
Journal of Nonlinear Science (2024) 34:103
https://doi.org/10.1007/s00332-024-10086-8

Solitary-Wave Solutions of the Fractional Nonlinear
Schrödinger Equation: I—Existence and Numerical
Generation

Angel Durán1 · Nuria Reguera2

Received: 19 April 2024 / Accepted: 23 August 2024 / Published online: 11 September 2024
© The Author(s) 2024

Abstract
The present paper is the first part of a project devoted to the fractional nonlinear
Schrödinger (fNLS) equation. It is concerned with the existence and numerical gener-
ation of the solitary-wave solutions. For the first point, some conserved quantities of
the problem are used to search for solitary-wave solutions from a constrained critical
point problem and the application of the concentration-compactness theory. Several
properties of the waves, such as the regularity and the asymptotic decay in some cases,
are derived from the existence result. Some other properties, such as the monotone
behavior and the speed-amplitude relation, will be explored computationally. To this
end, a numerical procedure for the generation of the profiles is proposed. The method
is based on a Fourier pseudospectral approximation of the differential system for the
profiles and the use of Petviashvili’s iteration with extrapolation.

Keywords Fractional nonlinear Schrödinger equations · Solitary waves · Petviashvili
iterative method · Pseudospectral methods

Mathematics Subject Classification 76B25 · 35C07 · 65H10

1 Introduction

The present paper is the first part of a project concerning the fractional nonlinear
Schrödinger (fNLS) equation in its one-dimensional version. Considered here are the
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problems of existence of solitary-wave solutions, their numerical generation and some
of their mathematical properties. The second part of the project is planned to study the
numerical approximation of the corresponding periodic initial-value problem (ivp) and
its application to analyze the dynamics of the solitary-wave solutions by computational
means. The fNLS equation has the form

iut − β(−�)su − γ |u|2σu = 0, x ∈ R
n, n ≥ 1, t > 0. (1.1)

In (1.1), σ > 0 determines the nonlinearity (which is cubic when σ = 1) and �

denotes the Laplace operator (with � = ∂xx in the one-dimensional case), which here
is presented in ‘fractional’ way determined by the parameter 0 < s < 1. This term
shows the nonlocal character of (1.1), generalizing somehow the classical nonlinear
Schrödinger equation (NLS) (which would correspond to (1.1) with s = 1), a classical
model for the propagation of weakly nonlinear waves in dispersive media (see e.g.,
Sulem and Sulem 1999). The fractional Laplacian (−�)s has a Fourier representation
of the form

̂(−�)s f (ξ) = |ξ |2s ̂f (ξ), ξ ∈ R
n,

where

̂f (ξ) =
∫

Rn
f (x)e−iξ ·xdx,

is the Fourier transform of f with the dot in the integrand standing for the Euclidean
inner product in R

n . The sign of β �= 0 and γ �= 0 determines the corresponding
focusing and defocusing cases, as in the classical NLS. FollowingAblowitz and Prinari
(2008), we may write (1.1) in the form

i

β
ut − (−�)su − γ

β
|u|2σu = 0, x ∈ R

n, n ≥ 1, t > 0, (1.2)

and the change t �→ βt , in the sense of writing u(x, t) = v(x, βt), transforms (1.2)
into

ivt − (−�)sv − γ̃ |v|2σ v = 0, x ∈ R
n, n ≥ 1, t > 0, (1.3)

where γ̃ = γ
β
. With these notations, γ̃ > 0 is the defocusing case, while γ̃ < 0 is

the focusing case. On the other hand, if v(x, t) is a solution of (1.3), then w(x, t) =
v(x,−t) satisfies

iwt + (−�)sw + γ̃ |w|2σ w = 0, x ∈ R
n, n ≥ 1, t > 0, (1.4)

where now γ̃ > 0 is the focusing case and γ̃ < 0 is the defocusing case. The
formulation (1.4) is considered in some references, e.g. Li et al. 2017, Huaroto (2022).

Equation (1.1) appears in the mathematical modeling of two main areas:
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• It was originally introduced in quantum mechanics, Laskin (2000, 2002, 2011),
Fröhlich et al. (2007).

• For some particular values of the parameters, (1.1) also appears in surface water
wave models, Obrecht and Saut (2015), Ionescu and Pusateri (2014).

Summarized here are some mathematical properties of (1.1), see Klein et al. (2014)
for details.

Well-Posedness

Thequestion of local/globalwell-posedness of the corresponding initial-value problem
(ivp) for (1.1) is analyzed in Cho et al. (2013, 2015a, b), Guo and Huo (2013), Guo
et al. (2013), Hong and Sire (2015). The main results are the following. In Cho et al.
(2015a), Cho et al. study local well- and ill-posedness of the one-dimensional version
of (1.1) with β = −1, 1/2 < s < 1, σ = 1, in certain Sobolev spaces. These results
are extended in Hong and Sire (2015) to higher dimensions, 0 < s < 1, s �= 1/2 and
σ ≥ 1. For other types of nonlinearities (Hartree-type), well-posedness and blow-up
are investigated in Cho et al. (2013, 2015b). Global well-posedness results in the
energy space are obtained in Guo et al. (2013), while blow-up phenomena, in related
cases, are also studied in Guo and Huo (2013).

Conserved Quantities and Symmetries

The following quantities (mass and energy, resp.) are conserved by smooth and
decaying enough solutions of (1.1):

M(u) =
∫

Rn
|u(x, t)|2dx, (1.5)

E(u) =
∫

Rn

(

β

2
|∇su(x, t)|2 + γ

2σ + 2
|u(x, t)|2σ+2

)

dx, (1.6)

where ∇s is the operator with Fourier symbol

∇̂s f (ξ) = (−i |ξ |)s ̂f (ξ), ξ ∈ R
n .

As far as the symmetries of (1.1) are concerned, we have the invariance under the
scaling transformation

u(x, t) �→ uλ(x, t) = λs/σu(λx, λ2s t), λ > 0,

in the sense that if u is a solution of (1.1) then uλ is also a solution. Under this scaling,
Klein et al. (2014), if Ḣ p denotes the homogeneous Sobolev space of order p (this
consists of σ times weakly differentiable functions u such that Dαu ∈ L2 for |α| = σ ,
see Adams 1975), then

||uλ||Ḣ p = ||∇ puλ||L2 = λn/2−p−s/σ ||u||Ḣ p ,
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where || · ||Ḣ p denotes the corresponding norm in Ḣ p. The equation (1.1) is called
Ḣ p critical when this scaling leaves the norm invariant, that is,

n

2
− s

σ
= p,

(p + s/σ = 1/2 when n = 1). For p = 0, we obtain the L2 or mass critical case,
whenever the dispersion rate is s = s∗ = σn/2 (s∗ = σ/2 in the 1D case). The
equation is called mass subcritical (resp. supercritical) when s < s∗ (resp. s > s∗).
As in the case of the NLS, this can be used to study well-posedness and blow-up,
Lenzmann (2007). Similar critical cases can be defined from the second invariant
(1.6). Thus, the energy critical case for s = p holds when the kinetic energy of the
solution is a scale invariant quantity of the evolution. This yields another critical index
s∗ = nσ/(2σ + 2), which is equivalent to σ = σ∗ where

σ∗(s, n) =
{ 2s

n−2s 0 < s < n
2+∞ s ≥ n

2

The study of the energy critical and supercritical cases reveals differences with the
NLS equation, see Klein et al. (2014).

Special Solutions

Note first that (1.1) admits plane-wave solutions

u(x, t) = Aei(k·x−ωt),

when the following dispersion relation is satisfied

ω − β|k|2s − γ A2σ = 0. (1.7)

The stability and dynamics of these plane-wave solutions look to be different from
those in the standardNLS (seeDuo and Zhang 2016; Duo et al. and references therein).

A second group of solutions for the focusing case (γ = −1) is given by the standing
wave solutions

u(x, t) = ϕ(x)eiωt , ω ∈ R, (1.8)

where

|ϕ|2σ ϕ − β(−�)sϕ = ωϕ.

They can be seen as critical points of the energy subjected to a fixed value of the mass,
with Lagrange multiplier given by ω. By rescaling ϕω = ω1/2σ ϕ1

(

ω1/2s x
)

, one can
assume ω = 1 and therefore ϕ = ϕ1 solves

|ϕ|2σ ϕ = β(−�)sϕ + ϕ. (1.9)

123



Journal of Nonlinear Science (2024) 34 :103 Page 5 of 35 103

Solution ϕ ∈ Hs(Rn)
⋂

L2σ+2(Rn) of (1.9) is known to exist for 0 < σ < σ∗, while
for σ ≥ σ∗ (1.9) does not admit any non-trivial solution in Hs(Rn) ∩ L2σ+2(Rn),
Klein et al. (2014). The so-called ground states are solutions Q of (1.9) with minimal
energy; they are known to be real, radially symmetric and satisfy

β(−�)s Q + Q = Q2σ+1. (1.10)

In addition, they decay algebraically, as |x | → ∞, like |x|−(n+2s) (cf. the case of the
NLS, whose ground state solutions decay exponentially) and no explicit form for Q
is known. A technique to construct numerically fractional ground states is described
in Klein et al. (2014) and applied to study their stability by computational means.
Additional aspects of existence and orbital stability of these waves are considered,
among others, in Cho et al. (2014), Frank and Lenzmann (2013), Guo and Huang
(2012).

In Hong and Sire (2017), the authors construct, for the one-dimensional, cubic case,
a class of traveling ‘soliton’ solutions of the form

u(x, t) = e−i t(|k|2s−ω2s )Qω,k(x − 2ts|k|2s−2k), (1.11)

with speed c = 2k ∈ R, s ∈ (1/2, 1) and ω > 0, by using variational theory. The
profile Q = Qω,k is a solution of

PkQ + ω2s Q − |Q|2Q = 0,

where Pk is the linear operator with Fourier representation

P̂kv(ξ) =
(

|ξ + k|2s − |k|2s + 2sk|k|2s−2ξ
)

v̂(ξ), ξ ∈ R.

The profile Q = Qω,k is obtained as a minimizer of certain functional and actually
Q = Qω,k ∈ C∞(R). See alsoAlbert et al. (1997) for a possible, alternative derivation.

From the point of view of the numerical approximation, the nonlocal character of
(1.1) implies the natural choice, made by some authors, of Fourier spectral methods
to discretize in space the corresponding periodic initial-value problem. Thus, Kirk-
patrick and Zhang (2016) base on thesemethods their numerical scheme to analyze, by
computational means, some phenomena of decomposition of the coherent structure
of standing wave solutions of equations of fNLS type but with a potential, as well
as the possible turbulence formation. For the time integration, the authors propose a
second-order splitting method (which is, by the way, a typical choice as well). On the
other hand, Klein et al. (2014) also construct a numerical scheme with pseudospectral
discretization to study computationally some aspects of the dynamics of (1.1): blow-
up and its properties, stability of standing wave solutions (generated numerically with
Newton–Krylov methods) and the dynamics of solutions at moderate times. In this
case, the time integration is performed with different fourth-order methods of linearly
implicit Runge–Kutta type for the focusing case and of splitting type for the defocusing
case, see Driscoll (2002), Klein (2008). Also, Duo and Zhang (2016), construct three
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schemes with Fourier spectral spatial discretization, along with three time integrators
of split-step, Crank–Nicolson and relaxed type. The three methods preserve the cor-
responding discrete version of the mass quantity (1.5) and time reversibility. Some
differences appear in the preservation of the energy (1.6) and the dispersion relation
(1.7). Their efficiency (in particular, the second order of convergence) is illustrated
numerically. Additionally, Antoine et al. (2016) introduce several numerical strategies
to generate approximations to standing waves and to the dynamics of relate equations
of fNLS type, which include a rotational term and nonlocal interactions. In the case
of the dynamics, after reformulating the equation to rule out the presence of the rota-
tional term, a time splitting, pseudospectral scheme is applied. Finally, as an alternative
to the spectral approach, Wang and Huang (2015) introduce a finite difference (FD)
scheme of Crank–Nicolson type which preserves the discrete mass and energy. The
authors prove the existence of numerical solution and the convergence of the method
under suitable conditions on time and space stepsizes. (See also Wang et al. 2014 for
a FD discretization of a coupled system of fNLS equations, with Dirichlet bound-
ary conditions.) The use of finite element methods, for the more general fractional
Ginzburg–Landau equation, is treated in Li et al. (2017).

Considered here is the one-dimensional version of (1.1) with β > 0 and γ < 0,
and for which the Laplacian reduces indeed to ∂xx . For simplicity, β = 1, γ = −1
will be taken, so that (1.1) for n = 1 takes the form

iut − (−∂xx )
su + |u|2σu = 0, x ∈ R, t > 0. (1.12)

In (1.12), σ > 0, 0 < s < 1. We are interested in several features of (1.12) and
the present paper is focused on the existence of solitary-wave solutions. The main
contributions summarized here are the following:

• We adapt the interpretation of solitary-wave solutions of the classical NLS consid-
ered in Durán and Sanz-Serna (2000), in terms of symmetry groups and relative
equilibria (RE). For the fractional case (1.12), we first derive a new conserved
quantity (momentum) of the ivp and study those equilibria of the energy restricted
to fixed values of the mass and momentum. A new family of solitary waves is
then obtained from the application of a suitable symmetry group determined by
the mass and momentum quantities. The existence and regularity are derived from
the application of the concentration-compactness theory, Lions (1984), Angulo
(2009). It may be worth pointing out some remarks here. The derivation of the
waves is valid for s ∈ (1/2, 1], including the classical NLS (s = 1). In that case,
the well-known soliton-type solutions, Durán and Sanz-Serna (2000), are obtained
as a subfamily of the waves derived here, from a particular choice of the phase.
The same subfamily for the fractional case s ∈ (1/2, 1) corresponds to the waves
introduced in Hong and Sire (2017).
As the (complex) waves are considered as constrained critical points of the energy,
the conditional variational problem involves two Lagrange multipliers. They
respectively determine phase and speed of the complex profiles. For a fixed phase,
the existence of solitary waves is ensured for speeds within a range determined by
some limiting value (speed of sound).
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• In addition, most of the information about the structure and properties of these
solitary-wave solutions is obtained here from a numerical study of generation of
approximate profiles. In this sense, Klein et al. (2014), generate numerically frac-
tional ground states (see also references therein) by approximating the profile Q
in (1.10) with discrete Fourier series and solving the resulting algebraic equa-
tions for the discrete coefficients with Newton-type iteration methods. The first
point under study is then searching for efficient numerical approximations to the
solitary-wave profiles by using discrete Fourier techniques as well, but with dif-
ferent iterative techniques. Specifically, our proposal consists of using methods of
Petviashvili type combined with acceleration techniques based on extrapolations.
This has been successfully applied in other cases, e.g., Álvarez and Durán (2014,
2016), and its performance herewill serve us to study several features of thewaves:
asymptotic decay, speed-amplitude relation, even character, and monotone decay.

The structure of the paper is as follows. Section2 is devoted to the existence of solitary
waves. The formulation from the constrained equilibria condition requires the intro-
duction of some ideas on symmetry groups and conserved quantities. The condition
is written in a proper way to prove the existence via the concentration-compactness
theory. In Sect. 3, some additional properties of the waves, mentioned above, are
investigated. For a particular choice of the phase function, some theoretical results
can be proved. For the general case, the numerical procedure for the generation of
approximate profiles is first introduced and validated, and then used to develop the
corresponding computational study. Some concluding remarks are made in Sect. 4.

The following notation will be used throughout the paper. The L2-inner product
will be denoted by (·, ·). For v j , w j ∈ L2, j = 1, 2, the inner product in L2 × L2 is

〈(

v1
w1

)

,

(

v2
w2

)〉

=
∫

R

(v1v2 + w1w2)dx, (1.13)

On the other hand, for the sake of simplicity and since no confusion is possible, the
norm of the L p = L p(R) space and of the product L p×L p will be denoted by || · ||L p .
In a similar way, for s ≥ 0, || · ||s will stand for the norm of the L2-based Sobolev
space Hs = Hs(R) and of the product space Hs × Hs .

For a linear operator L, the Calderon commutator [L, ·]· is defined as

[L, f ]g = L( f g) − f Lg. (1.14)

Throughout the paper, C will denote a positive constant that may depend on fixed
parameters.

2 Existence of SolitaryWaves

In this section, the existence of solitary-wave solutions of (1.12) is analyzed. Note first
that we can alternative write (1.12) as a system

vt − (−∂xx )
sw + (v2 + w2)σ w = 0,
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−wt − (−∂xx )
sv + (v2 + w2)σ v = 0. (2.1)

for u = v + iw.

2.1 Symmetry Groups and Conserved Quantities

Lemma 2.1 The following quantities (mass, momentum, energy) are conserved by
smooth and decaying enough solutions of (1.12):

I1(v,w) = 1

2

∫

R

(v2 + w2)dx = 1

2

∫

R

|u|2dx, (2.2)

I2(v,w) = 1

2

∫

R

(vwx − wvx )dx = 1

2

∫

R

Im(uux )dx, (2.3)

H(v,w) =
∫

R

(

1

2

(

(|D|sv)2 + (|D|sw)2
)

− 1

2σ + 2
(v2 + w2)σ+1

)

dx, (2.4)

where u = v + iw and |D|s is defined as

|̂D|s f (ξ) = |ξ |s ̂f (ξ), ξ ∈ R.

Proof The quantities (2.2) and (2.4) are the 1D versions of (1.5) and (1.6), respectively.
As far as (2.3) is concerned, if u = v + iw is a solution of (2.1), we have

d

dt
I2(v,w) = I21 + I22,

I21 = 1

2

∫

R

(

wx (−∂xx )
sw − w(−∂xx )

swx + vx (−∂xx )
sv − v(−∂xx )

svx
)

dx,

I22 = 1

2

∫

R

(

−wwx (v
2 + w2)σ + w∂x

(

w(v2 + w2)σ
)

−vvx (v
2 + w2)σ + v∂x

(

v(v2 + w2)σ
))

dx .

The second integral can be written as

I22 = 1

2

∫

R

(v2 + w2)∂x (v
2 + w2)σdx = σ

2σ + 2

∫

R

∂x

(

(v2 + w2)σ+1
)

dx,

which vanishes if v,w → 0 as x → ±∞. On the other hand, we can make use of
Plancherel’s identity to obtain

I21 =
∫

R

(

(iξ)ŵ(ξ)|ξ |2sŵ(ξ) + (iξ )̂v(ξ)|ξ |2s v̂(ξ)
)

dx

=
∫

R

(

(iξ)|ξ |2s |ŵ(ξ)|2 + (iξ)|ξ |2s |̂v(ξ)|2
)

dx = 0.

��
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We note that the new quantity (2.3) will be also called momentum, in accordance
with the case of the classical NLS. The rôle of the three invariants (2.2)-(2.4) in the
generation of solitary-wave solutions of (1.1) is two-fold. The first one is concerned
with the symmetry groups of (1.1), see Olver (1993), in the classical sense of groups
of transformations taking solutions into solutions. The following result (whose proof
is direct) clarifies this point.

Lemma 2.2 Let (v,w) �→ G(α,β)(v,w), α, β ∈ R the transformation defined as

G(α,β)(v,w)(x) =
(

cosα − sin α

sin α cosα

) (

v(x − β)

w(x − β)

)

. (2.5)

Let (v(x, t), w(x, t)) be a solution of (2.1). Then, (̃v, w̃) = G(α,β)(v,w) is a solution
of (2.1).

As it is well known, cf. Olver (1993), the relation between (2.5) and (2.2), (2.3) is
given by the property that the invariants determine the infinitesimal generators of the
symmetry group, in the sense that for all x ∈ R

d

dα

∣

∣

∣

α=0
G(α,0)(v, w)(x) =

(

0 1
−1 0

)

δ I1(v,w)(x),

d

dβ

∣

∣

∣

β=0
G(0,β)(v,w)(x) =

(

0 1
−1 0

)

δ I2(v,w)(x),

where δ I denotes variational (Fréchet) derivative of I

δ I (v,w) =
(

δ I

δv
,

δ I

δw

)T

.

2.2 Solitary-Wave Solutions

We note that lemmas 2.1 and 2.2 also hold in the classical NLS equation (limiting
case s = 1 in (1.1)). This was used in Durán and Sanz-Serna (2000) to derive the
corresponding soliton solutions from profiles u0 = v0 + iw0 obtained as critical
points of the Hamiltonian at fixed values of the mass and momentum. This severs
us as motivation to study a similar approach for (1.1). The constrained critical point
condition

δ
(

H(u0) − λ10 I1(u0) − λ20 I2(u0)
)

= 0,

for real λ j
0, j = 1, 2, will take the form

− (−∂xx )
su0 + |u0|2σu0 − λ10u0 − iλ20∂xu0 = 0, (2.6)
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which can be written as a real system

− (−∂xx )
sv0 − λ10v0 + λ20w

′
0 + (v20 + w2

0)
σ v0 = 0,

−(−∂xx )
sw0 − λ10w0 − λ20v

′
0 + (v20 + w2

0)
σ w0 = 0. (2.7)

The existence of solutions u0 = (v0, w0) of (2.7) is analyzed in Sect. 2.3 for s ∈
(1/2, 1] and σ > 0. If we write u0(x) = eiθ(x)ρ(x) with real ρ and θ , and from

ϕ(x, x0, θ0) = G(θ0,x0)(u0) = ρ(x − x0)e
iθ(x−x0)+iθ0 ,

which represents the elements of the orbit through u0 = (v0, w0) by the symmetry
group (2.5), a two-parameter family of solitary-wave solutions of (1.12) will take the
form

ψ(x, t, a, c, x0, θ0) = G(tλ10,tλ
2
0)

(ϕ)

= ρ(x − tλ20 − x0)e
i(θ(x−tλ20−x0)+θ0+λ10t). (2.8)

A particular subfamily of (2.8) can be emphasized. Taking θ(x) = Ax for constant A,
then it holds that ρ satisfies

RAρ = ρ2σ+1, (2.9)

where RA is the Fourier multiplier operator with Fourier symbol

R̂A f (ξ) = r(ξ) ̂f (ξ), r(ξ) = |ξ + A|2s − λ20ξ + λ10 − Aλ20
︸ ︷︷ ︸

B

, ξ ∈ R. (2.10)

Formula (2.10) extends the arguments made in Durán and Sanz-Serna (2000) for the
classical NLS to the fractional case: when s = 1, the Fourier symbol is

r(ξ) = ξ2 + (2A − λ20)ξ + λ10 + A2 − λ20A, ξ ∈ R, (2.11)

and the soliton solutions of the classical NLS can be obtained from those RE solutions
corresponding to taking A = λ20/2 and then, cf. Durán and Sanz-Serna (2000)

r(ξ) = ξ2 + a, a = λ10 − (λ20)
2

4
.

Our main difference here is the presence of a nonlocal operator in the equation for ρ.
We write (2.9) in the form

(M + a)ρ = ρ2σ+1, (2.12)
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with a = B + |A|2s , M with Fourier symbol

m(ξ) = |ξ + A|2s − λ20ξ − |A|2s, ξ ∈ R, 0 < s < 1. (2.13)

The following properties of m are proved in Hong and Sire (2017).

Lemma 2.3 The symbol m in (2.13) satisfies:

(1) m(0) = 0.
(2) m′(0) = 0 ⇔ λ20 = 2s|A|2s−2A.
(3) m′′(ξ) > 0 if s > 1/2.

As mentioned in Hong and Sire (2017), lemma 2.3 implies that

• m(ξ) = |ξ |2s + O(|ξ |2s−1), |ξ | → ∞
• m(ξ) = s(2s − 1)|A|2s−2ξ2 + O(|ξ |3), |ξ | → 0

Then, M behaves like (−∂xx )
s in high frequencies and like s(2s − 1)|A|2s−2(−∂xx )

in low frequencies. Note also that, in order to have solutions of (2.6), Lemma 2.3
delimits the range of the fractional parameter s and provides a specific value of the
second Lagrangemultiplier λ20 in terms of A, which is consistent with the one obtained
A = λ20/2 for the classical NLS, cf. Durán and Sanz-Serna (2000).

The subfamily of solitary-wave solutions (2.8) will now take the form

ψ(x, t, a, c, x0, θ0) = G(tλ10,tλ
2
0)

(ϕ)

= ρ(x − tλ20 − x0)e
i(A(x−tλ20−x0)+θ0+λ10t). (2.14)

where

• a = B + |A|2s = λ10 − (2s − 1)|A|2s plays the rôle of the amplitude of ρ.
• cs = λ20 = 2s|A|2s−2A determines the speed.

We observe that for the cubic case σ = 1 and s ∈ (1/2, 1), the traveling waves (2.14)
are exactly those obtained in Hong and Sire (2017) with the identifications of the
notation therein, cf. (1.11)

u0(x) = ei
c
2 Q(x), λ10 = ω2s + (2s − 1)

∣

∣

∣

c

2

∣

∣

∣

2s
, λ20 = 2s

∣

∣

∣

c

2

∣

∣

∣

2s−2 c

2
. (2.15)

When s = 1, the solutions (2.14) are formulated in Durán and Sanz-Serna (2000).

2.3 Existence of SolitaryWaves

In this section, the existence of solutions u0 = (v0, w0) of (2.7) will be studied using
the concentration-compactness theory. To this end, we will consider the following
family of minimization problems

Iλ = inf{E(v,w) : (v,w) ∈ Hs × Hs, F(v,w) = λ}, λ > 0, (2.16)
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for s ∈ (1/2, 1], σ > 0 and where

E(v,w) = 1

2

∫

R

(

v(−∂xx )
sv + w(−∂xx )

sw + λ10(v
2 + w2)

−λ20(vwx − vxw)
)

dx,

F(v,w) = 1

2σ + 2

∫

R

(v2 + w2)σ+1dx . (2.17)

The functional (2.17) can be written as

E(v,w) = 1

2

〈

Q

(

v

w

)

,

(

v

w

)〉

, (2.18)

where Q is a matrix operator with Fourier symbol

̂Q(ξ) =
(

λ10 + |ξ |2s −iλ20ξ
iλ20ξ λ10 + |ξ |2s

)

, ξ ∈ R. (2.19)

Lemma 2.4 Assume that 1/2 < s ≤ 1, λ10 > 0 and let

c(λ10) = 2s

(

λ10

2s − 1

) 2s−1
2s

. (2.20)

If

0 < cs = λ20 < c(λ10), (2.21)

then the operator Q given by (2.19) is positive definite and defines a norm which is
equivalent to the standard Hs × Hs norm.

Proof Note first that ̂Q(ξ)∗ = ̂Q(ξ), ξ ∈ R; then, from the representation (2.19) and
Plancherel identity, it holds that the operator Q is Hermitian. The real eigenvalues of
the matrix (2.19) are

λ±(ξ) = |ξ |2s + λ10 ± λ20ξ.

(Note that λ+(−ξ) = λ−(ξ).) We consider the functions

F−(x) = x2s + λ10 − λ20x, x ≥ 0,

F+(x) = |x |2s + λ10 + λ20x, x ≤ 0.
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Note that F ′−(x) = 0 ⇔ x = x∗ = (

λ10/2 s
) 1
2 s−1 . Since s > 1/2 and F−(x) → +∞

as x → +∞, then F− attains a minimum at x = x∗ with

F−(x∗) = λ10 − (2s − 1)

(

λ20

2s

) 2s
2s−1

,

which is positive under the hypothesis (2.21). This implies that

λ+(ξ) ≥ λ−(ξ) > 0, ξ ≥ 0. (2.22)

Similarly, since F+(−x) = F−(x), then F+(x) attains a minimum at x = −x∗ with
F+(−x∗) > 0 by (2.21). Therefore,

λ−(ξ) ≥ λ+(ξ) > 0, ξ ≤ 0. (2.23)

Thus, (2.22) and (2.23) imply that Q is positive definite. For the second part of the
lemma, we will prove the existence of positive constants α j , β j , j = 1, 2 such that
for all ξ ∈ R

α0 + α1|ξ |2s < λ+(ξ), λ−(ξ) < β0 + β1|ξ |2s . (2.24)

Observe first that

λ+(ξ) + λ−(ξ) = 2(λ10 + |ξ |2s).

Therefore, from (2.22) and (2.23)

0 < λ−(ξ) ≤ λ+(ξ) < 2(λ10 + |ξ |2s),
0 < λ+(ξ) ≤ λ−(ξ) < 2(λ10 + |ξ |2s), ξ ≥ 0,

and the second inequality of (2.24) holds by taking β0 = 2λ10, β1 = 2. On the other
hand, the first inequality is obtained from α1 ∈ (0, 1), α0 = α1λ

1
0, and using (2.21),

(2.22), and (2.23). ��
The following properties are required by the application of the concentration-
compactness theory.

Proposition 2.1 Under the hypotheses of Lemma 2.4, there holds:

(i) The functional E : Hs × Hs → R given by (2.17) is well defined, and there are
positive constants C j = C j (λ

1
0, λ

2
0, s), j = 1, 2 such that

C1||(v,w)||2s ≤ E(v,w) ≤ C2||(v,w)||2s .. (2.25)

(ii) Iλ > 0 for λ > 0.
(iii) All minimizing sequences for Iλ, λ > 0, are bounded in Hs × H2.
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(iv) For all θ ∈ (0, λ)

Iλ < Iθ + Iλ−θ . (2.26)

Proof Continuity and coercivity properties (2.25) of E follow from (2.18) and Lemma
2.4.On the other hand, since s > 1/2, it holds that if Iλ is attained at (v,w) ∈ Hs×Hs ,
then (v,w) ∈ L∞ × L∞ and

0 < λ = F(v,w) ≤ 1

2σ + 2
||(v,w)||2σL∞||(v,w)||2L2 (2.27)

≤ 1

2σ + 2
||(v,w)||2σ+2

s . (2.28)

Now, using (2.25) and (2.28), we have

Iλ = E(v,w) ≥ Cλ
1

σ+1 ,

for some positive constant C , which implies (ii). Property (iii) follows from the coer-
civity of E in (2.25). Note finally that since E and F are homogeneous of degree 2
and 2σ + 2 respectively, then

Iτλ = τ
1

σ+1 Iλ.

Therefore, if θ ∈ (0, λ), then we write θ = τλ, τ ∈ (0, 1), and since σ > 0, we have

Iθ + Iλ−θ = Iτλ + I(1−τ)λ = τ
1

σ+1 Iλ + (1 − τ)
1

σ+1 Iλ
> (τ + (1 − τ))Iλ,

and (2.26) follows. ��
The existence of solutions of (2.7) for s ∈ (1/2, 1], σλ10 > 0 and cs = λ20 satisfying
(2.21) will be proved via the concentration-compactness theory, Lions (1984), as well
as the convergence of a minimizing sequence of (2.16) modulo and the symmetry
group (2.5) to some (v,w) ∈ Hs × Hs with λ = F(v,w). Let {(vn, wn)}n be a
minimizing sequence for (2.16) and consider the sequence of nonnegative functions

ρn(x) = |Dsvn(x)|2 + |Dswn(x)|2 + vn(x)
2 + wn(x)

2.

Then, ρn ∈ L1 and λn = ||ρn||L1 = ||(vn, wn)||2s . Then, using (2.25) and Proposition
2.1(ii), λn is bounded and

λn > (λ(2σ + 2))
1

σ+1 .

Let σ = limn→∞ λn > 0. We can normalize ρn as ρ̃n(x) = σρn(λnx), to have

˜λn = ||ρ̃n||L1 = σ.
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(Tildes are dropped from now on.) Then, we apply Lemma 1.1 of Lions (1984) to
derive the existence of a subsequence {ρnk }k≥1 satisfying one of the following three
conditions:

(1) (Compactness.) There are yk ∈ R such that ρnk (·+ yk) satisfies that for any ε > 0
there exists R = R(ε) > 0 large enough such that

∫

|x−yk |≤R
ρnk (x)dx ≥ σ − ε.

(2) (Vanishing.) For any R > 0

lim
k→∞ sup

y∈R

∫

|x−y|≤R
ρnk (x)dx = 0. (2.29)

(3) (Dichotomy.) There is θ0 ∈ (0, σ ) such that for any ε > 0, there exists k0 ≥ 1 and
ρk,1, ρk,2 ∈ L1 with ρk1 , ρk2 ≥ 0 such that for k ≥ k0

∫

R

|ρnk − (ρk,1 + ρk,2)|dx ≤ ε, (2.30)
∣

∣

∣

∣

∫

R

ρk,1dx − θ0

∣

∣

∣

∣

≤ ε,

∣

∣

∣

∣

∫

R

ρk,2dx − (σ − θ0)

∣

∣

∣

∣

≤ ε, (2.31)

with

suppρk,1 ∩ suppρk,2 = ∅,

dist
(

suppρk,1, suppρk,2
) → +∞, k → ∞.

Since the supports of ρk,1 and ρk,2 are disjoint, we may assume the existence of
R0 > 0 and sequences {yk}k and Rk → ∞ as k → ∞ such that, Angulo-Pava
and Saut (2020)

suppρk,1 ⊂ (yk − R0, yk + R0),

suppρk,2 ⊂ (−∞, yk − 2Rk) ∪ (yk + 2Rk,∞). (2.32)

Thus, using (2.30) and (2.32), it holds that Angulo-Pava and Saut (2020)

∫

|x−yk |≤R0

|ρnk (x) − ρk,1(x)|dx ≤ ε

∫

|x−yk |≥2Rk

|ρnk (x) − ρk,2(x)|dx ≤ ε,

∫

R0≤|x−yk |≤2Rk

ρnk (x)dx ≤ ε.

(2.33)
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We first rule out the vanishing property. If (2.29) holds, then

lim
k→∞ sup

y∈R

∫

|x−y|≤R

(

|vnk (x)|2 + |wnk (x)|2
)

dx = 0.

Since {(vn, wn)}n is a bounded sequence in Hs × Hs (cf. Proposition 2.1(iii)), we
apply (2.27) to have

F(vnk , wnk ) ≤ C ||(vnk , wnk )||2L2 ,

for some constant C . Therefore,

lim
k→∞ F(vnk , wnk ) = 0,

which contradicts the fact that λ > 0.
We nowassume that dichotomy holds and use similar arguments to those ofAngulo-

Pava and Saut (2020) to rule it out. Let hnk = (vnk , wnk ) and cutoff functions ϕ, φ ∈
C∞(R), 0 ≤ ϕ, φ ≤ 1, with

φ(x) = 1, |x | ≤ 1, φ(x) = 0, |x | ≥ 2,

ϕ(x) = 1, |x | ≥ 2, ϕ(x) = 0, |x | ≤ 1.

Let R1 > R0 and

φk = φ

(

x − yk
R1

)

, ϕk = ϕ

(

x − yk
Rk

)

, x ∈ R.

Then,

suppφk ⊂ (yk − 2R1, yk + 2R1),

suppϕk ⊂ (−∞, yk − 2Rk) ∪ (yk + 2Rk,∞).

We define hk,1 = φkhnk , hk,2 = ϕkhnk , and

zk = hnk − (hk,1 + hk,2) = χkhnk , χk = 1 − φk − ϕk .

Sinceχk ∈ C∞(R) and suppχk ⊂ {x ∈ R/R1 ≤ |x−yk | ≤ Rk}, then its Fourier trans-
form decays exponentially. Using this fact, (2.33), and the Kato-Ponce inequalities,
cf. Kato and Ponce (1988), Kenig et al. (1991)

||Ds(χkg)||L2 ≤ C
(||Dsχk ||L∞||g||L2 + ||χk ||L∞||Dsg||L2

)

,

with g = vnk , wnk , we have

||χkvnk ||2s ≤ C
∫

R1≤|x−yk |≤Rk

ρnk (x)dx = O(ε), ||χkwnk ||2s = O(ε).
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Therefore,

||zk ||s = O(ε). (2.34)

On the other hand, since

F(φkvnk , φkwnk ) = 1

2σ + 2

∫

R

φ2σ+2
k (v2nk + w2

nk )
σ+1dx

is bounded, there is a subsequence of hk,1 (denoted again by hk,1) and θ ∈ R such
that

∣

∣

∣

∣

1

2σ + 2

∫

R

φ2σ+2
k (v2nk + w2

nk )
σ+1dx − θ

∣

∣

∣

∣

≤ ε, k ≥ k0. (2.35)

Furthermore, since λ = F(vnk , wnk ),

∣

∣

∣

∣

1

2σ + 2

∫

R

ϕ2σ+2
k (v2nk + w2

nk )
σ+1dx − (λ − θ)

∣

∣

∣

∣

=
∣

∣

∣

∣

1

2σ + 2

∫

R

(ϕ2σ+2
k − 1)(v2nk + w2

nk )
σ+1dx + θ

∣

∣

∣

∣

≤
∣

∣

∣

∣

1

2σ + 2

∫

R

(ϕ2σ+2
k + φ2σ+2

k − 1)(v2nk + w2
nk )

σ+1dx

∣

∣

∣

∣

+ ε

≤ 1

2σ + 2

∫

R

χ2σ+2
k (v2nk + w2

nk )
σ+1dx + ε ≤ C ||zk ||2σ+2

s + ε = O(ε).

(2.36)

The next step consists of proving that for R1 and Rk large enough

E(hnk ) = E(hk,1) + E(hk,2) + O(ε). (2.37)

Note first that using (2.18) and Lemma 2.4, we can write

E(hnk ) = E(hk,1) + E(hk,2) + E(zk)

+〈Qzk, hk,21 + hk,2〉 + 〈Qhk,1, hk,2〉. (2.38)

From Lemma 2.4 and (2.34), we have

∣

∣〈Qzk, hk,21 + hk,2〉
∣

∣ ≤ ||Qzk ||L2 ||hk,1 + hk,2||L2

≤ C ||zk ||s
(||hk,1||L2 + ||hk,2||L2

)

≤ C ||zk ||s ||hnk ||L2 = O(ε). (2.39)

For the control of the last term of (2.38), we write

〈Qhk,1, hk,2〉 =
∫

R

(

ϕkvnk D
2s(φkvnk ) + ϕkwnk D

2s(φkwnk )
)

dx . (2.40)
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Using the definition of the Calderon commutator (1.14) and the fact that φkϕk = 0,
we have

ϕkvnk D
2s(φkvnk ) = ϕkvnk

(

φk D
2svnk + [D2s, φk]vnk

)

= ϕkvnk [D2s, φk]vnk .

Thus, Kato-Ponce inequality, cf. Kato and Ponce (1988), Kenig et al. (1991), leads to

∥

∥

∥[D2s, φk]vnk
∥

∥

∥

L2
≤ C

(

||ϕ′
k ||L∞||D2s−1vnk ||L2 + ||D2sφk ||L∞||vnk ||L2

)

.

(2.41)

Since s ∈ (1/2, 1], then 2 s > 1 and s ≥ 2 s − 1; the embeddings H2s ⊂ H1, Hs ⊂
H2s−1 imply that the right-hand side of (2.41) is bounded. Therefore,

∣

∣

∣

∣

∫

R

ϕkvnk D
2s(φkvnk )dx

∣

∣

∣

∣

=
∣

∣

∣

∣

∫

R

ϕkvnk [D2s, φk]vnkdx
∣

∣

∣

∣

≤ ||ϕk ||L∞||vnk ||L2C
∥

∥

∥[D2s, φk]vnk
∥

∥

∥

L2

≤ C
||φ′||L∞

R1
||vnk ||2s ,

and similarly

∣

∣

∣

∣

∫

R

ϕkwnk D
2s(φkwnk )dx

∣

∣

∣

∣

≤ C
||φ′||L∞

R1
||wnk ||2s .

Thus for R1 large enough, we obtain that (2.40) is O(ε). Using this fact, (2.38), (2.39),
and Proposition 2.1(i), (2.37) follows. Moreover,

Iλ ≥ lim
k→∞ inf E(hnk ) ≥ lim

k→∞ inf E(hk,1)

+ lim
k→∞ inf E(hk,2) + O(ε). (2.42)

The last estimates that we need are the following: For R1, Rk large enough

∣

∣

∣

∣

||φkvnk ||2s + ||φkwnk ||2s −
∫

R

ρk,1dx

∣

∣

∣

∣

= O(ε), (2.43)
∣

∣

∣

∣

||ϕkvnk ||2s + ||ϕkwnk ||2s −
∫

R

ρk,2dx

∣

∣

∣

∣

= O(ε). (2.44)

For the proof, we note that using the Calderon commutator (1.14), the left-hand side
of (2.43) can be written as
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∣

∣

∣

∣

||φkvnk ||2s + ||φkwnk ||2s −
∫

R

ρk,1dx

∣

∣

∣

∣

∣

∣

∣

∣

∫

R

(

φ2
k (v

2
nk + w2

nk ) + φkvnk

(

φk D
2svnk + [D2s, φk]vnk

)

φkwnk

(

φk D
2swnk + [D2s, φk]wnk

)

− ρk,1

)

dx
∣

∣

∣ . (2.45)

Then, (2.43) follows from the property 0 ≤ φk ≤ 1, (2.30), and (2.41). For the proof
of (2.44), we can write its left-hand side in the same way as in (2.45) and apply that
0 ≤ ϕk ≤ 1, (2.30), and the arguments of (2.41) to have

∣

∣

∣

∣

∫

R

ϕkvnk D
2s(ϕkvnk )dx

∣

∣

∣

∣

≤ C
||ϕ′||L∞

Rk
||vnk ||2s ,

∣

∣

∣

∣

∫

R

ϕkwnk D
2s(ϕkwnk )dx

∣

∣

∣

∣

≤ C
||ϕ′||L∞

Rk
||wnk ||2s .

We are now ready to rule out dichotomy. Concerning the limit θ in (2.35), we have
the following possibilities:

(1) θ = 0. Then, from (2.36) and k large

|F(hk,2) − λ| < ε.

If we tale ε < λ/2, then

F(hk,2) > λ − ε >
λ

2
> 0. (2.46)

Thus, if we consider

dk =
(

λ

F(hk,2)

) 1
2σ+2

,

then λ = F(dkhk,2) and

|dk − 1| <

(

2

λ

) 1
2σ+2 ∣

∣

∣λ
1

2σ+2 − F(hk,2)
1

2σ+2

∣

∣

∣

<

(

2

λ

) 1
2σ+2

∣

∣

∣λ
1

2σ+2 − F(hk,2)
1

2σ+2

∣

∣

∣

∣

∣λ − F(hk,2)
∣

∣

ε. (2.47)

For x > 0, let g(x) = x
1

2σ+2 . The numerator in (2.47) can be written as

∣

∣

∣λ
1

2σ+2 − F(hk,2)
1

2σ+2

∣

∣

∣ = ∣

∣g(λ) − g(F(hk,2))
∣

∣ = ∣

∣g′(ξk)(λ − F(hk,2))
∣

∣ ,
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for some ξk between F(hk,2) and λ and consequently, by (2.46), between λ/2 and
λ. Therefore,

g′(ξk) = 1

2σ + 2

(

1

ξk

) 2σ+1
2σ+2

<
1

2σ + 2

(

2

λ

) 2σ+1
2σ+2

. (2.48)

Inserting (2.48) into (2.47) yields

|dk − 1| <
1

2σ + 2

(

2

λ

)

ε.

Thus, limk→∞ dk = 1 and

Iλ ≤ E(dkhk,2) = d2k E(hk,2) = E(hk,2) + O(ε). (2.49)

Now, from Proposition 2.1(i), (2.43), and (2.30), we have

lim
k→∞ inf E(hk,1) ≥ C lim

k→∞ inf ||hk,1||2s
≥ C lim

k→∞ inf ||ρk,1||L1 + O(ε) ≥ Cθ0 + O(ε).

Therefore, (2.42) and (2.49) imply, for ε > 0 arbitrarily small

Iλ ≥ Cθ0 + Iλ + O(ε),

which leads to Iλ ≥ Cθ0 + Iλ, that is, the contradiction θ0 ≤ 0.
(2) If we assume λ > θ > 0, then (2.35), (2.36), and the previous arguments applied

to λ − θ and θ lead to

Iλ−θ ≤ E(hk,2) + O(ε), Iθ ≤ E(hk,1) + O(ε).

Therefore, from (2.42), it holds that

Iλ ≥ Iλ−θ + Iθ + O(ε),

for ε > 0 arbitrarily small. This contradicts Proposition 2.1(iv).
(3) If θ < 0 then, from (2.36)

lim
k→∞ F(hk,2) = λ − θ >

λ

2
,

and a similar analysis to item (1) leads to contradiction.
(4) If θ = λ, then

lim
k→∞ F(hk,1) = λ;
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therefore, as in item (1) we may take ε small enough so that F(hk,1) > λ/2 for k
large. The same arguments apply to have

Iλ ≤ E(hk,1) + O(ε),

and

lim
k→∞ inf E(hk,2) ≥ C lim

k→∞ inf ||hk,2||2s
≥ C lim

k→∞ inf ||ρk,2||L1 + O(ε) ≥ C(σ − θ0) + O(ε),

leading to, for ε > 0 arbitrarily small

Iλ ≥ C(σ − θ0) + Iλ + O(ε),

implying the contradiction σ − θ0 ≤ 0.
(5) If θ > λ, then F(hk,1) > 0 for k large enough. Let

ek =
(

λ

F(hk,1)

) 1
2σ+2

.

Then, F(ekhk,1) = λ and

lim
k→∞ ek =

(

λ

θ

) 1
2σ+2

.

Therefore, for k large enough, we have

Iλ ≤ E(ekhk,1) = e2k E(hk,1) < E(hk,1), (2.50)

and, on the other hand, from Proposition 2.1(i), (2.44), and (2.47), there holds

lim
k→∞ inf E(hk,2) ≥ C lim

k→∞ inf ||hk,2||2s ≥ C lim
k→∞ inf ||ρk,2||L1 + O(ε)

≥ C(σ − θ0) + O(ε). (2.51)

Thus, (2.42), (2.50), and (2.51) imply

Iλ ≥ Iλ + C(σ − θ0) + O(ε),

for ε arbitrarily small, leading again to the contradiction σ − θ0 ≤ 0.

Hence, dichotomy is ruled out. Since vanishing and dichotomy do not hold, Lemma
1.1 of Lions (1984) implies that necessarily compactness is satisfied. Let ε > 0 and

Pk = {x ∈ R/|x − yk | ≥ R(ε)}.
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Using (2.27), we have

1

2σ + 2

∫

Pk

(

v2nk + w2
nk

)σ+1
dx ≤ C ||(vnk , wnk )||2σs

(∫

Pk
ρnk (x)dx

)

= O(ε).

Therefore,

∣

∣

∣

∣

1

2σ + 2

∫

|x−yk |≤R

(

v2nk + w2
nk

)σ+1
dx − λ

∣

∣

∣

∣

≤ ε. (2.52)

Let˜hnk = (̃vnk , w̃nk ) with

ṽnk (x) = vnk (x − yk), w̃nk (x) = wnk (x − yk).

Then,˜hnk is bounded in Hs × Hs , so there is a subsequence (denoted again by˜hnk )
which converges weakly in Hs × Hs to some (̃v0, w̃0) ∈ Hs × Hs . Since (2.52)
implies that

λ ≥
∫ R

−R

1

2σ + 2

(

ṽ2nk + w̃2
nk

)σ+1
dx ≥ λ − ε,

for k large enough then, from the compact embedding, Adams (1975)

Hs(−R, R) ⊂ Lσ+1(−R, R), σ > 0,

we have

λ ≥
∫ R

−R

1

2σ + 2

(

ṽ20 + w̃2
0

)σ+1
dx ≥ λ − ε.

As ε → 0 then R → ∞, Angulo-Pava and Saut (2020), leading to λ = F (̃v0, w̃0). In
addition, weak lower semicontinuity and invariance under translations of E imply

Iλ = lim
k→∞ inf E(vnk , wnk ) = lim

k→∞ inf E (̃vnk , w̃nk )

≥ E (̃v0, w̃0) ≥ Iλ.

Therefore,˜h = (̃v0, w̃0) is a solution of the variational problem

δE(˜h) = K δF(˜h), λ = F(˜h),

for some Lagrange multiplier K . This leads to

(−∂xx )
s ṽ0 + λ10ṽ0 − λ20w̃

′
0 = K (̃v20 + w̃2

0)
σ ṽ0,

(−∂xx )
sw̃0 + λ10w̃0 + λ20ṽ

′
0 = K (̃v20 + w̃2

0)
σ w̃0. (2.53)
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Multiplying the first equation of (2.53) by ṽ0, the second by w̃0, adding the resulting
equations and integrating on R lead to

2E(˜h) = 2(σ + 1)K F(˜h).

Therefore, K = Iλ/λ(σ + 1) > 0. Defining

(v0, w0) = K α(̃v0, w̃0), α = 1

2σ
,

then it holds that (v0, w0) is a solution of (2.7). This completes the proof of the first
part of the following theorem. ��
Theorem 2.1 Under the conditions of Lemma 2.4, there is a solution (v0, w0) ∈ Hs ×
Hs of (2.7) which satisfies v0, w0 ∈ H∞.

Proof It only remains to prove the last statement. Note that (2.7) can be written as

Q

(

v

w

)

= G(v,w) = (v2 + w2)σ+1
(

v

w

)

, (2.54)

where Q is defined in (2.19). A similar argument to that used to prove (2.28) implies
that G(v,w) ∈ L2 × L2. Then, using Lemma 2.4, we have (v,w) ∈ H2 s × H2 s ;
then, the result follows from a bootstrap argument applied to (2.54). ��
Remark 2.1 Note that for fixed λ10 > 0, if (λ20, v0, w0) is a solution of (2.7), then
(−λ20, w0, v0) is a solution. This implies that Theorem 2.1 is valid if in Lemma 2.4
we assume 0 < |cs | < c(λ10) instead of (2.21)

Remark 2.2 Theorem 2.1 proves the existence of a solution (v0, w0) of (2.7). The argu-
ments of the beginning of Sect. 2.2 imply that u0 = v0 + iw0 satisfies the constrained
problem (2.6). Writing u0(x) = eiθ(x)ρ(x) with real ρ and θ , solitary-wave solutions
of (1.12) of the form (2.8) are obtained from the application of the symmetry group
(2.5) determined by the Lagrange multipliers λ

j
0, j = 1, 2. We emphasize here that ρ

is not necessarily even (cf. Sect. 3.3), it does not necessarily satisfy (2.12) and, from
(2.7), it holds that (ρ(x), θ(x)) satisfies the nonlocal, coupled, real system

−(−∂xx )
s(ρ cos θ) − λ10ρ cos θ + λ20

(

ρ′ sin θ + ρθ ′ cos θ
) + ρ2σ+1 cos θ = 0,

−(−∂xx )
s(ρ sin θ) − λ10ρ sin θ − λ20

(

ρ′ cos θ − ρθ ′ sin θ
) + ρ2σ+1 sin θ = 0.

2.3.1 The Particular Case (2.14)

The case of the subfamily (2.14), where θ(x) = Ax and ρ satisfies (2.12), deserves
some comments. Indeed, the existence of solution is ensured by Theorem 2.1 (taking,
as mentioned in Remark 2.2 and from the solution (v0, w0) of (2.7), u0 = v0 + iw0 =
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eiθρ, and applying the arguments of Sect. 2.2). But an alternative for the proof can be
given from (2.12), Lemma 2.3, and the minimization problem

θλ = inf{J (u) : u ∈ Hs(R) :
∫

R

u2σ+2dx = λ}, λ > 0, (2.55)

where

J (u) =
∫

R

u(M + a)udx . (2.56)

Note that the symbol (2.11) can be written as r(ξ) = l(ξ + A), where

l(x) = |x |2s − λ20x + λ10, x ∈ R. (2.57)

A similar study to that made in Lemma 2.4 leads to the existence of positive constants
α j , β j , j = 0, 1, such that

α0 + α1|x |2s ≤ l(x) ≤ β0 + β1|x |2s, x ∈ R.

Then, the existence of ρ can be alternatively derived from Weinstein (1987). On the
other hand, (2.57) and Proposition 1.1(iii) of Frank and Lenzmann (2013) determine
the asymptotic decay of the waves:

Theorem 2.2 Assume that s ∈ (1/2, 1), λ10 > 0, c(λ10) is as in (2.20) and 0 < |cs | <

c(λ10). Then, there is a solution ρ of (2.12). Furthermore, there exists a constant C > 0
such that

|x |2s+1ρ(x) ≤ C, x ∈ R. (2.58)

In addition, we have the following result, cf. Chen and Bona (1998).

Theorem 2.3 The minimization problem (2.55), (2.56) is equivalent to the problem

m = min{�( f ) : f ∈ Hs(R), f �= 0}, (2.59)

where

�( f ) = J ( f )
(∫

R
f 2σ+2dx

) 1
σ+1

, (2.60)

Proof Note first that if f is a minimizer for (2.59), (2.60), then it is also a minimizer
for (2.55), (2.56) with

θλ = λ
1

σ+1m, λ =
∫

R

f 2σ+2dx .
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On the other hand, it holds that �′( f )h = 0 for any h ∈ Hs(R). After some
computations, this implies

(M + a) f = J ( f )
∫

R
f 2σ+2dx

f 2σ+1.

Therefore, the rescaling ρ = C f with

C = m
1
2σ

λ
1

2σ+2

,

is a solution of (2.12). ��
Note that the equivalence can be used to ensure the existence of an even solution
of (2.12) from the arguments shown in Albert (1992), Chen and Bona (1998), by
searching for a minimizer of (2.55), (2.56) with positive Fourier transform.

3 Numerical Generation of SolitaryWaves

In this section, some additional properties of the solitary waves will be studied by
computational means. To this end, the numerical procedure to compute approximate
solitary-wave profiles will be briefly described and its performance will be checked in
a first group of numerical experiments. The accuracy of the method will give us some
confidence to study computationally some properties of the waves concerning, among
others, even character, asymptotic decay, and the speed-amplitude relation.

3.1 Approximation to the Profiles

Contrary to the classical case (2.14) with s = 1, Durán and Sanz-Serna (2000), explicit
formulas for the solitary-wave profiles (v0, w0), solutions of (2.7), or solutions ρ of
(2.12), are not known in general. In order to study additional properties and dynamics
of the resulting solitary waves, a numerical procedure to compute approximations
is here introduced. The approach consists of solving iteratively (2.7), written in the
form (2.54). This contains a nonsingular, linear part (given by the operator Q) and
a nonlinear term G, homogeneous of degree 2σ + 1. This homogeneous character
prevents the use of the classical fixed-point iteration

Qz[ν+1] = G(z[ν]), ν = 0, 1, . . . , (3.1)

where z[ν] = (v[ν], w[ν]), ν = 0, 1, . . . , and for some initial iteration z[0]. The reason
is that from Euler’s Homogeneous function theorem

G ′(v,w)

(

v

w

)

= (2σ + 1)G(v,w),
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which implies, if (v0, w0) is a solution of (2.7), that

Q−1G ′(v0, w0)

(

v0
w0

)

= (2σ + 1)Q−1G(v0, w0) = (2σ + 1)

(

v0
w0

)

.

Therefore, λ = 2σ + 1 > 1 becomes one of the eigenvalues of the corresponding
iteration operator of (3.1) at the solitary-wave profile (v0, w0).

An efficient alternative is given by the Petviashvili method, Petviashvili (1976).
This is formulated as

mν = 〈Qz[ν], z[ν]〉
〈G(z[ν]), z[ν]〉 ,

Qz[ν+1] = mα
νG(z[ν]), ν = 0, 1, . . . , (3.2)

where 〈·, ·〉 is given by (1.13) and α ∈ (1, (2σ + 2)/2σ), with α = (2σ + 1)/2σ as
optimal choice, Pelinovsky andStepanyants (2004). The iteration (3.2) is characterized
by the so-called stabilizing factor mν . Compared to the classical fixed-point iteration,
this factor modifies the spectrum of the resulting iteration operator in such a way that,
from (3.1) to (3.2), the ‘harmful’ eigenvalue λ = 2σ + 1 is transformed to some
below one in magnitude for (3.2) (zero in the case of the optimal choice of α), and
the rest of the spectrum does not change, cf. Álvarez and Durán (2014). Not being the
purpose of the present paper, it is worth mentioning that this property seems to enable
for obtaining convergence results for (3.2) in a local, orbital sense, see Álvarez and
Durán (2014). For the particular case θ(x) = Ax , the Petviashvili method is applied
to obtain approximations to the solutions ρ of (2.12). In this case, the formulation is

mν = ((M + a)ρ[ν], ρ[ν])
((ρ[ν])2σ+1, ρ[ν])

,

(M + a)ρ[ν+1] = mα
ν (ρ[ν])2σ+1, ν = 0, 1, . . . , (3.3)

In practice, the procedures (3.2) and (3.3) must be applied in the form of some dis-
crete version. Due to the localized character of the profiles, this is typically done by
discretizing the equations on a long enough interval (−l, l) with periodic boundary
conditions and corresponding approximations of the linear and nonlinear operators.
By way of illustration, in the case of (2.54), the discretization would have has the form

Qhzh = G(zh), (3.4)

where zh = (vh, wh), vh = (vh,0, . . . , vh,N−1)
T , wh = (wh,0, . . . , wh,N−1)

T denote
the approximations to the values of the solution v andw, respectively, at the grid points
x j = −l + jh, j = 0, . . . , N − 1, h = 2l/N . It is assumed that N is even and vh, wh

are extended as periodic functions vh = (vh, j ) j∈Z,wh = (wh, j ) j∈Z, with vh, j+N =
vh, j , wh, j+N = wh, j , defined on a extended uniform grid x j = −l + jh, j ∈ Z.
On the other hand, Qh and Gh are, respectively, some discretizations of the operator
Q and the nonlinear term G. The discretization of (2.12) can be made in a similar
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way. Then, the Petviashvili method is applied to the discrete system (3.4) using the
corresponding Euclidean inner product.

The nonlocal character of the linear operators in (2.7) and (2.12) suggests to consider
a Fourier collocation approximation in (3.4) (and in the corresponding discretization
of (2.12)) and to implement the Petviashvili iterations in the Fourier space, that is, for
the discrete Fourier coefficients of the approximations. The resulting methods were
experimentally shown to be convergent (see the computations in Sect. 3.2) and, in order
to accelerate the convergence, theywere performed alongwith theminimal polynomial
extrapolation (MPE) technique, (cf. e.g., Sidi 2017; Álvarez and Durán 2016 and
references therein). A brief description for the case of (3.2) follows. Let ν ≥ 0 and let
κ ∈ N∪{0} small as a number of extrapolation steps. Let u[ν] = �z[ν] = z[ν+1]−z[ν].
We solve the minimization problem in the corresponding norm || · ||

min
c0,...,cκ−1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

κ−1
∑

i=0

ciu
[ν+i] + u[ν+κ]

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

, (3.5)

take cκ = 1 and compute the extrapolation

zν,κ =
κ

∑

i=0

γi z
[ν+i], γi = ci

∑κ
j=0 c j

, i = 0, . . . , κ. (3.6)

where we assume
∑κ

i=0 ci �= 0. The quantity mw = κ + 1 is called the width of
extrapolation. For a discussion on the choice of κ , the implementation of (3.5), (3.6),
and convergence results, see e.g., Sidi et al. (1986), Smith et al. (1987), Sidi (2017).
(See also Álvarez and Durán 2016 for the application of acceleration techniques to
compute solitary-wave profiles.)

3.2 Accuracy of the ApproximateWaves

In this section, some numerical experiments are shown to illustrate the accuracy of the
procedure. This is controlled by iterating while the corresponding Euclidean norm of
discrete versions of the residuals Qz[ν] − G(z[ν]) and (M + a)ρ[ν] − (ρ[ν])2σ+1 are
above some prefixed tolerance.

For these experiments of accuracy, we focus on the iteration (3.3). Figure1a shows
the approximate profile corresponding to σ = 1, s = 3/4, λ10 = 1 and several speeds
cs = λ20 below the limit c(λ10) ≈ 1.8899 given by (2.20). The convergence of the
procedure and the effect of the extrapolation technique are observed from Fig. 1b,
which displays the Euclidean norm of the residual error as function of the number of
iterations and for several values of the width mw for the approximate profile obtained
with cs = 1. The MPE method accelerates the convergence in the sense that the
iterations required for the magnitude of the residual error to be below a fixed value are
reduced. This is more clearly observed when comparing the results for mw = 1 (no
acceleration) and mw = 3. For the experiments performed in our study, the optimal
values of the width seem to be mw = 3 and 4. Larger values do not provide a relevant
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Fig. 1 Numerical generation of solitary waves. Iteration (3.3) with σ = 1, s = 3/4 y λ10 = 1. a ρ numerical
profiles for several speeds; b residual error vs. number of iterations for the case cs = 1 and several values
of the width of extrapolation mw
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Fig. 2 Numerical approximation of (1.12) with σ = 1, s = 3/4, initial condition given by the approximate
profile from λ10 = 1, λ20 = 1. a Evolution of the error in the amplitude; b Hamiltonian error as function of
time

improvement, compared to the computational time required by the extrapolation (cf.
Smith et al. 1987; Álvarez and Durán 2016 for a discussion on the choice of mw).

A second experiment confirming the accuracy of the iteration is concerned with the
solitary-wave character of the approximate profiles. This consists of approximating the
periodic ivp of (1.12) on a long enough interval with a fully discrete scheme based on
a Fourier collocation spectral method for the approximation in space and the implicit
midpoint rule as time integrator. The initial condition at the collocation points x is
of the form ρ(x)eiθ(x), where ρ is obtained from (3.3) and θ = Ax with A given by
Lemma 2.3 from the choice of λ20. Then, the evolution of the corresponding numerical
solution is monitored from several points of view. Two of them are illustrated in Fig. 2.
On the left we show the evolution of the error between the amplitude of the numerical
solution and that of the initial condition, with spatial stepsize h = 6.25 × 10−2 and
for several temporal stepsizes �t . Note that the errors remain small and do not grow
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Fig. 3 a Approximate ρ profiles for σ = 1, λ10 = 1, λ20 = 0.75, s = 0.5 + ε for several values of ε. b
Approximate ρ profiles for s = 3/4, λ10 = 1, λ20 = 1 for several values of σ

with time. (The same experiment but with respect to the speed λ20 was also made, with
similar results. The computation of these values was standard, cf. e.g., Álvarez and
Durán (2016) and references therein.) On the other hand, in Fig. 2b, the evolution of
the error with respect to the corresponding discrete version of the Hamiltonian (2.4)
shows a high level of preservation of the energy. (A similar behavior was observed
when computing the corresponding errors with respect to the quantities (2.2) and
(2.3).)

3.3 Additional Properties of theWaves

The numerical experiments of Sect. 3.2 give confidence on the accuracy of the
computed profiles and enable to study numerically additional properties of the waves.

The first experiments illustrate the influence of the fractional parameter s and the
parameter of nonlinearity σ in the generation of the profiles. (Recall that both appear
in the formula (2.20) of the limiting value of the speed c(λ10).) Figure3a shows the
approximations of ρ obtained from (3.3) with σ = 1, λ10 = 1, λ20 = 0.75, s = 0.5+ ε

for several values of ε. (The value of the speed λ20 always satisfies (2.21).) We observe
that close to the limiting value s = 1/2, the profiles are narrower, becoming smoother
as ε is increasing. On the other hand, in Fig. 3b approximate profiles computed with
s = 3/4, λ10 = 1, λ20 = 1 and several values ofσ are compared.Note that the amplitude
seems to decrease as σ grows. The experiments will serve us, in a companion paper
[18], as starting point to study the relations between λ

j
0, j = 1, 2, and the parameters

s and σ , cf. (2.15) for σ = 1, s ∈ (1/2, 1].
On the other hand, the even character of the profiles does not seem to be guaranteed

in general. This is confirmed by Fig. 4a, which shows the magnitude ρ = √
v2 + w2

with (v,w) solution of (3.2) with initial iteration

v[0](x) = sech(x) cos θ(x), w[0](x) = sech(x) sin θ(x), (3.7)
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Fig. 4 Approximate profiles for σ = 1, s = 3/4, λ10 = 1. a ρ =
√

v2 + w2 with (v, w) solution of (3.2)

with initial iteration (3.7) and θ(x) = x2; b solution ρ of (3.3) with initial iteration (3.7) and θ(x) = Ax
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Fig. 5 Approximate profiles for σ = 1, s = 3/4, λ10 = 1 in log-log scale. a Solution ρ of (3.3) with initial

iteration (3.7) and θ(x) = Ax (cf. Fig. 1a); b ρ =
√

v2 + w2 with (v, w) solution of (3.2) with initial
iteration (3.7) and θ(x) = x2 (cf. Fig. 4a)

and θ(x) = x2. The profiles can be compared with those shown in Fig. 4b, correspond-
ing to (3.3) and initial iteration (3.7) with θ(x) = Ax , A from Lemma 2.3. In this last
case, recall that the existence of an even solution is ensured by the arguments explained
in Sect. 2.3.1.We observe that all the experiments performed for the preparation of this
paper gave even approximate profiles. This fact and the results of Sect. 2.3.1 would
imply that uniqueness of solution of (2.12) up to translations appears likely.

We now complete the study of the asymptotic decay of the waves with the following
experiments. Recall that in the case of (2.12), Theorem 2.2 proves that the solutions
ρ(x) decay as 1/|x |2s+1, |x | → ∞, cf. (2.58). This is checked in Fig. 5a. This shows, in
log-log scale, the numerical profiles corresponding to panel (a) of Fig. 1.We considered
several values of the length of the interval (l = 64 in the figure) and compared the
slopes of the resulting lines with that of the dashed line, confirming a decay like
1/|x |2s+1. (Other experiments, not shown here, were made with other values of s.)
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Fig. 6 Approximate profiles for σ = 1, s = 3/4, λ10 = 1. a Phase plot of the profiles in Fig. 1a; b
magnification of (a); c magnification of Fig. 1a

Figure5b corresponds to the same experiment but for the case of the iteration (3.2)with
initial iteration (3.7) and θ(x) = x2 (cf. Fig. 4(a)). The results suggest that Theorem
2.2 might be extended to the solutions of (2.7).

Some additional information suggested by Fig. 5 is concerned with the behavior
of the decay of the waves. Figure6a shows the phase plot of the profiles displayed in
Fig. 1. Note first that the way how the waves, as homoclinic orbits, approach the origin
at infinity confirms the algebraic decay. On the other hand, the magnifications shown
in Fig. 6b, c suggest that the decay is not monotone, and the waves with speed close
to the limiting value start to develop symmetric oscillations, breaking the decreasing
behavior. This phenomenon was also observed in experiments for the general case
(3.2).

A final property studied here concerns the speed-amplitude relation. This is illus-
trated in Fig. 7a, b. In the first case, for several values of the limiting value of the speed
c(λ10) in (2.20), the amplitude of several profiles with speeds cs satisfying (2.21) is
computed. This leads to a nonlinear increasing relation between the amplitude and the
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Fig. 7 Speed-amplitude relation. a Solution ρ of (3.3) with initial iteration (3.7) and θ(x) = Ax (cf. Fig. 1a);

b ρ =
√

v2 + w2 with (v, w) solution of (3.2) with initial iteration (3.7) and θ(x) = x2

difference c(λ10) − cs . A similar behavior is observed in the case of the iteration (3.2),
as suggested by Fig. 7b. This was already observed in Fig. 5.

4 Concluding Remarks

The present paper is concerned with the existence and properties of solitary-wave
solutions of the one-dimensional fractional nonlinear Schrödinger equation (1.12).
Following the approach developed in Durán and Sanz-Serna (2000) for the classical
NLS and its soliton solutions, here we look for solitary-wave solutions from a con-
strained critical point problem of the Hamiltonian and the use of the symmetry group
of translations and phase rotations. The existence of solution of the corresponding
real, nonlocal, differential system (2.7) is established from the resolution of a min-
imization problem by using the concentration-compactness theory of Lions (1984).
The existence is obtained for a range of speeds below a limiting value (speed of sound)
which depends on the fractional parameter s ∈ (1/2, 1] and the parameter determin-
ing the nonlinearity σ > 0. The regularity of the waves is derived as corollary, and
the asymptotic decay at infinity, as 1/|x |2s+1, is proved for a particular subfamily of
complex profiles with linear phase function, whose existence was previously derived
in Hong and Sire (2017).

Other properties of the waves are studied computationally. To this end, an iterative
procedure for the approximation of the profiles, based on the Petviashvili iteration,
cf. Petviashvili (1976), with extrapolation is introduced and its good performance is
checked with several numerical experiments. The accuracy of the computed profiles
is used to make a second group of experiments with the aim at investigating additional
features of the waves. The main conclusions are the following:

• The solitary-wave profiles are not even in general; only in the particular case of
the subfamily derived in Hong and Sire (2017) the experiments suggest an even
character and uniqueness under translations and rotations.
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• The asymptotic decay of the waves seems to be, in general, like 1/|x |2s+1 as
|x | → ∞, extending the result proved for the subfamily introduced in Hong and
Sire (2017), cf. (2.58).

• The waves do not decay to zero at infinity in a monotone way; the profiles may
develop small oscillations which break the decreasing behavior.

• The amplitude of thewaves is a nonlinear, increasing function of the speed, relative
to the corresponding speed of sound.

The results, both theoretical and computational, obtained in the present work will be
especially helpful in a companion paper, which will examine the numerical analysis
of (1.12) and the dynamics of the solitary-wave solutions.
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