examinations
Oculomotor tests

Outcome (target variable) Clinical management Ocular segment disorder Binocular vision dysfunction

Output classes (possible values) None
Oculomotor
Ocular pathology
Refractive
Oculomotor and pathology
Refractive and oculomotor
Refractive and pathology
Refractive, oculomotor and 
pathology

None
Anterior pole
Posterior pole
Anterior and posterior pole

None
Accommodative dysfunction
Vergence dysfunction
Accommodative and vergence 
dysfunction

F I G U R E  2   Diagram of the data processing and model validation steps. M1, model to predict the most likely case classification; M2, Model 
to predict pathology in different ocular segments; M3, Model to predict any binocular vision dysfunction type; Nb, balanced normalised; Nu, 
unbalanced normalised; Ob, original balanced; Ou, original unbalanced.
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users to consult the models in a straightforward manner 
without technical concerns. The process was divided into 
three stages: design and prototyping, which focused on de-
fining the interfaces with an emphasis on usability and ac-
cessibility for vision science professionals; project planning, 
in which the technical procedures and logical develop-
mental flow were defined with the ASP.NET (VB) (Microsoft, 
learn.​micro​soft.​com/​dotnet/​visua​l-​basic​) for the server 
and JavaScript (jQuery) (OpenJS Foundation, jquery.​com/​
) for the client and development, which included coding 
functionalities and integrating AI models with the virtual 
assistant, adjusting data formats until the predictions were 
presented.

R ESULTS

Model (M1) classified patients based on 35 input features 
related to the preliminary data and history groups; Model 
(M2) proposed a subclassification of ocular disorders by 
analysing 65 features from the preliminary data, history and 
ocular examinations groups and Model (M3) differentiated 
binocular vision dysfunctions by evaluating 30 features 
from the preliminary data and oculomotor tests groups. 
Table  2 summarises the developed models and the pre-
processed data used in each model for training.

The accuracy of the three developed models showed 
that the SVM and LR algorithms performed worst among 
the models. In contrast, the best accuracy of all the mod-
els was achieved with the RF algorithm, with accuracies 
of 94.6% (M1), 97.1% (M2) and 99.4% (M3), followed by 
the DT algorithm in M1 (90.0%) and the NN algorithm in 
M2 (95.2%) and M3 (97.3%). The best performance was 
observed for the balanced data, while the differences be-
tween normalised and non-normalised values were not 
remarkable. Table 3 summarises the accuracy achieved by 
each algorithm in each model.

A detailed analysis of the RF and NN algorithms revealed 
that the RF algorithm yielded significantly better results 
across the three developed models, with averages of 95%, 
98% and 99% for M1, M2 and M3, respectively. In compari-
son, the decision tree (DT) algorithm achieved an average 
accuracy of 90% for M1, while the NN algorithm reached 
97% for M2 and 98% for M3 (Table 4).

The importance of individual features across the three 
random forest models is displayed in Figure 3, where pa-
tient age consistently appears to be the most significant 
predictor (Figure 3b—right). The analysis also reveals that 
15 predictors account for 95.4% of the relevance in Model 
1, whereas Models 2 and 3 account for 72.4% and 90.6%, re-
spectively. In these latter models, 34 (M2) and 18 (M3) fea-
tures together contribute >95% of the model's importance 
(Figure 3a—left).

A detailed analysis of the proposed models is provided 
in Figure  4. Model 1 demonstrated good performance 
in case classification even in combinations of refractive 
disease, ocular disease or binocular vision dysfunction 

over 80% with the RF algorithm (Figure  4a). Additionally, 
subclassification of eye disease location by Model 2 was 
excellent, with agreement >98% (Figure  4b). Finally, sub-
classification of binocular vision dysfunction by Model 3 
also showed excellent performance (Figure 4c).

Finally, a responsive web application (for desktops and 
smartphones) integrating the developed AI models was 
created. The application is freely accessible and avail-
able in three languages (English, Spanish and Brazilian 
Portuguese), allowing users to consult the AI models via 
conventional clinical terminology, with a feature that con-
verts these terms to the formats interpreted by the models, 
making the use simple and intuitive (Figure 5).

D ISCUSSIO N

AI virtual assistants are software-based systems designed 
to simulate human conversations and interactions, offering 
real-time support and information widely used in different 
services, including healthcare (scheduling appointments, 
screening symptoms, managing chronic conditions, choos-
ing treatments based on clinical evidence, etc.).15 Their use 
has improved patients' medication adherence,16 promoted 
healthy lifestyles17 and provided continuous, personal-
ised patient support.18 Additionally, virtual assistants help 
healthcare providers by automating routine tasks (reduc-
ing administrative workload, etc.) to help health profes-
sionals focus on personal interactions with patients.18

To the best of the author's knowledge, no previous 
AI-based virtual assistants have been developed for pri-
mary eye care practice. Earlier use of AI in optometry 
and ophthalmology has focused primarily on diagnosing 
posterior eye diseases,2,4 with other minor applications in 
anterior eye imaging-based diagnosis6 and ocular refrac-
tion.7,8 Previous machine and deep learning algorithms 
have generally achieved similar performance to that de-
scribed in this study (>95% with the RF algorithm) under 
different eye conditions.19 For example, convolutional 
neural networks (CNNs) can detect referrable diabetic ret-
inopathy with a sensitivity between 91.7% and 97.2%,20,21 
and have accuracies ranging from 91% to 96% in de-
tecting age-related macular degeneration22,23 or from 
90% to 99.5% in keratoconus identification.24–26 Other 
machine learning algorithms have demonstrated 97.6% 
and 95.4% accuracy for meibomian gland assessment27 
and tear meniscus thickness measurements,28 respec-
tively. These algorithms have demonstrated great utility 
in glaucoma disease,19 for example, classifying colour 
fundus photography as early glaucoma, with accuracies 
ranging from 91.4% to 98.2%,29–31 discriminating glauco-
matous optic nerves from healthy eyes using OCTs with 
accuracies ranging from 90.2% to 96.6%,32,33 and detect-
ing the progression of glaucomatous nerve damage with 
a sensitivity of 85%.34,35 In paediatric patients, machine 
learning algorithms have also exhibited high sensitivity 
and specificity19 for detecting retinopathy of prematurity 
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T A B L E  2   Descriptive summary of the different preprocessed (balanced sets) data sets used to train the AI models (M1, M2 and M3).

Data set n
Age 
(years) Sex (women/men)

Case classification

Input 
featureRefractive (%)

Binocular 
vision (%)

Ocular/systemic 
disease (%)

All samples 2250 35 ± 20 63%
37%

87.6 22.4 32.4 75

Case classification (M1)

M1

Unbalanced 35

Total 2214 35 ± 19 63%
37%

87.7 22.4 32.4

Trained 1771 35 ± 19 63%
37%

87.4 22.6 32.3

Test 443 36 ± 20 65%
35%

88.9 21.7 32.7

Balanced

Total 8176 28 ± 19 60%
40%

50.0 50.0 50.0

Trained 6540 28 ± 19 60%
40%

49.7 50.1 49.9

Test 1636 29 ± 19 60%
40%

51.1 49.6 50.2

Ocular segment disorder classification (M2)

M2

Unbalanced

Total 2206 35 ± 19 63%
37%

– – 26.0 65

Trained 1746 35 ± 19 63%
37%

– – 25.9

Test 442 36 ± 19 64%
36%

– – 26.2

Balanced

Total 6532 40 ± 20 52%
48%

– – 75.0

Trained 5225 40 ± 20 52%
48%

– – 74.4

Test 1307 40 ± 20 52%
48%

– – 74.4

Binocular vision dysfunction classification (M3)

M3

Unbalanced

Total 1982 35 ± 19 63%
37%

– 21.0 – 30

Trained 1585 35 ± 19 63%
37%

– 21.4 –

Test 397 36 ± 19 65%
35%

– 19.4 –

Balanced

Total 6264 28 ± 18 64%
36%

– 75.0 –

Trained 5011 28 ± 18 63%
37%

– 75.1 –

Test 1253 27 ± 18 65%
35%

– 74.5 –

Note: M1: Model to predict the most likely case classification; M2: Model to predict pathology in different ocular segments; M3: Model to predict any binocular vision 
dysfunction type.
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(93%),36,37 congenital cataracts (94.4%–98.9%)38 or ambly-
opia (81.6%).39 Previous clinical decision support systems 
used in clinical practice by primary eye care physicians,40 
eye care practitioners41,42 and students43 have not been 
informed by AI. It is critical to differentiate this approach 
from large-scale generative language models (LLMs), 
such as ChatGPT, which are trained on vast volumes of 
general data aimed at generating informative text across 
a wide range of contexts, including vision health,44 but 
are not optimised to provide decision support in specific 
clinical contexts. In contrast, predictive models, as pro-
posed in this research, are specifically developed and 
trained using different clinical data (tabular, imaging or 
other data) to support accurate and safe decisions assist-
ing healthcare decision-making.

In this study, different machine learning regression algo-
rithms were trained to predict eye health using clinical eye 
examination data classified as healthy, refractive, ocular 
disease or binocular vision dysfunction, following techni-
cal recommendations to develop deep learning algorithms 
to be used in eye care practice (preprocessing, grading, 
training, validating and testing data sets and performance 
of the metrics chosen).45 The RF algorithm provided the 
best model, with an accuracy >95%, which shows high po-
tential for use in primary eye care practice and preclinical 
training of healthcare students.

Early detection of eye problems from refractive or 
pathological causes significantly impacts well-being and 

quality of life.46 It is estimated that more than 1 billion 
people worldwide suffer from moderate or severe vision 
impairment or blindness from preventable or potentially 
correctable causes, such as refractive errors, presbyopia 
or cataracts.46 Additionally, >2 billion people globally will 
be older than 60 years in 2050 (most in low- and middle-
income countries).47 Given the clear relationship between 
age and ocular diseases48 such as diabetic retinopathy, 
glaucoma, age macular degeneration or cataracts, pro-
viding adequate eye care and ocular disease screening in 
these ageing patients will create challenges for healthcare 
systems, as well as increasing expenditures. The use of 
deep learning algorithms has been proposed for screening 
highly prevalent eye diseases to address these personnel 
and expertise shortages.47

Therefore, it is necessary to implement effective strate-
gies for screening and clinical decision-making to expand 
and/or improve access to visual and eye health, especially 
in areas without access to eye care practitioners (optome-
trists or ophthalmologists), thereby ensuring that patients 
receive necessary care in a timely and accurate manner.49 
In this way, advanced technologies applied to eye care 
represent a valuable opportunity to overcome traditional 
challenges, promising tools to support clinical decision-
making that assist optometrists, ophthalmologists and 
other health professionals, allowing a personalised and ef-
ficient approach to visual care, reducing waiting times and 
improving access to specialists.50

T A B L E  3   Summary of the accuracy of testing different algorithms for each developed model.

Data set version

Unbalanced SMOTE balanced

Overall average (%)Original Normalised Original Normalised

M1 n (training/test) 2214 (1771/443) 8176 (6540/1636) –

Random forest (RF) 83.1% 82.8% 94.6% 94.6% 88.8

Decision tree (DT) 71.3% 71.3% 89.8% 90.0% 80.6

Neural network (NN) 59.1% 78.6% 77.3% 84.6% 74.9

Support vector machines (SVM) 49.4% 54.6% 32.4% 64.3% 50.2

Logistic regression (LR) 47.9% 47.4% 39.9% 39.2% 43.6

M2 n (training/test) 2206 (1764/442) 6532 (5225/1307) –

Random forest (RF) 89.4% 89.4% 97.1% 97.1% 93.2

Decision tree (DT) 81.0% 81.0% 92.0% 92.0% 86.5

Neural network (NN) 90.0% 91.2% 94.7% 95.2% 92.8

Support vector machines (SVM) 73.8% 75.6% 51.2% 88.8% 72.3

Logistic regression (LR) 73.3% 73.5% 71.1% 70.4% 72.0

M3 n (training/test) 1982 (1585/397) 6264 (5011/1253) –

Random forest (RF) 95.5% 95.5% 99.4% 99.4% 97.5

Decision tree (DT) 90.9% 90.7% 95.1% 95.1% 93.0

Neural network (NN) 91.4% 93.5% 96.6% 97.3% 94.8

Support vector machines (SVM) 80.6% 80.9% 52.7% 83.8% 74.5

Logistic regression (LR) 80.1% 80.9% 53.2% 52.4% 66.7

Note: The best results are highlighted with a grey background and bold text, and the worst results are underlined. M1: Model to predict the most likely case classification; 
M2: Model to predict pathology in different ocular segments; M3: Model to predict any binocular vision dysfunction type.

Abbreviation: SMOTE, synthetic minority oversampling technique.
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The first developed model (Model 1) classified patients 
to identify any eye problem (refractive, ocular disease or 
binocular vision dysfunction) based on small amounts of 
information from a preliminary examination (including 
patients' ocular and familiar history, anamnesis and visual 
acuity) facilitating early detection. In this model, the most 
impactful features were age, visual acuity at far and near 
distances and sex, followed by symptoms of ocular pain, 
itching, headache, far and near complaints, burning and 
photophobia, which showed similar relevance (Figure  3 
top). Web-based, open-access AI assistants have the poten-
tial for widespread use by different healthcare practitioners 
for eye health screening purposes (Table 1 and Figure 4a). 
Model 2 allows subclassification of the suspected eye dis-
ease (anterior, posterior or both poles) that will be highly 
useful in referral processes to reduce chair time and facili-
tate patient access to a specialist (Figure 4b). In this model, 
the most impactful features were age, far distance com-
plaints and sex, followed by clinical signs in the lens and 
optic disc (papillary excavation and shape and the infe-
rior–superior–nasal–temporal (ISNT) pattern) with similar 
relevance, as well as visual acuity at far and near distances. 
Other relevant features were headache, Bruck test results, 
hypertension, optic disc borders, conjunctival hyperae-
mia and near complaints (Figure 3 middle). Additionally, if 
binocular vision dysfunction is suspected, Model 3 allows 
a subclassification of accommodative or vergence-related 

causes that could greatly benefit patient management 
(Figure 4c). In this model, the most impactful features were 
age and oculomotor tests of the near point of convergence 
(with a real object, light and red filter) and cover test (at 
near and with prism), followed by far and near visual acuity, 
sex, angle Kappa, far cover test, headache, burning and far 
and near complaints (Figure 3 bottom). This analysis sug-
gests that the developed models have potential for further 
optimisation, particularly by focusing on the most rele-
vant features. In each model, a significant proportion of 
features (43% in M1 [15/35], 52% in M2 [34/65] and 60% in 
M3 [18/30]) account for over 95% of the total model impor-
tance. This may indicate potential for further improvement 
by prioritising these key predictors.

Additionally, these AI-based assistants have consider-
able potential to educate healthcare practitioners, particu-
larly in primary eye care. If they are introduced in preclinical 
teaching, they can help students in clinical assessment and 
analysis training prior to honing their skills on actual pa-
tients. This should improve the experience and safety of 
university clinic patients, as they can be assessed by better-
trained students.51,52

However, using AI algorithms is not free of technical 
and clinical considerations, and this research has limita-
tions. First, limited-quantity, single-centre clinical data 
with a specific profile (school-university clinic) were used 
to develop and evaluate AI algorithms. This issue is relevant 

T A B L E  4   Summary of cross-validation results for the three designed models.

M1 Random forest (RF)[Ob] Decision tree (DT)[Nb] p-Value

Ac 95.72% ± 0.70% 90.14% ± 0.52% <0.001

Pr 95.73% ± 0.70% 90.09% ± 0.60% <0.001

Se 95.72% ± 0.70% 90.14% ± 0.52% <0.001

Fs 95.70% ± 0.70% 90.09% ± 0.56% <0.001

Sp 95.73% ± 0.70% 90.09% ± 0.60% <0.001

Av 95.72% ± 0.70% 90.11% ± 0.56% <0.001

M2 Random forest (RF)[Ob] Neural network (NN)[Nb] p-Value

Ac 98.13% ± 2.05% 97.08% ± 1.93% <0.01

Pr 98.31% ± 1.72% 97.20% ± 1.71% <0.01

Se 98.13% ± 2.05% 97.08% ± 1.93% <0.01

Fs 98.15% ± 2.02% 97.08% ± 1.92% <0.01

Sp 98.31% ± 1.72% 97.20% ± 1.70% <0.01

Av 98.21% ± 1.91% 97.13% ± 1.84% <0.01

M3 Random forest (RF)[Ob] Neural network (NN)[Nb] p-Value

Ac 99.73% ± 0.34% 97.54% ± 1.10% <0.01

Pr 99.74% ± 0.33% 97.56% ± 1.07% <0.01

Se 99.73% ± 0.34% 97.54% ± 1.10% <0.01

Fs 99.73% ± 0.34% 97.54% ± 1.10% <0.01

Sp 99.74% ± 0.33% 97.56% ± 1.07% <0.01

Av 99.73% ± 0.34% 97.55% ± 1.09% <0.01

Note: M1: Model to predict the most likely case classification; M2: Model to predict pathology in different ocular segments; M3: Model to predict any binocular vision 
dysfunction type.

Abbreviations: Ac, accuracy; Av, average; Fs, F1 score; Nb, normalised dataset with balancing; Ob, original dataset with balancing; Pr, precision; Se, sensitivity; Sp, 
specificity.
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      |  445STUERMER et al.

F I G U R E  3   Summary of the most impactful features in each model. The top panel presents the Model (M1) used to predict the most likely 
case classification, the middle Model (M2) used to predict pathology in different ocular segments and the bottom Model (M3) used to predict 
any binocular vision dysfunction type. Left (a): An ordered overview of feature importance is presented in each model (dashed line marking the 
point where at least 95% importance is reached), and right (b): A breakdown of the top 15 features most relevant in each model is presented. Conj, 
conjunctiva; CT, cover test; ISNT, inferior, superior, nasal, temporal; NPC, near point of convergence; OD, optic disc; VA, visual acuity.
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because the generalisability of the developed model could 
require further evaluation. Therefore, additional research 
with larger samples or patients, taking into account mul-
ticentre collaboration and multiethnic populations, will be 
needed to assess the actual real-world clinical applicabil-
ity of the developed assistant. Such research is needed to 
determine the accuracy, reliability, robustness and stabil-
ity of the algorithm's performance, generalisability (ruling 
out overfitting) and algorithm clinical utility in a real-time 
environment, by evaluating temporal validation sets with 
new longitudinal and external geographic data sets, as 
well as usability and cost-effectiveness validation.53 Eye-
care clinical data collection is not standardised, and dif-
ferences between practitioners/centres could affect data 
quality. Standardising eye examination data collection, 

modelling and preprocessing for use in AI algorithms 
could facilitate data sharing, increasing network collabora-
tion that must follow regulations and state privacy rules, 
guaranteeing data anonymisation and ensuring patients' 
privacy (obtaining patients' consent before data sharing). 
Additionally, collecting large amounts of multicentre origin 
data requires technical solutions to guarantee data storage 
and management. Finally, some ethical issues have been 
described54–56 regarding the use of deep learning appli-
cations in healthcare practice (ranging from racial bias in 
algorithm development to liability for misdiagnosis); thus, 
the use of any AI-based assistant must not be perceived as 
competent because it does not substitute for an eye care 
practitioner, and the specific interest of the patient must 
remain the priority.

F I G U R E  4   Summary of the random forest (RF) algorithm performance metrics for subclassification. (a) Results for Model 1 subject 
subclassification. (b) Precision–recall curve of Model 2 for segment subclassification of eye diseases. (c) Confusion matrix of Model 3 for 
subclassification of binocular vision dysfunction.
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Finally, future integration of new models could expand 
AI-based assistants to other eye areas, such as dry eye and 
myopia control. In addition, it is possible to expand the 
database and test other modelling techniques, includ-
ing deep learning libraries and images as data input. This 
would allow for integration with health devices and the 
development of other applied technological innovations.

CO NCLUSIO N

A virtual assistant based on three different AI models (the 
RF algorithm) has been developed with potential use in pri-
mary eye care practice to predict patient classification, eye 
disorders or binocular vision dysfunction with an accuracy 
>95%. This virtual assistance can aid in screening for ocu-
lar problems, support primary eye care practitioners with 
their patient load and aid in preclinical eye care education 
programmes. There are still challenges to overcome before 
widespread dissemination of AI-based virtual assistants in 
primary eye care, such as standardisation of clinical data 
collection, development of clinical findings repositories 
that ensure data integration and patient confidentiality and 
further validation research with different patient samples. 
However, the developed AI-based assistants show that the 
technology is accessible and can be implemented with con-
ventional clinical data without needing large image sets.
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F I G U R E  5   Interface of the web-based application designed to use the developed artificial intelligence (AI) algorithms. Vision Care Helper 
Intelligence (VICHI) is open access and available at https://​www.​visio​ncare.​digit​al/​vichi​. The figure shows a sequence of screens, starting with the 
search for available solutions, going through the input data entry and modulation (conversion of nomenclature to model data format) and ending 
with the prediction result of the consulted model.
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