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Abstract
In this work, we provide four methods for constructing new maximum sum-rank distance
(MSRD) codes. The first method, a variant of cartesian products, allows faster decoding than
known MSRD codes of the same parameters. The other three methods allow us to extend or
modify existing MSRD codes in order to obtain new explicit MSRD codes for sets of matrix
sizes (numbers of rows and columns in different blocks) that were not attainable by previous
constructions. In this way, we show that MSRD codes exist (by giving explicit constructions)
for new ranges of parameters, in particular with different numbers of rows and columns at
different positions.

Keywords Linearized Reed–Solomon codes · Maximum sum-rank distance codes · Rank
metric · Sum-rank metric

Mathematics Subject Classification 15B33 · 94B05 · 94B65

1 Introduction

The sum-rank metric, defined in Nóbrega and Uchôa-Filho (2010) and implicitly considered
earlier in Lu and Kumar (2005), has recently attracted considerable attention in Coding
Theory due to its applications in reliable and secure multishot network coding (Martínez-
Peñas and Kschischang 2019b; Nóbrega and Uchôa-Filho 2010), PMDS codes for repair
in distributed storage (Cai et al. 2022; Gopi and Guruswami 2022; Martínez-Peñas and
Kschischang 2019a), rate-diversity optimal space-time codes (Lu andKumar 2005; Shehadeh
and Kschischang 2022), and multilayer crisscross error correction (Martínez-Peñas 2022b),
among others.

The size or dimension (when linear) of codes also satisfy a Singleton bound with respect
to their minimum sum-rank distance (Byrne et al. 2021, Th. III.2). Codes attaining this bound
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are therefore optimal with respect to the size-distance tradeoff and are called maximum sum-
rank distance (MSRD) codes. Linearized Reed–Solomon codes (Martínez-Peñas 2018) are
the first MSRD codes that can be decoded in polynomial time over a field of subexponential
size in the code length (Martínez-Peñas and Kschischang 2019b). Afterwards, a number
of alternative MSRD codes have appeared in the literature (Byrne et al. 2021; Chen 2023;
Martínez-Peñas 2018, 2022a, 2023; Neri 2022; Neri et al. 2023; Santonastaso and Sheekey
2023; Santonastaso and Zullo 2023), covering other ranges of parameters (different field
sizes and/or matrix sizes).

In thiswork, we provide fourmethods for constructing newMSRDcodes. The firstmethod
(Sect. 3) consists of a special arrangement of cartesian products of preexisting MSRD codes
and allows faster decoding than known MSRD codes of the same parameters. The other
three methods (Sects. 4, 5 and 6) allow us to extend or modify existing MSRD codes in
order to obtain new explicit MSRD codes for sets of matrix sizes (numbers of rows and
columns in different blocks) that were not attainable by previous constructions. Furthermore,
the constructions in Sects. 5 and 6 admit different numbers of rows and columns at different
positions.Notmany explicitMSRDconstructionswith this featurewere knownbefore (Byrne
et al. 2021; Chen 2023). In Sect. 7, we compare the concrete examples of MSRD codes
obtained in this work with the known MSRD codes from the literature. In particular, we
show that the parameters of MSRD codes from the literature can all be attained by our
constructions, whereas our constructions of MSRD codes attain new ranges of parameters
(numbers of rows and columns).

2 Preliminaries

In this preliminary section, we revisit the basic properties of codes in the sum-rank metric
(Sect. 2.1) and some known constructions of MSRD codes (Sect. 2.2). For tutorials and
surveys on the topic, we refer to Gorla et al. (2023); Martínez-Peñas et al. (2022).

Let Fq denote the finite field of size q , denote by F
m×n
q the space of matrices of sizem×n

over Fq , for positive integersm and n, and set Fn
q = F

1×n
q . We also denote N = {0, 1, 2, . . .},

[n] = {1, 2, . . . , n} and [m, n] = {m,m + 1, . . . , n} for positive integers m and n with
m ≤ n. In the following, 〈·〉Fq and dimFq denote linear span and dimension over Fq .

2.1 The sum-rankmetric

Fix positive integers �, m1 ≥ m2 ≥ · · · ≥ m� and ni ≤ mi , for i ∈ [�]. We will consider
the sum-rank metric in the space

∏�
i=1 F

mi×ni
q , where we will call each factor F

mi×ni
q a rank

block, thus � is the number of (rank) blocks. For C = (C1, . . . ,C�) ∈ ∏�
i=1 F

mi×ni
q , we

define its sum-rank weight as

wt(C) =
�∑

i=1

Rk(Ci ),

whereRk denotes the rank function. The sum-rankmetric is defined as d(C, D) = wt(C−D),
forC, D ∈ ∏�

i=1 F
mi×ni
q . For a code (i.e., a subset) C ⊆ ∏�

i=1 F
mi×ni
q , we define itsminimum

sum-rank distance as

d(C) = min{d(C, D) : C, D ∈ C,C �= D}.

123



New constructions… Page 3 of 18 398

For an Fq -linear code C ⊆ ∏�
i=1 F

mi×ni
q , its minimum sum-rank distance coincides with its

minimum sum-rank weight, that is, d(C) = min{wt(C) : C ∈ C,C �= 0}.
Observe that, when � = 1, the sum-rank metric recovers the rank metric, and when

m1 = n1 = · · · = m� = n� = 1, the sum-rank metric recovers the Hamming metric.
As in the case of the Hamming metric, there exists a Singleton bound that relates the

minimum sum-rank distance and the size of a code without involving the field size (except
for taking logarithms or dimensions). For a code (linear or non-linear) C ⊆ ∏�

i=1 F
mi×ni
q

with |C| ≥ 2, let d(C) = ∑ j−1
i=1 ni + δ +1, where j ∈ [�] and 0 ≤ δ ≤ n j −1. The Singleton

bound for the sum-rank metric, proven in (Byrne et al. 2021, Th. III.2), reads

logq |C| ≤
�∑

i= j

mi ni − m jδ. (1)

Notice that, if C is Fq -linear, then logq |C| = dimFq (C). A code C ⊆ ∏�
i=1 F

mi×ni
q is called a

Maximum Sum-Rank Distance (MSRD) code if it meets the Singleton bound (1). See Sect.
2.2 for some known explicit constructions.

When m = m1 = · · · = m�, we may consider the space F
n
qm , where n = n1 + · · · + n�,

instead of
∏�

i=1 F
mi×ni
q , due to the following. Given an ordered basis γ = (γ1, . . . , γm) ∈

F
m
qm of Fqm over Fq , we define the Fq -linear vector space isomorphism Mr

γ : F
r
qm −→ F

m×r
q

given by

Mr
γ (c) =

⎛

⎜
⎜
⎜
⎝

c1,1 c1,2 . . . c1,r
c2,1 c2,2 . . . c2,r
...

...
. . .

...

cm,1 cm,2 . . . cm,r

⎞

⎟
⎟
⎟
⎠

, (2)

for c = (c1, . . . , cr ) ∈ F
r
qm , where ci, j ∈ Fq , for i ∈ [m] and j ∈ [r ], are the unique scalars

such that c j = ∑m
i=1 γi ci, j , for j ∈ [r ]. Now, if we set n = (n1, . . . , n�), we may extend the

previous map to another Fq -linear vector space isomorphism Mn
γ : F

n
qm −→ ∏�

i=1 F
m×ni
q by

Mn
γ (c) =

(
Mn1

γ (c1), . . . , Mn�
γ (c�)

)
, (3)

for a vector c = (c1, . . . , c�) ∈ F
n
qm , where ci ∈ F

ni
qm , for i ∈ [�]. We may also define its

sum-rank weight as

wt(c) = wt
(
Mn

γ (c)
)

=
�∑

i=1

Rk
(
Mni

γ (ci )
)

.

Therefore, we may define the sum-rank metric in F
n
qm simply as d(c,d) = wt(c − d), for

c,d ∈ F
n
qm . The advantage of considering the sum-rankmetric inF

n
qm is that wemay consider

Fqm -linear codes in such an ambient space.Notice thatmost constructions ofMSRDcodes are
Fqm -linear codes in F

n
qm Martínez-Peñas (2018, 2022a, 2023); Neri (2022); Santonastaso

and Zullo (2023), see Sect. 2.2. However, in this manuscript we will construct Fq -linear
MSRD codes where not all m1, . . . ,m� are equal. Only a few constructions in this case are
known (Byrne et al. 2021; Chen 2023).

Observe that, when considering the sum-rank metric in F
n
qm as above, we need to specify

the vector n = (n1, . . . , n�), which we call the sum-rank length partition. Otherwise, the
map Mn

γ is not well defined.
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2.2 Some knownMSRD codes

We now briefly describe the general Fqm -linear MSRD codes in F
n
qm introduced in Martínez-

Peñas (2022a). They generalize linearized Reed–Solomon codes (Martínez-Peñas 2018),
which were the first Fqm -linear MSRD codes whose field sizes qm are subexponential in the
code length n. In general, the MSRD codes in Martínez-Peñas (2022a) are the ones with the
smallest finite-field sizes qm for the given parameters known so far. Moreover, they have
the longest block length � compared to q and the matrix sizes, among known MSRD codes.
Constructions 2, 3 and 4 in this manuscript (Sects. 4, 5 and 6, respectively) will allow us to
extend the block length or modify the matrix sizes of such MSRD codes in non-trivial ways.

Since we are looking for long MSRD codes and an MSRD code can easily be shortened
(Martínez-Peñas 2019, Sect. 3.3), we will consider the following codes with the longest
lengths possible. Let μ and r be positive integers, define � = μ(q − 1) and n = �r , and
consider the sum-rank length partition n = (r , . . . , r) (� times). For k ∈ [n], define the
matrix in F

k×n
qm given by

Mk(a,β) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

β1 . . . βμr . . . β1 . . . βμr

β
q
1 a1 . . . β

q
μr a1 . . . β

q
1 aq−1 . . . β

q
μr aq−1

β
q2

1 a
q2−1
q−1
1 . . . β

q2
μr a

q2−1
q−1
1 . . . β

q2

1 a
q2−1
q−1
q−1 . . . β

q2
μr a

q2−1
q−1
q−1

...
. . .

...
. . .

...
. . .

...

β
qk−1

1 a
qk−1−1
q−1

1 . . . β
qk−1

μr a
qk−1−1
q−1

1 . . . β
qk−1

1 a
qk−1−1
q−1

q−1 . . . β
qk−1

μr a
qk−1−1
q−1

q−1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (4)

where a1, . . . , aq−1 ∈ F
∗
qm are such that Nqm ,q(ai ) �= Nqm ,q(a j ) if i �= j (where Nqm ,q(a) =

a ·aq · · · aqm−1 = a
qm−1
q−1 , for a ∈ Fqm , is the norm of Fqm over Fq ), and where β1, . . . , βμr ∈

F
∗
qm are such that, if we set Hi = 〈

β(i−1)r+1, β(i−1)r+2, . . . , βir
〉
Fq

⊆ Fqm , then

1. dimFq (Hi ) = r , and

2. Hi ∩
(∑

j∈� H j

)
= {0}, for any set � ⊆ [μ], such that i /∈ � and |�| ≤ min{k, μ} − 1,

for all i ∈ [μ].
With these assumptions, the Fqm -linear code Ck(a,β) = {xMk(a,β) : x ∈ F

k
qm } ⊆ F

n
qm

has dimension k (over Fqm ) and is MSRD by (Martínez-Peñas 2022a, Th. 3.12). We refer the
reader to (Martínez-Peñas 2022a, Sect. 4) for concrete examples of choices of a1, . . . , aq−1

and β1, . . . , βμr (in particular for the longest values of r and μ, and thus of �, given q and
m). Recall that, by (Martínez-Peñas 2019, Th. 5), the dual code Ck(a,β)⊥ is also MSRD.
However, generator matrices of such codes are not known in general.

Linearized Reed–Solomon codes (Martínez-Peñas 2018) correspond to the above MSRD
codes when μ = 1, that is, β = (β1, . . . , βr ) and the two conditions onH1 simply mean that
β1, . . . , βr are Fq -linearly independent.

3 Construction 1: Cartesian products

In general, cartesian products of MSRD codes are not MSRD. However, we now present a
particular case where they are indeed MSRD. The main interest in this construction is that,
when the component codes are linearized Reed–Solomon codes, wewill see that the resulting
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code admits decoding algorithms that are faster than those of other MSRD codes of the same
parameters.

Construction 1 Consider (linear or non-linear) codes C1, . . . , Ct ⊆ ∏�
i=1 F

mi×mi
q , where

m1 ≥ · · · ≥ m�. Consider their cartesian product arranged as follows:

C =

⎧
⎪⎨

⎪⎩

⎛

⎜
⎝

⎛

⎜
⎝

C1,1
...

Ct,1

⎞

⎟
⎠ , . . . ,

⎛

⎜
⎝

C1,�
...

Ct,�

⎞

⎟
⎠

⎞

⎟
⎠ : (Ck,1, . . . ,Ck,�) ∈ Ck, k ∈ [t]

⎫
⎪⎬

⎪⎭
⊆

�∏

i=1

F
(tmi )×mi
q ,

(5)
and consider the sum-rankmetric in

∏�
i=1 F

(tmi )×mi
q by taking ranks in each block of matrices

F
(tmi )×mi
q , for i ∈ [�]. Observe that this is different than simply considering

(∏�
i=1 F

mi×mi
q

)t

with the rank blocks F
mi×mi
q .

As in the classical case, we have the following basic result. The proof is straightforward.

Lemma 1 If dk = d(Ck), for k ∈ [t], then

logq |C| =
t∑

k=1

logq |Ck | and d(C) = min{d1, . . . , dt }.

In particular, we obtain MSRD codes in the following particular case.

Theorem 1 If Ci is MSRD for i ∈ [t], |C1| = · · · = |Ct | and d = d1 = · · · = dt , then C is
MSRD. More precisely, d(C) = d = ∑ j−1

i=1 mi + δ + 1, where j ∈ [�] and 0 ≤ δ ≤ m j − 1,
and

logq |C| = t

⎛

⎝
�∑

i= j

m2
i − m jδ

⎞

⎠ .

Proof Since Ck is MSRD of distance d , we have logq |Ck | = ∑�
i= j m

2
i − m jδ, for k ∈ [t],

thus logq |C| = t
(∑�

i= j m
2
i − m jδ

)
, and we are done, since the Singleton bound in this case

is

logq |C| ≤
�∑

i= j

(tmi )mi − (tm j )δ = t

⎛

⎝
�∑

i= j

m2
i − m jδ

⎞

⎠ .


�
Consider now � ∈ [q − 1] and let D ⊆ F

�m
qm be an Fqm -linear linearized Reed–Solomon

code (Martínez-Peñas 2018) (see also Sect. 2.2) of minimum sum-rank distance d ∈ [�m].
Set C1 = · · · = Ct = Mm

γ (D) ∈ (Fm×m
q )�, in the cartesian-product construction from (5), for

m = (m, . . . ,m) and for an ordered basis γ = (γ1, . . . , γm) of Fqm over Fq . Then the code

C ⊆ (F(tm)×m
q )�

from (5) is Fq -linear and MSRD of minimum sum-rank distance d .
The only MSRD codes with such parameters and with a known efficient decoder are

linearized Reed–Solomon codes C′ ⊆ F
�m
qtm

∼= (F
(tm)×m
q )� of minimum sum-rank distance d .
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However, decoding C is always more efficient than decoding C′, since C requires decoding
t linearized Reed–Solomon codes over Fqm , C′ requires decoding one linearized Reed–
Solomon code over Fqtm , in both cases of code length �m, and there are no algorithms
for multiplication in Fqtm of linear complexity (or lower) in t over Fqm .

For instance, if we use the Welch-Berlekamp decoder from Martínez-Peñas and Kschis-
chang (2019b), then decoding C′ requires O((�m)2) operations in Fqtm , while decoding C
requires O(t(�m)2) operations in Fqm . Assume that one multiplication in Fqtm costs about
O(t2) operations in Fqm . Then decoding C′ requires O((t�m)2) operations in Fqm , while
decoding C requires O(t(�m)2) operations in Fqm .

4 Construction 2: Combining bases

Now we provide a construction that combines two linear codes by “glueing” their bases.

Construction 2 Let

C1 ⊆
�∏

i=1

F
mi×ni
q and C2 ⊆

t∏

i=1

F
m�+i×n�+i
q

beFq -linear codes of dimensions k1 and k2, respectively. Set also d1 = d(C1) and d2 = d(C2).
Let {Bj,1, . . . , Bj,k j } form a basis of C j , for j = 1, 2. Consider the Fq -linear code

C ⊆ ∏�+t
i=1 F

mi×ni
q with basis

{(B1,1, B2,1), . . . , (B1,k, B2,k)},
where k = min{k1, k2} and where (B1,i , B2,i ) means concatenation of the tuples B1,i and
B2,i .

The code C satisfies the following result, whose proof is straightforward.

Lemma 2 It holds that

dim(C) = min{k1, k2} and d(C) ≥ d1 + d2.

Proof The claim on dimensions is clear since the tuples (B1,1, B2,1), . . . , (B1,k, B2,k) are
Fq -linearly independent. Next, a nonzero codeword in C is of the form

(
k∑

i=1

λi B1,i ,

k∑

i=1

λi B2,i

)

, (6)

for some λ1, . . . , λk ∈ Fq , not all zero. In particular,
∑k

i=1 λi B1,i and
∑k

i=1 λi B2,i are
nonzero codewords in C1 and C2, respectively, thus their sum-rank weights are at least d1 and
d2, respectively. Hence the sum-rank weight of the codeword in (6) is at least d1 + d2 and
we are done. 
�

Now assume that m1 ≥ · · · ≥ m�+t and ni ≤ mi for i ∈ [� + t]. Assume also that C1 and
C2 are MSRD with

d1 =
�∑

i=1

ni and d2 =
j−1∑

i=�+1

ni + δ + 1,

for j ∈ [� + 1, � + t] and 0 ≤ δ ≤ m j − 1. In particular, k1 = m� by the Singleton bound
(1). Finally, assume also that m� ≥ k2. In this case, we have the following.
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Theorem 2 With assumptions as in the above paragraph, the code C is MSRD with

d(C) =
j−1∑

i=1

ni + δ + 1 and dim(C) =
�+t∑

i= j

mi ni − m jδ.

Proof Trivial from Lemma 2 and the parameters of C1 and C2. 
�
Observe that the main parameter restrictions are

d(C) >

�∑

i=1

ni and m� ≥
�+t∑

i= j

mi ni − m jδ.

We also note that Construction 2 can be iterated any given number of times.
In Sect. 7, we will show how Construction 2 generalizes constructions from the literature.

5 Construction 3: Using lattices of MSRD codes

In this section, we provide a construction of Fq -linear MSRD codes based on lattices of
(shorter)MSRDcodes.We describe the general construction in Sect. 5.1 and provide concrete
examples in Sect. 5.2.

5.1 The general construction

Consider the parameters m1 ≥ · · · ≥ m� and ni ≤ mi for i ∈ [�]. We further assume that
m = ms = ms+1 = · · · = m�, for some s ∈ [�]. Set n = n1 + · · · + n� and let d ∈ [n] be
such that

d − t ≥
s−1∑

i=1

ni + 1, (7)

for some positive integer t . Consider anFq -linearMSRDcode C∅ ⊆ ∏�
i=1 F

mi×ni
q of distance

d(C∅) = d , let {Bu,v}t,mu=1,v=1 ⊆ ∏�
i=1 F

mi×ni
q be a set ofFq -linearly independent tuples such

that C∅ ∩ 〈Bi, j : i ∈ [t], j ∈ [m]〉Fq = 0, and define the Fq -linear code

CI = C∅ ⊕ 〈Bi, j : i ∈ I , j ∈ [m]〉Fq , (8)

for I ⊆ [t]. Observe that this imposes the restriction tm + dimFq (C∅) ≤ ∑�
i=1 mini . Given

I ⊆ [t], we have by definition that

dim(CI ) = dim(C∅) + m|I | = m(n − d + 1 + |I |).
We will further assume that d(CI ) = d − |I |. This implies that CI is MSRD due to the
Singleton bound (1), since such a bound is m(n − d + 1 + |I |) in this case, since d − |I | ≥
d − t ≥ ∑s−1

i=1 ni + 1 by (7), and ms = · · · = m� = m. Observe that the family {CI }I⊆[t]
forms a lattice of MSRD codes isomorphic to the lattice of subsets of [t] by the map I �→ CI .

We now proceed to obtain a new Fq -linear MSRD code of distance d but longer than C∅.
To that end, we consider additional lengths m�+1, . . . ,m�+�t , n�+1, . . . , n�+�t , for integers
0 = �0 < �1 < �2 < · · · < �t such that

m�+�i−1+1n�+�i−1+1 + · · · + m�+�i n�+�i ≤ m, (9)

123
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for i ∈ [t]. Consider now Fq -linear subspaces V j ⊆ F
m
q such that dim(V j ) = m�+ j n�+ j , for

j ∈ [�t ], and such that

V�i−1+1,V�i−1+2, . . . ,V�i

form a direct sum inside F
m
q , for i ∈ [t]. This is possible thanks to condition (9). Finally,

consider Fq -linear vector space isomorphisms

ϕ j : V j −→ F
m�+ j×n�+ j
q ,

for j ∈ [�t ].
The main construction of this section is as follows.

Construction 3 We construct the Fq -linear code C ⊆ ∏�+�t
i=1 F

mi×ni
q as a direct sum of two

subcodes C1 and C2. First, let C1 ⊆ ∏�+�t
i=1 F

mi×ni
q be equal to C∅ but adding zeros to each

codeword in the i th block for every i ∈ [� + 1, � + �t ]. Second, let

C2 =
t⊕

i=1

�i⊕

j=�i−1+1

⎧
⎪⎨

⎪⎩

⎛

⎜
⎝

m∑

k=1

αk Bi,k, 0, . . . , ϕ j (α)
︸ ︷︷ ︸

(�+ j)th block

, . . . , 0

⎞

⎟
⎠ : α ∈ V j

⎫
⎪⎬

⎪⎭
⊆

�+�t∏

i=1

F
mi×ni
q ,

where we use the notation α = (α1, . . . , αm) ∈ F
m
q . Finally, define C = C1 ⊕ C2.

We next show that the code C is an Fq -linear MSRD code of minimum distance d .

Theorem 3 The code C from Construction 3 is an Fq -linear MSRD code of minimum sum-

rank distance d(C) = d and dimension dimFq (C) = m(n − d + 1) +∑�+�t
i=�+1 mini .

Proof First, let

D j =

⎧
⎪⎨

⎪⎩

⎛

⎜
⎝

m∑

k=1

αk Bi,k, 0, . . . , ϕ j (α)
︸ ︷︷ ︸

(�+ j)th block

, . . . , 0

⎞

⎟
⎠ : α ∈ V j

⎫
⎪⎬

⎪⎭
⊆

�+�t∏

i=1

F
mi×ni
q ,

for j ∈ [�i−1 + 1, �i ] and i ∈ [t]. Clearly D j is an Fq -linear subspace isomorphic to V j and
thus of dimension m�+ j n�+ j . Observe now that all the subspaces

D1,D2, . . . ,D�t

form a direct sum inside
∏�+�t

i=1 F
mi×ni
q , since a nonzero codeword in D j has a nonzero

component in the (� + j)th block for some j ∈ [�i−1 + 1, �i ], for some i ∈ [t], and is
identically zero in all the other rank blocks with indices in [� + 1, � + �t ]. Therefore we
indeed have that

C2 =
t⊕

i=1

�i⊕

j=�i−1+1

D j .

In particular, we have that

dim(C2) =
t∑

i=1

�i∑

j=�i−1+1

dim(D j ) =
�+�t∑

i=�+1

mini .

123



New constructions… Page 9 of 18 398

Similarly, since every nonzero codeword in C2 contains a nonzero element in at least one
of the blocks in the positions j ∈ [� + 1, � + �t ] and C1 is identically zero in those positions,
we also deduce that C1 ∩ C2 = 0. In particular, it holds indeed that C = C1 ⊕ C2, and

dim(C) = dim(C1) + dim(C2) = m(n − d + 1) +
�+�t∑

i=�+1

mini .

Now we show that the minimum distance of C is d . A codeword in C is of the form

C =
⎛

⎝D +
t∑

i=1

�i∑

j=�i−1+1

m∑

k=1

α j,k Bi,k, ϕ1(α1), . . . , ϕ�t (α�t )

⎞

⎠ ,

where D ∈ C∅ and α j = (α j,1, . . . , α j,m) ∈ V j , for j ∈ [�t ]. Set
I = {i ∈ [t] | ∃ j ∈ [�i−1 + 1, �i ] such that α j �= 0}.

Then we have

C =
⎛

⎝D +
∑

i∈I

�i∑

j=�i−1+1

m∑

k=1

α j,k Bi,k, ϕ1(α1), . . . , ϕ�t (α�t )

⎞

⎠ .

On the first � blocks, we have the codeword

D +
∑

i∈I

�i∑

j=�i−1+1

m∑

k=1

α j,k Bi,k ∈ CI . (10)

Given i ∈ I , observe that
∑m

k=1

(∑�i
j=�i−1+1 α j,k

)
Bi,k �= 0, since Bi,1, . . . , Bi,m are Fq -

linearly independent, V�i−1+1, . . . ,V�i form a direct sum inside F
m
q and there is at least one

j ∈ [�i−1 + 1, �i ] such that α j �= 0. In particular,

∑

i∈I

⎛

⎝
�i∑

j=�i−1+1

m∑

k=1

α j,k Bi,k

⎞

⎠ �= 0

since {Bi, j }t,mi=1, j=1 are Fq -linearly independent. Combining this fact with C∅ ∩ 〈Bi, j : i ∈
[t], j ∈ [m]〉Fq = 0, we conclude that the codeword in (10) is zero if, and only if, D = 0
and I = ∅, which is equivalent to C being zero. Hence if C is nonzero, then

wt

⎛

⎝D +
∑

i∈I

�i∑

j=�i−1+1

m∑

k=1

α j,k Bi,k

⎞

⎠ ≥ d(CI ) = d − |I |.

Finally, since there is at least one j ∈ [�i−1 + 1, �i ] such that α j �= 0, for every i ∈ I , then

wt(ϕ1(α1), . . . , ϕ�t (α�t )) ≥ |I |,
and we conclude that wt(C) ≥ d if C is nonzero. In other words, d(C) ≥ d , but equality
must hold by the Singleton bound (1), thus d(C) = d and we are done. 
�
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5.2 Concrete examples

Lattices ofMSRD codes were studied inMartínez-Peñas (2023) in order to extend theMSRD
codes fromMartínez-Peñas (2022a), i.e., those from Sect. 2.2. However, the extensions from
Martínez-Peñas (2023) only added blocks of matrices of size 1 × m. Using the technique
from Sect. 5.1, we now give extensions of the MSRD codes from Sect. 2.2 for new ranges of
parameters, providing new constructions of MSRD codes.

Consider m = m1 = · · · = m� and r = n1 = · · · = n� ≤ m for i ∈ [�], and set
n = �r . Let k and t be positive integers such that t + k ≤ n and let g1, g2, . . . , gt+k ∈ F

n
qm

be Fqm -linearly independent. For I ⊆ [t], define the Fqm -linear code DI = 〈gi : i ∈
I 〉Fqm ⊕ 〈gt+1, . . . , gt+k〉Fqm ⊆ F

n
qm , and assume that it is MSRD, that is,

dimFqm (DI ) = k + |I | and d(DI ) = n − k − |I | + 1.

If γ = (γ1, . . . , γm) forms an ordered basis of Fqm over Fq and we define CI = Mn
γ (DI ) ⊆

∏�
i=1 F

m×ni
q , then {CI }I⊆[t] forms a lattice of Fq -linear MSRD codes as in Sect. 5.1, where

d(C∅) = d = n − k + 1 and d(CI ) = d − |I |, for I ⊆ [t]. In Construction 3, we set
Bi, j = Mn

γ (γ jgi ), for i ∈ [t] and j ∈ [m], and the condition tm + dimFq (C∅) ≤ mn is
satisfied. Note also that we may take s = 1 since m1 = · · · = m� = m and d − t ≥ 1.

When t = 2, one way of constructing the vectors g1, g2, . . . , gt+k ∈ F
n
qm is as follows.

Consider

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

g1
g3
g4
...

gk+2

g2

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

β1 . . . βμr . . . β1 . . . βμr

β
q
1 a1 . . . β

q
μr a1 . . . β

q
1 aq−1 . . . β

q
μr aq−1

β
q2

1 a
q2−1
q−1
1 . . . β

q2
μr a

q2−1
q−1
1 . . . β

q2

1 a
q2−1
q−1
q−1 . . . β

q2
μr a

q2−1
q−1
q−1

...
. . .

...
. . .

...
. . .

...

β
qk

1 a
qk−1
q−1
1 . . . β

qk
μr a

qk−1
q−1
1 . . . β

qk

1 a
qk−1
q−1
q−1 . . . β

qk
μr a

qk−1
q−1
q−1

β
qk+1

1 a
qk+1−1
q−1

1 . . . β
qk+1

μr a
qk+1−1
q−1

1 . . . β
qk+1

1 a
qk+1−1
q−1

q−1 . . . β
qk+1

μr a
qk+1−1
q−1

q−1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

where � = μ(q − 1), n = �r , and a1, . . . , aq−1, β1, . . . , βμr ∈ F
∗
qm satisfy the properties

stated after equation (4).With these assumptions, g1, g2, g3 . . . , gk+2 ∈ F
n
qm areFqm -linearly

independent and the Fqm -linear codes DI = 〈gi : i ∈ I 〉Fqm ⊕ 〈g3, . . . , gk+2〉Fqm ⊆ F
n
qm ,

for I ⊆ {1, 2}, are MSRD by (Martínez-Peñas 2022a, Th. 3.12) and (Martínez-Peñas 2023,
Lemma 5).

In (Martínez-Peñas 2023, Cor. 8), it was shown how to extend these MSRD codes by
adding t = 2 rank blocks each formed by matrices of sizes 1 × m (i.e., adding a Hamming-
metric block F

2
qm ). With Construction 3, we may extend them to obtain an Fq -linear MSRD

code C ⊆ ∏�+�2
i=1 F

mi×ni
q with d(C) = d by adding t = 2 sets of blocks of any sizes

m�+1 × n�+1, . . . ,m�+�2 × n�+�2 , with the only restrictions

m�+1 × n�+1 + · · · + m�+�1 × n�+�1 ≤ 1 × m,

m�+�1+1 × n�+�1+1 + · · · + m�+�2 × n�+�2 ≤ 1 × m,

where 0 < �1 < �2, hence achieving more flexibility in how we may extend such MSRD
codes. In particular, the extension may be obtained by adding a block with a sum-rank metric
that is not the Hamming metric, in contrast with Martínez-Peñas (2023). This is the first
known extension of the MSRD codes from Martínez-Peñas (2022a) by adding rank blocks
of matrices of sizes different than 1 × m.
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In (Martínez-Peñas 2023, Sect. 7), the MSRD extension as above adding a Hamming-
metric block F

2
qm was shown to be a one-weight code in some cases (that is, a code whose

nonzero codewords all have the same sum-rankweight). The same result holds for the general
codeC as above. The following proposition is straightforward by (Martínez-Peñas 2023, Prop.
13).

Proposition 1 Let C ⊆ ∏�+�2
i=1 F

mi×ni
q be as above and assume that dimFq (C) = 2m. Then C

is a one-weight code if, and only if, �1 = 1, �2 = 2 and
⋃μ

i=1 Hi = Fqm , whereH1, . . . ,Hμ

are as in Sect. 2.2.

A family of lattices of MSRD codes for t = 3 can be obtained as follows, although only
for k = 0 (i.e., D∅ = 0), m odd and q even. Consider

⎛

⎝
g1
g2
g3

⎞

⎠ =
⎛

⎜
⎝

β1 . . . βμr . . . β1 . . . βμr

β
q
1 a1 . . . β

q
μr a1 . . . β

q
1 aq−1 . . . β

q
μr aq−1

β
q2

1 aq+1
1 . . . β

q2
μr a

q+1
1 . . . β

q2

1 aq+1
q−1 . . . β

q2
μr a

q+1
q−1

⎞

⎟
⎠ , (11)

where � = μ(q − 1), n = �r , and a1, . . . , aq−1, β1, . . . , βμr ∈ F
∗
qm satisfy the properties

stated after equation (4). If we further assume thatm is odd and q is even, then it was shown in
the proof of (Martínez-Peñas 2023, Th. 5) that g1, g2, g3 ∈ F

n
qm are Fqm -linearly independent

and DI = 〈gi : i ∈ I 〉Fqm ⊆ F
n
qm , for I ⊆ {1, 2, 3}, are MSRD. Notice that in this case

D∅ = 0, d = n + 1 and d(DI ) = d − |I | = n + 1 − |I |, for I ⊆ {1, 2, 3}.
In (Martínez-Peñas 2023, Th. 3), it was shown how to extend these MSRD codes by

adding t = 3 rank blocks each formed by matrices of sizes 1 × m (i.e., adding a Hamming-
metric block F

3
qm ). With Construction 3, we may extend them to obtain an Fq -linear MSRD

code C ⊆ ∏�+�3
i=1 F

mi×ni
q with d(C) = d by adding t = 3 sets of blocks of any sizes

m�+1 × n�+1, . . . ,m�+�3 × n�+�3 , with the only restrictions

m�+1 × n�+1 + · · · + m�+�1 × n�+�1 ≤ 1 × m,

m�+�1+1 × n�+�1+1 + · · · + m�+�2 × n�+�2 ≤ 1 × m,

m�+�2+1 × n�+�2+1 + · · · + m�+�3 × n�+�3 ≤ 1 × m,

where 0 < �1 < �2 < �3, hence achieving more flexibility in how we may extend such
MSRD codes, as in the case t = 2 shown earlier.

6 Construction 4: Using systematic MSRD codes

In this section, we provide a construction of Fq -linear MSRD codes based on systematic
generator matrices of Fqm -linear MSRD codes in F

n
qm . We describe the general construction

in Sect. 6.1 and provide concrete examples in Sects. 6.2 and 6.3.

6.1 The general construction

Consider the parameters m = m1 = · · · = m� and ni ≤ m, for i ∈ [�]. Let also t ∈ [m],
define n = n1+· · ·+n� and letD0 ⊆ F

n+t
qm be anFqm -linearMSRDcode of distance d(D0) =

d − t ≥ 1, for some d ∈ [t + 1, t + n], for the sum-rank length partition (n1, . . . , n�, t).
Hence dimFqm (D0) = n − d + 1+ 2t . We will set k = n + t − d + 1. Consider a generator
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matrix of D0 of the form

G0 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

g1 1 0 . . . 0
g2 0 1 . . . 0
...

...
...

. . .
...

gt 0 0 . . . 1
gt+1 0 0 . . . 0

...
...

...
. . .

...

gt+k 0 0 . . . 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

∈ F
(t+k)×(n+t)
qm , (12)

where g1, . . . , gt+k ∈ F
n
qm . Such a generator matrix exists by Gaussian elimination and the

fact that the last dimFqm (D0) ≥ t positions form an information set of D0 since it is MSRD,
thus MDS (see Martínez-Peñas et al. 2022, Ch. 1). Notice that G0 is only a systematic
generator matrix if k = 0. However, we will still call it systematic for simplicity.

Assume that there is an Fq -linear subspace V ⊆ F
t
qm and a vector space isomorphism

φ : V −→
�+u∏

i=�+1

F
mi×ni
q , (13)

for positive integers u, m ≥ m�+1 ≥ · · · ≥ m�+u and ni ≤ mi , for i ∈ [� + 1, � + u], such
that

wt(φ(λ)) ≥ wt(λ), (14)

for all λ ∈ V . We will provide examples of such an isomorphism in Sect. 6.2. Notice that a
necessary condition for its existence is

tm ≥ m�+1n�+1 + · · · + m�+un�+u .

The main construction of this section is as follows.

Construction 4 Fix an ordered basis γ ∈ F
m
qm of Fqm over Fq , set n = (n1, . . . , n�) and

define the code in
∏�+u

i=1 F
mi×ni
q given by

C =
{(

Mn
γ

(
t+k∑

i=1

λigi

)

, φ(λ1, . . . , λt )

)

: (λ1, . . . , λt ) ∈ V, λt+1, . . . , λt+k ∈ Fqm

}

.

We next show that the code C is an Fq -linear MSRD code of minimum distance d .

Theorem 4 The code C from Construction 4 is an Fq -linear MSRD code of minimum sum-

rank distance d(C) = d and dimension dimFq (C) = m(n − d + 1) +∑�+u
i=�+1 mini .

Proof Similarly to Construction 3 and Theorem 3, we may write the code as the direct sum
C = C1 ⊕ C2, where

C1 = Mn
γ

(
〈gt+1, . . . , gt+k〉Fqm

)
× 0,

where 0 is the zero subspace in
∏�+u

i=�+1 F
mi×ni
q , and

C2 =
{(

Mn
γ

(
t∑

i=1

λigi

)

, φ(λ1, . . . , λt )

)

: (λ1, . . . , λt ) ∈ V
}

.
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It holds thatC1∩C2 = 0, since any nonzero codeword inC2 has a nonzero component in at least
one of the lastu rankblocks,whereasC1 is identically zero in suchpositions. ThusC = C1⊕C2.
Next, the claim on the dimension of C follows from the fact that dimFq (C1) = m(n − d + 1)
and

dimFq (C2) = dimFq (V) =
�+u∑

i=�+1

mini ,

since φ is a vector space isomorphism.
Now let

C =
(

Mn
γ

(
t+k∑

i=1

λigi

)

, φ(λ)

)

∈ C \ 0,

for λ1, . . . , λt+k ∈ Fqm , where λ = (λ1, . . . , λt ) ∈ V . We have that

c =
(

t+k∑

i=1

λigi ,λ

)

∈ D0,

which is nonzero since C is nonzero. Finally, we have that

wt(C) = wt

(

Mn
γ

(
t+k∑

i=1

λigi

))

+ wt (φ(λ))

≥ wt

(
t+k∑

i=1

λigi

)

+ wt(λ) = wt(c) ≥ d(D0) = d,

where the first inequality holds by (14). Therefore, d(C) ≥ d , and by the Singleton bound
(1), equality must hold. 
�

6.2 Concrete examples for the isomorphism�

We start with a construction of the map φ from (13), i.e., a construction of an Fq -linear
subspace V ⊆ F

t
qm and a vector space isomorphism φ : V −→ ∏�+u

i=�+1 F
mi×ni
q such that

wt(φ(λ)) ≥ wt(λ), for all λ ∈ F
t
qm . The idea will be to partition matrices into disjoint

submatrices.

Definition 1 Given X ⊆ [m] and Y ⊆ [t], define πX ,Y : F
m×t
q −→ F

|X |×|Y |
q as the map

such that πX ,Y (C) is the submatrix of C ∈ F
m×t
q formed by its entries in the positions

(i, j) ∈ X × Y .

Definition 2 Consider X1, . . . , Xu ⊆ [m] and Y1, . . . , Yu ⊆ [t] such that (Xi ×Yi )∩ (X j ×
Y j ) = ∅ if i �= j . Next, define the surjective Fq -linear map π : F

m×t
q −→ ∏�+u

i=�+1 F
mi×ni
q

by

π(C) = (
πX1,Y1(C), . . . , πXu ,Yu (C)

)
,

for C ∈ F
m×t
q .

We illustrate this definition with the following example.
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Example 1 Consider the case m = 4, t = 5 and u = 5, and choose the following partition

X1 = {1, 2, 3}, Y1 = {1, 2, 3},
X2 = {4}, Y2 = {1, 2},
X3 = {1}, Y3 = {4, 5},
X4 = {2, 3}, Y4 = {4, 5},
X5 = {4}, Y5 = {3, 4, 5}.

Observe that (Xi × Yi ) ∩ (X j × Y j ) = ∅ if i �= j . Now, the map

π : F
4×5
q −→

5∏

i=1

F
|Xi |×|Yi |
q

from Definition 2 essentially consists in partitioning a matrix from F
4×5
q as follows:

c1,1 c1,2 c1,3 c1,4 c1,5
c2,1 c2,2 c2,3 c2,4 c2,5
c3,1 c3,2 c3,3 c3,4 c3,5
c4,1 c4,2 c4,3 c4,4 c4,5

⎛

⎜
⎜
⎜
⎝

⎞

⎟
⎟
⎟
⎠

.

In this example, each set Xi consists of consecutive numbers in [m], and similarly for the sets
Yi . Furthermore, in this example [m] × [t] = ⋃5

i=1 Xi × Yi . However, these two properties
do not need to hold according to Definition 2.

Let the notation and assumptions be as in Definition 2. By the well-known properties of
ranks of matrices and their submatrices, it holds that

Rk(C) ≤
u∑

i=1

Rk(πXi ,Yi (C)), (15)

for all C ∈ F
m×t
q . Therefore, we may define the map φ and the subspace V as follows.

Definition 3 Consider X1, . . . , Xu ⊆ [m] and Y1, . . . , Yu ⊆ [t] such that (Xi ×Yi )∩ (X j ×
Y j ) = ∅ if i �= j . Let γ = (γ1, . . . , γm) be an ordered basis of Fqm over Fq , and set

U =
{

(ci, j )
m,t
i=1, j=1 ∈ F

m×t
q : ci, j = 0, for (i, j) ∈ ([m] × [t]) \

u⋃

s=1

(Xs × Ys)

}

.

Finally, define V = (Mt
γ )−1(U) ⊆ F

t
qm and the map φ : V −→ ∏�+u

i=�+1 F
mi×ni
q given by

φ(λ) = π
(
Mt

γ (λ)
)

,

for λ ∈ V , where π is as in Definition 2.

The following result is straightforward using (15).

Proposition 2 The map φ : V −→ ∏�+u
i=�+1 F

mi×ni
q from Definition 3 is a vector space

isomorphism such that wt(φ(λ)) ≥ wt(λ), for all λ ∈ F
t
qm .
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6.3 Concrete examples of MSRD codes

Wenowprovide examples of systematicmatrices as in (12), and therefore examples ofMSRD
codes coming from Construction 4. We will make use of the Fqm -linear MSRD codes from
Sect. 2.2.

Consider positive integers m = m1 = · · · = m� and r = n1 = · · · = n� = t ≤ m.
Assume also that �+1 = μ(q −1) and let n = n1 +· · ·+n� = �r , for some positive integer
μ. Let a1, . . . , aq−1, β1, . . . , βμr ∈ F

∗
qm satisfy the properties stated after equation (4). Set

k = n+ t−d+1 for some d ∈ [t+1, t+n]. Wemay chooseD0 ⊆ F
n+t
qm in Construction 4 as

the Fqm -linear MSRD code with generator matrix Mt+k(a,β) ∈ F
(t+k)×(n+t)
qm , given in Sect.

2.2, or the Fqm -linear MSRD code with parity-check matrix Mn−k(a,β) ∈ F
(t+k)×(n+t)
qm ,

for the sum-rank length partition (n1, . . . , n�, t) = (r , . . . , r) (� + 1 times). Observe that
d(D0) = d − t ≥ 1 and dimFqm (D0) = t + k. Finally, by Gaussian elimination, we may
obtain a generator matrix of D0 as in (12), for some g1, . . . , gt+k ∈ F

n
qm .

The next step is to choose amatrix partition in order to define the vector space isomorphism
φ as in Sect. 6.2. Let u be a positive integer and choose X1, . . . , Xu ⊆ [m] and Y1, . . . , Yu ⊆
[t] such that (Xi × Yi ) ∩ (X j × Y j ) = ∅ if i �= j . Define the Fq -linear subspace V ⊆ F

t
qm

and the vector space isomorphism φ : V −→ ∏�+u
i=�+1 F

mi×ni
q as in Definition 3.

By Construction 4, we obtain an Fq -linear MSRD code C ⊆ ∏�+u
i=1 F

mi×ni
q of minimum

sum-rank distance d(C) = d ∈ [t + 1, t + n] and dimension dimFq (C) = m(n − d + 1) +
∑�+u

i=�+1 mini , where

� = μ(q − 1) − 1, r = n1 = · · · = n� ≤ m = m1 = · · · = m�,

m�+ j = |X j | and n�+ j = |Y j |,
for j ∈ [u]. The possible values of μ and r in this construction (which come from the code
D0 from Martínez-Peñas (2022a)) are described in (Martínez-Peñas 2022a, Table 1).

As a concrete example, we may choose μ = 1 and r = m, corresponding to linearized
Reed–Solomon codes (Martínez-Peñas 2018 (first row in Martínez-Peñas 2022a, Table 1).
In this case, we obtain an Fq -linear MSRD code in

∏�+u
i=1 F

mi×ni
q , as above, of minimum

sum-rank distance d ∈ [t + 1, t + n], where
� = q − 2, r = n1 = · · · = n� = m1 = · · · = m�,

m�+ j = |X j | and n�+ j = |Y j |,
for j ∈ [u].
Remark 1 By (Martínez-Peñas 2023, Th. 1), the vectors g1, . . . , gt+k ∈ F

n
qm from the

systematic generator matrix in (12) are such that the Fqm -linear codes DI = 〈gi : i ∈
I 〉Fqm ⊕〈gt+1, . . . , gt+k〉Fqm ⊆ F

n
qm , for I ⊆ [t], are all MSRDwith dimFqm (DI ) = k+|I |.

Thus we would be in the scenario of Sect. 5.2. However, using Construction 3 in this case, we
may extend such codes by adding any matrix sizes m�+1 × n�+1, . . . ,m�+u × n�+u , where

m�+�i−1+1n�+�i−1+1 + · · · + m�+�i n�+�i ≤ m,

for i ∈ [t], for integers 0 = �0 < �1 < �2 < · · · < �t = u. In particular, m�+1n�+1 + · · · +
m�+un�+u ≤ tm.

However, the reader may easily verify that, using Construction 4, we have more flexibility
in the choice of the matrix sizes m�+1 × n�+1, . . . ,m�+u × n�+u to extend the MSRD codes
DI . For instance, it is still necessary that m�+1n�+1 + · · · + m�+un�+u ≤ tm, but we can
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easily partition matrices in order to obtain m�+�i−1+1n�+�i−1+1 + · · · +m�+�i n�+�i > m for
some i ∈ [t], which is not possible with Construction 3.

This is due to the fact that we are using a stronger property than (Martínez-Peñas 2023, Th.
1), namely, we are using that D0 is MSRD for the sum-rank length partition (n1, . . . , n�, t)
for t > 1.

Remark 2 Conversely, it is natural to ask whether we may use Construction 4 for the doubly
and triply extended MSRD codes that we could obtain via (Martínez-Peñas 2023, Th. 1)
from the lattices of MSRD codes in Sect. 5.2. However, such doubly and triply MSRD codes
using (Martínez-Peñas 2023, Th. 1) are extended by adding a Hamming-metric block (and
extensions by adding a rank-metric block are not possible Martínez-Peñas 2023, Prop. 11).
Thus Construction 4 would not be applicable in this case.

The previous two remarks show that, due to the concrete examples from Sects. 5.2 and
6.3, one cannot always use Construction 4 instead of Construction 3 and viceversa.

7 Comparisons with previous MSRD codes

In this section,we briefly compare the concrete examples ofMSRDcodes that can be obtained
viaConstructions 1, 2, 3 and4with the knownMSRDcodes in the literature (Byrne et al. 2021;
Chen 2023; Martínez-Peñas 2018, 2022a, 2023; Neri 2022; Neri et al. 2023; Santonastaso
and Sheekey 2023; Santonastaso and Zullo 2023). For simplicity, we will simply show that
the parameters of the MSRD codes in those works can be obtained via Constructions 1,
2, 3 and 4, whereas our constructions give rise to MSRD codes for strictly larger sets of
parameters.

First, as stated at the end of Sect. 3, Construction 1 does not cover new parameters, but
can be decoded faster than linearized Reed–Solomon codes for the same parameters.

Second, (Byrne et al. 2021, Const. VII.3) can be obtained applying Construction 2 recur-
sively by choosing � = t = 1.

Next, the MSRD codes from Neri (2022); Santonastaso and Sheekey (2023) cover the
same parameters as the MSRD codes from Martínez-Peñas (2022a). Now, the codes from
Martínez-Peñas (2022a) correspond to those in Sect. 6.3 when choosing the trivial matrix
partition X1 = [m], Y1 = [t] and u = 1 in order to construct the map φ from Sect. 6.2. Thus
it is clear that the concrete MSRD codes from Sect. 6.3 (built via Construction 4) cover a
strictly larger set of parameters.

Doubly extended linearizedReed–Solomon codes (Neri et al. 2023) are a particular case of
the doubly and triply extended MSRD codes from Martínez-Peñas (2023). Now, the doubly
extended MSRD codes from Martínez-Peñas (2023) correspond to those in Sect. 5.2 when
choosing �1 = 1, �2 = 2, m�+1 = m�+2 = m and n�+1 = n�+2 = 1. Similarly, the triply
extended MSRD codes from Martínez-Peñas (2023) correspond to those in Sect. 5.2 when
choosing �1 = 1, �2 = 2, �3 = 3, m�+1 = m�+2 = m�+3 = m and n�+1 = n�+2 = n�+3 =
1. Hence it is clear that the concrete MSRD codes from Sect. 5.2 (built via Construction 3)
cover a strictly larger set of parameters.

The recent MSRD codes from (Chen 2023, Sect. 5.2) can be obtained via Construction
2, where the code C2 is the concrete MSRD code from Sect. 5.2 choosing a1 = 1 and
puncturing the blocks corresponding to a2, . . . , aq−1 (i.e., choosing the generator matrix
of a Gabidulin code Gabidulin 1985), and restricting added blocks to square matrices, i.e.,
m�+1 = n�+1, . . . ,m�+�2 = n�+�2 . Notice that the code C1 in Construction 2 needs to be a
trivial code of dimension m� by Theorem 2.
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Finally, notice that Construction 4 cannot be obtained via Construction 3 by Remark 1.
Similarly, Construction 3 cannot be obtained via Construction 4 by Remark 2. In particular,
the concrete MSRD codes in Sects. 5.2 and 6.3 cover different sets of parameters.
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