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Abstract
Machine-learning-based predictive maintenance models, i.e. models that predict break-
downs of machines based on condition information, have a high potential to minimize 
maintenance costs in industrial applications by determining the best possible time to per-
form maintenance. Modern machines have sensors that can collect all relevant data of the 
operating condition and for legacy machines which are still widely used in the industry, 
retrofit sensors are readily, easily and inexpensively available. With the help of this data 
it is possible to train such a predictive maintenance model. The main problem is that 
most data is obtained from normal operating conditions, whereas only limited data are 
from failures. This leads to highly unbalanced data sets, which makes it very difficult, 
if not impossible, to train a predictive maintenance model that can detect faults reliably 
and timely. Another issue is the lack of available real data due to privacy concerns. To 
address these problems, a suitable data generation strategy is needed. In this work, a litera-
ture review is conducted to identify a solution approach for a suitable data augmentation 
strategy that can be applied to our specific use case of hydrogen combustion engines in 
the automotive field. This literature review shows that, among the different state-of-the-art 
proposals, the most promising for the generation of reliable synthetic data are the ones 
based on generative models. The analysis of the different metrics used in the state of the 
art allows to identify the most suitable ones to evaluate the quality of generated signals. 
Finally, an open problem in research in this area is identified and it is the need to validate 
the plausibility of the data generated. The generation of results in this area will contribute 
decisively to the development of predictive maintenance models.
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1 Introduction

In industrial environments it is critical that the machines in the production lines work con-
tinuously. An unplanned stop in production even for a short time can lead to significant 
losses. A study from Thomas and Weiss (2020) collected data from several U.S. manufactur-
ers to determine the costs that could be avoided through a good maintenance strategy. These 
costs arise not only from direct maintenance costs, but also from the production losses. The 
reputation of a company can suffer greatly as well if delivery deadlines cannot be met due 
to a production stoppage which can furthermore lead to the loss of follow-up orders. The 
total cost that could be avoided was $119.1 billion. $18.1 billion of this can be attributed to 
failures and downtimes, $0.8 billion to defects and the remaining $100.2 billion is caused 
by contracts and deliveries that could not be fulfilled.

Companies perform maintenance to prevent or, once they occur, repair defects that 
would negatively impact production. According to Thomas and Weiss (2020) and Wen et 
al. (2022), different existing maintenance approaches can be categorized into the follow-
ing three classes. Reactive maintenance, also known as corrective or failure-driven mainte-
nance, is typically performed in response to equipment malfunctions or breakdowns. This 
approach is also employed when machinery fails to meet expected quality or production 
targets. Preventive maintenance is conducted on a regular basis, according to predefined 
intervals that are easily monitored. These intervals may be based on a fixed amount of time, 
the number of produced parts, machine cycles, or other parameters. The maintenance sched-
ule is typically developed by experts with experience and an understanding of the historical 
breakdowns or failures of the machinery in question. Predictive maintenance entails mea-
suring the reliability and condition of a given piece of machinery, a workcell, an assembly 
line, etc., or a manufacturing process itself. These measurements are frequently obtained 
through the use of sensors that capture data, which can then be combined with historical 
data in order to assess the current condition and inform maintenance decisions.

In his study, Thomas (2018) conducted a comparison between these three types of main-
tenance. The comparison demonstrates that reactive maintenance can be a cost-effective 
approach when the initial cost of equipment is low, it is easily replaceable, has high avail-
ability, has minimal impact on collateral failures, or has high redundancy. In contrast, pre-
ventive maintenance is cost-effective for equipment in process chains where the different 
parts rely on each other. However, there is a potential risk of over-maintenance, which can 
lead to excessive production downtimes. Predictive maintenance mitigates the risk of over-
maintenance and downtimes by identifying the optimal time for maintenance, making it a 
more cost-effective alternative to preventive maintenance. However, it requires a higher 
upfront investment due to the hardware and software needed to capture and monitor the nec-
essary data, as well as the training of personnel on monitoring techniques and data analysis.

Predictive maintenance can be divided into rule-based approaches which need expert 
knowledge and data-driven approaches. The data-driven approaches can be based on statis-
tical or machine learning models. The trend in research of data-driven methods for predic-
tive maintenance is towards machine learning. A literature research from Wen et al. (2022) 
shows that 60% of the publications about data-driven predictive maintenance approaches in 
the years 2015–2020 use some sort of machine learning model.

Murphy (2012) identifies three principal categories of machine learning: supervised, 
unsupervised and reinforcement learning. Supervised learning uses a set of labeled data 
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samples to train a model that can predict a value for unseen samples according to the labels. 
In the case that the labels represent a categorical variable the task is called classification and 
if the labels are continuous values, the task is known as regression. Unsupervised learning 
trains a model only using inputs, as there are no labels. The task is to find useful patterns in 
the data. Reinforcement learning works in the way that an agent learns an optimal strategy, 
called policy through interactions with its environment for which he receives positive or 
negative feedback signals. Reinforcement learning is not considered in this study, since 
supervised and unspervised approaches are more established in predictive maintenance.

In predictive maintenance tasks, unsupervised learning can be used to detect anomalies. 
In this case a model can be trained, e.g. an autoencoder, using only data of the normal behav-
ior. When the model is used for inference, it can detect data samples that differ from the 
training data as anomalies. In contrast, supervised learning models can be utilized not only 
for the detection of anomalous conditions, but also for the identification of the specific fault 
that occurred, provided that the model is trained with labeled data that reflects the various 
conditions (Chandola et al. 2009).

These supervised models require large amounts of training data that needs to be captured 
by different sensors directly at the machines. One of the biggest problems with predictive 
maintenance models is that there is often not enough data available for quality training. This 
applies in particular to data on faulty behavior or defects resulting in imbalanced datasets. 
The reason is that faulty behavior and defects occur rather rarely during the lifetime of 
machines. To counteract this imbalanced data problem a good strategy to create additional 
data samples of fault cases is needed.

A sound strategy for the creation of synthetic data offers the possibility to create high 
quality training and evaluation datasets. These datasets would be well balanced and have 
sufficient data for all the possible error cases. With such datasets it is possible to train 
machine-learning-based predictive maintenance models that can not only detect faults in 
real world applications before they occur but also identify the specific fault.

In order to be able to develop such a strategy, a literature review is carried out in this 
article. The focus of this review is to develop a predictive maintenance model for an hydro-
gen combustion engine, as part of the WaVe research project, which is described in the next 
section. The main contributions of this paper are: 

1. A survey of the current state of the art of data augmentation methods for predictive 
maintenance tasks.

2. A summary of the research gap found on the selected publications according to the 
WaVe use case and a summary of suitable approaches.

The remaining sections in this article are organized as follows. Section 2 provides 
a brief overview of the WaVe research project and the problem statement. Section 3 
describes the methodology used for the literature review. In Sect. 4 the selected publica-
tions of the literature review are discussed according to several research questions. Sec-
tion 5 analyzes the research gap found in the selected publications and discusses suitable 
data augmentation approaches to solve the imbalanced data problem in the WaVe project. 
Finally, Sect. 6 presents the conclusions of this work.
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2 The WaVe research project

The joint research project WaVe is promoted by the German Federal Ministry for Eco-
nomic Affairs and Climate Action. WaVe stands for Wasserstoff-Verbrennungsmotor which 
translates to hydrogen combustion engine. The goal of this research project is to develop 
a hydrogen-based drive system for commercial vehicles in the medium-duty range. The 
project partners are pooling their technological expertise and developing innovative indi-
vidual solutions for a hydrogen-based drive system in multiple technological subprojects. 
The individual solutions are tested, harmonized and combined to form a functioning overall 
drive system (Commercial Vehicle Cluster-Nutzfahrzeug GmbH 2021). This will then be 
installed and tested in two different demonstrators—a Mercedes Benz Unimog U400l and 
a crawler vehicle.

To support the overall development of the hydrogen-based drive system and the two 
demonstrators, digital twins are under development by comlet Verteilte Systeme GmbH. The 
development of these digital twins is interconnected to the hardware development. A digital 
twin is an accurate representation of a physical system. Its application in the design, testing, 
and manufacturing phases of the physical system allows for the reduction of time and costs, 
as well as improvements in user safety (Grieves and Vickers 2017). In their work, Fuller et 
al. (2020) differentiate between three definitions based on their data flow characteristics. A 
digital model exhibits no inherent automatic data flow, while a digital shadow is character-
ized by an automatic exchange of data from the physical asset to the digital object. A digital 
twin, in contrast, represents a fully integrated data flow in both directions, encompassing 
both the physical and digital domains. Consequently, a change made to the physical object 
is reflected in the digital object, and vice versa. The data of a digital twin can be grouped 
into static and dynamic data. Static data is created during development and does not change 
significantly during the lifecycle. This includes manuals, technical specifications, product 
information, CAD models, circuit diagrams, simulations etc. Dynamic data, on the other 
hand, is collected by sensors in the physical asset in real time. Dynamic data can include not 
only data from the finished product, but also engine data recorded in various configurations 
on an engine test bench, data from field trials, and data captured during tests of the hydrogen 
tank system.

All these data provide a solid basis for the development of a predictive maintenance sys-
tem for a hydrogen-based drive system and complete vehicles. The development of such a 
predictive maintenance system is a planned goal of comlet Verteilte Systeme GmbH. Digital 
twins offer several advantages for the creation of a predictive maintenance systems. The 
digital twin serves as a data provider for the predictive maintenance system. Thus, feature 
extraction, as well as feature engineering can directly access the data of a digital twin, or 
they could also be directly integrated into the digital twin. This makes it very easy to create 
training and test data sets from the existing data. Another advantage is the access to simula-
tions which provide additional data.

This leads to the biggest problem for the intended predictive maintenance system. Even 
if there is plenty of data available, most of it contains only the normal condition of the 
hydrogen-based drive system and the vehicles. There will be little data from failure cases, 
which leads to strongly imbalanced training data. Generating fault data using deliberate 
defects is limited due to their destructive nature. Only defects that do not cause damage 
to the hydrogen drive, or vehicles, can be used. In addition, it is very time consuming and 
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costly to manually cause such defects in the physical systems to generate a sufficient amount 
of data. Simulations alone also cannot be used to generate a sufficient amount of defect data 
because they are usually computationally intensive. As defects that can result in personal 
injury deserve the most accurate consideration, numerous safety precautions for propulsion 
systems in general exist. These are the most dangerous and difficult defects to simulate.

To solve the lack of available data, this work discusses a strategy based on data augmen-
tation. This strategy starts with simulations to generate a limited amount of data related to 
different failure cases. Then this data, as well as the real data recorded during the engine test 
bench and field trials, will be used to generate more data with specific characteristics using 
data augmentation methods for machine learning.

3 Data augmentation in predictive maintenance

Not all data augmentation methods are suitable for the WaVe use case. Since the data are 
predominantly, if not exclusively, time series, image-based methods are unsuitable. It is 
possible to use these methods partially for sensor data, but this would change the underly-
ing structure of the time series. Sampling-based methods are of limited suitability because 
they are usually based on the weighted average of the available data and do not consider 
the underlying distribution, thus limiting the diversity of the generated data. The generative 
models appear most promising for the WaVe use case because they are trained to learn the 
underlying distribution of the available data and do not affect the structure of time series.

A state-of-the-art review is conducted to find suitable generative algorithms for the 
creation of high quality data for predictive maintenance models. This review follows the 
guidelines of PRISMA (Page et al. 2021a), which consists of four main steps: identifica-
tion, screening, inclusion and discussion of papers. The whole process of the review from 
identification of the data sources until the inclusion of the papers is shown in Fig. 1. The 
review focuses on generative algorithms for data augmentation and answers the following 
research questions:

 ● RQ1: Which data augmentation techniques have proven to be suitable for predictive 
maintenance?

 ● RQ2: What role do generative algorithms play in predictive maintenance?
 ● RQ3: In which application domains are those algorithms typically used?
 ● RQ4: Which type of data and datasets are most commonly used for predictive mainte-

nance?
 ● RQ5: Which validation methods and metrics are used to evaluate the quality of gener-

ated data?

The literature review was conducted in January 2024 and took publications into account 
starting from 2018. This means that only publications between 2018 and 2023 are included 
to reflect the current state-of-the-art and trend in data augmentation for predictive mainte-
nance tasks. This can lead to the exclusion of techniques developed before that time frame 
that are still relevant today. The following scientific databases were used in the research:

 ● IEEExplore
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 ● ACM Digital Library
 ● Scopus

In order to avoid obtaining a very high or very low number of results the search query was 
refined in an iterative process until a manageable number of publications was found. Table 1 
shows the final search query used and the number of results from the different sources.

The search query resulted in a total number of 989 papers found in the databases. Before 
an in depth screening of these papers was conducted duplicate papers were removed. In 

Search query Source Num 
papers

“data augmentation” AND 
(“predictive maintenance” OR 
“anomaly detection”)

IEEExplore 333

ACM Digital Library 384
Scopus 272

Table 1 Search query used for 
the literature review and the 
number of resulting publications

 

Fig. 1 Flow diagram for inclusion and exclusion of studies in literature reviews following PRISMA 
framework (Page et al. 2021b)

 

1 3

32 Page 6 of 24



Data augmentation in predictive maintenance applicable to hydrogen…

total, 95 duplicate papers were found and removed. The screening phase was split into mul-
tiple steps to discard papers that didn’t fulfill the following eligibility criteria:

 ● Only publications in English.
 ● Must be published after 2018.
 ● Must be at least a short paper. Posters, extended abstracts, workshops, etc. are excluded.
 ● Must be related to the area of interest.
 ● Must have a focus on industrial applications or time series data.
 ● Must provide detailed information about the datasets used or must use public (bench-

mark) datasets.
 ● Must describe the used methodology detailed enough so that it can be reproduced.
 ● Must provide reproducible or comparable results, or must be a proof of concept.

The first five criteria were checked by reading the titles and abstracts of the papers. All 
papers found were written in English, so no papers were excluded due to this criterion. 
Even when the period 2018–2023 was used as filter for the search queries, three papers 
from 2017 and before were still in the search results and therefore discarded. The result-
ing papers included three extended abstracts, two posters and one workshop which were 
excluded. Using the titles and abstracts 679 papers were excluded because they were not 
related to the area of interest or had focus on other types of data. Since generative algo-
rithms and Generative Adversarial Networks (GAN)s in particular are often used in image 
generation, many of the resulting papers excluded had a strong focus in image-generation-
based data augmentation for non industrial applications.

The remaining 206 papers were screened in depth for eligibility according to the remain-
ing criteria. From these papers 128 were excluded because they were not related to the area 
of interest. This was not evident from the abstracts of these publications alone. Another 13 
papers used confidential data from companies and didn’t provide enough information about 
the used datasets to reproduce the methods in any way and were therefore excluded. 11 
papers were excluded due to not describing the used methodology in detail. This makes it 
impossible to reproduce their solutions and results. The last 16 papers that were discarded 
didn’t provide reproducible or comparable results. This leaves 38 papers which are included 
in this state-of-the-art review.

4 Paper discussion

In this section the remaining 38 papers that are included in the review are grouped and dis-
cussed by multiple different criteria to answer the above stated research questions.

4.1 RQ1: which data augmentation techniques are used for predictive 
maintenance?

In Table 2 the selected papers are grouped by their general data augmentation category: 
image-based, sampling-based and generative and then by their specific method. Figure 2 
shows the number of publications for each of these groups. The total number of the grouped 
papers is larger than the remaining 38 papers, since some publications use data augmenta-
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Group Augmentation 
method

Publication

Generative GAN Molitor et al. (2022), 
Fathy et al. (2021), Lu et 
al. (2021a, b, c),  Canniz-
zaro et al. (2022), Lin et 
al. (2020), Huang et al. 
(2021), Li et al. (2022), 
Bui et al. (2021), Jiang 
et al. (2021), Zhang et al. 
(2021), Kim et al. (2023)

WGAN Molitor et al. (2022), 
Fathy et al. (2021), Lu 
et al. (2021b), Xu et al. 
(2019), Li et al. (2021a)

CGAN Molitor et al. (2022), 
Fathy et al. (2021), 
Ranasinghe et al. (2019), 
Quintana et al. (2020), 
Faltings et al. (2022), 
Zhu et al. (2022), Zheng 
et al. (2020), Shao et al. 
(2019), Behera and Misra 
(2021), Yan et al. (2022)

BiGAN Smolyak et al. (2020), 
Cui et al. (2021)

AAE Lim et al. (2018), Wu et 
al. (2020)

Sampling-based DTW Liu et al. (2022), Sa-
doughi et al. (2019)

Audio data 
transformations

Hong and Suh (2021)

SMOTE Fathy et al. (2021), 
Martins et al. (2023), Liu 
et al. (2023)

Gaussian noise Ding et al. (2022), Mar-
tins et al. (2023)

Amplitude scaling Ding et al. (2022)
Time stretching Ding et al. (2022)
Translations Ding et al. (2022)
Noise mask Ding et al. (2022)
Uniform noise Mo et al. (2022)

Image-based Cutting and 
pasting

Li et al. (2021b)

Matrix 
transformations

Pasqualotto et al. (2021), 
Mahenge et al. (2021), 
Molitor et al. (2022)

Brightness change Pasqualotto et al. (2021), 
Molitor et al. (2022)

Gaussian noise Pasqualotto et al. (2021), 
Molitor et al. (2022)

Simulation Dong et al. (2022)

Table 2 Relevant papers grouped 
by data augmentation method
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tion methods from multiple groups. With a focus on industrial applications and time series 
data, it can be seen that in recent years most of the publications found use generative algo-
rithms for data augmentation.

Only four publications use image-based data augmentation techniques. Image-based data 
augmentation usually uses matrix transformations such as rotation, translation, scaling, etc. 
as well as changes in color or brightness to create new images out of the already existing 
ones. Pasqualotto et al. (2021) use stray flux analysis images of induction motors to com-
pare the performance of five image-based data augmentation methods: random cropping, 
change in brightness, time translation, frequency translation and adding Gaussian noise. 
Mahenge et al. (2021) use cropping, blurring and matrix transformations to augment images 
for their proposed road crack detection. Li et al. (2021b) propose a new data augmentation 
technique for defect detection in images called CutPaste. There are two variants of this 
method. One that cuts out a relatively large rectangular part of an image and pastes it at a 
random location in another image. The other pastes a long-thin rectangle with a random 
color. In their publication, Molitor et al. (2022) compare multiple image-based data aug-
mentation methods with generative algorithms, more specifically different GAN architec-
tures, and combinations of both.

Sampling-based approaches are used to balance datasets through undersampling of 
majority classes or oversampling of minority classes. Usually only oversampling methods 
are used since undersampling often leads to a loss of valuable information. These methods 
typically use statistical properties like the standard deviation or mean values of features in 
the existing data to create new data samples. Two of the most well known and successful 
methods are Synthetic Minority Over-Sampling Technique (SMOTE) and Adaptive Syn-
thetic (ADASYN) sampling approach. SMOTE developed by Chawla et al. (2002) selects a 
random neighbor from the K-Nearest Neighbors (KNN) for a random sample of the minor-
ity class and then generates a synthetic sample by selecting a random point in the feature 
space between these two samples. ADASYN was first introduced in the work of He et al. 
(2008) and is a variant of SMOTE that generates more samples in regions of the feature 
space where the density of minority samples is low and fewer samples in regions where 
the density is high. These two oversampling methods are used in many of the remaining 
publications as comparison benchmarks for their proposal. In these cases they are not listed 

Fig. 2 Number of publications for each group of 
data augmentation method
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in the sampling-based category which leads to eight publications left that use some form of 
sampling-based data augmentation techniques.

In their study, Martins et al. (2023) propose a combination of SMOTE and additive 
Gaussian noise for data augmentation, differentiating between two approaches. In the first 
approach, only the minority class is augmented by creating a subset of additional samples 
through the addition of Gaussian noise and creating another subset using SMOTE. In the 
second approach, the majority class is also augmented with new samples created using 
additive Gaussian noise. Liu et al. (2023) present a new data augmentation technique that 
combines SMOTE with deep attention networks and encoder-decoder networks to generate 
additional abnormal time series samples. The encoder-decoder is employed to transform 
the raw time series into a separable feature space, thereby reducing inter-class overlap. The 
attention network is utilized to identify interpolation factors for SMOTE, ensuring that the 
generated samples are distant from the aggregation area of normal samples. Subsequently, 
the newly generated samples are transformed back into the original space and combined 
with an undersampled set of normal samples, thus forming a balanced dataset. Fathy et al. 
(2021) conduct a comparative analysis of SMOTE and multiple generative data augmenta-
tion methods using different classifiers based on a real world case study. In their works Mo 
et al. (2022), Ding et al. (2022) and Hong and Suh (2021) use time domain specific methods 
like time stretching, amplitude scaling, translations etc. and add Gaussian noise to augment 
time series data. Liu et al. (2022) create new time series data by adding and removing of a 
small random number of time ticks where the added time ticks are the average of the two 
adjacent time ticks. Sadoughi et al. (2019) propose a data augmentation approach that uses a 
randomized shrinkage factor to quantify the ratio of the length of the generated sample and 
the training sample. Then the training sample is interpolated and mapped into the generated 
sample.

One publication used simulations to solve the problem with lack of training data. Dong 
et al. (2022) implemented a mathematical simulation model for ball bearings which is used 
to create additional data of failure cases.

The largest group of data augmentation methods are the generative algorithms with 24 
publications found. In generative data augmentation a machine learning model is trained to 
learn the underlying distribution of the data. This model can then be fed with random noise 
to generate new samples from this distribution. The group of generative algorithms mainly 
consists of different GAN architectures. GANs were first developed by Goodfellow et al. 
(2014). GANs consist of two sub models, a generator model that is trained to create new 
data samples and a discriminator model that tries to classify samples as either real or gener-
ated. The two models are trained adversarially until the discriminator model fails to classify 
the real and generated samples correctly. This means the probability that a sample belongs 
to the generated samples or the real samples is 50%. When this happens the generator model 
creates samples that are not distinguishable from real samples by the discriminator model. 
Since nearly every publication about GANs adds a new name to the proposed method there 
are more than 500 different architectures reported by The GAN ZOO repository1 which col-
lected all the different names of GANs and was last updated in September 2018. Therefore 
GANs in this review are divided by their main architecture into the following superordinate 
groups:

1  h t t    p s :  /  / g i t h u b .  c  o m   / h i  n  d u p u r a     v i n a  s  h /   t h  e -  g a n - z o   o       .   
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 ● GAN: GAN, DCGAN, MSGAN, PGGAN, LSTM-GAN, CR-GAN, StyleGAN
 ● WGAN: WGAN, WGAN-GP
 ● CGAN: CGAN, WCGAN (CWGAN), C-DCGAN, ACGAN
 ● BiGAN: BiGAN, BiWGAN

The group of general GANs represents the architecture described by Goodfellow et 
al. (2014), where two models are trained adversarially. The discriminator and the genera-
tor model can use any neural network architecture like convolutional neural networks, 
recurrent neural networks, etc. The group of Wasserstein Generative Adversarial Networks 
(WGAN) differs from the general GANs in that the Wasserstein distance is used instead of 
the Jensen–Shannon divergence to improve convergence. Conditional Generative Adver-
sarial Networks (CGAN) add a conditional variable as input and output to GANs, so that 
the generator learns a conditional distribution. This conditional variable is usually used to 
control the generating process by adding class labels to the input samples, but can also be 
used for other types of additional information. The difference of Bidirectional Generative 
Adversarial Networks (BiGAN) to the other GAN architectures is that they include an 
encoder network which learns the inverse of the generator.

In the group of general GANs are multiple publications. In their work, Cannizzaro et 
al. (2022) use a GAN to generate additional images for powder bed fusion, an additive 
manufacturing process. In a case study these images are not used to augment the training 
data but instead they are evaluated for quality and validity. Huang et al. (2021) use a GAN 
to generate additional time series samples of the minority class of rolling bearing data. 
The data generation is guided by variable association graphs of the majority class that are 
learned by an additional model. Lin et al. (2020) and Bui et al. (2021) use simple GANs to 
generate new time series data of fault cases in ball bearings and gearboxes. (Lu et al. 2021a, 
GAN-LSTM Predictor...) and (Lu et al. 2021c, A Deep Adversarial...) use a combination of 
GAN and Long Short-Term Memory (LSTM) to predict the Remaining Useful Life (RUL) 
of ball bearings. They do not use the generators of the GANs for data augmentation. Instead 
the generators are used to predict the degradation. The authors Zhang et al. (2021) propose 
a combination of LSTM layers and convolutional layers to generate multivariate time series 
data for noncyclic and cyclic RUL prediction. The time series data is preprocessed into 
a 2D matrix for noncyclic and into a 3D matrix for cyclic problems that it can be fed to 
the convolutional layers. Jiang et al. (2021) use a 1D Convolutional Neural Network (1D-
CNN) to detect failures in rotating machinery parts and combine it with a GAN to create 
additional time series data samples. In their study, Kim et al. (2023) put forth a data aug-
mentation method that initially transforms multivariate time series data into images through 
the use of Gramian Angular Field (GAF). Subsequently, they train a StyleGAN to learn the 
latent space of the time series data. New samples are then generated through interpolation 
between samples in the latent space. In their work, Li et al. (2022) propose Dual Multiple 
Generative Adversarial Networks (Dual-MGAN) for outlier detection. This approach com-
bines Multiple Generative Adversarial Active Learning (MGAAL) and Multiple Generative 
Adversarial Over-Sampling (MGAOS). MGAAL is used to detect discrete anomalies. The 
unlabeled data is clustered into multiple classes and for each cluster a sub-GAN learns to 
construct a reference distribution. MGAOS detects partially labeled group anomalies and 
works similar to MGAAL. Instead of clustering unlabeled data only labeled anomalies are 
clustered. A sub-GAN for each anomaly cluster is then trained to generate additional similar 
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samples of these minority classes. Dual-MGAN combines both parts and adds an additional 
detector neural network. MGAOS increases the size of the minority classes and MGAAL 
and the detector are alternately optimized to separate anomalies from normal samples.

The next main group of generative models are WGANs. Lu et al. (2021b) and Xu et al. 
(2019) use WGANs to create additional anomalous time series data for sensor anomaly 
detection in industrial robots and pipeline leakage detection in petrochemical systems. In 
case of the pipeline leakage detection, time series data is transformed into graphs instead 
of using the raw sensor signals (Xu et al. 2019). Li et al. (2021a) also use WGANs for data 
augmentation and propose a new distance metric called Time-Regularized Hausdorff Dis-
tance (TRH) to quantify the similarity between generated and real samples. This metric is 
used to filter only samples with high similarity before they are passed to the discriminator to 
improve the overall quality of generated samples.

The third group of generative models are BiGANs. Cui et al. (2021) propose a combina-
tion of BiGAN and Wasserstein distance for fault detection in gearboxes and ball bearings. 
An unsupervised pre-training followed by fine-tuning with a small sample of labeled time 
series data is used. The pre-trained model is also used to generate additional data. Smolyak 
et al. (2020) combine BiGAN with Infinite Gaussian Mixture Model (IGGM) for anomaly 
detection and data augmentation in GPS data.

The last group are CGANs. Faltings et al. (2022), Shao et al. (2019), Behera and Misra 
(2021), Zheng et al. (2020), and Quintana et al. (2020) use class label information to synthe-
size additional images of stamps on casted steel billets, to generate additional sensor data for 
induction motor, aircraft engine and bearing fault detection, as well as thermal comfort data 
of buildings. Ranasinghe et al. (2019) propose a CGAN that uses additional auxiliary infor-
mation containing expert knowledge, physics of failure and maintenance records to control 
the data generation process of failure samples. In their proposal, Yan et al. (2022) introduce 
a combination of Wasserstein Conditional Generative Adversarial Networks (WCGAN) 
with Variational Autoencoder (VAE) to generate additional data samples of chiller faults, 
which are then employed to augment the real-world data utilized for the training of an 
automated fault diagnosis model. The data is generated by the WCGAN, and the VAE is 
used to identify high-quality synthetic samples that are subsequently utilized for training the 
aforementioned fault diagnosis model. In their work, Zhu et al. (2022) use a combination of 
WGAN and CGAN to generate additional data for a polymerization reaction process of high 
density polyethylene. They first calculate sparse regions in the data using outliers detected 
by KNN algorithm. Then a Wasserstein Generative Adversarial Networks with Gradient 
Penalty (WGAN-GP) is trained to generate new samples that fill these regions and after 
that a Cycle Structure CGAN (CS-CGAN) is used to generate and filter new data samples.

Adversarial Autoencoder (AAE) use the adversarial concept of GANs. Instead of directly 
generating new data samples, the generator of an AAE creates vectors in a latent space. The 
discriminator then predicts if this vector was generated by the autoencoder or is a random 
vector from the real distribution of the data. Wu et al. (2020) use an AAE to detect anomalies 
in ball bearing time series data. Lim et al. (2018) propose a method to augment unlabeled 
data for anomaly detection in tabular data using AAEs. Instead of creating additional sam-
ples of the minority class or anomalous samples, data is augmented by creating synthetic 
samples of infrequent nominal samples.

The last two papers conduct a comparison of different data augmentation methods. Fathy 
et al. (2021) compare GAN, WGAN, CGAN and WCGAN with SMOTE to test their capa-
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bility of generating additional samples. In the work of Molitor et al. (2022) Conditional 
Deep Convolutional Generative Adversarial Networks (C-DCGAN), WGAN-GP and Pro-
gressively Growing Generative Adversarial Networks (PGGAN) are compared with image 
manipulation methods to create synthetical images for tool wear classification.

4.2 RQ2: what role do generative algorithms play in predictive maintenance?

In the 38 selected publications generative models are not only used for data augmentation 
by generating new data samples, but also directly to detect anomalies. Figure 3 shows that 
20 papers (Molitor et al. 2022; Fathy et al. 2021; Cannizzaro et al. 2022; Lin et al. 2020; 
Bui et al. 2021; Jiang et al. 2021; Zhang et al. 2021; Lu et al. 2021b; Xu et al. 2019; Li et al. 
2021a; Ranasinghe et al. 2019; Quintana et al. 2020; Faltings et al. 2022; Zhu et al. 2022; 
Zheng et al. 2020; Shao et al. 2019; Lim et al. 2018; Behera and Misra 2021; Yan et al. 2022; 
Kim et al. 2023), use generative models for data augmentation, four papers (Lu et al. 2021a, 
GAN-LSTM Predictor...; Lu et al. 2021c, A Deep Adversarial...; Wu et al. 2020; Liu et al. 
2022) for anomaly detection and four papers (Huang et al. 2021; Li et al. 2022; Smolyak 
et al. 2020; Cui et al. 2021) for both combined. The remaining 10 publications did not use 
generative algorithms.

One of the most significant obstacles to the development of effective predictive main-
tenance models is the scarcity of available failure data. The scarcity of failure data can be 
attributed to a number of factors. One such factor is the infrequency with which failures 
or defects occur during operations. Another is the potential absence of suitable systems 
for data collection in legacy equipment. The resulting imbalance between normal data and 
failure data makes the latter even more valuable. Fault data can provide crucial insights into 
issues that are not common but can have significant consequences when they do arise. The 
identification of scarce or previously unknown faults can be achieved through the utilisa-
tion of anomaly detection techniques. Consequently, a generative model can be trained on 
nominal data, and the reconstruction error can be employed to ascertain whether a sample 
belongs to the nominal class or represents an anomaly.

4.3 RQ3: in which application domains are those algorithms typically used?

In Table 3 the publications are grouped by their application area and type of data. Since only 
publications that have a focus on predictive maintenance tasks or use time series data are 
included in this review, most of the papers are from the industrial area. Five publications in 
this area conduct predictive maintenance in vehicles, Trucks from Scania (Fathy et al. 2021; 
Ranasinghe et al. 2019) and planes (Huang et al. 2021; Zhang et al. 2021; Mo et al. 2022; 
Behera and Misra 2021; Liu et al. 2023). The other publications in the industrial area use 

Fig. 3 Use case of generative algorithms 
in predictive maintenance
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predictive maintenance in manufacturing processes like casting steel billets (Faltings et al. 
2022), polymerization reactions (Zhu et al. 2022), additive manufacturing (Cannizzaro et 
al. 2022), etc. and to detect failures or predict the RUL of components in machines. These 
components can be ball bearings (Lu et al. 2021c; Zheng et al. 2020; Sadoughi et al. 2019), 
gearboxes (Bui et al. 2021; Wu et al. 2020), induction motors (Pasqualotto et al. 2021; Shao 
et al. 2019), etc.

Other application domains found are medical and traffic. In the medical area generative 
algorithms are used to generate additional time series samples and to detect anomalies in 
ECG data (Liu et al. 2022). In the traffic domain, reference (Mahenge et al. 2021) creates 
additional images to train a road crack detection model and Smolyak et al. (2020) creates 
GPS trajectories to detect anomalous routes and behavior of drivers.

There are many more domains in which generative algorithms are used that are not cov-
ered by this review due to its focus on predictive maintenance tasks. Sabuhi et al. (2021) 
identified additional application areas in their literature review about general use cases and 
applications of GANs. To these areas belong surveillance, intrusion detection, image recog-
nition, fraud detection, etc.

4.4 RQ4: which type of data and datasets are most commonly used for predictive 
maintenance?

Table 3 shows that for predictive maintenance tasks three types of data are used, times series 
data, images and tabular data. Most of the publications found use time series data. This is 

Application 
area

Type of data Publication

Industrial Time series Lu et al. (2021a, b, c), Lin et al. 
(2020), Huang et al. (2021), Bui et al. 
(2021), Jiang et al. (2021), Zhang et 
al. (2021), Xu et al. (2019), Li et al. 
(2021a), Zhu et al. (2022), Zheng et al. 
(2020), Shao et al. (2019), Cui et al. 
(2021), Wu et al. (2020), Sadoughi et 
al. (2019), Hong and Suh (2021), Ding 
et al. (2022), Mo et al. (2022), Dong et 
al. (2022), Yan et al. (2022), Kim et al. 
(2023), Behera and Misra (2021), Liu 
et al. (2023), Martins et al. (2023)

Images Pasqualotto et al. (2021), Li et al. 
(2021b), Molitor et al. (2022), Canniz-
zaro et al. (2022), Faltings et al. (2022)

Tabular 
features

Fathy et al. (2021), Li et al. (2022), 
Ranasinghe et al. (2019)

Medical Time series Liu et al. (2022)
Tabular 
features

Li et al. (2022), Lim et al. (2018)

Traffic Time series Smolyak et al. (2020)
Images Mahenge et al. (2021)

Other Time series Quintana et al. (2020)
Tabular 
features

Li et al. (2022)

Table 3 Relevant papers grouped 
by application area and type of 
data
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not surprising due to the fact that most predictive maintenance applications rely on some 
form of sensor data which are usually recorded as time series. The most used datasets of 
this type are ball bearing datasets, like CWRU bearing fault dataset2 (Lin et al. 2020; Jiang 
et al. 2021; Zheng et al. 2020; Cui et al. 2021; Hong and Suh 2021; Dong et al. 2022) and 
the PRONOSTIA FEMTO-ST bearing dataset3 used in the IEEE PHM 2012 Data Challenge 
(Lu et al. 2021c; Sadoughi et al. 2019; Ding et al. 2022). Another publicly available dataset 
that was used is the NASA C-MAPPS aircraft simulation data4 (Zhang et al. 2021; Mo et al. 
2022; Behera and Misra 2021; Liu et al. 2023). The remaining papers that used time series 
data in the areas of induction motors (Shao et al. 2019), data captured in an oil refinery 
(Xu et al. 2019), data of a polymerization reaction (Zhu et al. 2022), or data from rotating 
machinery parts Martins et al. (2023) do not make their datasets public.

Six of the publications found use images as input data to train their predictive mainte-
nance or data augmentation models. Li et al. (2021b) use the freely available MVTec anom-
aly detection dataset5 from Bergmann et al. (2021, 2019) which is a benchmarking dataset 
for industrial inspection. Another public image dataset is the RDD2020 dataset used in the 
IEEE Global Road Damage Detection Challenge 2020.6 This dataset is used in the paper 
from Mahenge et al. (2021) to detect cracks in roads. The other publications used non public 
datasets for tool wear classification (Molitor et al. 2022), anomaly detection in powder bed 
fusion additive manufacturing (Cannizzaro et al. 2022) and for data augmentation of images 
of stamps on casted steel billets (Faltings et al. 2022).

Four publications used tabular datasets. Li et al. (2022) used multiple datasets from the 
UCI Machine Learning Repository7 and Lim et al. (2018) from the ODDS Repository.8 
Another public dataset is the Scania air pressure system9 dataset used by Fathy et al. (2021) 
and Ranasinghe et al. (2019).

4.5 RQ5: which validation methods and metrics are used to evaluate the quality of 
generated data?

When data augmentation is used to create additional data of minority classes to balance a 
dataset, the quality of the generated data samples should be evaluated. In the case of time 
series data and generative algorithms it should be assured qualitatively and quantitatively 
that the generated samples are plausible and of high quality. Plausibility in this context 
means that the generated samples can occur in real data and are not physically or by any 
other restrictions impossible to occur in reality.

Table 4 provides an overview of the methods and metrics used to evaluate the quality 
of generated data samples. Most publications use either no validation at all (Pasqualotto et 
al. 2021; Mahenge et al. 2021; Huang et al. 2021; Lu et al. 2021b; Sadoughi et al. 2019; 

2      h t t     p  s : /   / e  n  g i n  e e  r i n  g .   c a  s e   . e  d  u / b e a   r i n g d  a t    a c   e n  t   e r / d    o w n  l o  a d  - d a   t a -  fi   l  e       .    
3           h t t  p   s : / /   w w w .  k  a g g  l  e  . c o   m / d a t  a s    e t  s  / a l  a  n h a   b r  o n   y / i e e e     - p  h m  -  2  0  1  2  -  d a  t a -   c h a l  l e    n g  e      .   
4     h t    t p s :  /  / d  a  t  a . n a  s a . g o v / d a t a s e t / C - M A P S S - A i r c r a f t - E n g i n e - S i m u l a t o r - D a t a / x a u t - b e m q     .  
5     h t t p s : / / w w w . m v t e c . c o m / c o m p a n y / r e s e a r c h / d a t a s e t s / m v t e c - a d     .  
6     h t t p s : / / r d d 2 0 2 0 . s e k i l a b . g l o b a l / d a t a /     .  
7     h t t p s : / / a r c h i v e . i c s . u c i . e d u / m l / i n d e x . p h p     .  
8     h t t p : / / o d d s . c s . s t o n y b r o o k . e d u /     .  
9     h t t p s : / / a r c h i v e . i c s . u c i . e d u / m l / d a t a s e t s / A P S + F a i l u r e + a t + S c a n i a + T r u c k s     .  
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Ding et al. 2022; Martins et al. 2023; Liu et al. 2023; Kim et al. 2023) or only do a visual 
comparison between generated and real samples (Li et al. 2022; Zhang et al. 2021; Xu et 
al. 2019; Faltings et al. 2022; Smolyak et al. 2020; Lim et al. 2018; Dong et al. 2022). This 
indicates a clear lack of a good quality metric for the evaluation of synthetic time series data.

Three of the papers evaluated the quality of generated data by using metrics that quantify 
the similarity between images. Molitor et al. (2022) and Cannizzaro et al. (2022) use the 
Fréchet Inception Distance (FID) (Heusel et al. 2017) and Inception Score (IS) (Salimans 
et al. 2016) to quantify the quality of generated samples. These metrics can not directly be 
used to evaluate the quality of generated time series data samples. Therefore Hong and Suh 

Quality metric Publication
Visual comparison Molitor et al. (2022), Cannizzaro et al. 

(2022), Lin et al. (2020), Li et al. (2022), 
Jiang et al. (2021), Zhang et al. (2021), Xu et 
al. (2019), Quintana et al. (2020), Faltings et 
al. (2022), Smolyak et al. (2020), Cui et al. 
(2021), Lim et al. (2018), Liu et al. (2022), 
Dong et al. (2022), Behera and Misra (2021)

Time-regulated Haus-
dorff Distance

Li et al. (2021a)

Dynamic Time 
Warping

Liu et al. (2022), Mo et al. (2022)

Structural similarity 
index measure

Hong and Suh (2021)

Kolmogorov–
Smirnov test

Fathy et al. (2021), Bui et al. (2021), Ranas-
inghe et al. (2019)

t-SNE visualization Li et al. (2021b), Zheng et al. (2020), 
Smolyak et al. (2020)

Euclidean distance Lin et al. (2020), Quintana et al. (2020), 
Zheng et al. (2020), Shao et al. (2019), Mo 
et al. (2022), Behera and Misra (2021)

Cosine distance Zheng et al. (2020), Behera and Misra 
(2021)

Maximum mean 
discrepancy

Cui et al. (2021)

Pearson correlation 
coefficient

Lin et al. (2020), Zheng et al. (2020), Shao 
et al. (2019), Cui et al. (2021)

Inception score Molitor et al. (2022)
Fréchet inception 
distance

Molitor et al. (2022), Cannizzaro et al. 
(2022)

Earth mover’s 
distance

Zhu et al. (2022)

Time domain 
indicators

Jiang et al. (2021)

Kullback–Leibler 
divergence

Shao et al. (2019)

Variational 
Autoencode

Yan et al. (2022)

No validation Pasqualotto et al. (2021), Mahenge et 
al. (2021), Huang et al. (2021), Lu et al. 
(2021b), Sadoughi et al. (2019), Ding et 
al. (2022), Martins et al. (2023), Liu et al. 
(2023), Kim et al. (2023)

Table 4 Relevant papers grouped 
by quality validation method
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(2021) first transform their time series data into MEL spectrogram images and use the Struc-
tural Similarity Index Measure (SSIM) to quantify the similarity of generated and real data.

Three publications (Fathy et al. 2021; Bui et al. 2021; Ranasinghe et al. 2019), use the 
Kolmogorov–Smirnov (K–S) test to evaluate the quality of generated data. The K–S test 
is a measure for the similarity between the distribution of generated samples and the dis-
tribution of real samples. Two other metrics for the similarity between distributions, the 
Maximum Mean Discrepancy (MMD) and the Kullback–Leibler divergence (K-LD) are 
also used (Shao et al. 2019; Cui et al. 2021). Seven of the included papers (Lin et al. 2020; 
Quintana et al. 2020; Zheng et al. 2020; Shao et al. 2019; Liu et al. 2022; Mo et al. 2022; 
Behera and Misra 2021) use distance measures such as Euclidean Distance (ED), Dynamic 
Time Warping (DTW) and Cosine Distance to test if the synthetic time series samples are 
similar to the real samples. The Pearson Correlation Coefficient (PCC) was adopted by four 
papers (Lin et al. 2020; Zheng et al. 2020; Shao et al. 2019; Cui et al. 2021) to measure the 
linear correlation between generated and real time series data. Three papers (Li et al. 2021b; 
Zheng et al. 2020; Smolyak et al. 2020) use t-distributed Stochastic Neighbor Embedding 
(t-SNE) visualization. T-SNE is a dimensionality reduction technique that transforms high 
dimensional data into a low dimensional space of two or three dimensions where similar 
samples are presented by nearby points and unsimilar samples by distant points.

In their study, Yan et al. (2022) employ a VAE to identify high-quality generated time 
series samples. The VAE is trained with a randomly selected set of samples generated by a 
WCGAN and tested with real-world anomaly samples. This process is iteratively repeated 
until the reconstruction error of the VAE for all real-world test samples falls below a speci-
fied threshold. At this point, the generated samples used to train the VAE are deemed to be 
of high quality.

A novel method called TRH distance was introduced by Li et al. (2021a). TRH distance 
extends the Hausdorff distance by adding a time-regularized penalty that represents the tem-
poral order difference between two points from different time series samples.

5 Research findings on the WaVe use case

As previously described, a hydrogen-based drive system is being developed in the WaVe 
project and tested in field trials in two demonstrators from the medium duty vehicle sec-
tor. Additionally, a predictive maintenance system is being developed for this drive sys-
tem. Sensor data from engine test benches and field tests are available for this purpose. 
Since it can be assumed that these data mainly consist of time series from normal operation 
and therefore little abnormal data will be available, a suitable data augmentation method is 
needed to generate additional data of possible failure cases. For these reasons, the literature 
search was conducted and the results were examined to determine if they were suitable for 
the WaVe use case.

This section first summarizes the limitations according to the WaVe use case of the 
remaining papers and then summarizes the most suitable approaches for a data augmenta-
tion model to generate new data of fault cases.
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5.1 Limitations according to the WaVe use case

It was found that most of the approaches are not suitable due to various limitations. Since 
the recorded data from the field tests and from the test bench are time series data, a method 
is needed that can generate such data. Image-based data augmentation methods such as 
rotation, scaling, color or brightness changes are not applicable to time series sensor data. 
The addition of Gaussian noise could be used to augment time series data, but would not 
incorporate the time dependencies. GANs that generate images as training data could be 
applied to the WaVe use case, but require modifications due to the different characteristics 
of time series data. Generative models that recreate time series data for RUL prediction or 
anomaly detection using the recreation error are of interest. However, since they are not 
used to augment the training data, it is not clear whether they would have a positive impact 
if used in this way. Time domain data augmentation methods may have the problem that the 
additional samples have a low variety and are therefore not suitable for the WaVe use case. 
Methods that use and generate tabular data are partially useful for time series data. How-
ever, the time dependencies are not taken into account, which means that the points in time 
are independent. This behavior is not a reflection of the real-world use case. Simulations to 
generate additional data are not feasible in the WaVe use case because access to simulations 
of the different parts and processes of the hydrogen combustion drive system is limited and 
creating such simulations from scratch is far too complex a task.

5.2 Suitable approaches for the WaVe use case

This section highlights the most suitable approaches for the WaVe use case and discusses 
how they can be used to create and evaluate additional training data.

The WGAN-GP architecture is the most appropriate approach for the WaVe use case 
based on the results of the literature review. The publications that have achieved the best 
results in the generation of time series data have based their approaches on the WGAN-GP 
architecture. Several methods can be used to extend this architecture. The existing fault 
time series data from the engine test bench and field trials can initially be clustered using 
approaches similar to the ones used by Zhu et al. (2022) and Li et al. (2022). A WGAN-GP 
can then be trained for each cluster to generate additional time series data of the specific 
failure cases. Depending on the type of nominal data and the performance of the predictive 
maintenance model, additional data can also be generated from rarely occurring nominal 
time series signals as suggested by Lim et al. (2018) to reduce the number of false positives. 
To train the WGAN-GP, the two-step training approach described by Cui et al. (2021) can be 
used. This means that the model will first be pre-trained with all available data, i.e. normal 
data and data from failure cases in an unsupervised step. After this step the model is fine-
tuned with labeled data from the fault cases.

Both training phases can use the TRH distance metric proposed by Li et al. (2021a), to 
filter generated time series data samples with low quality, so that the discriminator network 
is trained only with high quality data. This should generally improve the quality of the 
generated data. To measure the quality of the generated data, the TRH distance can be used. 
Other metrics that can be used to evaluate the similarity of time series are DTW and ED. 
These can also be used to assess the quality of the generated data. To evaluate the plausibil-
ity of the synthetic data, a suitable metric is still needed. Plausibility here means, as already 
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described, that the generated data can actually occur in reality. In the selected publications 
of the literature research, this aspect was only rarely considered and, if at all, only visually 
tested on a few samples.

6 Conclusion

The WaVe research project aims to develop a hydrogen-based drive system based on an 
internal combustion engine. A digital twin and a predictive maintenance solution will be 
implemented for this drive system. It is expected that the data will be highly imbalanced, 
since mostly data from the normal operating conditions will be available and only a small 
amount of data from failure cases. This makes it difficult to train a predictive maintenance 
model that can detect specific faults reliably. Therefore, a suitable data augmentation strat-
egy is needed to generate more data of the underrepresented failure cases.

In order to identify, or develop a suitable strategy, a literature review was conducted. This 
review highlights the current state of the art of data augmentation methods for predictive 
maintenance procedures and time series and answers the previously posed research ques-
tions. It has been shown that mainly generative algorithms, especially GANs are used for 
data augmentation in predictive maintenance. On the one hand, these are used to generate 
new images for defect detection in image-based applications, such as images of stamps 
on casted steel billets or images of stamped parts. On the other hand they are also used to 
generate time series data recorded by vibration sensors or accelerometers on machine com-
ponents, for example. Sampling-based data augmentation methods are used rather rarely.

While the literature review indicated that GAN are the predominant approach for data 
augmentation of time series data, alternative generative techniques may also prove effective 
for data augmentation in predictive maintenance. VAE, initially developed by Kingma and 
Welling (2014), can also be employed to generate novel time series data samples. Another 
noteworthy approach is that of diffusion models, initially proposed by Sohl-Dickstein et al. 
(2015) and subsequently refined through the introduction of denoising diffusion probabi-
listic models by Ho et al. (2020). These models have demonstrated remarkable efficacy in 
the generation of high-quality synthetic images and, in comparison to GAN, exhibit a more 
stable training process. GAN, on the other hand, are less computationally complex, which 
leads to shorter training and inference times.

The approaches found in the literature are discussed about their limitations and suitabil-
ity for the WaVe use case. Based on this discussion the most promising methods include a 
two-step training approach for generative models. A method to reduce the amount of false 
positives is the generation of rarely occurring data of the majority class instead of creating 
additional samples of minority classes. Also a novel distance metric, TRH distance to evalu-
ate the similarity between time series samples is found appropriate.

The question of how to evaluate and ensure the quality and plausibility of generated data 
has shown that most publications only perform a visual inspection. In order to evaluate the 
quality of time series, the TRH distance can be used as well as other metrics such as ED or 
DTW are suitable. To evaluate the plausibility of the data, however, suitable metrics for a 
quantitative assessment are still missing. The minority of publications checked the plausi-
bility visually, but the majority did not consider it at all.
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The next steps now are the analysis of the hydrogen combustion engine data captured at 
the engine test bench and implementation as well as experimental evaluation of a suitable 
data augmentation strategy.
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