
Vol.:(0123456789)

The Journal of Supercomputing (2025) 81:283
https://doi.org/10.1007/s11227-024-06794-3

An autotuning approach to select the inter‑GPU
communication library on heterogeneous systems

Jesús Cámara1 · Javier Cuenca2 · Victor Galindo2 · Arturo Vicente2 ·
Murilo Boratto3

Accepted: 28 November 2024
© The Author(s) 2024

Abstract
In this work, an automatic optimisation approach for parallel routines on multi-GPU
systems is presented. Several inter-GPU communication libraries (such as CUDA-
Aware MPI or NCCL) are used with a set of routines to perform the numerical oper-
ations among the GPUs located on the compute nodes. The main objective is the
selection of the most appropriate communication library, the number of GPUs to be
used and the workload to be distributed among them in order to reduce the cost of
data movements, which represent a large percentage of the total execution time. To
this end, a hierarchical modelling of the execution time of each routine to be opti-
mised is proposed, combining experimental and theoretical approaches. The results
show that near-optimal decisions are taken in all the scenarios analysed.

Keywords  Autotuning · Communication libraries · Multi-GPU · Heterogeneous
computing

Jesús Cámara, Javier Cuenca, Victor Galindo, Arturo Vicente and Murilo Boratto have contributed
equally to this work.

 *	 Jesús Cámara
	 jesus.camara@infor.uva.es

	 Javier Cuenca
	 jcuenca@um.es

	 Victor Galindo
	 victor.galindog@um.es

	 Arturo Vicente
	 arturo.vicentej@um.es

	 Murilo Boratto
	 murilo.boratto@fieb.org.br

1	 Department of Informatics, University of Valladolid, Valladolid, Spain
2	 Department of Engineering and Technology of Computers, University of Murcia, Murcia, Spain
3	 Supercomputing Center for Industrial Innovation, SENAI CIMATEC, Salvador, Bahia, Brazil

http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-024-06794-3&domain=pdf

	 J. Cámara et al. 283   Page 2 of 16

1  Introduction

Nowadays, the heterogeneity of computing systems makes the efficient execution
of scientific applications extremely challenging. These systems typically consist
of a set of hybrid nodes composed of multiple processing units, such as multicore
CPUs and one or more accelerators (typically GPUs) with different computational
capabilities and memory hierarchies. Therefore, several aspects should be consid-
ered to make an efficient use of all these processing units. Firstly, it is neces-
sary to have a good workload scheduling policy according to their computational
capacities [1]. In this way, given a specific problem to solve, this policy implic-
itly entails the selection of which processing units will be used, with a greater or
lesser workload, and which of these units will be discarded. Another important
decision to take would be the communication library to use for data movements
among processing units, mainly GPUs, since they will handle the most consid-
erable amount of data according to their capacities. There are different frame-
works/libraries that can be used for data communication between GPUs. Also,
several approaches could be considered. For example, the use of data intra-node
copies between host and devices plus traditional MPI communications between
CPUs. Another option could be the use of CUDA-Aware MPI [2], which allows
any GPU to send the data directly to any other GPU without CPU intervention.
Likewise, the NCCL library [3] could be considered to perform this direct data
transfer between GPUs.

In this sense, taking into account the different execution scenarios where the
application can be executed, the selection of the best approach or the most appro-
priate library becomes complicated. That is, the search space depends on several
factors: the platform capabilities, the type of communication operations involved
in the application, and the data volume transferred in these communications.
Therefore, the use of an autotuning framework is crucial to avoid the application
developer the selection of both the workload scheduling policy and the inter-GPU
communication library.

In recent years, a number of techniques to automatically improve the perfor-
mance of software oriented to heterogeneous platforms have emerged [4]. In this
way, we can find global autotuning frameworks, such as CLTune [5], Orio [6] or
ATF [7], where specific techniques or methods can be introduced, such as in [8].
In general terms, given a routine, the optimisation problem of finding the values
of the adjustable parameters that minimise the execution time can be addressed
through the use of metaheuristic methods, such as OpenTuner [9], or by using
heuristics tailored for each specific routine to optimise [10]. On the other hand,
regarding the operating mode of the autotuning engine, two approaches can be
raised: a pseudo-theoretical point of view, estimating theoretical execution times
based on real times measured by executing basic operations [11, 12], or an exper-
imental point of view, where different alternatives are explored by analysing the
behaviour observed after several executions [10, 13]. Furthermore, due to the bot-
tleneck that inter-GPU communications can represent in this execution context,
multiple approaches and software developments have been carried out aimed at

An autotuning approach to select the inter‑GPU communication… Page 3 of 16  283

studying and improving the performance of such communications [14], but are
not focused on the selection of the most appropriate inter-GPU communication
library to efficiently execute a given routine on a specific heterogeneous platform.

In this work, a hierarchical autotuning approach is developed in order to model
the execution time of any high-level routine using the balanced aggregation of the
execution time models of its lower-level subroutines. Thus, the training phase can be
focused only on the lowest-level routines: the calculation and communication ker-
nels. For each of these kernels, this training provides its performance map, that is,
a topographical view of its execution time across a set of values of its adjustable
parameters. By moving in ascending hierarchical order, these performance maps
are used to obtain an overview of the performance behaviour of each higher-level
routine, according to its execution model and without further experimentation. This
autotuning approach gives rise to the main contributions of this work:

•	 Each multi-GPU routine is provided with an automatic adjustment of its configu-
ration parameters: the selection of which GPUs to use, the workload distribution
among them and the inter-GPU communication library/framework.

•	 The proposed hierarchical method leads to a significant reduction in the experi-
mentation required for the whole process. It also allows a certain degree of fault
tolerance and high scalability for both software and hardware.

The rest of the paper is organised as follows. In Sect. 2, the main ideas of the auto-
tuning methodology are described. Then, a proof of concept is presented in Sect. 3,
showing how this methodology can be applied to different types of routines and exe-
cution platforms. Finally, in Sect. 4, the main conclusions derived from this work
are presented.

2 � Automatic optimisation methodology

The main goal of the proposed methodology is to automatically select near-opti-
mal values for the adjustable parameters, APs, of a hybrid parallel routine, R, to
be executed on a heterogeneous platform, P. This platform usually consists of a set
of hybrid nodes, which are composed of several processing units, PUs, of different
types: multicore CPUs and computational accelerators, typically GPUs. In this con-
text, the study will focus on the following APs:

•	 The selection of PUs of P to be used.
•	 The workload to be distributed in a balanced way among the selected PUs.
•	 The library to be used for each inter-PU communication operation involved in R.

A hierarchical approach is applied to decompose the global optimisation problem
of the execution time of R on P into a set of subproblems. These subproblems cor-
respond to the partial execution times of both each calculation kernel, K, within R,
on each PU, and each communication operation, C, within R, on each subset of PUs.

	 J. Cámara et al. 283   Page 4 of 16

To simplify the description of the proposed method, let us assume that R,
which solves a problem of size n, can be schematised as a sequence of S steps,
where the i-th step consists, in turn, of two phases. In a first phase, a communica-
tion operation, Ci , belonging to the communication library, Li , is performed to
transfer ni data from a subset of sender PUs to a subset of receiver PUs. Thus, the
j-th receiver PU will have received nij data at the end of this phase. In the second
phase, all the receiving PUs execute the Ki calculation kernel with the received
data. Likewise, it can be assumed that both the input data and the output results
are stored in a specific PU, referred to as the root PU. Therefore, according to the
scheme shown in Fig. 1, the autotuning process of R will be carried out following
three main phases:

1.	 Modelling: The execution time of R is modelled as the addition, for all the steps,
of the communication operation time and the maximum calculation time:

Fig. 1   High-level overview of the autotuning process of a hybrid parallel routine, R, on a heterogeneous
platform, P

An autotuning approach to select the inter‑GPU communication… Page 5 of 16  283

2.	 Installation: The performance map, PM, of a routine is defined as the performance
values of this routine for a given set of problem sizes when different combina-
tions of AP values are used. In this way, the autotuning engine is in charge of
experimentally obtaining the PM of each basic subroutine of R. That is:

•	 The experimental PM of each basic calculation kernel, Ki , on each PU for
a given range of training problem sizes.

•	 The experimental PM of each basic communication routine, Ci , from each
available communication library, Li , on different subsets of PUs for a
given range of training message sizes.

	  Then, by using the data from these basic PMs, the whole PM of R is generated
arithmetically, without further experimentation, for a given range of training prob-
lem sizes, according to its execution time model (Eq. 1). Finally, the information
from all the PMs is stored for further use both for executing R and installing other
routines.

3.	 Execution: Given a specific problem size, nr , the optimisation process is carried
out directly by traversing the search space defined by the PM of R (previously
built during the installation phase), in order to find the best combination of AP
values for n′

r
 , the training problem size closest to nr . In this way, the overhead

introduced is minimal, since no experimentation is required. Moreover, as nr
increases, since the query time for the best AP values is constant, it becomes even
more negligible compared to the total execution time of the routine.

It is also important to note that this methodology allows for a certain degree
of fault tolerance. In this way, if any of the PUs and/or any of the communica-
tion libraries are no longer available in the execution platform, all the training
information from the rest of the available PUs and libraries remains usable. The
decisions to be made for a high-level routine are re-adapted, without the need for
retraining.

Likewise, there is a good degree of scalability, since when a different PU is
added to the platform, it is only necessary to perform the training of the basic
routines on this new hardware to extend the PM of the routine. All the perfor-
mance information previously stored for the rest of the PUs in the platform
remains equally useful. Moreover, following this hierarchical approach, if a
new higher-level routine needs to be optimised, no further experimentation is
required. All the performance information previously obtained from lower-level
routines can be used to build arithmetically its whole PM, by means of its execu-
tion time model.

(1)

TR(n,P) =

S
∑

i=1

TCi
(ni, sender_PU_seti, receiver_PU_seti, Li) +

S
∑

i=1

max
j

{

TKi
(nij,PUj)

}

	 J. Cámara et al. 283   Page 6 of 16

3 � Experimental study

This section tests the usefulness of the proposed methodology in a number of execution
scenarios. To do so, two different computational platforms are used. On the one hand,
a small platform with a high degree of heterogeneity both in the configuration of the
compute nodes and in the PUs (CPUs and GPUs). On the other hand, a larger and more
powerful platform, but with less heterogeneity.

The small platform is HETEROSOLAR, a heterogeneous cluster located at the
University of Murcia (Spain). This platform consists of a set of nodes of different char-
acteristics connected via a Gigabit Ethernet network. The compute nodes used for the
experimental study are:

•	 venus: with 2 Intel Xeon E5-2620 (hexa-core) CPUs at 2.40 GHz and 2 GPUs: a
NVIDIA GeForce GT 640 and a NVIDIA PNY Quadro P2200.

•	 saturno: with 4 Intel Xeon E7530 (hexa-core) CPUs at 1.87 GHz and 1 NVIDIA
Tesla K20c GPU.

The powerful platform is OGBON, from the SENAI CIMATEC Supercomputing
Center in Brazil. This platform is made up of 78 compute nodes interconnected via an
Infiniband network using NVIDIA’s UCX [15]. In turn, each node consist of 1 Intel
Xeon Gold 6240 CPU with 18 cores at 2.60 GHz, 384 GB RAM and 4 NVIDIA Tesla
V100-SXM2-32GB GPUs interconnected via NVLINK [16].

The following subsections describe the study carried out on these platforms with
several parallel routines that have different space-temporal partitioning schemes for
both the computations and the communications.

3.1 � Proof of concept: a parallel tiled matrix multiplication

This subsection describes how the proposed methodology is applied to a multi-GPU
parallel tiled matrix multiplication routine, PTMM. In this routine, both the input
matrices, A and B, and the resulting matrix, C, are handled by means of square tiles of a
given size, t × t . In this way, each tile of C will be the result of matrix-multiplying a tile
row of A by a tile column of B.

Thus, given a multi-GPU platform, P, the execution time model of PTMM for solv-
ing a n2 problem, using the communication library L, and considering that the input
data are stored in one of its GPUs (referred to as the root GPU) and where GPUi is in
charge of calculating ni rows of C, can be modelled as:

That is, the execution time of PTMM can be modelled as the addition of the time
required to scatter matrix A from root GPU, Tscatter_A , the time to broadcast matrix

(2)

TPTMM_ABC(n
2, t,P, L) = Tscatter_A(n

2, ni × n, rootGPU, GPUset,L) +

Tbroadcast_B(n
2, rootGPU, GPUset,L) +max

i

{

TTMM_AiBCi
(ni × n, t, GPUi)

}

+

Tgather_C(n
2, ni × n, rootGPU, GPUset,L)

An autotuning approach to select the inter‑GPU communication… Page 7 of 16  283

B also from root GPU, Tbroadcast_B , the maximum of the computation times spent by
the set of GPUs to calculate their corresponding portions of C, TTMM_AiBCi

 , and the
time to gather these portions of C back to the root GPU, Tgather_C . Then, in the instal-
lation phase, as described in Sect. 2, the autotuning engine analyses each part of this
execution time model as follows:

•	 Communication submodels ( Tscatter , Tbroadcast , Tgather ): An experimental training
is performed with a set of messages sizes to obtain the PMs of these three basic
communication routines1 for each available communication library, varying both
the set of GPUs used and the root GPU where the input data and results are
located.

•	 Calculation submodel ( TTMM ): An experimental training is performed with a set
of problem sizes to get the PM of the basic calculation routine on each GPU.

Next, the performance data of these basic routines is used to arithmetically generate
the whole PM of PTMM according to its execution time model (Eq. 2) for a given
range of training problem sizes. Finally, the information of all the PMs is stored for
further use when the PTMM routine is executed, and also when other routines are
installed.

Fig. 2   PTMM: Comparison of the execution time (in seconds) predicted by the model performance map
(MPM) and the experimental execution time (EET), for n = {2048, 4096} and 120 different combinations
of the AP values, on HETEROSOLAR

1  Although the algorithmic issues of gather and scatter operations are usually equivalent, it could be
preferable to model them separately in order to capture possible behaviour differences.

	 J. Cámara et al. 283   Page 8 of 16

The proposed execution time models are validated by comparing the execution
time predicted by the model performance map (MPM), with the experimental exe-
cution time (EET) obtained on a real computing platform across a wider range of
scenarios. Figure 2 shows an example for the parallel matrix multiplication routine
(PTMM) on HETEROSOLAR, for n = {2048, 4096} . A set of 120 different com-
binations of AP values have been considered for this comparative graph: commu-
nication library (inter-CPU MPI, CUDA-Aware MPI, NCCL, and two hybrid com-
binations of them for the three communication operations inside PTMM), number
of GPUs (2 and 3), root GPU (venus GPU0 , venus GPU1 , and saturno GPU0 ), and
computational load balancing between GPUs (overloading the most powerful one by
up to 4 times compared to the others). As can be seen, MPM tends to behave quite
similarly to EET, capturing the trends along the different execution scenarios pro-
posed. In any case, it is worth remembering that the goal is not an exact modelling
of the execution time but the design of a good decision-making tool.

In order to demonstrate the usefulness of the autotuning engine proposed in this
work, Table 1 shows a experimental performance comparison for different execu-
tion scenarios (root GPU and problem size), on HETEROSOLAR, depending on the
AP values. The experimental execution time obtained with the AP values selected
by using the performance map, AUT, is compared with the optimal execution time
using a perfect oracle that could always get the optimal AP values, OPT, and also
versus an estimation of the execution time that could be obtained by a routine

Table 1   Comparison of the performance obtained with the values selected by the autotuning engine
(AUT) versus the optimum (OPT) and the average obtained by hand (HAN) when executing the PTTM
routine on HETEROSOLAR using different root GPUs (venus GPU0 (v0), venus GPU1 (v1), and saturno
GPU0 (s0))

Scenario AUT Parameter Values OPT HAN

Root Problem Selected GPUs Communication Library Performance

GPU Size (workload factor) Scatter A Broadcast B Gather C Difference
(%)

v0 1024 v0(×4 ), v1(×1) MPI MPI MPI 0 95
v0 2048 v0(×4 ), v1(×1) CA-MPI CA-MPI CA-MPI − 5 98
v0 3072 v0(×4 ), v1(×1) CA-MPI CA-MPI CA-MPI 0 65
v0 4096 v0(×4 ), v1(×1) CA-MPI CA-MPI CA-MPI 0 97
v1 1024 v1(×1 ), v0(×4) MPI MPI MPI 0 95
v1 2048 v1(×1 ), v0(×4) CA-MPI CA-MPI CA-MPI − 2 95
v1 3072 v1(×1 ), v0(×4) CA-MPI CA-MPI CA-MPI 0 52
v1 4096 v1(×1 ), v0(×4) CA-MPI CA-MPI CA-MPI 0 92
s0 1024 s0(×1 ), v0(×1) MPI NCCL MPI − 8 65
s0 2048 s0(×1 ), v0(×1) MPI NCCL MPI − 4 57
s0 3072 s0(×1 ), v0(×1) MPI NCCL MPI − 3 42
s0 4096 s0(×1 ), v0(×1) MPI NCCL MPI − 2 32

An autotuning approach to select the inter‑GPU communication… Page 9 of 16  283

developer who decides such values by hand, HAN.2 As can be seen, automatically
made decisions allow for optimal or near-optimal performance in most execution
scenarios, despite the variability of the best AP values when changing the starting
scenario (the root GPU and the size of the problem to be solved). Moreover, if we
take a look at the average performance that would be obtained with a selection by
hand of the AP values, the usefulness of the proposed methodology is even more
evident, as it achieves from 50% to about 100% performance improvement. Analys-
ing these results more closely, it can be observed how, despite having three GPUs
available, the autotuning engine only decides to use different pairs of GPUs depend-
ing on where the initial data are located. When using the two venus GPUs, GPU0
workload factor is equal to ×4 , that is, it chooses to overload this GPU by up to 4
times the load assigned to GPU1 , due to the difference in computing power between
them. However, when the initial data are in saturno (s0 is the root GPU), the over-
head of sending data to venus entails that it is no longer appropriate to use venus
GPU1 , and that, in addition, the workload assigned to venus GPU0 is only the same
amount of work as that assigned to the saturno GPU.

Regarding the communication libraries to be used, it can be seen how the deci-
sion taken again depends on both the root GPU and the problem size. Thus, when
the root GPU is one of the venus GPUs, the standard MPI library between CPUs is
chosen for small problem sizes. However, when the problem size increases, CUDA-
Aware MPI is selected. These decisions change significantly when the root GPU is
the saturno GPU. In this scenario, the NCCL library is used to send matrix B, and
the standard MPI library is used between CPUs for matrices A and C. The reasons
for the selection of different communication libraries, depending on the type of
communication operation and the senders and receivers involved, seem to be related
to the way they work internally. In any case, it is beyond the scope of this work
to look deeper into these causes, since the main objective is to automatically make
near-optimal decisions for a set of execution scenarios, without the cost of a more
in-depth study of the underlying architectures.

To achieve the automatic decision-making capability at execution time shown in
Table 1, the autotuning engine took around 14 seconds during the installation phase
to build the whole PM of the PTMM routine according to its execution time model
(Eq. 2). Concretely, for the set of installation sizes {512, 1536, 2560, 3584, 4608} ,
the times required to build the basic calculation PM for the TMM routine and to
obtain the basic communication PMs (broadcast, scatter and gather routines) were
11801 and 1691 milliseconds, respectively. At this point, it is important to note that
all the information collected in these basic PMs will be reused in the installation of
any other higher-level routines that make use of these basic routines, without addi-
tional experimental cost.

Consider now the behaviour in the other heterogeneous platform, OGBON,
using two compute nodes with a total of 8 GPUs. Table 2 shows how the autotuning
engine manages to make good decisions, even if, at any given time, the availability
of the computational resources changes. For instance, if the NCCL library becomes

2  For each execution scenario, HAN time has been calculated as the average execution time among those
obtained with the different considered combinations of AP values.

	 J. Cámara et al. 283   Page 10 of 16

unavailable, or if one of the GPUs stops working, the decisions are re-adapted to
provide near-optimal performance, thus offering some fault tolerance. Going into
the details of these results, for small problem sizes ( n = 2048 ) the extra cost of
inter-node communication does not compensate the computing power of using the
8 available GPUs, so it is often better to use only the 4 GPUs of a single node.
A similar situation arises for medium problem sizes ( n = 4096, 8192, 16384 ) when
only 7 GPUs are available. However, for larger problem sizes ( n = 32768 ) it is prof-
itable to continue using all GPUs if, at least, 6 of them are available. On the other
hand, if at any given time the NCCL library is not available, the second best choice
would be CUDA-Aware MPI, but as it has a higher inter-node communication cost,
again the best choice is usually to use a single node. Finally, if CUDA-Aware MPI
is also not available, the higher relative cost of communications using MPI between
CPUs means that the best decisions generally involve selecting considerably fewer
GPUs, mainly for smaller problem sizes. Although not shown in Table 2, it is worth

Table 2   Comparison of the performance obtained by the autotuning engine (AUT) versus the optimum
(OPT) when executing the PTMM routine on OGBON with different problem sizes and using the avail-
able GPUs and Libraries

Scenario AUT parameter values OPT

Problem Available resources Communication library Perf.

Size GPUs—Libraries GPUs Scatter A Broadcast B Gather C Diff (%)

2048 8—MPI CA-MPI NCCL 4 NCCL NCCL NCCL 0
2048 7—MPI CA-MPI NCCL 4 NCCL NCCL NCCL 0
2048 8—MPI CA-MPI 4 CA-MPI CA-MPI CA-MPI − 9
2048 8—MPI 2 MPI MPI MPI − 6
4096 8—MPI CA-MPI NCCL 8 NCCL NCCL NCCL 0
4096 7—MPI CA-MPI NCCL 4 NCCL NCCL NCCL 0
4096 8—MPI CA-MPI 4 CA-MPI CA-MPI CA-MPI 0
4096 8—MPI 2 MPI MPI MPI − 9
8192 8—MPI CA-MPI NCCL 8 NCCL NCCL NCCL 0
8192 7—MPI CA-MPI NCCL 4 NCCL NCCL NCCL 0
8192 8—MPI CA-MPI 4 CA-MPI CA-MPI CA-MPI 0
8192 8—MPI 2 MPI MPI MPI − 1
16384 8—MPI CA-MPI NCCL 8 NCCL NCCL NCCL 0
16384 7—MPI CA-MPI NCCL 4 CA-MPI CA-MPI CA-MPI − 11
16384 8—MPI CA-MPI 4 CA-MPI CA-MPI CA-MPI 0
16384 8—MPI 3 MPI MPI MPI − 1
32768 8—MPI CA-MPI NCCL 8 NCCL NCCL NCCL 0
32768 7—MPI CA-MPI NCCL 7 NCCL NCCL NCCL − 5
32768 6—MPI CA-MPI NCCL 6 NCCL NCCL NCCL 0
32768 5—MPI CA-MPI NCCL 4 CA-MPI CA-MPI CA-MPI − 9
32768 8—MPI CA-MPI 4 CA-MPI CA-MPI CA-MPI 0
32768 8—MPI 8 MPI MPI MPI 0

An autotuning approach to select the inter‑GPU communication… Page 11 of 16  283

noting that the average improvement in performance compared to an assumed deci-
sion making by hand is about 65%, as in HETEROSOLAR.

3.2 � Experimental results with other routines

This subsection summarises the results obtained when the proposed methodology is
applied to routines with different space-temporal schemes for both calculation and
communication, which implies a more complex decision-making process.

In the PLU routine, a LU factorisation is carried out using the Gaussian reduc-
tion algorithm. First, the input singular square matrix, A, is scattered from the root
GPU to all GPUs. After that, a set of n steps are performed. In step j, the row j of
A is broadcasted. Then, this row is used by each GPU to update its part of the j-th
column of A (progressing in the calculation of the resulting matrix, L) and to reduce
its set of rows of A starting from column j + 1 (progressing in the calculation of the
resulting matrix, U). Finally, each GPU sends its part of both result matrices to the
root GPU. Thus, given an execution platform P, the execution time model for the
PLU routine to solve a n2 problem, assigning ni × n data to the i-th GPU, being L the
communication library used, can be modelled as:

The PHR routine performs a data frequency analysis using a multi-GPU platform.
To this end, the input data, D, are distributed among the different GPUs. Then, each
GPU calculates its partial histogram and, finally, the results are grouped by means of
a reduction operation of the partial histograms. Thus, given an execution platform P,
the execution time model for the PHR routine to calculate the histogram of NH data
from a total of ND input data, assigning NDi data to the i-th GPU, being L the com-
munication library used, can be modelled as:

Finally, PNB is a multi-GPU routine for the resolution of the n-body problem using
the all-pairs algorithm. This routine takes as input parameters the position and mass
of the N bodies and returns as output the attractive force applied on each of these
bodies. First, the masses and positions are distributed among the GPUs. After that,
d iterations are carried out, being d the number of GPUs. In the j-th iteration, GPUj
distributes its subsets of positions and masses to all GPUs and, then, each GPU
updates the partial calculation of the forces acting on its assigned subset of bodies.

(3)

TPLU_A(n
2,P, Lcom) =Tscatter_A(n

2, ni × n, root GPU, GPUset,L) +

n
∑

j=1

Tbroadcast_row_A(n − j, root GPUj, GPUset,L) +

n
∑

j=1

max
i

{

Tupdate_L(ni, GPUi) + Treduce_U(ni × (n − j), GPUi)
}

+

Tgather_LU(n
2, ni × n, root GPU, GPUset,L)

(4)
TPHR(ND,NH ,P, L) = Tscatter_D(ND,NDi, root GPU, GPUset,L) +

max
i

{

Thist(NDi,NH , GPUi)
}

+ Tred_add_H(NH , root GPU, GPUset,L)

	 J. Cámara et al. 283   Page 12 of 16

Finally, the results obtained for all the forces are gathered. Thus, given an execu-
tion platform P with d GPUs, the execution time model for the PNB routine to solve
the N-body problem, whose coordinates and masses are {X, Y} and M, respectively,
assigning Ni bodies to the i-th GPU, being FX and FY the resulting forces, and L the
communication library used, can be modelled as:

(5)

TPNB(N,P, L) =Tscatter_XYM(N,Ni, rootGPU, GPUset) +

d−1
∑

j=0

Tbroadcast_XjYjMj
(Nj, GPUj, GPUset,L) +max

i

{

Tnb(Ni,Nj,GPUi)
}

+

Tgather_FXFY
(N,Ni, rootGPU, GPUset,L)

Table 3   Execution of PLU on HETEROSOLAR for different problem sizes and root GPUs (venus GPU0
(v0), venus GPU1 (v1), saturno GPU0 , (s0))

Scenario AUT parameter values

Root GPU Problem size Selected GPUs
(workload factor)

Communication library

Scatter A Broadcast row Gather LU

v0 1024 v0(×3)–v1(×1) CA-MPI MPI CA-MPI
v0 2048 v0(×3)–v1(×1) CA-MPI MPI CA-MPI
v0 3072 v0(×3)–v1(×1) MPI MPI MPI
v0 4096 v0(×3)–v1(×1) MPI MPI MPI
v1 1024 v1(×1)–v0(×1) CA-MPI MPI CA-MPI
v1 2048 v1(×1)–v0(×3) CA-MPI MPI CA-MPI
v1 3072 v1(×1)–v0(×3) MPI MPI MPI
v1 4096 v1(×1)–v0(×3) MPI MPI MPI
s0 1024 s0(×1)–v0(×1) MPI MPI MPI
s0 2048 s0(×1)–v0(×1) MPI MPI MPI
s0 3072 s0(×1)–v0(×1) MPI MPI MPI
s0 4096 s0(×1)–v0(×1) MPI MPI MPI

Table 4   Execution of PLU on OGBON for different problem sizes

Scenario AUT parameter values

Available
GPUs

Problem size Communication library

GPUs Scatter A Broadcast Row Gather LU

8 2048 4 NCCL CA-MPI NCCL
8 4096 4 NCCL CA-MPI NCCL
8 8192 4 NCCL CA-MPI NCCL
8 16384 4 NCCL CA-MPI NCCL
8 32768 4 NCCL CA-MPI NCCL

An autotuning approach to select the inter‑GPU communication… Page 13 of 16  283

Tables 3, 4, 5, 6, 7, 8 show the decisions taken for the AP values of these routines
with different execution scenarios. As can be seen, these decisions can be quite dif-
ferent from those taken for the PTMM routine (Tables 1, 2). That is, as detailed in
Sect. 2, after the experimental training phase of the basic calculation and commu-
nication routines, it is necessary to arithmetically design the performance map of
each routine based on its execution time model. Although not shown in these tables,
it is worth noting that near-optimal decisions are taken in most of the execution

Table 5   Execution of PHR on HETEROSOLAR using different root GPUs (venus GPU0 (v0), venus
GPU1 (v1), and saturno GPU0 (s0)), for different problem and histogram sizes

Scenario AUT parameter values

Root GPU Problem size Histogram size Selected GPUs
(workload factor)

Communication library

Scatter D Reduction H

v0 8 M 8 M v0(×1)–v1(×1) NCCL NCCL
v0 64 M 8 M v0(×1)–v1(×1) CA-MPI NCCL
v0 8 M 64 M v0(×1)–v1(×1) MPI NCCL
v0 64 M 64 M v0(×1)–v1(×1) CA-MPI NCCL
v1 8 M 8 M v0(×1)–v1(×1) NCCL NCCL
v1 64 M 8 M v0(×1)–v1(×1) CA-MPI NCCL
v1 8 M 64 M v0(×1)–v1(×1) MPI NCCL
v1 64 M 64 M v0(×1)–v1(×1) CA-MPI NCCL
s0 8 M 8 M s0(×1)–v0(×1) NCCL NCCL
s0 64 M 8 M s0(×1)–v0(×1) CA-MPI NCLL
s0 8 M 64 M s0(×1)–v0(×1) MPI NCCL
s0 64 M 64 M s0(×1)–v0(×1) CA-MPI NCCL

Table 6   Execution of PHR on OGBON for different problem and histogram sizes

Scenario AUT parameter values

Available
GPUs

Problem size Histogram size Communication library

GPUs Scatter D Reduction H

8 8 M 8 M 4 NCCL NCCL
8 64 M 8 M 4 NCCL NCCL
8 256 M 8 M 4 CA-MPI NCCL
8 8 M 64 M 4 NCCL NCCL
8 64 M 64 M 4 NCCL NCCL
8 256 M 64 M 4 CA-MPI NCCL
8 8 M 256 M 4 NCCL NCCL
8 64 M 256 M 4 NCCL NCCL
8 256 M 256 M 4 CA-MPI NCCL

	 J. Cámara et al. 283   Page 14 of 16

scenarios and the average improvement in performance compared to an assumed
decision making by hand is about 35%.

4 � Conclusions and future work

This work has faced the challenge of properly selecting the communication library
and the workload distribution when running parallel routines on multi-GPU sys-
tems. To do so, an autotuning approach based on a hierarchical view of the software
is used.

Given a routine, a execution time model is designed as a guide to build the per-
formance map of that routine, that is, a topographical view of its execution time
through a set of values of its adjustable parameters. This process is carried out

Table 7   Execution of PNB on HETEROSOLAR for different problem sizes and root GPUs (venus GPU0
(v0), venus GPU1 (v1), and saturno GPU0 , (s0))

Scenario AUT parameter values

Root GPU Problem size Selected GPUs
(workload factor)

Communication Library

Scatter XYM Broadcast Gather F
X
F
Y

v0 4096 v0(×4)–v1(×1) MPI MPI MPI
v0 8192 v0(×4)–v1(×1) MPI MPI MPI
v0 16384 v0(×4)–v1(×1) MPI MPI MPI
v0 32768 v0(×4)–v1(×1) MPI MPI MPI
v1 4096 v1(×1)–v0(×2) MPI MPI MPI
v1 8192 v1(×1)–v0(×2) MPI MPI MPI
v1 16384 v1(×1)–v0(×2) MPI MPI MPI
v1 32768 v1(×1)–v0(×2) MPI MPI MPI
s0 4096 s0(×1)–v0(×1) NCCL MPI NCCL
s0 8192 s0(×1)–v0(×1) NCCL MPI NCCL
s0 16384 s0(×1)–v0(×1) NCCL MPI NCCL
s0 32768 s0(×1)–v0(×1) NCCL MPI NCCL

Table 8   Execution of PNB on OGBON for different problem sizes

Scenario AUT parameter values

Available
GPUs

Problem size Communication library

GPUs Scatter XYM Broadcast Gather F
X
F
Y

8 32768 8 NCCL NCCL CA-MPI
8 65536 8 NCCL NCCL CA-MPI
8 131072 8 NCCL NCCL CA-MPI
8 262144 8 NCCL NCCL CA-MPI

An autotuning approach to select the inter‑GPU communication… Page 15 of 16  283

hierarchically, taking the performance maps of the most basic routines as a start-
ing point. In this way, the required experimental effort is done at installation time,
since it focuses on building these basic maps.

This accomplishes two goals: first, it eliminates the experimentation phase in
the autotuning process of the main routine, which significantly reduces the corre-
sponding overhead. Secondly, to reuse all the implicit information gathered in the
performance maps of the basic routines, as no additional cost is incurred to create
maps for other higher-level routines that use them.

The results obtained show that this hierarchical approach leads to routine per-
formance maps that can be used as tools to make near-optimal decisions on the
values of their adjustable parameters. All this regardless of the specific topology
of the execution platform and the software implementation used within the rou-
tine to be handled.

By treating each processing unit of the execution platform as a black box, with
a corresponding performance map for each routine, the extension of this method-
ology to other computational environments with other types of accelerators, such
as FPGAs, is greatly facilitated. In addition, it is intended to include the neces-
sary functionality to decide the best available numerical library for each accelera-
tor, in the same way as has been done for the communication library.

Following this research line, our medium-term goal is to integrate the proposed
hierarchical autotuning approach into PARCSIM [17], a full-featured simulator
for running numerical software on heterogeneous parallel platforms. The auto-
tuning engine would substantially enhance the functionality of PARCSIM, since
currently this tool needs to generate all possible combinations of the AP values
for a given input scenario (problem size and execution platform) in order to deter-
mine the best way to execute a routine. In contrast, with the proposed hierarchical
autotuning engine this would not be necessary, since it allows to directly select
the best execution configuration by making use of the performance information
stored during the installation phase.

Finally, as future work, other performance metrics, such as energy consump-
tion or memory usage, could be considered for optimisation by the autotuning
engine using a similar approach. For example, regarding energy consumption, the
execution time model of the routine would be transformed into the corresponding
energy consumption model by simply replacing the terms related to the execution
times of the basic routines by their respective in energy consumption. Afterwards,
in the installation phase, the energy maps of each basic routine would be obtained
experimentally and then, using the model, the map of the routine to be optimised
would be constructed arithmetically.

Acknowledgements  This work is supported by Grant PID2022-136315OB-I00 and Grant
PID2022-142292NB-I00, both funded by MCIN/AEI/10.13039/501100011033/ and by “ERDF A way
of making Europe”, EU. The authors thank the SENAI CIMATEC Supercomputing Center for Industrial
Innovation for making the OGBON Supercomputer available.

Funding  Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long

	 J. Cámara et al. 283   Page 16 of 16

as you give appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons licence, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permis-
sion directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/
licenses/by/4.0/.

References

	 1.	 Agullo E, Cámara J, Cuenca J, Giménez D (2020) On the autotuning of task-based numerical librar-
ies for heterogeneous architectures. In: Proceedings of the 2019 International Conference on Parallel
Computing. Adv Parallel Comput 36:157–166

	 2.	 Kraus J (2013) An Introduction to CUDA-Aware MPI. https://​devel​oper.​nvidia.​com/​blog/​intro​ducti​
on-​cuda-​aware-​mpi. Accessed 20 Nov 2024

	 3.	 Luehr N (2016) Fast multi-GPU collectives with NCCL. https://​devel​oper.​nvidia.​com/​blog/​fast-​
multi-​gpu-​colle​ctives-​nccl. Accessed 20 Nov 2024

	 4.	 Schoonhoven RA, Werkhoven B, Batenburg KJ (2023) Benchmarking optimization algorithms for
auto-tuning gpu kernels. IEEE Trans Evolut Comput 27(3):550–564. https://​doi.​org/​10.​1109/​TEVC.​
2022.​32106​54

	 5.	 Nugteren C, Codreanu V (2015) CLTune: a generic auto-tuner for OpenCL kernels. In: 2015 IEEE
9th International Symposium on Embedded Multicore/Many-Core Systems-on-Chip (MCSoC),
IEEE Computer Society, USA, pp 195–202

	 6.	 Hartono A, Norris B, Sadayappan P (2009) Annotation-based empirical performance tuning using
Orio. In: 2009 IEEE International Symposium on Parallel & Distributed Processing, pp 1–11

	 7.	 Rasch A, Schulze R, Steuwer M, Gorlatch S (2021) Efficient auto-tuning of parallel programs with
interdependent tuning parameters via auto-tuning framework (ATF). ACM Trans Archit Code
Optim 18(1):1–26

	 8.	 Lim R, Norris B, Malony A (2017) Autotuning gpu kernels via static and predictive analysis. In:
2017 46th International Conference on Parallel Processing (ICPP), pp 523–532

	 9.	 Ansel J, Kamil S, Veeramachaneni K, Ragan-Kelley J, Bosboom J, O’Reilly U-M, Amarasinghe S
(2014) OpenTuner: an extensible framework for program autotuning. In: 23rd International Confer-
ence on Parallel Architectures and Compilation Techniques. ACM, Edmonton, Canada, pp 303–316

	10.	 Cuenca J, García L, Giménez D, Herrera F (2017) Guided installation of basic linear algebra rou-
tines in a cluster with manycore components. Concurr Comput Pract Exp 29(15):e4112

	11.	 Cámara J, Cuenca J, García L, Giménez D (2014) Auto-tuned nested parallelism: a way to reduce
the execution time of scientific software in NUMA systems. Parallel Comput 40(7):309–327

	12.	 Rico-Gallego JA, Díaz-Martín JC, Manumachu RR, Lastovetsky AL (2019) A survey of communi-
cation performance models for high-performance computing. ACM Comput Surv 51(6):1–36

	13.	 Manumachu RR, Lastovetsky AL (2019) Design of self-adaptable data parallel applications on mul-
ticore clusters automatically optimized for performance and energy through load distribution. Con-
curr Comput Pract Exp 31(4):e4958

	14.	 Ranganath K, Abdolrashidi A, Song S, Wong D (2019) Speeding up collective communications
through inter-GPU re-routing. Comput Archit Lett 18(2):128–31

	15.	 UCX: Unified Communication X. https://​openu​cx.​org/​docum​entat​ion/
	16.	 NVIDIA NVLINK. https://​www.​nvidia.​com/​en-​us/​data-​center/​nvlink/
	17.	 Cámara J, Cano J, Cuenca J, Saura-Sánchez M (2022) PARCSIM: a parallel computing simulator

for scalable software optimization. J Supercomput 78(15):17231–17246

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://developer.nvidia.com/blog/introduction-cuda-aware-mpi
https://developer.nvidia.com/blog/introduction-cuda-aware-mpi
https://developer.nvidia.com/blog/fast-multi-gpu-collectives-nccl
https://developer.nvidia.com/blog/fast-multi-gpu-collectives-nccl
https://doi.org/10.1109/TEVC.2022.3210654
https://doi.org/10.1109/TEVC.2022.3210654
https://openucx.org/documentation/
https://www.nvidia.com/en-us/data-center/nvlink/

	An autotuning approach to select the inter-GPU communication library on heterogeneous systems
	Abstract
	1 Introduction
	2 Automatic optimisation methodology
	3 Experimental study
	3.1 Proof of concept: a parallel tiled matrix multiplication
	3.2 Experimental results with other routines

	4 Conclusions and future work
	Acknowledgements
	References

