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ABSTRACT 

Lithium-ion batteries (LIBs) are present in virtually all sectors: communications, leisure, 

transportation, and even energy distribution. However, LIBs are affected by various ageing 

processes that cause a deterioration in their performance and can pose safety risks during 

operation. Therefore, it is vital to determine the State of Health (SOH) of the battery without 

affecting its regular operation. This paper presents a procedure for estimating and diagnosing 

the SOH of LIBs from data recorded during Constant Voltage (CV) phase charging. The developed 

method is based on specific battery parameters experimentally obtained and provides accurate 

results of the internal resistance and battery capacity. One of the advantages of the proposed 

procedure is that it can provide battery SOH results just from the value of only one measured 

point of current intensity during charging in the CV phase once some characteristic parameters 

of the battery are previously determined. Two NCA lithium batteries of different geometry 

(18650 and 26650) have been used in the diagnostics. The results of the proposed procedure 

have been validated experimentally, demonstrating high accuracy and fit. The proposed method 

can be implemented in a BMS to determine the SOH of the battery using the values of current 

intensity during a standard LIB charge. 
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Abbreviations and notations 
 

 

BMS Battery Management System 
CC Constant Current 
CCCT Constant Current Charge Time 
CC-CV Constant Current – Constant Voltage 
CV Constant Voltage 
CVCT Constant Voltage Charge Time 
ECM Equivalent Circuit Model 

LIB Lithium Ion Battery 
Qbat Battery capacity 
Qbat,n Battery capacity at cycle n 
Qbat,n,50% Battery capacity at cycle n at 50% SOC 
Rint Internal resistance 
Rint,n Internal resistance at cycle n  
SOC State of Charge 

 
1 Corresponding author. 
E-mail address: ftinaut@mot.upv.es (Francisco V. Tinaut). 
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EIS Electrochemical Impedance Spectroscopy 
EV Electric Vehicle 
HI Health Indicator 

SOH State of Health 
Voc Open Circuit Voltage 
Vt Terminal Voltage 
 

 

1. Introduction 
Lithium-ion batteries (LIBs) are ubiquitous in virtually every field: communications, leisure, 

transportation, and power distribution. The deployment of electric vehicles (EVs) over the last 

decade has positioned LIBs as the preferred energy storage system in powertrain applications 

[1], [2], [3] due to their high energy capacity (up to 300 Wh/kg), high performance, no memory 

effect, and long lifetime [4]. Due to the high requirements of the batteries used in EVs, they are 

usually replaced when they reach 80% of the nominal capacity [5], [6]. However, the retired 

batteries can be used in other less demanding sectors, such as, for example, power applications 

in electrical networks with strong penetration of renewable generation [7]. 

The loss of performance of LIBs in EVs is mainly due to cycling ageing, a complex phenomenon 

involving chemical and physical mechanisms that can be grouped into three categories: Loss of 

Lithium Inventory (LLI), Loss of Active Material (LAM), and Increased Internal Resistance (IRI) [8], 

[9]. To quantify ageing, several Health Indicators (HI), such as battery storage capacity (Qbat) or 

internal resistance (Rint), are used [10]. From these two indicators, the State of Health (SOH) can 

be defined in terms of the ratio between the current capacity and the nominal capacity (SOHQ) 

or the ratio between the resistance of the battery and the nominal resistance (SOHR) [11], [12], 

[13].  

Monitoring SOH allows efficient battery use and avoids safety risks during battery operation, so 

testing routines in the Battery Management System (BMS) equipment should be included. SOH 

estimation methods are usually classified into three groups: direct measurement methods, 

model-based methods, and data analysis-based methods [14], [15], [16]. Direct measurement-

based methods calculate capacitance by charge counting or Coulomb counting, while internal 

resistance is determined by pulsed discharge or Electrochemical Impedance Spectroscopy (EIS) 

[12], [17], [18]. These types of measurement require specialised equipment data acquisition 

systems incompatible with normal battery use. Model-based methods avoid the disadvantages 

of direct measurement techniques and accurately calculate the capacity, resistance and other 

characteristics associated with battery deterioration through equivalence circuit modelling 

(ECM) or adaptive filters [13]. Finally, data-driven methods consider the battery as a black box 

and use methods such as Fuzzy Logic (FL) or Neural Networks (NN) to estimate SOH. The 

drawback of these methods is the large database and training required to perform the results 

correctly [16], [19]. 

A practical method of SOH estimation should be compatible with typical EV battery use and 

should not require complex testing. The regular process of LIB discharging and complete charging 

provides sufficient information to estimate the SOH by analysing Incremental Capacity (IC) and 

Differential Voltage (DV) [20], [21], [22]. Other research proposes to estimate the SOH from 

different alternatives: the constant current charging process [23], the full charging process [24], 

and four characteristic geometrical parameters of the charge curves [25]. Also noteworthy are 

the proposals of [26] and [27], which are based on the use of a Constant Current Charge Time 

(CCCT) and a Constant Voltage Charge Time (CVCT) from the duration of the Constant Current 
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(CC) and Constant Voltage (CV) charging phase, respectively. However, the above methods 

require all the data from the charging process in the CC phase. In typical operation, EV batteries 

are rarely discharged and fully charged, and data may be affected by incomplete predischarge 

[28], [29]. For this reason, SOH estimation methods that only use data from the CV charging 

phase are more robust than those that involve the CC charging phase. This is demonstrated by 

[30], which verified that 5.5% of the lithium loss occurred in the CC charging mode and 94.5% in 

the CV charging mode. The phenomena studied by [29] shows that the shape of the CV phase 

charging current curve varies with respect to the SOH of the battery. Furthermore, [31] relates 

battery capacity loss to CV phase charging and proposes a correlation between model 

parameters, battery capacity, and SOH.  

As ECMs can be easily implemented in online SOC estimation applications, they can also be 

applied to determine SOH from measurements during the CV phase. With this premise, several 

authors, such as [28], [29], [32], and [33], have formulated mathematical expressions for the CV 

charge current using an internal resistance ECM to obtain battery SOH, associating the physical 

meaning to the model parameters. 

This paper introduces an approach for estimating the State of Health (SOH) using an internal 

resistance ECM. This method is well-suited for integration into a BMS in a lithium-ion battery. 

The procedure has been validated through experiments, in which the estimation of SOH was 

carried out by monitoring the increase in internal resistance and the decrease in storage capacity 

of two batteries during their ageing process, even when their residual capacity was very low. 

The organisation of the manuscript is as follows: In Section 2, the ECM is used to characterise 

the CV charge curve and presents the procedure developed for simulation and performance. 

Section 3 details the equipment and procedure for characterising and performing the ageing 

tests. Section 4 presents the procedure's parameterisation and the results obtained with the 

proposed method for the same battery. In Section 5, the developed procedure is applied to two 

battery cells throughout their lifetime, and the obtained results are compared with the 

respective initial performances. Finally, section 6 shows the conclusions and the advantages of 

the proposed methodology. 

2. Development of the proposed procedure 
 

To accurately describe the dynamic characteristics of a battery, a theoretical equivalent circuit 

model (ECM) ideally includes a series resistor and an infinite number of resistor-capacitor (RC) 

groups [34]. However, in many cases, a model with one or two RC groups is sufficient to obtain 

satisfactory results with respect to the computational effort required for calculating 

nonstationary currents [35]. Even an ECM with a variable voltage source and a single internal 

resistor is enough to reproduce the behaviour of a battery during the CV charging phase, given 

the slow change of the current with time. Therefore, this model offers a practical balance 

between simplicity and quality of results. 
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Figure 1. Schematic of the internal resistance ECM model used. 

The schematic of the internal resistance ECM used is shown in Figure 1. It comprises a voltage 

source representing the open circuit voltage (Voc) and an ohmic resistance in series (Rint). In this 

case, because the behaviour of the charge is studied in the constant voltage (CV) phase, Voc and 

Rint are defined as time-dependent variables. Furthermore, considering the battery's life cycle 

stages, denoted by the index 'n' representing the number of control cycles studied within the 

ageing process, variables that change with the State of Health (SOH) are labeled with that index. 

Therefore, n = 0 corresponds to the new battery, with 'n' increasing after each ageing cycle. With 

these considerations, the ECM model behaviour is expressed as follows. 

 

𝑉𝑜𝑐(𝑡) + 𝑅𝑖𝑛𝑡,𝑛(𝑡) · 𝐼𝑐(𝑡) = 𝑉𝑡(𝑡) (1) 

 

In Equation (1, Vt represents the terminal voltage of the battery, Voc represents the open circuit 

voltage, Rint,n is the internal resistance of the battery in the corresponding control cycle, and 

Ic is the current flowing through the battery, with positive values during the charging phase and 

negative values during the discharging phase. 

The state of charge (SOC) of the battery under study can be calculated from the charge count 
indicated in Equation 2, where Qbat,n is the capacity of the battery during the charging or 

discharging process of the battery in cycle n. This capacity is considered constant within the 
cycle studied but variable between different charging and discharging cycles. 

 

𝑆𝑂𝐶 (𝑡) = ∫
𝐼𝑐(𝑡)

𝑄𝑏𝑎𝑡,𝑛
 𝑑𝑡

𝑡

0

 (2) 

 

Furthermore, for each LIB, there is a characteristic relationship (indicated in Equation 3) 

between the open circuit voltage (Voc) and the state of charge SOC that remains unaffected by 

battery ageing [32]. 

 

𝑆𝑂𝐶 (𝑡) = 𝑆𝑂𝐶 (𝑉𝑜𝑐(𝑡)) (3) 
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During the usual CC-CV charging process, the SOC increases within the CV charging phase, 

accompanied by an increase in Voc. Consequently, to maintain the terminal voltage (Vt) at the 

maximum value, Vt,max (as per the manufacturer's LIB specifications), the charging current (Ic) 

must be progressively reduced. Substituting the terms of Equation 1, it is possible to model the 

CV charging process, as shown in Equation 4. 

 

𝑉𝑜𝑐(𝑡) + 𝑅𝑖𝑛𝑡,𝑛(𝑡) · 𝐼𝑐(𝑡) = 𝑉𝑡,𝑚𝑎𝑥 (4) 

 

Equation 5 is derived by applying the adapted ECM model to the CV charging process, as 

indicated in Equation 4, and incorporating the functional dependencies between Voc and SOC 

outlined in Equations 2 and 3. This Equation is presented in differential form to facilitate the 

simplification process leading to Equation 6. 

 

𝑑𝑆𝑂𝐶

𝑑𝑉𝑜𝑐
(−𝑅𝑖𝑛𝑡,𝑛(𝑡) ·

𝑑𝐼𝑐(𝑡)

𝑑𝑡
−
𝑑𝑅𝑖𝑛𝑡,𝑛(𝑡)

𝑑𝑡
· 𝐼𝑐(𝑡)) =  

𝐼𝑐(𝑡)

𝑄𝑏𝑎𝑡,𝑛
 (5) 

𝑑𝐼𝑐(𝑡)

𝐼𝑐(𝑡)
= −

𝑑𝑆𝑂𝐶
𝑑𝑉𝑜𝑐

·
𝑑𝑅𝑖𝑛𝑡,𝑛(𝑡)

𝑑𝑡
+

1
𝑄𝑏𝑎𝑡,𝑛

𝑑𝑆𝑂𝐶
𝑑𝑉𝑜𝑐

· 𝑅𝑖𝑛𝑡,𝑛(𝑡)
𝑑𝑡 (6) 

 

Until now, no further simplifications have been necessary beyond accepting the ECM model as 

valid. However, to apply this procedure numerically in the CV charging phase of cycle n, it is 

beneficial to consider Qbat,n as a constant value. Moreover, the functions SOC(Voc) and Rint,n(t) can 

be approximated as linear functions over time, given that their variations are minimal relative to 

time when SOC >70%. 

During the CV charge phase, the SOC is large and increases with Voc until it reaches the 

corresponding limiting values: SOC = 100% and Voc = Vt,max. Under these conditions, SOC(Voc) can 

be assumed to exhibit linear behaviour with Voc. This dependence can be experimentally verified 

during the initial battery characterisation. In fact, only the slope of this linear function is relevant 

in this procedure, denoted in Equation 6 as 
𝑑𝑆𝑂𝐶

𝑑𝑉𝑜𝑐
, which proves to be a constant, positive value. 

Additionally, the internal resistance Rint,n depends on the SOC, albeit with slight variations due to 

battery ageing in each cycle. To address this variation analytically, it is assumed that in the CV 

charging process Rint,n increases linearly with time and can be expressed as shown in Equation 7. 

Here, the slope of the function, denoted as 'a', remains independent of battery ageing, while the 

constant term 'bn' changes with battery ageing. However, it is more convenient to study the 

evolution of the battery's internal resistance by normalising the term 'bn' to the internal 

resistance value at 50 % SOC in a given control cycle n (Rint,n,50%). In this case, the cycle-dependent 

term 'bn' is replaced by a coefficient 'b', which remains invariant with ageing, as indicated in 

Equation 8. 
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To integrate the differential Equation 6, the linearisation of the functions SOC(Voc) and Rint,n(t) 

previously mentioned are taken into account, as well as the phase of the CC-CV charging process 

in which it occurs. Therefore, the initial condition (t=0) has been set as the transition from the 

constant current (CC) charging phase to the constant voltage (CV) charging phase. Therefore, the 

current at the instant t = 0 is the current maintained during the previous CC charging phase (Icc). 

Equation 9, valid during the charging process in the CV phase, shows the analytical relationship 

between Ic(t) and the relevant battery parameters. In Equation 9 there are variables 

independent of aging (a, b, 𝑑𝑆𝑂𝐶/𝑑𝑉𝑜𝑐) while others are dependent on battery ageing (Rint,n,50%, 

Qbat,n). In other words, Equation 9 allows for calculating the constant voltage phase charging 

current for a battery with a given ageing state (as given by Rint,n,50% and Qbat,n). 

 

When the charge current Ic(t) is recorded experimentally, these data can be used in the model 

developed to determine the battery condition by obtaining one of the two ageing dependent 

variables. If the battery capacity Qbat,n is known, the internal resistance Rint,n,50% can be calculated 

mathematically from Equation 9. This result in Equation 10, the mathematical expression of the 

diagnostic procedure for the internal resistance at 50 % SOC of the battery in the control cycle n.  

 

𝑅𝑖𝑛𝑡,𝑛,50% =
𝐼𝑐(𝑡) · 𝑎 · 𝑡

𝑏 ·

(

 𝐼𝑐𝑐 · (
𝐼𝑐(𝑡)
𝐼𝑐𝑐

)

1
𝑑𝑆𝑂𝐶
𝑑𝑉𝑜𝑐

·𝑎·𝑄𝑏𝑎𝑡,𝑛+1 − 𝐼𝑐(𝑡)

)

 

 

(10) 

 

Similarly, if the internal resistance Rint,n,50% is known, solving Equation 9 for the battery capacity 

Qbat,n provides the mathematical expression of the diagnostic procedure for the battery capacity 

at control cycle n, as indicated in Equation 11. 

 

𝑄𝑏𝑎𝑡,𝑛 = −
ln
𝑅𝑖𝑛𝑡,𝑛,50% · 𝑏 + 𝑎 · 𝑡
𝑅𝑖𝑛𝑡,𝑛,50% · 𝑏

𝑑𝑆𝑂𝐶
𝑑𝑉𝑜𝑐

· 𝑎 · (ln
𝐼𝑐(𝑡)
𝐼𝑐𝑐

+ ln
𝑅𝑖𝑛𝑡,𝑛,50% · 𝑏 + 𝑎 · 𝑡
𝑅𝑖𝑛𝑡,𝑛,50% · 𝑏

)

 (11) 

 

𝑅𝑖𝑛𝑡,𝑛(𝑡) = 𝑎 · 𝑡 + 𝑏𝑛 (7) 

𝑅𝑖𝑛𝑡,𝑛(𝑡) = 𝑎 · 𝑡 + 𝑏 · 𝑅𝑖𝑛𝑡,𝑛,50%  (8) 

𝐼𝑐(𝑡) = 𝐼𝑐𝑐 · (1 +
𝑎 · 𝑡

𝑏 · 𝑅𝑖𝑛𝑡,𝑛,50% 
)

−(1+
1

𝑑𝑆𝑂𝐶
𝑑𝑉𝑜𝑐

·𝑎·𝑄𝑏𝑎𝑡,𝑛

)

 
(9) 
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3. Experimental methodology for battery ageing and measurement 

3.1. Experimental setup: batteries and test bench 
 

Two different types of lithium-ion batteries, both Panasonic brand and NCA type, have been 

used: one NCR18650B battery with a 3100 mAh capacity and another NCR26650A battery with 

a 5000 mAh capacity. Both batteries have been subjected to the same initial characterisation 

procedure and subsequent ageing test with the electric current values recommended by the 

manufacturer. The specifications of the batteries used in the tests are shown in Error! Not a valid 

bookmark self-reference.. 

Table 1. Batteries specifications 

Battery NCR18650B NCR26650A 

Type NCA NCA 

Rated capacity 3100 mAh 5000 mAh 

Rated voltage 3.7 V 

Maximum voltage 4.2 V 

Minimum voltage 2.6 V 

Maximum discharge intensity 2 C 1 C 

Maximum charge intensity 0.5 C 

 

A test bench, consisting of an iTech IT6723 programmable voltage source, an iTech IT8512A+ 

programmable electronic load, and a computer with LabView software for control and data 

storage, was utilised for the experimentation. Additionally, the test bench includes a system for 

acquiring voltage, current, and temperature measurements, which are also recorded on the 

computer. The test bench setup is shown in Figure 2. 

 

 

Figure 2. General view of the battery test bench. (A) Measurement acquisition system, (B) battery mount, (C) LIB 
NCR18650B, (D) LIB NCR26650A, (E) iTech IT6723 programmable power supply, (F) iTech IT8512A+ programmable 

electronic load, (G) computer with LabView software. 

 

The batteries studied have been placed in battery holders designed for each battery's 

dimensions, following standards for 18650 and 26650 batteries. These battery holders include 
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direct voltage measurement sockets on the terminals to ensure that measurements are not 

affected by voltage drops in the test bench's power conductors during the charging and 

discharging processes. 

All battery tests were performed at ambient temperature (laboratory climate control set at 22 ± 

3ºC). Data acquisition systems, including voltage, current and temperature, were configured with 

a sampling frequency of 1 Hz. In the test bench control system, the shutdown conditions were 

set to the manufacturer's maximum and minimum voltage values for each battery. 

 

3.2. Procedure for battery ageing and characterisation test 
 

The test procedure, shown in Figure 3, has been designed to simulate the continuous use of the 

batteries at nominal values indicated by the manufacturer. The test procedure has three distinct 

parts: 1 - initial characterisation, 2 - condition monitoring, and 3 - controlled ageing. 

 

 

Figure 3. Experimental flow chart 

The initial characterisation is the first test to be performed. The objective of this test is to extract 

the battery's characteristic parameters and compare them with those provided by the 

manufacturer. The battery is first fully charged and discharged to stabilise it and then slowly 

discharged and charged at a rate of 0.02 C to obtain the characteristic Voc(SOC) function of the 

battery. 

During the condition check, the battery's capacity and internal resistance are compared with 

historical data, if available. If the battery is new, this data is recorded for future comparisons. 

After controlled ageing, the recorded data is analysed to see how the parameters change with 

planned ageing. 

Condition monitoring tests consist of a discharge and a charge under nominal conditions to verify 

battery capacity and, subsequently, a discharge and a pulse charge to determine the internal 
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resistance. The data collected in these tests are analysed to determine whether or not the 

battery under study has reached end-of-life conditions according to the criteria used in the 

automotive industry, as indicated in section 1.  

A complete discharge is conducted to verify the battery capacity. The procedure begins with the 

battery fully charged at 100 % SOC, and it is discharged at a constant current of 1 C until the 

minimum voltage value is reached; at this point, SOC is considered 0 %. Subsequently, the battery 

is fully charged using the CC-CV procedure with an initial charge current of 0.5 C. Battery capacity 

is determined as the average value of the values recorded between discharge and charge. 

To determine the battery's internal resistance, a discharge and charge are carried out with 

intensity pulses. The procedure begins with the battery fully charged at 100 % SOC, and it is 

discharged using constant intensity pulses (0.5 C - 600 seconds) until reaching the minimum 

voltage value established for each battery (2.6 V). Between pulses, the battery is allowed to 

stabilise for 900 seconds. Subsequently, the battery is fully charged using the CC-CV procedure 

by applying 0.5 C pulses. 

If the test results and verifications indicate that the battery has reached the end of its useful life, 

controlled ageing is stopped. However, if the battery has not depleted its characteristics, the 

controlled ageing stage begins or restarts as needed. 

In the controlled ageing stage, the battery is cycled according to the nominal conditions specified 

by the manufacturer. 100 charge and discharge cycles are performed automatically, and then a 

status check is performed. Battery charging is carried out according to the CC-CV protocol at an 

initial rate of 0.5 C and a cutoff of 0.02 C. The battery is discharged at a constant current with a 

rate of 1 C until the minimum voltage indicated by the battery manufacturer is reached. The 

computer system records the number of cycles performed during the process and monitors 

battery voltage, current, and temperature, stopping the cycling process if any of these indicators 

exceed the safety values.  

Figure 4 demonstrates that the NCR18650B battery reached the 80 % threshold of its rated 

capacity after 500 charging cycles, whereas the NCR26650A battery achieved this threshold after 

256 cycles. This comparison underscores the distinct durability and performance attributes 

between the two battery types from the same manufacturer and composition. Despite 

surpassing the 80% limit, it was decided to try to reach the same number of cycles for both 

batteries. 
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Figure 4. SOHQ evolution during the tests for NCR18650B (blue) and NCR26650A (green). In red is indicated the 80% 
SOHQ limit used in automotive industry. 

4. Experimental validation of the developed procedure 
 

The procedure developed in section 2 is applied to the experimental data of the NCR18650B 

battery. The necessary variables are extracted and manipulated in simulation mode, and the 

results are compared with the experimental data. This comparison is conducted at six control 

points, strategically chosen to cover the entire useful life of the battery: 0, 100, 200, 300, 400 

and 500 cycles. These control points provide a comprehensive view of the battery's performance 

over time, allowing us to assess the accuracy of the results using several criteria. 

 

4.1. Obtaining battery parameters from a standard charging process 
 

The internal resistance is modelled using the manufacturer's technical sheet's initial value (Rint,0) 

and the experimentally determined value at 50 % of SOC (Rint,n,50%) after an arbitrary number of 

ageing cycles. The internal resistance is assumed to behave linearly overtime during the CV 

charging phase. This trend has been observed in the tested batteries during the experimental 

charges, as shown in Figure 5. In the figure, the slope of the internal resistance remains constant 

while the independent term increases with the ageing cycles, causing the internal resistance 

curves during the CV charging phase to shift vertically but with a similar slope. 
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Figure 5. Evolution of the experimental internal resistance during CV phase charging in the different control cycles for 
NCR18650B. 

Equation 12 is obtained by calculating the average value of the linearization coefficients of the 

internal resistance of the different control points, the ratio of the Voc and the charge intensity 

during the CV phase, and normalizing to the value of 50 % SOC. 

 

𝑅𝑖𝑛𝑡,𝑛(𝑡) = 3.99 · 10
−5 · 𝑡 + 2.21 · 𝑅𝑖𝑛𝑡,𝑛,50% (12) 

 

 

Figure 6. Comparison between internal resistance during the CV charging phase of the NCR18650B battery at the 
100th cycle control point (red) and the linear function proposed in the equation 12 for the same control point (blue). 

 

The characteristic function Voc(SOC) is obtained during the battery's initial characterisation. Its 

inverse function SOC(Voc) is calculated from these values. It is important to note that the 

characteristic function Voc(SOC) and its inverse SOC(Voc) remain invariant throughout the battery 

lifetime and are not affected by ageing processes, as indicated by [32]. Additionally, the CV 

charging phase corresponds to the last part of the SOC(Voc) curve, where the SOC is high (usually, 

SOC > 70 %). In this interval, the Voc increases rapidly and monotonically and can be assumed 

linear during the CV charging phase [29], as shown in Equation 13. Both statements can be 

verified in Figure 7, where the SOC(Voc) functions are compared for 0 and after 450 cycles. 
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Figure 7. Characteristic relationship between SOC and Voc for NCR18650B at 0 cycles (red) and after 450 cycles (blue). 

 

𝑆𝑂𝐶(𝑉𝑜𝑐) = 0.966 · 𝑉𝑜𝑐 − 3.015 (13) 

 

Performing the derivative of Equation 13 the slope 𝑑𝑆𝑂𝐶/𝑑𝑉𝑜𝑐 is obtained, which is necessary 

for Equations 9, 10 and 11, the general form of the procedure for simulation and diagnostics 

procedures. As mentioned before, SOC(Voc) exhibits a linear behaviour, with a slope that remains 

constant throughout its expected lifetime. 

The rest of the input variables are immediately available. Icc, Qbat,0, and Rint,0,50% are specified by 

the manufacturer. The variables Qbat,n and Rint,n,50% for each control point are obtained according 

to the test procedure indicated in Section 3. Table 2 specifies the values of the input variables 

used for the NCR18650B cell. 

Table 2: Input variables for NCR18650B 

Input variable 0 cycles 100 cycles 200 cycles 300 cycles 400 cycles 500 cycles 

Icc (A) 3.20 

𝒅𝑺𝑶𝑪/𝒅𝑽𝒐𝒄 0.966 

Rint,n,50% (Ω) 0.052 0.055  0.058 0.061 0.064 0.075 

Qbat,n (Ah) 3.100 2.986 2.916 2.785 2.692 2.478 

  

4.2. Comparison of theoretical and experimental results 
 

With the input variables indicated in Table 2, the charging current curve in the CV phase for the 

battery state control points 0, 100, 200, 300, 400, and 500 cycles has been simulated using 

Equation 9. The results obtained in the simulation are shown and compared with the 

experimentally recorded charging current for each control point, as shown in Figure 8. 

Two goodness criteria are used to analyse the similarity between the experimental electric 

current curve and the one calculated by the proposed procedure: Root Mean Square Error 

(RMSE) and the Correlation Coefficient R2. For RMSE, a value close to zero indicates a better 

fit of the results to the experimental data, while for R, it has to be close to unity.  
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As shown in Table 3, the indicators obtained reveal that for the six NCR18650 battery control 

points studied, the RMSE value is on the order of hundredths, indicating proximity to zero, and 

R2 is close to unity. Therefore, based on the error indicators in Table 3 and the results displayed 

in Figure 8, it can be concluded that the estimated electric current using the proposed procedure 

aligns well with the experimentally obtained values for the constant voltage charging process. 

 

Table 3. Similarity indicators between the experimental intensity and the simulation results for NCR18650B. 

Cycle # 0 100 200 300 400 500 

RMSE (A) 0.0231 0.0289 0.0221 0.0220 0.0164 0.0188 

R2 (-) 0.9989 0.9984 0.9992 0.9996 0.9998 0.9998 

 

  
(a) 0 cycles (b) 100 cycles 

  
(c) 200 cycles (d) 300 cycles 
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(e) 400 cycles (f) 500 cycles 

Figure 8. Comparison between experimental charging intensity (blue) and simulation result (red) for NCR18650B at 
different control points. 

 

5. Application of the procedure to determine battery SOH 
 

The internal resistance (Rint,n,50%) or the battery capacity (Qbat,n) can be used to keep track of 

battery ageing. From these two values, two alternative expressions of battery SOH can be 

defined, as indicated in Section 1, and shown in Equations 14 (SOHR) and 15 (SOHQ) respectively: 

 

𝑆𝑂𝐻𝑅 = (1 −
𝑅𝑖𝑛𝑡,𝑛,50% − 𝑅𝑖𝑛𝑡,0,50%

𝑅𝑖𝑛𝑡,0,50%
) · 100 (14) 

𝑆𝑂𝐻𝑄 =
𝑄𝑏𝑎𝑡,𝑛
𝑄𝑏𝑎𝑡,0

· 100 (15) 

 

To calculate SOHR, it is necessary to know the evolution of the battery's internal resistance after 

the ageing process. For this purpose, equation 10 is used, which provides the internal resistance 

at 50 % SOC (Rint,n,50%). From it, SOHR is obtained by Equation 14. 

Similarly, to obtain the value of the aged battery capacity, Equation 11 is used, which provides 

the battery capacity at the control point where the diagnosis is performed. Using this result in 

Equation 15, SOHQ is obtained. 

The proposed diagnostic procedure offers a significant advantage in not requiring the complete 

set of experimental data on charge current during the CV phase. Diagnosis of the LIB can be 

conducted by using only some specific points from the CV charging process (in the limit, one 

point). When the entire set of registered charge current values is available, numerous (although 

similar for a given ageing cycle) internal resistance and capacity values can be obtained. These 

results can be further processed to enhance the accuracy of the procedure. 

The results obtained for internal resistance Rint,n,50% and capacity Qbat,n for the NCR18650B and 

NCR26650A batteries are indicated in Table 4 and Table 5, respectively. Rint,n,50% and Qbat,n have 

been calculated for the complete data set recorded during the CV charging phase, obtaining as 
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many results as recorded data. Subsequently, the average value obtained for all the results is 

compared with the value obtained experimentally during the LIB diagnostic phase at each 

control point according to the procedure indicated in Section 3 and the similarity between both 

is evaluated using RMSE. 

It can be observed in Table 4 and Table 5 how Rint,n,50% increases while Qbat,n decreases as the 

ageing cycling of the two batteries studied increases. The low value of RMSE obtained for Rint,n,50% 

confirms that the developed procedure provides consistent values that allow it to diagnose LIB 

quickly and easily. The order of magnitude difference in RMSE obtained between Rint,n,50%  and 

Qbat,n is a consequence of the dependent terms of the natural logarithm existing in Equation 11. 

 

Table 4. Summary and comparison of diagnostic results for the NCR18650B battery. 

NCR18650B 𝑹𝒊𝒏𝒕,𝒏(𝟓𝟎 %) (Ω) 𝑸𝒃𝒂𝒕,𝒏 (Ah) 
Control cycle Experimental Diagnosis RMSE Experimental Diagnosis RMSE 

100 0.055 0.057 0.0043 2.986 3.057 0.2697 

200 0.058 0.059 0.0030 2.916 3.007 0.1860 

300 0.061 0.062 0.0028 2.785 2.903 0.1545 

400 0.064 0.065 0.0029 2.692 2.769 0.1481 

500 0.075 0.077 0.0027 2.478 2.564 0.1225 

 

Table 5. Summary and comparison of diagnostic results for the NCR26650A battery. 

NCR26650A 𝑹𝒊𝒏𝒕,𝒏(𝟓𝟎 %) (Ω) 𝑸𝒃𝒂𝒕,𝒏 (Ah) 
Control cycle Experimental Diagnosis RMSE Experimental Diagnosis RMSE 

250 0.056 0.059 0.0058 4.411 4.593 0.2231 

350 0.068 0.070 0.0027 3.259 3.375 0.1406 

400 0.090 0.092 0.0048 2.307 2.351 0.1438 

450 0.098 0.108 0.0165 1.842 1.637 0.2687 

 

Table 6 and Table 7 show the SOH referred to the internal resistance (SOHR) and the capacity 

(SOHQ) calculated with the experimental data collected in the test bench and with the results 

obtained with the diagnostic procedure for the NCR18650A and NCR26650B batteries in each 

control cycle studied. 

For both batteries, it can be observed that the SOH referred to the internal resistance (SOHR) 

calculated from the results of the diagnostic procedure differs between 2 % and 5 % with respect 

to the calculation based on experimental data. For SOHQ of both batteries, the same difference 

is observed between the results obtained experimentally and the diagnostic procedure. Despite 

the difference, the quality of the results obtained from the diagnostic procedure is adequate for 

use in BMS equipment. 

The strongest discrepancy between the SOHR values calculated with experimental data and with 

the diagnostic procedure appears at the 450th control cycle of NCR26650A (Table 7). The reason 

for this anomalous case is due to the excessive ageing degradation that the battery presented at 

that ageing cycle. This excessive degradation was already noticed at control cycle 250, but the 

tests were maintained to observe the evolution of SOH beyond that point (see Figure 4). 
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Table 6. Comparison of SOHR and SOHQ calculated with experimental and diagnostic data for NCR18650B  

NCR18650B 𝑺𝑶𝑯𝑹 (%) 𝑺𝑶𝑯𝑸 (%) 
Control cycle Experimental Diagnosis Experimental Diagnosis 

100 94.2 90.4 96.3 98.6 

200 88.5 86.5 94.1 97.0 

300 82.7 80.8 89.8 93.6 

400 76.9 75.0 86.8 89.3 

500 55.8 51.9 79.9 82.7 

 

Table 7 Comparison of SOHR and SOHQ calculated with experimental and diagnostic data for NCR26650A  

NCR26650A 𝑺𝑶𝑯𝑹 (%) 𝑺𝑶𝑯𝑸 (%) 
Control cycle Experimental Diagnosis Experimental Diagnosis 

250 98.2 93.7 88.2 91.9 

350 76.4 72.7 65.2 67.5 

400 36.4 32.7 46.1 47.0 

450 21.8 3.6 36.8 32.7 

 

Table 6 and Table 7 show the SOH referred to the internal resistance (SOHR) and the capacity 

(SOHQ) calculated with the experimental data collected in the test bench and with the results 

obtained with the diagnostic procedure for the NCR18650A and NCR26650B batteries in each 

control cycle studied. 

For both batteries, the SOH, referred to as the internal resistance (SOHR) calculated from the 

diagnostic procedure results, differs between 2 % and 5 % from the calculation based on 

experimental data. For the SOHQ of both batteries, the same difference is observed between the 

results obtained experimentally and the diagnostic procedure. Despite the difference, the quality 

of the results obtained from the diagnostic procedure is adequate for use in BMS equipment. 

The major difference between the SOHR values calculated using experimental data and the 

diagnostic procedure is observed at the 450th control cycle of NCR26650A (Table 7). This 

anomalous case is due to the excessive ageing degradation that the battery presented during 

that ageing cycle. This excessive degradation was already noticed at control cycle 250, but the 

tests were maintained to observe the evolution of SOH beyond that point (see Figure 4). 

6. Conclusions 
 

In this paper, an SOH diagnostic procedure for LIB is proposed based on an internal resistance 

ECM model and using data recorded during a standard constant-voltage charging phase. The 

developed method uses specific parameters of the battery under inspection that can be easily 

obtained from the standard charge. 

The RMSE indicators obtained both in the experimental validation, and those obtained in the 

applications demonstrate that the proposed procedure is accurate and adjusts to the 

experimental values. 

The main novelty of the proposed procedure is its usefulness as a form of diagnosis to obtain the 

internal resistance and capacity of a LIB from the data recorded during charging in the CV phase. 
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Unlike other diagnostic procedures, having the full set of values of experimental current intensity 

Ic(t) of the CV charging process is unnecessary. The procedure presented here can provide battery 

SOH results just from the value of a single point of the current during the charging CV phase once 

the characteristic parameters of the battery (a, b and 𝑑𝑆𝑂𝐶/𝑑𝑉𝑜𝑐) are previously determined. 

This greatly simplifies the diagnostic process and can be implemented on any BMS equipment. 

Furthermore, using the value of the internal resistance at 50 % SOC (Rint,n,50%) as a comparative 

parameter of internal resistance allows to simplify the diagnosis by unifying all the possible 

values of internal resistance that can be obtained in the range 0-100 % of SOC. This provides a 

reference value that changes with battery ageing and can be compared with the initial one 

provided by the manufacturer. 

Although the battery's capacity can be known by performing a full charge, the proposed 

procedure also allows calculating the aged capacity value from the charging data in the CV phase 

and the internal resistance Rint,n,50%. 

Finally, the general form of the procedure allows simulation of the evolution over time of the 

charging electric current in the constant voltage phase for a given SOH, defined by the internal 

resistance and capacity of the battery. This can be useful in other areas such as training or 

component design. 
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