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Abstract
In this work, an automatic optimisation approach for parallel routines on multi-GPU 
systems is presented. Several inter-GPU communication libraries (such as CUDA-
Aware MPI or NCCL) are used with a set of routines to perform the numerical oper-
ations among the GPUs located on the compute nodes. The main objective is the 
selection of the most appropriate communication library, the number of GPUs to be 
used and the workload to be distributed among them in order to reduce the cost of 
data movements, which represent a large percentage of the total execution time. To 
this end, a hierarchical modelling of the execution time of each routine to be opti-
mised is proposed, combining experimental and theoretical approaches. The results 
show that near-optimal decisions are taken in all the scenarios analysed.
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1  Introduction

Nowadays, the heterogeneity of computing systems makes the efficient execution 
of scientific applications extremely challenging. These systems typically consist 
of a set of hybrid nodes composed of multiple processing units, such as multicore 
CPUs and one or more accelerators (typically GPUs) with different computational 
capabilities and memory hierarchies. Therefore, several aspects should be consid-
ered to make an efficient use of all these processing units. Firstly, it is neces-
sary to have a good workload scheduling policy according to their computational 
capacities [1]. In this way, given a specific problem to solve, this policy implic-
itly entails the selection of which processing units will be used, with a greater or 
lesser workload, and which of these units will be discarded. Another important 
decision to take would be the communication library to use for data movements 
among processing units, mainly GPUs, since they will handle the most consid-
erable amount of data according to their capacities. There are different frame-
works/libraries that can be used for data communication between GPUs. Also, 
several approaches could be considered. For example, the use of data intra-node 
copies between host and devices plus traditional MPI communications between 
CPUs. Another option could be the use of CUDA-Aware MPI [2], which allows 
any GPU to send the data directly to any other GPU without CPU intervention. 
Likewise, the NCCL library [3] could be considered to perform this direct data 
transfer between GPUs.

In this sense, taking into account the different execution scenarios where the 
application can be executed, the selection of the best approach or the most appro-
priate library becomes complicated. That is, the search space depends on several 
factors: the platform capabilities, the type of communication operations involved 
in the application, and the data volume transferred in these communications. 
Therefore, the use of an autotuning framework is crucial to avoid the application 
developer the selection of both the workload scheduling policy and the inter-GPU 
communication library.

In recent years, a number of techniques to automatically improve the perfor-
mance of software oriented to heterogeneous platforms have emerged [4]. In this 
way, we can find global autotuning frameworks, such as CLTune [5], Orio [6] or 
ATF [7], where specific techniques or methods can be introduced, such as in [8]. 
In general terms, given a routine, the optimisation problem of finding the values 
of the adjustable parameters that minimise the execution time can be addressed 
through the use of metaheuristic methods, such as OpenTuner [9], or by using 
heuristics tailored for each specific routine to optimise [10]. On the other hand, 
regarding the operating mode of the autotuning engine, two approaches can be 
raised: a pseudo-theoretical point of view, estimating theoretical execution times 
based on real times measured by executing basic operations [11, 12], or an exper-
imental point of view, where different alternatives are explored by analysing the 
behaviour observed after several executions [10, 13]. Furthermore, due to the bot-
tleneck that inter-GPU communications can represent in this execution context, 
multiple approaches and software developments have been carried out aimed at 
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studying and improving the performance of such communications [14], but are 
not focused on the selection of the most appropriate inter-GPU communication 
library to efficiently execute a given routine on a specific heterogeneous platform.

In this work, a hierarchical autotuning approach is developed in order to model 
the execution time of any high-level routine using the balanced aggregation of the 
execution time models of its lower-level subroutines. Thus, the training phase can be 
focused only on the lowest-level routines: the calculation and communication ker-
nels. For each of these kernels, this training provides its performance map, that is, 
a topographical view of its execution time across a set of values of its adjustable 
parameters. By moving in ascending hierarchical order, these performance maps 
are used to obtain an overview of the performance behaviour of each higher-level 
routine, according to its execution model and without further experimentation. This 
autotuning approach gives rise to the main contributions of this work:

•	 Each multi-GPU routine is provided with an automatic adjustment of its configu-
ration parameters: the selection of which GPUs to use, the workload distribution 
among them and the inter-GPU communication library/framework.

•	 The proposed hierarchical method leads to a significant reduction in the experi-
mentation required for the whole process. It also allows a certain degree of fault 
tolerance and high scalability for both software and hardware.

The rest of the paper is organised as follows. In Sect. 2, the main ideas of the auto-
tuning methodology are described. Then, a proof of concept is presented in Sect. 3, 
showing how this methodology can be applied to different types of routines and exe-
cution platforms. Finally, in Sect. 4, the main conclusions derived from this work 
are presented.

2 � Automatic optimisation methodology

The main goal of the proposed methodology is to automatically select near-opti-
mal values for the adjustable parameters, APs, of a hybrid parallel routine, R, to 
be executed on a heterogeneous platform, P. This platform usually consists of a set 
of hybrid nodes, which are composed of several processing units, PUs, of different 
types: multicore CPUs and computational accelerators, typically GPUs. In this con-
text, the study will focus on the following APs:

•	 The selection of PUs of P to be used.
•	 The workload to be distributed in a balanced way among the selected PUs.
•	 The library to be used for each inter-PU communication operation involved in R.

A hierarchical approach is applied to decompose the global optimisation problem 
of the execution time of R on P into a set of subproblems. These subproblems cor-
respond to the partial execution times of both each calculation kernel, K, within R, 
on each PU, and each communication operation, C, within R, on each subset of PUs.
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To simplify the description of the proposed method, let us assume that R, 
which solves a problem of size n, can be schematised as a sequence of S steps, 
where the i-th step consists, in turn, of two phases. In a first phase, a communica-
tion operation, Ci , belonging to the communication library, Li , is performed to 
transfer ni data from a subset of sender PUs to a subset of receiver PUs. Thus, the 
j-th receiver PU will have received nij data at the end of this phase. In the second 
phase, all the receiving PUs execute the Ki calculation kernel with the received 
data. Likewise, it can be assumed that both the input data and the output results 
are stored in a specific PU, referred to as the root PU. Therefore, according to the 
scheme shown in Fig. 1, the autotuning process of R will be carried out following 
three main phases: 

1.	 Modelling: The execution time of R is modelled as the addition, for all the steps, 
of the communication operation time and the maximum calculation time: 

Fig. 1   High-level overview of the autotuning process of a hybrid parallel routine, R, on a heterogeneous 
platform, P
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2.	 Installation: The performance map, PM, of a routine is defined as the performance 
values of this routine for a given set of problem sizes when different combina-
tions of AP values are used. In this way, the autotuning engine is in charge of 
experimentally obtaining the PM of each basic subroutine of R. That is:

•	 The experimental PM of each basic calculation kernel, Ki , on each PU for 
a given range of training problem sizes.

•	 The experimental PM of each basic communication routine, Ci , from each 
available communication library, Li , on different subsets of PUs for a 
given range of training message sizes.

	    Then, by using the data from these basic PMs, the whole PM of R is generated 
arithmetically, without further experimentation, for a given range of training prob-
lem sizes, according to its execution time model (Eq. 1). Finally, the information 
from all the PMs is stored for further use both for executing R and installing other 
routines.

3.	 Execution: Given a specific problem size, nr , the optimisation process is carried 
out directly by traversing the search space defined by the PM of R (previously 
built during the installation phase), in order to find the best combination of AP 
values for n′

r
 , the training problem size closest to nr . In this way, the overhead 

introduced is minimal, since no experimentation is required. Moreover, as nr 
increases, since the query time for the best AP values is constant, it becomes even 
more negligible compared to the total execution time of the routine.

It is also important to note that this methodology allows for a certain degree 
of fault tolerance. In this way, if any of the PUs and/or any of the communica-
tion libraries are no longer available in the execution platform, all the training 
information from the rest of the available PUs and libraries remains usable. The 
decisions to be made for a high-level routine are re-adapted, without the need for 
retraining.

Likewise, there is a good degree of scalability, since when a different PU is 
added to the platform, it is only necessary to perform the training of the basic 
routines on this new hardware to extend the PM of the routine. All the perfor-
mance information previously stored for the rest of the PUs in the platform 
remains equally useful. Moreover, following this hierarchical approach, if a 
new higher-level routine needs to be optimised, no further experimentation is 
required. All the performance information previously obtained from lower-level 
routines can be used to build arithmetically its whole PM, by means of its execu-
tion time model.

(1)

TR(n,P) =

S
∑

i=1

TCi
(ni, sender_PU_seti, receiver_PU_seti, Li) +

S
∑

i=1

max
j

{

TKi
(nij,PUj)

}



	 J. Cámara et al.  283   Page 6 of 16

3 � Experimental study

This section tests the usefulness of the proposed methodology in a number of execution 
scenarios. To do so, two different computational platforms are used. On the one hand, 
a small platform with a high degree of heterogeneity both in the configuration of the 
compute nodes and in the PUs (CPUs and GPUs). On the other hand, a larger and more 
powerful platform, but with less heterogeneity.

The small platform is HETEROSOLAR, a heterogeneous cluster located at the 
University of Murcia (Spain). This platform consists of a set of nodes of different char-
acteristics connected via a Gigabit Ethernet network. The compute nodes used for the 
experimental study are:

•	 venus: with 2 Intel Xeon E5-2620 (hexa-core) CPUs at 2.40 GHz and 2 GPUs: a 
NVIDIA GeForce GT 640 and a NVIDIA PNY Quadro P2200.

•	 saturno: with 4 Intel Xeon E7530 (hexa-core) CPUs at 1.87 GHz and 1 NVIDIA 
Tesla K20c GPU.

The powerful platform is OGBON, from the SENAI CIMATEC Supercomputing 
Center in Brazil. This platform is made up of 78 compute nodes interconnected via an 
Infiniband network using NVIDIA’s UCX [15]. In turn, each node consist of 1 Intel 
Xeon Gold 6240 CPU with 18 cores at 2.60 GHz, 384 GB RAM and 4 NVIDIA Tesla 
V100-SXM2-32GB GPUs interconnected via NVLINK [16].

The following subsections describe the study carried out on these platforms with 
several parallel routines that have different space-temporal partitioning schemes for 
both the computations and the communications.

3.1 � Proof of concept: a parallel tiled matrix multiplication

This subsection describes how the proposed methodology is applied to a multi-GPU 
parallel tiled matrix multiplication routine, PTMM. In this routine, both the input 
matrices, A and B, and the resulting matrix, C, are handled by means of square tiles of a 
given size, t × t . In this way, each tile of C will be the result of matrix-multiplying a tile 
row of A by a tile column of B.

Thus, given a multi-GPU platform, P, the execution time model of PTMM for solv-
ing a n2 problem, using the communication library L, and considering that the input 
data are stored in one of its GPUs (referred to as the root GPU) and where GPUi is in 
charge of calculating ni rows of C, can be modelled as:

That is, the execution time of PTMM can be modelled as the addition of the time 
required to scatter matrix A from root GPU, Tscatter_A , the time to broadcast matrix 

(2)

TPTMM_ABC(n
2, t,P, L) = Tscatter_A(n

2, ni × n, rootGPU, GPUset,L) +

Tbroadcast_B(n
2, rootGPU, GPUset,L) +max

i

{

TTMM_AiBCi
(ni × n, t, GPUi)

}

+

Tgather_C(n
2, ni × n, rootGPU, GPUset,L)
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B also from root GPU, Tbroadcast_B , the maximum of the computation times spent by 
the set of GPUs to calculate their corresponding portions of C, TTMM_AiBCi

 , and the 
time to gather these portions of C back to the root GPU, Tgather_C . Then, in the instal-
lation phase, as described in Sect. 2, the autotuning engine analyses each part of this 
execution time model as follows:

•	 Communication submodels ( Tscatter , Tbroadcast , Tgather ): An experimental training 
is performed with a set of messages sizes to obtain the PMs of these three basic 
communication routines1 for each available communication library, varying both 
the set of GPUs used and the root GPU where the input data and results are 
located.

•	 Calculation submodel ( TTMM ): An experimental training is performed with a set 
of problem sizes to get the PM of the basic calculation routine on each GPU.

Next, the performance data of these basic routines is used to arithmetically generate 
the whole PM of PTMM according to its execution time model (Eq. 2) for a given 
range of training problem sizes. Finally, the information of all the PMs is stored for 
further use when the PTMM routine is executed, and also when other routines are 
installed.

Fig. 2   PTMM: Comparison of the execution time (in seconds) predicted by the model performance map 
(MPM) and the experimental execution time (EET), for n = {2048, 4096} and 120 different combinations 
of the AP values, on HETEROSOLAR

1  Although the algorithmic issues of gather and scatter operations are usually equivalent, it could be 
preferable to model them separately in order to capture possible behaviour differences.
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The proposed execution time models are validated by comparing the execution 
time predicted by the model performance map (MPM), with the experimental exe-
cution time (EET) obtained on a real computing platform across a wider range of 
scenarios. Figure 2 shows an example for the parallel matrix multiplication routine 
(PTMM) on HETEROSOLAR, for n = {2048, 4096} . A set of 120 different com-
binations of AP values have been considered for this comparative graph: commu-
nication library (inter-CPU MPI, CUDA-Aware MPI, NCCL, and two hybrid com-
binations of them for the three communication operations inside PTMM), number 
of GPUs (2 and 3), root GPU (venus GPU0 , venus GPU1 , and saturno GPU0 ), and 
computational load balancing between GPUs (overloading the most powerful one by 
up to 4 times compared to the others). As can be seen, MPM tends to behave quite 
similarly to EET, capturing the trends along the different execution scenarios pro-
posed. In any case, it is worth remembering that the goal is not an exact modelling 
of the execution time but the design of a good decision-making tool.

In order to demonstrate the usefulness of the autotuning engine proposed in this 
work, Table 1 shows a experimental performance comparison for different execu-
tion scenarios (root GPU and problem size), on HETEROSOLAR, depending on the 
AP values. The experimental execution time obtained with the AP values selected 
by using the performance map, AUT, is compared with the optimal execution time 
using a perfect oracle that could always get the optimal AP values, OPT, and also 
versus an estimation of the execution time that could be obtained by a routine 

Table 1   Comparison of the performance obtained with the values selected by the autotuning engine 
(AUT) versus the optimum (OPT) and the average obtained by hand (HAN) when executing the PTTM 
routine on HETEROSOLAR using different root GPUs (venus GPU0 (v0), venus GPU1 (v1), and saturno 
GPU0 (s0))

Scenario AUT Parameter Values OPT HAN

Root Problem Selected GPUs Communication Library  Performance

GPU Size (workload factor) Scatter A Broadcast B Gather C Difference 
(%)

v0 1024 v0(×4 ), v1(×1) MPI MPI MPI 0 95
v0 2048 v0(×4 ), v1(×1) CA-MPI CA-MPI CA-MPI − 5 98
v0 3072 v0(×4 ), v1(×1) CA-MPI CA-MPI CA-MPI 0 65
v0 4096 v0(×4 ), v1(×1) CA-MPI CA-MPI CA-MPI 0 97
v1 1024 v1(×1 ), v0(×4) MPI MPI MPI 0 95
v1 2048 v1(×1 ), v0(×4) CA-MPI CA-MPI CA-MPI − 2 95
v1 3072 v1(×1 ), v0(×4) CA-MPI CA-MPI CA-MPI 0 52
v1 4096 v1(×1 ), v0(×4) CA-MPI CA-MPI CA-MPI 0 92
s0 1024 s0(×1 ), v0(×1) MPI NCCL MPI − 8 65
s0 2048 s0(×1 ), v0(×1) MPI NCCL MPI − 4 57
s0 3072 s0(×1 ), v0(×1) MPI NCCL MPI − 3 42
s0 4096 s0(×1 ), v0(×1) MPI NCCL MPI − 2 32
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developer who decides such values by hand, HAN.2 As can be seen, automatically 
made decisions allow for optimal or near-optimal performance in most execution 
scenarios, despite the variability of the best AP values when changing the starting 
scenario (the root GPU and the size of the problem to be solved). Moreover, if we 
take a look at the average performance that would be obtained with a selection by 
hand of the AP values, the usefulness of the proposed methodology is even more 
evident, as it achieves from 50% to about 100% performance improvement. Analys-
ing these results more closely, it can be observed how, despite having three GPUs 
available, the autotuning engine only decides to use different pairs of GPUs depend-
ing on where the initial data are located. When using the two venus GPUs, GPU0 
workload factor is equal to ×4 , that is, it chooses to overload this GPU by up to 4 
times the load assigned to GPU1 , due to the difference in computing power between 
them. However, when the initial data are in saturno (s0 is the root GPU), the over-
head of sending data to venus entails that it is no longer appropriate to use venus 
GPU1 , and that, in addition, the workload assigned to venus GPU0 is only the same 
amount of work as that assigned to the saturno GPU.

Regarding the communication libraries to be used, it can be seen how the deci-
sion taken again depends on both the root GPU and the problem size. Thus, when 
the root GPU is one of the venus GPUs, the standard MPI library between CPUs is 
chosen for small problem sizes. However, when the problem size increases, CUDA-
Aware MPI is selected. These decisions change significantly when the root GPU is 
the saturno GPU. In this scenario, the NCCL library is used to send matrix B, and 
the standard MPI library is used between CPUs for matrices A and C. The reasons 
for the selection of different communication libraries, depending on the type of 
communication operation and the senders and receivers involved, seem to be related 
to the way they work internally. In any case, it is beyond the scope of this work 
to look deeper into these causes, since the main objective is to automatically make 
near-optimal decisions for a set of execution scenarios, without the cost of a more 
in-depth study of the underlying architectures.

To achieve the automatic decision-making capability at execution time shown in 
Table 1, the autotuning engine took around 14 seconds during the installation phase 
to build the whole PM of the PTMM routine according to its execution time model 
(Eq.  2). Concretely, for the set of installation sizes {512, 1536, 2560, 3584, 4608} , 
the times required to build the basic calculation PM for the TMM routine and to 
obtain the basic communication PMs (broadcast, scatter and gather routines) were 
11801 and 1691 milliseconds, respectively. At this point, it is important to note that 
all the information collected in these basic PMs will be reused in the installation of 
any other higher-level routines that make use of these basic routines, without addi-
tional experimental cost.

Consider now the behaviour in the other heterogeneous platform, OGBON, 
using two compute nodes with a total of 8 GPUs. Table 2 shows how the autotuning 
engine manages to make good decisions, even if, at any given time, the availability 
of the computational resources changes. For instance, if the NCCL library becomes 

2  For each execution scenario, HAN time has been calculated as the average execution time among those 
obtained with the different considered combinations of AP values.
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unavailable, or if one of the GPUs stops working, the decisions are re-adapted to 
provide near-optimal performance, thus offering some fault tolerance. Going into 
the details of these results, for small problem sizes ( n = 2048 ) the extra cost of 
inter-node communication does not compensate the computing power of using the 
8 available GPUs, so it is often better to use only the 4 GPUs of a single node. 
A similar situation arises for medium problem sizes ( n = 4096, 8192, 16384 ) when 
only 7 GPUs are available. However, for larger problem sizes ( n = 32768 ) it is prof-
itable to continue using all GPUs if, at least, 6 of them are available. On the other 
hand, if at any given time the NCCL library is not available, the second best choice 
would be CUDA-Aware MPI, but as it has a higher inter-node communication cost, 
again the best choice is usually to use a single node. Finally, if CUDA-Aware MPI 
is also not available, the higher relative cost of communications using MPI between 
CPUs means that the best decisions generally involve selecting considerably fewer 
GPUs, mainly for smaller problem sizes. Although not shown in Table 2, it is worth 

Table 2   Comparison of the performance obtained by the autotuning engine (AUT) versus the optimum 
(OPT) when executing the PTMM routine on OGBON with different problem sizes and using the avail-
able GPUs and Libraries

Scenario AUT parameter values OPT

Problem Available resources Communication library Perf.

Size GPUs—Libraries GPUs Scatter A Broadcast B Gather C Diff (%)

2048 8—MPI CA-MPI NCCL 4 NCCL NCCL NCCL 0
2048 7—MPI CA-MPI NCCL 4 NCCL NCCL NCCL 0
2048 8—MPI CA-MPI 4 CA-MPI CA-MPI CA-MPI − 9
2048 8—MPI 2 MPI MPI MPI − 6
4096 8—MPI CA-MPI NCCL 8 NCCL NCCL NCCL 0
4096 7—MPI CA-MPI NCCL 4 NCCL NCCL NCCL 0
4096 8—MPI CA-MPI 4 CA-MPI CA-MPI CA-MPI 0
4096 8—MPI 2 MPI MPI MPI − 9
8192 8—MPI CA-MPI NCCL 8 NCCL NCCL NCCL 0
8192 7—MPI CA-MPI NCCL 4 NCCL NCCL NCCL 0
8192 8—MPI CA-MPI 4 CA-MPI CA-MPI CA-MPI 0
8192 8—MPI 2 MPI MPI MPI − 1
16384 8—MPI CA-MPI NCCL 8 NCCL NCCL NCCL 0
16384 7—MPI CA-MPI NCCL 4 CA-MPI CA-MPI CA-MPI − 11
16384 8—MPI CA-MPI 4 CA-MPI CA-MPI CA-MPI 0
16384 8—MPI 3 MPI MPI MPI − 1
32768 8—MPI CA-MPI NCCL 8 NCCL NCCL NCCL 0
32768 7—MPI CA-MPI NCCL 7 NCCL NCCL NCCL − 5
32768 6—MPI CA-MPI NCCL 6 NCCL NCCL NCCL 0
32768 5—MPI CA-MPI NCCL 4 CA-MPI CA-MPI CA-MPI − 9
32768 8—MPI CA-MPI 4 CA-MPI CA-MPI CA-MPI 0
32768 8—MPI 8 MPI MPI MPI 0
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noting that the average improvement in performance compared to an assumed deci-
sion making by hand is about 65%, as in HETEROSOLAR.

3.2 � Experimental results with other routines

This subsection summarises the results obtained when the proposed methodology is 
applied to routines with different space-temporal schemes for both calculation and 
communication, which implies a more complex decision-making process.

In the PLU routine, a LU factorisation is carried out using the Gaussian reduc-
tion algorithm. First, the input singular square matrix, A, is scattered from the root 
GPU to all GPUs. After that, a set of n steps are performed. In step j, the row j of 
A is broadcasted. Then, this row is used by each GPU to update its part of the j-th 
column of A (progressing in the calculation of the resulting matrix, L) and to reduce 
its set of rows of A starting from column j + 1 (progressing in the calculation of the 
resulting matrix, U). Finally, each GPU sends its part of both result matrices to the 
root GPU. Thus, given an execution platform P, the execution time model for the 
PLU routine to solve a n2 problem, assigning ni × n data to the i-th GPU, being L the 
communication library used, can be modelled as:

The PHR routine performs a data frequency analysis using a multi-GPU platform. 
To this end, the input data, D, are distributed among the different GPUs. Then, each 
GPU calculates its partial histogram and, finally, the results are grouped by means of 
a reduction operation of the partial histograms. Thus, given an execution platform P, 
the execution time model for the PHR routine to calculate the histogram of NH data 
from a total of ND input data, assigning NDi data to the i-th GPU, being L the com-
munication library used, can be modelled as:

Finally, PNB is a multi-GPU routine for the resolution of the n-body problem using 
the all-pairs algorithm. This routine takes as input parameters the position and mass 
of the N bodies and returns as output the attractive force applied on each of these 
bodies. First, the masses and positions are distributed among the GPUs. After that, 
d iterations are carried out, being d the number of GPUs. In the j-th iteration, GPUj 
distributes its subsets of positions and masses to all GPUs and, then, each GPU 
updates the partial calculation of the forces acting on its assigned subset of bodies. 

(3)

TPLU_A(n
2,P, Lcom) =Tscatter_A(n

2, ni × n, root GPU, GPUset,L) +

n
∑

j=1

Tbroadcast_row_A(n − j, root GPUj, GPUset,L) +

n
∑

j=1

max
i

{

Tupdate_L(ni, GPUi) + Treduce_U(ni × (n − j), GPUi)
}

+

Tgather_LU(n
2, ni × n, root GPU, GPUset,L)

(4)
TPHR(ND,NH ,P, L) = Tscatter_D(ND,NDi, root GPU, GPUset,L) +

max
i

{

Thist(NDi,NH , GPUi)
}

+ Tred_add_H(NH , root GPU, GPUset,L)
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Finally, the results obtained for all the forces are gathered. Thus, given an execu-
tion platform P with d GPUs, the execution time model for the PNB routine to solve 
the N-body problem, whose coordinates and masses are {X, Y} and M, respectively, 
assigning Ni bodies to the i-th GPU, being FX and FY the resulting forces, and L the 
communication library used, can be modelled as:

(5)

TPNB(N,P, L) =Tscatter_XYM(N,Ni, rootGPU, GPUset) +

d−1
∑

j=0

Tbroadcast_XjYjMj
(Nj, GPUj, GPUset,L) +max

i

{

Tnb(Ni,Nj,GPUi)
}

+

Tgather_FXFY
(N,Ni, rootGPU, GPUset,L)

Table 3   Execution of PLU on HETEROSOLAR for different problem sizes and root GPUs (venus GPU0 
(v0), venus GPU1 (v1), saturno GPU0 , (s0))

Scenario AUT parameter values

Root GPU Problem size Selected GPUs 
(workload factor)

Communication library

Scatter A Broadcast row Gather LU

v0 1024 v0(×3)–v1(×1) CA-MPI MPI CA-MPI
v0 2048 v0(×3)–v1(×1) CA-MPI MPI CA-MPI
v0 3072 v0(×3)–v1(×1) MPI MPI MPI
v0 4096 v0(×3)–v1(×1) MPI MPI MPI
v1 1024 v1(×1)–v0(×1) CA-MPI MPI CA-MPI
v1 2048 v1(×1)–v0(×3) CA-MPI MPI CA-MPI
v1 3072 v1(×1)–v0(×3) MPI MPI MPI
v1 4096 v1(×1)–v0(×3) MPI MPI MPI
s0 1024 s0(×1)–v0(×1) MPI MPI MPI
s0 2048 s0(×1)–v0(×1) MPI MPI MPI
s0 3072 s0(×1)–v0(×1) MPI MPI MPI
s0 4096 s0(×1)–v0(×1) MPI MPI MPI

Table 4   Execution of PLU on OGBON for different problem sizes

Scenario AUT parameter values

Available 
GPUs

Problem size Communication library

GPUs Scatter A Broadcast Row Gather LU

8 2048 4 NCCL CA-MPI NCCL
8 4096 4 NCCL CA-MPI NCCL
8 8192 4 NCCL CA-MPI NCCL
8 16384 4 NCCL CA-MPI NCCL
8 32768 4 NCCL CA-MPI NCCL
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Tables 3, 4, 5, 6, 7, 8 show the decisions taken for the AP values of these routines 
with different execution scenarios. As can be seen, these decisions can be quite dif-
ferent from those taken for the PTMM routine (Tables 1, 2). That is, as detailed in 
Sect. 2, after the experimental training phase of the basic calculation and commu-
nication routines, it is necessary to arithmetically design the performance map of 
each routine based on its execution time model. Although not shown in these tables, 
it is worth noting that near-optimal decisions are taken in most of the execution 

Table 5   Execution of PHR on HETEROSOLAR using different root GPUs (venus GPU0 (v0), venus 
GPU1 (v1), and saturno GPU0 (s0)), for different problem and histogram sizes

Scenario AUT parameter values

Root GPU Problem size Histogram size Selected GPUs 
(workload factor)

Communication library

Scatter D Reduction H

v0 8 M 8 M v0(×1)–v1(×1) NCCL NCCL
v0 64 M 8 M v0(×1)–v1(×1) CA-MPI NCCL
v0 8 M 64 M v0(×1)–v1(×1) MPI NCCL
v0 64 M 64 M v0(×1)–v1(×1) CA-MPI NCCL
v1 8 M 8 M v0(×1)–v1(×1) NCCL NCCL
v1 64 M 8 M v0(×1)–v1(×1) CA-MPI NCCL
v1 8 M 64 M v0(×1)–v1(×1) MPI NCCL
v1 64 M 64 M v0(×1)–v1(×1) CA-MPI NCCL
s0 8 M 8 M s0(×1)–v0(×1) NCCL NCCL
s0 64 M 8 M s0(×1)–v0(×1) CA-MPI NCLL
s0 8 M 64 M s0(×1)–v0(×1) MPI NCCL
s0 64 M 64 M s0(×1)–v0(×1) CA-MPI NCCL

Table 6   Execution of PHR on OGBON for different problem and histogram sizes

Scenario AUT parameter values

Available 
GPUs

Problem size Histogram size Communication library

GPUs Scatter D Reduction H

8 8 M 8 M 4 NCCL NCCL
8 64 M 8 M 4 NCCL NCCL
8 256 M 8 M 4 CA-MPI NCCL
8 8 M 64 M 4 NCCL NCCL
8 64 M 64 M 4 NCCL NCCL
8 256 M 64 M 4 CA-MPI NCCL
8 8 M 256 M 4 NCCL NCCL
8 64 M 256 M 4 NCCL NCCL
8 256 M 256 M 4 CA-MPI NCCL
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scenarios and the average improvement in performance compared to an assumed 
decision making by hand is about 35%.

4 � Conclusions and future work

This work has faced the challenge of properly selecting the communication library 
and the workload distribution when running parallel routines on multi-GPU sys-
tems. To do so, an autotuning approach based on a hierarchical view of the software 
is used.

Given a routine, a execution time model is designed as a guide to build the per-
formance map of that routine, that is, a topographical view of its execution time 
through a set of values of its adjustable parameters. This process is carried out 

Table 7   Execution of PNB on HETEROSOLAR for different problem sizes and root GPUs (venus GPU0 
(v0), venus GPU1 (v1), and saturno GPU0 , (s0))

Scenario AUT parameter values

Root GPU Problem size Selected GPUs 
(workload factor)

Communication Library

Scatter XYM Broadcast Gather F
X
F
Y

v0 4096 v0(×4)–v1(×1) MPI MPI MPI
v0 8192 v0(×4)–v1(×1) MPI MPI MPI
v0 16384 v0(×4)–v1(×1) MPI MPI MPI
v0 32768 v0(×4)–v1(×1) MPI MPI MPI
v1 4096 v1(×1)–v0(×2) MPI MPI MPI
v1 8192 v1(×1)–v0(×2) MPI MPI MPI
v1 16384 v1(×1)–v0(×2) MPI MPI MPI
v1 32768 v1(×1)–v0(×2) MPI MPI MPI
s0 4096 s0(×1)–v0(×1) NCCL MPI NCCL
s0 8192 s0(×1)–v0(×1) NCCL MPI NCCL
s0 16384 s0(×1)–v0(×1) NCCL MPI NCCL
s0 32768 s0(×1)–v0(×1) NCCL MPI NCCL

Table 8   Execution of PNB on OGBON for different problem sizes

Scenario AUT parameter values

Available 
GPUs

Problem size Communication library

GPUs Scatter XYM Broadcast Gather F
X
F
Y

8 32768 8 NCCL NCCL CA-MPI
8 65536 8 NCCL NCCL CA-MPI
8 131072 8 NCCL NCCL CA-MPI
8 262144 8 NCCL NCCL CA-MPI
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hierarchically, taking the performance maps of the most basic routines as a start-
ing point. In this way, the required experimental effort is done at installation time, 
since it focuses on building these basic maps.

This accomplishes two goals: first, it eliminates the experimentation phase in 
the autotuning process of the main routine, which significantly reduces the corre-
sponding overhead. Secondly, to reuse all the implicit information gathered in the 
performance maps of the basic routines, as no additional cost is incurred to create 
maps for other higher-level routines that use them.

The results obtained show that this hierarchical approach leads to routine per-
formance maps that can be used as tools to make near-optimal decisions on the 
values of their adjustable parameters. All this regardless of the specific topology 
of the execution platform and the software implementation used within the rou-
tine to be handled.

By treating each processing unit of the execution platform as a black box, with 
a corresponding performance map for each routine, the extension of this method-
ology to other computational environments with other types of accelerators, such 
as FPGAs, is greatly facilitated. In addition, it is intended to include the neces-
sary functionality to decide the best available numerical library for each accelera-
tor, in the same way as has been done for the communication library.

Following this research line, our medium-term goal is to integrate the proposed 
hierarchical autotuning approach into PARCSIM [17], a full-featured simulator 
for running numerical software on heterogeneous parallel platforms. The auto-
tuning engine would substantially enhance the functionality of PARCSIM, since 
currently this tool needs to generate all possible combinations of the AP values 
for a given input scenario (problem size and execution platform) in order to deter-
mine the best way to execute a routine. In contrast, with the proposed hierarchical 
autotuning engine this would not be necessary, since it allows to directly select 
the best execution configuration by making use of the performance information 
stored during the installation phase.

Finally, as future work, other performance metrics, such as energy consump-
tion or memory usage, could be considered for optimisation by the autotuning 
engine using a similar approach. For example, regarding energy consumption, the 
execution time model of the routine would be transformed into the corresponding 
energy consumption model by simply replacing the terms related to the execution 
times of the basic routines by their respective in energy consumption. Afterwards, 
in the installation phase, the energy maps of each basic routine would be obtained 
experimentally and then, using the model, the map of the routine to be optimised 
would be constructed arithmetically.
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