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Abstract
We characterize several stability properties, such as inverse or composition closedness, for
ultraholomorphic function classes of Roumieu type defined in terms of a weight matrix. In
this way we transfer and extend known results from J. Siddiqi and M. Ider, from the weight
sequence setting and in sectors not wider than a half-plane, to the weight matrix framework
and for sectors in the Riemann surface of the logarithm with arbitrary opening. The key
argument rests on the construction, under suitable hypotheses, of characteristic functions in
these classes for unrestricted sectors. As a by-product, we obtain new stability results when
the growth control in these classes is expressed in terms of a weight sequence, or of a weight
function in the sense of Braun–Meise–Taylor.
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1 Introduction

When dealing with function spaces (usually called classes) it is very interesting to decide
whether the usual operations (pointwise product, composition, algebraic inversion, differ-
entiation, integration, etc.) on the functions of the space provide new functions inside it.
These stability properties play a crucial role in the setting and the solution of, for example,
algebraic, differential or integro-differential equations in the class.

In the literature one can frequently find the so-called ultradifferentiable classes, both in the
Carleman and the Braun–Meise–Taylor sense, whose elements are smooth functions defined
on open subsets of Rn (or possibly germs at a point) such that the rate of growth of their
successive derivatives is controlled (except for a geometric factor) in termsof a given sequence
of positive real numbers in the first case, or of a given weight function in the second one.
Moreover, depending on the choice of a universal or existential quantifier for the geometric
factor in the estimates, one can consider Beurling- or Roumieu-like classes in both situations.
The study of stability under inversion (or division) in these frameworks has a long history,
see the works of Rudin [17], Bruna [3] and Siddiqi [24], and also composition has been
studied in Fernández and Galbis [4]. Recently, the introduction of classes associated with a
weight matrix, by the fourth author of this paper [19, 20], which strictly encompass those
classes mentioned before, has led him and Rainer [13, 14] to the characterization of stability
under different operations in terms of conditions for the weight matrix under consideration,
so giving a satisfactory general solution to these problems.

In connection with the asymptotic theory of solutions for differential and difference equa-
tions around singular points in the complex domain, it is natural to consider the complex
analogue of such classes, usually called ultraholomorphic classes. They consist of holomor-
phic functions in sectorial regions in the Riemann surface of the logarithm (the singular
point is assumed to be at 0, the vertex of the region) whose derivatives admit again suitable
estimates of Roumieu type in terms of a sequence of positive real numbers, which in the
applications is typically a Gevrey sequence (p!a)p∈N0 for some a > 1. The study of sta-
bility properties in such classes is well-known for the Gevrey ones, see [1], but already in
1987 Ider and Siddiqi [25] studied stability under composition with analytic functions and
under inversion for general Carleman–Roumieu classes in unbounded sectors not wider than
a half-plane. Our aim is to extend their results in several senses: (1) we consider Roumieu
classes defined by weight matrices, so including in our considerations those of Carleman
type and those defined by a weight function, as in the ultradifferentiable setting; (2) we are
able to deal with classes defined in sectors of arbitrary opening in the Riemann surface of
the logarithm, and (3) we extend the list of stability properties, including that of composition
closedness. It is important to note that, in the case of classes given by a weight function, a
fundamental role in the stability properties is played by the condition that this function is
equivalent to a concave weight function, what amounts to the root almost increasing property
for the associated weight matrix.

The main novelties arise from two different sources. On the one hand, the techniques
coming with the weight matrix structure allow for a better understanding of the conditions
usually appearing in such stability results, and provide a clear way to establish results for the
weight sequence andweight function approach. Indeed, our results extend the known ones for
Carleman classes, and they match, in the limit when the opening of the sector tends to 0, with
the ones for ultradifferentiable classes on a half-line. On the other hand, the main statements
heavily rest on the construction of so-called characteristic functions in Carleman-Roumieu
ultraholomorphic classes in sectors of arbitrary opening. These functions are those in a class
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which cannot belong to a class strictly contained in the original one, and so are in a sense
maximal within the class. While Ider and Siddiqi only got such functions in narrow sectors,
the work of Rodríguez-Salinas [16] provides indeed the key facts for working in general
sectors, and this is in turn crucial for our purposes.

The paper is organized as follows. Section2 contains all the preliminary information
about sequences, weight functions and weight matrices. For the ultraholomorphic classes
introduced in Sect. 3we showhow to construct characteristic functions in Sect. 4. The stability
results for classes associated with weight matrices are given in Sect. 5, and Sect. 6 is devoted
to their particularization to the case of classes induced by a weight function. Finally, we
present in Sect. 7 some examples, including those of Gevrey and q-Gevrey classes, in order
to illustrate the obtained results.

2 Preliminaries on sequences, weight functions and weight matrices

2.1 Weight sequences

We write N0 := {0, 1, 2, . . .} and N := {1, 2, 3, . . .}. In what follows, we always denote
by M = (M j ) j ∈ R

N0
>0 a sequence with M0 = 1, we also use qM = ( qM j ) j defined by

qM j := M j/ j ! and the sequence of quotients associated m = (m j ) j defined by m j :=
M j+1/M j , j ∈ N0, and analogously for all other arising sequences.M is called normalized
if 1 = M0 ≤ M1 holds true.

M is said to be log-convex, (for short, (lc)) if

∀ j ∈ N : M2
j ≤ M j−1M j+1,

equivalently ifm is nondecreasing. IfM is log-convex andnormalized, then both j �→ M j and
j �→ (M j )

1/ j are nondecreasing and (M j )
1/ j ≤ m j−1 for all j ∈ N. Finally M j+k ≤ M j Mk

follows for all j, k ∈ N0.
If qM is log-convex, then M is called strongly log-convex, denoted by (slc). We say that

a sequence M is a weight sequence if it is (lc) and lim j→∞ m j = ∞. We see that M is a
normalized weight sequence if and only if 1 ≤ m0 ≤ m1 ≤ · · · , lim j→+∞ m j = +∞
(e.g. see [13, p. 104]) and there is a one-to-one correspondence betweenM and m by taking
M j := ∏ j−1

i=0 mi .
For a ∈ R we set

G
a := ( j !a) j∈N0 , G

a := ( j ja) j∈N0 ,

i.e. for a > 0 the sequence Ga is the Gevrey-sequence of index a. Clearly G
a and G

a
are

normalized weight sequences for any a > 0 (by the convention 00 := 1).
M satisfies the condition of moderate growth, denoted by (mg), if

∃ C ≥ 1 ∀ j, k ∈ N0 : M j+k ≤ C j+k M j Mk .

In the classical work of Komatsu [9] this condition is named (M .2) and also known in the
literature under the name stability under ultradifferential operators. M satisfies the weaker
requirement of derivation closedness, denoted by (dc), if

∃ D ≥ 1 ∀ j ∈ N0 : M j+1 ≤ D j+1M j ⇐⇒ m j ≤ D j+1.
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In [9] this is condition (M .2′). Both (mg) and (dc) are preservedwhenmultiplying or dividing
M by any sequence Ga . In particular, both conditions hold simultaneously true or false for
M and qM.

We say M has the root almost increasing property, denoted by (rai), if the sequence of
roots ( qM1/ j

j ) j∈N is almost increasing, that is,

∃ C > 0 ∀ 1 ≤ j ≤ k : qM1/ j
j ≤ C qM1/k

k .

M has the Faà-di-Bruno property, denoted by (FdB), if

∃ C ≥ 1 ∃ h ≥ 1 ∀ j ∈ N0 : qM◦
j ≤ Ch j

qM j ,

where qM
◦ := ( qM◦

j ) j∈N0 is the sequence defined by

qM◦
k := max

{

qM� · qM j1 · · · qM j� : ji ∈ N,

�∑

i=1

ji = k

}

, k ∈ N; qM◦
0 := 1. (1)

LetM,L ∈ R
N0
>0 begivenwith arbitrary M0, L0 > 0,wewriteM�L if sup j∈N

(
M j/L j

)1/ j

< +∞ or, equivalently, if there exist A, B > 0 such that M j ≤ AB j L j for every j ∈ N0.
We say M and L are equivalent, denoted by M≈L, if M�L and L�M. Note that, in case
M0 = L0 = 1, equivalence amounts to B j M j ≤ L j ≤ C j M j for every j ∈ N0 and suitable
B, C > 0. Properties (mg) and (dc) are clearly preserved under ≈.

Let us write M ≤ L if M j ≤ L j for all j ∈ N0.
Finally, we recall some useful elementary estimates,

∀ j ∈ N : j j

e j
≤ j ! ≤ j j , (2)

which immediately imply that Ga≈G
a
for any a ∈ R.

2.2 Associated weight function

LetM ∈ R
N0
>0, then the associated function ωM : R≥0 → R ∪ {+∞} is defined by

ωM(t) := sup
j∈N0

ln

(
t j

M j

)

for t > 0, ωM(0) := 0.

For an abstract introduction of the associated function we refer to [12, Chapitre I], see also
[9, Definition 3.1].

If lim inf j→+∞(M j )
1/ j > 0, then ωM(t) = 0 for sufficiently small t > 0, since t0/M0 =

1 and ln
(

t j

M j

)
< 0 precisely if t < (M j )

1/ j , j ∈ N (in particular, if M j ≥ 1 for all j ∈ N0,

then ωM vanishes on [0, 1]). Moreover, under this assumption t �→ ωM(t) is a continuous
nondecreasing function, which is convex in the variable ln(t) and tends faster to infinity than
any ln(t j ), j ≥ 1, as t → +∞. If lim j→+∞(M j )

1/ j = +∞, then ωM(t) < +∞ for each
finite t , so this will be a basic assumption for defining ωM.

IfM is a weight sequence, then we can computeM by involving ωM as follows, see [12,
Chapitre I, 1.4, 1.8] and also [9, Prop. 3.2]:

M j = sup
t≥0

t j

exp(ωM(t))
, j ∈ N0. (3)
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Moreover, in this case one has

ωM(t) = 0 ∀ t ∈ [0, m0],
by the known integral representation formula for ωM, see [12, 1.8. III] and also [9, (3.11)].

If M ∈ R
N0
>0 satisfies lim j→+∞(M j )

1/ j = +∞, then the right-hand side of formula (3)
yields the j-th term of the log-convex minorantMlc ofM, i.e. the log-convex sequence such
that each log-convex sequence L with L ≤ M satisfies L ≤ M

lc (moreover,Mlc ≡ M if and
only ifM is log-convex). By the results from [12, Chapitre I] it also follows that ωM ≡ ωMlc .

Finally, if for β > 0 we write M1/β := (M1/β
j ) j∈N0 , we recall the following immediate

equality, e.g. see [7, (2.7)]:

∀ t ≥ 0 : ω
β

M
(t) := ωM(tβ) = βωM1/β (t).

2.3 Growth index �(M)

We say M satisfies property
(
Pγ

)
if there exists a sequence of real numbers � = (� j ) j∈N0

such that:

(i) m � �, that is,

∃ a ≥ 1 ∀ j ∈ N0 : a−1m j ≤ � j ≤ am j ,

(ii)
(
( j + 1)−γ � j

)
j∈N0

is nondecreasing.

Note that m � � implies M≈L.
If (Pγ ) holds true forM, then (Pγ ′) also holds for any γ ′ ≤ γ . It is then natural to define

the growth index γ (M) by

γ (M) := sup{γ ∈ R : (Pγ ) is fulfilled},
with the conventions inf ∅ = supR = +∞ and inf R = sup∅ = −∞ (see [6, Rem. 2.2]). For
a comprehensive study of this index we refer to [6, Sect. 3], especially to the characterizing
result [6, Thm. 3.11]. This growth index was originally defined and considered for so-called
strongly regular sequences by V. Thilliez in [26, Sect. 1].

2.4 Weight functions

A function ω : [0,+∞) → [0,+∞) is called a weight function (in the terminology of [6,
Sect. 2.1], [7, Sect. 2.2], [8, Sect. 2.2]), if it is continuous, nondecreasing, ω(0) = 0 and
limt→+∞ ω(t) = +∞. If ω satisfies in addition ω(t) = 0 for all t ∈ [0, 1], then we call
ω a normalized weight function. For convenience we will write that ω has (ω0) if it is a
normalized weight.

For any a > 0 we put ωa for the function given by ωa(t) := ω(ta), i.e. composing with
a so-called Gevrey weight t �→ ta .

Let σ, τ be weight functions, we write σ�τ if τ(t) = O(σ (t)) as t → +∞ and call them
equivalent, denoted by σ∼τ , if σ�τ and τ�σ .

We consider the following (standard) conditions, this list of properties has already been
used in [20].

(ω1) ω(2t) = O(ω(t)) as t → +∞, i.e. ∃ L ≥ 1 ∀ t ≥ 0 : ω(2t) ≤ L(ω(t) + 1).
(ω2) ω(t) = O(t) as t → +∞.
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(ω3) ln(t) = o(ω(t)) as t → +∞.
(ω4) ϕω : t �→ ω(et ) is a convex function on R.
(ω5) ω(t) = o(t) as t → +∞.
(ω6) ∃ H ≥ 1 ∀ t ≥ 0 : 2ω(t) ≤ ω(Ht) + H .

For convenience we define the sets

W0 := {ω : [0,∞) → [0,∞) : ω has (ω0), (ω3), (ω4)}, W := {ω ∈ W0 : ω has (ω1)}.
For any ω ∈ W0 we define the Legendre–Fenchel–Young-conjugate of ϕω by

ϕ∗
ω(x) := sup{xy − ϕω(y) : y ≥ 0}, x ≥ 0, (4)

with the following properties, e.g. see [2, Remark 1.3, Lemma 1.5]: It is convex and nonde-

creasing, ϕ∗
ω(0) = 0, ϕ∗∗

ω = ϕω, limx→+∞ x
ϕ∗

ω(x)
= 0 and finally x �→ ϕω(x)

x and x �→ ϕ∗
ω(x)

x
are nondecreasing on [0,+∞). Note that by normalization we can extend the supremum in
(4) from y ≥ 0 to y ∈ R without changing the value of ϕ∗

ω(x) for given x ≥ 0.
Finally, let us introduce and recall the following crucial growth assumption on ω:

∃ C ≥ 1 ∃ t0 ≥ 0 ∀ λ ≥ 1 ∀ t ≥ t0 : ω(λt) ≤ Cλω(t). (5)

In the literature this condition is frequently denoted by (α0). It is known that a weight function
ω is equivalent to a subadditive weight function σ (i.e., σ(s + t) ≤ σ(s) + σ(t) for every
s, t ≥ 0), or even to a concave weight function, if and only if (5) holds true, we refer to
[22, Sect. 4.1] and the introduction of [22] with the citations therein. In [22, Thm. 4.5] this
condition for ωM has been characterized in terms ofM.

It is also known that (α0) characterizes some desired stability properties for ultradiffer-
entiable classes E[ω], e.g. closedness under composition, inverse closedness and closedness
under solving ODE’s. The definition of such classes (which will not be used in this paper)
and these results can be found in [13], [14, Thm. 1, Thm. 3] and [5, Thm. 4.8] and in the
references therein (see also [4] for closedness under composition).

We recall the following known result, e.g. see [13, Sect. 5] and [9, Lemma 4.1], [21,
Lemma 2.8] and [7, Lemma 2.4] and the references mentioned in the proofs there.

Lemma 2.1 Let M be a normalized weight sequence, then ωM ∈ W0 holds true. Moreover,

(i) lim inf j→∞( qM j )
1/ j > 0 if and only if (ω2) holds for ωM,

(ii) lim j→∞( qM j )
1/ j = +∞ if and only if (ω5) holds for ωM,

(iii) (ω6) holds for ωM if and only if M does have (mg).

2.5 Weight matrices

For the following definitions and conditions see also [13, Sect. 4].
Let I = R>0 denote the index set (equipped with the natural order), a weight matrix M

associated with I is a (one parameter) family of sequences M := {M(α) ∈ R
N0
>0 : α ∈ I},

such that

M
(α) ≤ M

(β) for α ≤ β; M (α)
0 = 1, ∀ α ∈ I.

We call a weight matrixM log-convex, denoted by (Mlc), ifM(α) is a log-convex sequence
for all α ∈ I. Moreover, we say that a weight matrixM is standard log-convex, abbreviated
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by (Msc), ifM(α) is a normalized weight sequence for all α ∈ I. We put qM (α)
j := M(α)

j
j ! for

j ∈ N0, and m(α)
j := M(α)

j+1

M(α)
j

for j ∈ N0.

If M is a weight matrix with lim j→∞(M (α)
j )1/ j = +∞ for all α, then let us set

Mlc := {(M(α))lc : M(α) ∈ M}.
For α ≤ β, sinceM(α) ≤ M

(β) we have (M(α))lc ≤ (M(β))lc. Moreover, (M (α))lc0 = M (α)
0 =

1.
A matrix is called constant ifM(α)≈M

(β) for all α, β ∈ I.
Let M = {M(α) : α ∈ I} and L = {L(α) : α ∈ I} be given. We write M{�}L if

∀ α ∈ I ∃ β ∈ I : M
(α)�L

(β),

and call M and L R-equivalent, if M{�}L and L{�}M.
Let us consider the following crucial assumptions (of Roumieu-type) on a given weight

matrix M, see [13, Sect. 4.1] and [20, Sect. 7.2]:

(M{Cω}) ∃ α ∈ I : lim inf j→∞( qM (α)
j )1/ j > 0,

(MH) ∀ α ∈ I : lim inf j→∞( qM (α)
j )1/ j > 0,

(M{rai}) ∀ α ∈ I ∃ C > 0 ∃ β ∈ I ∀ 1 ≤ j ≤ k : ( qM (α)
j )1/ j ≤ C( qM (β)

k )1/k ,

(M{FdB}) ∀ α ∈ I ∃ β ∈ I : ( qM(α))◦� qM
(β),

where ( qM(α))◦ is the sequence defined by (1).
Moreover, let us consider

(M{mg}) ∀ α ∈ I ∃ C > 0 ∃ β ∈ I ∀ j, k ∈ N0 : M (α)
j+k ≤ C j+k M (β)

j M (β)
k ,

and the weaker requirement

(M{dc}) ∀ α ∈ I ∃ C > 0 ∃ β ∈ I ∀ j ∈ N0 : M (α)
j+1 ≤ C j+1M (β)

j .

Let us gather now some relevant information needed in the forthcoming sections.

Lemma 2.2 Let M = {M(α) : α ∈ I} be a weight matrix. If M has (M{rai}), then

∀ α > 0 ∃ H ≥ 1 ∃ α′(≥ α) ∀ k ∈ N ∀ j1, . . . , jk ∈ N0 :
qM (α)

j1
· · · qM (α)

jk
≤ H j1+···+ jk qM (α′)

j1+···+ jk
. (6)

Note that the indices α and α′ are related by property (M{rai}).

Proof If j1, . . . , jk ≥ 1 we estimate by

qM (α)
j1

· · · qM (α)
jk

≤ H j1
(
qM (α′)

j1+···+ jk

) j1
j1+···+ jk · · · H jk

(
qM (α′)

j1+···+ jk

) jk
j1+···+ jk

= H j1+···+ jk qM (α′)
j1+···+ jk

,

and the remaining cases follow by qM (α)
0 = M (α)

0 = 1. ��
Lemma 2.3 Let M = {M(α) : α ∈ I} be a weight matrix. Then we have the following:

(i) (M{rai}) implies (MH).
(ii) (M{dc}) and (M{rai}) imply (M{FdB}).
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(iii) If
∀ α ∈ I ∃ H ≥ 1 ∀ 1 ≤ j ≤ k : (M (α)

j )1/ j ≤ H(M (α)
k )1/k, (7)

i.e. each sequence ((M (α)
j )1/ j ) j is almost increasing, then (MH) and (M{FdB}) imply

(M{rai}).
In particular, (7) holds true (with H = 1 for any α) provided that M is log-convex.

Proof (i) By the order of the sequences we can assume w.l.o.g. β ≥ α and for each α ∈ I
there exists a minimal β = β(α) ≥ α such that qM(α) and qM

(β) are related by (M{rai}).

Then ( qM (β)
j )1/ j ≥ qM(α)

1
C > 0 for some C ≥ 1 and all j ≥ 1 (see also [22, Lemma

3.6 (ii)]). Since w.l.o.g. we can restrict in the Roumieu case to all β(α) (yielding an
R-equivalent matrix) we are done.

(ii) See the proofs of [13, Thm. 4.9 (3) ⇒ (4)] and [20, Lemma 8.2.3 (2)].
(iii) See the proofs of [14, Lemma 1 (2)] and [20, Lemma 8.2.3 (4)].

��

2.6 Weight matrices associated with weight functions

We summarize some facts which are shown in [13, Section 5] and are needed in this work.
All properties listed below are valid for ω ∈ W0, except (9) for which (ω1) is necessary.

(i) The idea was that to each ω ∈ W0 we can associate a standard log-convex weight matrix
Mω := {W(�) = (W (�)

j ) j∈N0 : � > 0} by

W (�)
j := exp

(
1

�
ϕ∗

ω(� j)

)

.

(ii) Mω satisfies
∀ � > 0 ∀ j, k ∈ N0 : W (�)

j+k ≤ W (2�)
j W (2�)

k , (8)

so both (M{mg}) and (M{dc}) are satisfied.
(iii) (ω6) holds if and only if some/each W

(�) satisfies (mg) if and only if W(�)≈W
(�1) for

each �, �1 > 0. Consequently (ω6) characterizes the situation when Mω is constant.
(iv) In case ω has in addition (ω1), then Mω has also

∀ h ≥ 1 ∃ A ≥ 1 ∀ � > 0 ∃ D ≥ 1 ∀ j ∈ N0 : h j W (�)
j ≤ DW (A�)

j , (9)

see [13, Lemma 5.9 (5.10)].
(v) We have ω∼ωW(�) for each � > 0, more precisely

∀ � > 0 ∃ D� > 0 ∀ t ≥ 0 : �ωW(�) (t) ≤ ω(t) ≤ 2�ωW(�) (t) + D�, (10)

see [20, Thm. 4.0.3, Lemma 5.1.3] and also [7, Lemma 2.5].
(vi) Mω satisfies (MH) if and only if ω has in addition (ω2) (by (10) and (i) in Lemma 2.1).
(vii) Lemma 2.3 ( [14, Lemma 1]) applies to Mω; so in view of (i), (i i) and (vi) we have

that for ω ∈ W0 with (ω2) properties (M{rai}) and (M{FdB}) forMω are simultaneously
satisfied or violated.
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2.7 The growth index �(!)

Let ω be a weight function. We recall the definition of the growth index γ (ω), see [6, Sect.
2.3] and the references therein: Let γ > 0, then we say that ω has property (Pω,γ ) if

∃ K > 1 : lim sup
t→+∞

ω(K γ t)

ω(t)
< K .

If (Pω,γ ) holds for some K > 1, then also (Pω,γ ′) is satisfied for all γ ′ ≤ γ with the same
K . Moreover we can restrict to γ > 0, because for γ ≤ 0 condition (Pω,γ ) is satisfied for
all weights ω (since ω is nondecreasing and K > 1). Then we put

γ (ω) := sup{γ > 0 : (Pω,γ ) is satisfied}.
We recall some facts about γ (ω):

(i) If ω∼σ then γ (ω) = γ (σ ), see [6, Rem. 2.12].
(ii) γ (ω) > 0 holds if and only if (ω1), see [6, Cor. 2.14].
(iii) By definition one has γ (ωa) = 1

a γ (ω) for any a > 0.
(iv) If ω ∈ W0 is given with associated weight matrixMω := {W(�) : � > 0} and γ (ω) > β,

then (10) implies γ (ωW(�) ) > β, but in general only γ (W(�)) ≤ γ (ωW(�) ) by [6, Cor. 4.6
(i)]. Here γ (W(�)) is the index in Subsection 2.3, see more details in [6, Sect. 3].

3 Ultraholomorphic classes

We introduce now the classes under consideration in this paper, see also [7, Sect. 2.5] and [8,
Sect. 2.5]. For the following definitions, notation and more details we refer to [18, Section
2]. Let R be the Riemann surface of the logarithm. We wish to work in general unbounded
sectors inR with vertex at 0, but all our results will be unchanged under rotation, so we will
only consider sectors bisected by direction 0: For α > 0 we set

Sα :=
{

z ∈ R : | arg(z)| <
απ

2

}
,

i.e. the unbounded sector of opening απ , bisected by direction 0.
LetM be a sequence, S ⊆ R an (unbounded) sector and h > 0. We define

AM,h(S) :=
{

f ∈ H(S) : ‖ f ‖M,h := sup
z∈S, j∈N0

| f ( j)(z)|
h j M j

< +∞
}

.

(AM,h(S), ‖ · ‖M,h) is a Banach space and we put

A{M}(S) :=
⋃

h>0

AM,h(S).

A{M}(S) is called the Denjoy-Carleman ultraholomorphic class (of Roumieu type) associated
withM in the sector S (it is an (L B) space). By definition it is immediate thatM≈L implies
A{M}(S) = A{L}(S) (as locally convex vector spaces) for any sector S.

Similarly as for the ultradifferentiable case, we now define ultraholomorphic classes asso-
ciated with ω ∈ W0. Given an unbounded sector S, and for every � > 0, we first define

Aω,�(S) :=
{

f ∈ H(S) : ‖ f ‖ω,� := sup
z∈S, j∈N0

| f ( j)(z)|
exp( 1

�
ϕ∗

ω(� j))
< +∞

}

.
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(Aω,�(S), ‖ · ‖ω,�) is a Banach space and we put

A{ω}(S) :=
⋃

�>0

Aω,�(S).

A{ω}(S) is called the Denjoy-Carleman ultraholomorphic class (of Roumieu type) associated
with ω in the sector S (it is an (L B) space). Again, equivalent weight functions provide equal
associated ultraholomorphic classes.

Finally, we define ultraholomorphic classes of Roumieu type defined by a weight matrix
M analogously as the ultradifferentiable counterparts introduced in [20, Section 7] and also
in [13, Section 4.2].

Given a weight matrix M = {M(α) ∈ R
N0
>0 : α ∈ I} and a sector S we may introduce the

class A{M}(S) of Roumieu type as

A{M}(S) :=
⋃

α∈I
A{M(α)}(S).

R-equivalent weight matrices yield (as locally convex vector spaces) the same function class
on each sector S.

Let now ω ∈ W be given and letMω be the associated weight matrix defined in Sect. 2.6,
then

A{ω}(S) = A{Mω}(S) (11)

holds as locally convex vector spaces. This equality is an easy consequence of (9) and the
way the seminorms are defined in these spaces.

On the other hand, by (iii) in Sect. 2.6 we get the following:

Lemma 3.1 Let ω ∈ W be given and assume that ω has (ω6). Then, for all sectors S we get
that

∀ � > 0 : A{ω}(S) = A{W(�)}(S)

as locally convex vector spaces.

If f belongs to any of such classes, we may define the complex numbers

f ( j)(0) := lim
z∈S,z→0

f ( j)(z), j ∈ N0.

4 Characteristic functions in ultraholomorphic classes

We start with the following definition.

Definition 4.1 Let L ∈ R
N0
>0 and S be a given sector. A function f ∈ A{L}(S) is said to be

characteristic in the classA{L}(S) if, whenever f ∈ A{M}(S) ⊆ A{L}(S) for someM ∈ R
N0
>0,

we have that A{M}(S) = A{L}(S).

For f ∈ A{L}(S) we consider the sequence defined by

Cn( f ) := sup
z∈S

| f (n)(z)|, n ∈ N0.

The next statement provides conditions on f which imply it is characteristic.
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Theorem 4.2 LetL ∈ R
N0
>0, S be a given sector and f ∈ A{L}(S). Then, each of the following

conditions implies the next one:

(1) The sequence (| f ( j)(0)|) j∈N0 is equivalent to L.
(2) The sequence (C j ( f )) j∈N0 is equivalent to L.
(3) f is characteristic in the class A{L}(S).

Proof (1) ⇒ (2) As f ∈ A{L}(S), there exist A, B > 0 such that Cn( f ) ≤ ABn Ln for every
n ∈ N0. On the other hand, it is clear that Cn( f ) ≥ | f (n)(0)|, and the hypothesis allows us
to conclude the other estimate.

(2) ⇒ (3) By assumption, there exist A, B > 0 such that Ln ≤ ABnCn( f ) for every
n ∈ N0. If for some M = (Mn)n∈N0 ∈ R

N0
>0 we have f ∈ A{M}(S) ⊆ A{L}(S), there exist

C, D > 0 such that Cn( f ) ≤ C Dn Mn for every n ∈ N0. The two deduced inequalities show
that Ln ≤ AC(B D)n Mn for every n ∈ N0, what easily implies that A{L}(S) ⊆ A{M}(S),
and we are done. ��

4.1 Basic functions

Recall the notationsGs := ( j !s) j∈N0 andG
s := ( j js) j∈N0 , s ∈ R, and thatG

s≈G
s , see (2).

The two-parametric Mittag–Leffler function is defined for all complex parameters A, B
with �(A) > 0 by

E A,B(z) :=
∞∑

j=0

z j

�(Aj + B)
, z ∈ C,

where � denotes the Gamma function. For the construction of characteristic functions in
sectors Sα for α ∈ (0, 1] we will take A = 2 − α and B = 4 − α and we set

Ẽα(z) := E2−α,4−α(−z)=
∞∑

j=0

(−1) j z j

�((2 − α)( j + 1) + 2)
, z ∈ C.

We recall the following statement.

Theorem 4.3 [16, Thm. 5, Thm. 20] Let α ∈ (0, 1], then

∀ z ∈ Sα ∀ n ∈ N0 :
∣
∣
∣Ẽ (n)

α (z)
∣
∣
∣ ≤ 2

n!en

n(2−α)n
. (12)

Consequently, Ẽα ∈ A{Gα−1}(Sα). Moreover,

Ẽ (n)
α (0) = (−1)nn!

�((2 − α)(n + 1) + 2)
, n ∈ N0,

and so Ẽα is a characteristic function in the class A{Gα−1}(Sα).

Let α > 1 and take α′ > α. For all z ∈ Sα we define

gα,α′(z) :=
∫ ∞(−φ)

0
e−zvα′−1

e−vdv, (13)

where we choose φ ∈ (− (α−1)
(α′−1)

π
2 ,

(α−1)
(α′−1)

π
2 ) with | arg(z) − (α′ − 1)φ| < π/2.
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85 Page 12 of 30 J. Jiménez-Garrido et al.

Theorem 4.4 [16, Thm. 28] Let α > 1, α′ > α and gα,α′ be the function from (13). Then,

∃ C, A ≥ 1 ∀ z ∈ Sα ∀ n ∈ N0 :
∣
∣
∣g

(n)

α,α′(z)
∣
∣
∣ ≤ C An�((α′ − 1)n + 1). (14)

Consequently, gα,α′ ∈ A{Gα′−1}(Sα). Moreover,

g(n)

α,α′(0) = (−1)n�((α′ − 1)n + 1), n ∈ N0,

and so gα,α′ is a characteristic function in the class A{Gα′−1}(Sα).

4.2 Characteristic transform

Following again the work of Rodríguez-Salinas [16], we present a functional transform that
modifies the derivatives at 0 of a function in a ultraholomorphic class with a precise control,
what allows for the construction of characteristic functions in more general classes than the
Gevrey ones, considered previously.

Definition 4.5 Let M be an (lc) sequence, L ∈ R
N0
>0, S a sector and f ∈ A{L}(S). Then we

define the TM-transform of f by

TM( f )(z) :=
∞∑

j=0

1

2 j

M j

m j
j

f (m j z), z ∈ S.

This expression should be compared with the characteristic functions obtained in the
ultradifferentiable setting in [27, Thm. 1] and [13, Lemma 2.9]. For every j ∈ N0 let us set

R j :=
∞∑

n=0

1

2n

Mn

mn
n

m j
n .

The following result provides estimates for this sequence in terms of the general sequence
M we depart from.

Lemma 4.6 Let M ∈ R
N0
>0, then

∀ j ∈ N0 : R j ≥ 1

2 j
M j .

If M is (lc), then also

∀ j ∈ N0 : R j ≤ 2M j ,

and so (R j ) j∈N0 is equivalent to M.

Proof For any j ∈ N0 we choose n = j in the sum and get R j ≥ 1
2 j

M j

m j
j

m j
j = 1

2 j M j .

For the converse we recall that sinceM is (lc) we have m0 ≤ m1 ≤ . . . and so

∀ j, n ∈ N0 : (mn) j−n ≤ M j

Mn
,

see [27, Thm. 1] and the detailed proof in [19, (3.1.2)]. Thus

R j =
∞∑

n=0

1

2n
Mnm j−n

n ≤
∞∑

n=0

1

2n
Mn

M j

Mn
= 2M j

for all j ∈ N0. ��
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Theorem 4.7 Let M be a (lc) sequence, L ∈ R
N0
>0 and for a given sector S take f ∈ A{L}(S).

Then, TM( f ) ∈ A{LM}(S) with

TM( f )( j)(0) = R j f ( j)(0), j ∈ N0. (15)

Moreover, for any A > 0, TM : AL,A(S) → ALM,A(S) is a continuous linear operator.

Proof By definition of A{L}(S) we have that f is bounded in S by some constant C > 0.

SinceM is log-convex, we have that M j ≤ m j
j for all j ∈ N0 and then

∞∑

j=0

1

2 j

M j

m j
j

∣
∣ f (m j z)

∣
∣ ≤ C

∞∑

j=0

1

2 j
= 2C, z ∈ S.

Consequently, the series defining TM( f ) normally converges in the whole of S, it provides a
function holomorphic in S, and differentiation and limits can be interchanged with summa-
tion. For each z ∈ S and every j ∈ N0 we observe then that

(TM( f ))( j)(z) =
∞∑

n=0

1

2n

Mn

mn
n

m j
n f ( j)(mnz),

and so

TM( f )( j)(0) =
∞∑

n=0

1

2n

Mn

mn
n

m j
n f ( j)(0) = R j f ( j)(0), j ∈ N0,

as desired.
Suppose f ∈ AL,A(S) for some A > 0, then for all j ∈ N0 we can estimate

|(TM( f ))( j)(z)| ≤
∞∑

n=0

1

2n

Mn

mn
n

m j
n | f ( j)(mnz)|

≤ ‖ f ‖M,A A j L j

∞∑

n=0

1

2n
Mnm j−n

n = ‖ f ‖M,A A j L j R j .

By Lemma 4.6 we know that R j ≤ 2M j , so TM( f ) ∈ ALM,A(S), and moreover

‖TM( f )‖LM,A = sup
z∈S

|(TM( f ))( j)(z)|
A j L j M j

≤ 2‖ f ‖M,A.

It follows that TM : AL,A(S) → ALM,A(S) is a well-defined continuous linear operator for
any A > 0. ��

Theorem 4.8 Let M be a (lc) sequence, L ∈ R
N0
>0 and for a given sector S take f ∈ A{L}(S).

If (| f ( j)(0)|) j∈N0 is equivalent to L, then (|TM( f )( j)(0)|) j∈N0 is equivalent to LM. Conse-
quently, TM( f ) is characteristic in the class A{LM}(S).

Proof The first assertion is clear from Lemma 4.6 and (15). The second one stems from
Theorem 4.2. ��
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4.3 Construction of characteristic functions

Given a sequence M ∈ R
N0
>0 and α > 0 we construct now, under suitable assumptions,

characteristic functions inA{M}(Sα). For this we are using the basic functions from Sect. 4.1
and the characteristic transform from Sect. 4.2.

Theorem 4.9 Let M ∈ R
N0
>0 and α > 0.

1. If α ≤ 1, we assume that G
1−α

M := ( j (1−α) j M j ) j∈N0 is equivalent to an (lc) sequence
L. Then, TL(Ẽα) is characteristic in the class A{M}(Sα).

2. If α > 1, we assume that there exists α′ > α such that G
1−α′

M := ( j (1−α′) j M j ) j∈N0 is
equivalent to an (lc) sequence L. Then, TL(gα,α′) is characteristic in the class A{M}(Sα).

Proof This follows by Theorems 4.3, 4.4, 4.7 and 4.8, and from the fact thatG
α−1

L in case

1, resp. G
α′−1

L in case 2, is equivalent toM. ��
Remark 4.10 In order to guarantee that the hypotheses in the previous theorem are satisfied,
one can compute the index γ (M) and check whether it is greater than α − 1. If this is the
case, the very definition of this index implies that for any β such that γ (M) > β > α − 1
the property

(
Pβ

)
(see Sect. 2.3) is satisfied, and so there exists a suitable (lc) sequence L in

the desired conditions.

5 Stability properties for ultraholomorphic classes defined by weight
matrices

The aim of this section is to generalize and extend the stability result of Ider and Siddiqi
[25, Thm. 1], valid for Carleman–Roumieu ultraholomorphic classes in sectors not wider
than a half-plane. We give the proof in the general weight matrix setting, we get rid of the
restriction on the opening of the sector (thanks to the construction of characteristic functions
in arbitrary sectors), and we extend the list of stability properties.

Our main result is concerned with several stability properties which will be defined next.

Definition 5.1 LetM ∈ R
N0
>0 be a sequence and U ⊆ C be an open set. Given a compact set

K ⊂ U , we define

HM,h(K ) :=
{

f ∈ H(U ) : ‖ f ‖M,K ,h := sup
z∈K , j∈N0

| f ( j)(z)|
h j M j

< +∞
}

.

We put
H{M}(K ) :=

⋃

h>0

HM,h(K ).

Moreover, given aweightmatrixM = {M(p) : p > 0}, wemay introduce the classH{M}(U )

as
H{M}(U ) :=

⋂

K⊂U

⋃

p>0

H{M(p)}(K ).

Definition 5.2 LetM = {M(p) : p > 0} be a weight matrix and α > 0. The classA{M}(Sα)

is said to be:
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(i) holomorphically closed, if for all f ∈ A{M}(Sα) and g ∈ H(U ), where U ⊆ C is an
open set containing the closure of the range of f , we have g ◦ f ∈ A{M}(Sα).

(ii) inverse-closed, if for all f ∈ A{M}(Sα) such that inf z∈Sα | f (z)| > 0, we have 1/ f ∈
A{M}(Sα).

(iii) closed under composition, if for all f ∈ A{M}(Sα) and for all g ∈ H{M}(U ), where
U ⊆ C is an open set containing the closure of the range of f , we have g◦ f ∈ A{M}(Sα).

Remark 5.3 We wish to highlight that it is important to state these definitions in a clear
way. We cannot relax the condition inf z∈Sα | f (z)| > 0 in the definition of inverse-closed by
considering, for example, the weaker requirement:

f (z) �= 0 for all z ∈ Sα.

While this is enough when working with ultradifferentiable classes on compact intervals, as
done in [11], our situation is different as Sα is not compact. This is easily seen by considering
the function z �→ exp(−1/z), which belongs to the class A{G2}(Sα) for every α ∈ (0, 1) (as
a consequence of Cauchy’s integral formula for the derivatives) and never vanishes in Sα .
However, observe that its multiplicative inverse z �→ exp(1/z) is not bounded, and hence it
does not belong to any of the ultraholomorphic classes under consideration.

In the same vein, the open set U in (i) and (iii) has to contain the closure of the range
of f , and not just the range. This is clearly seen in the forthcoming arguments involving
the function z �→ 1/z, whose derivatives admit global analytic bounds in closed subsets of
C\{0}, but not in the whole of it.

Our first statement will consider classes in sectors Sα contained in a half-plane and defined
by a weight matrix M. In this case, the matrix can be changed, without altering the class,
into a new matrix Mα which we define now.

Definition 5.4 Let M = {M(p) : p > 0} be a weight matrix (not necessarily satisfying
(Msc)). Given α > 0 we assume that lim j→+∞( j (1−α) j M (p)

j )1/ j = ∞ for all p > 0. The
matrix

Mα := {M(p,α) : p > 0}
is defined as

M
(p,α) = G

α−1
(
G

1−α
M

(p)
)lc

, M (p,α)
j = j (α−1) j

(
G

1−α
M

(p)
)lc

j
, j ∈ N0. (16)

So, every sequence in the original matrix is termwise multiplied by the Gevrey-like

sequenceG
1−α

(recall thatG
1−α≈G

1−α), this sequence is changed into its log-convex regu-

larization, and finally one termwise divides byG
1−α

again. It is clear that M (p,α)
0 = M (p)

0 = 1

(recall the convention 00 := 1) for all α > 0 and p > 0, and that the map p �→ M (p,α)
j is

non-decreasing for any j ∈ N0 fixed. So,M(p,α) ≤ M
(p′,α) for all 0 < p < p′, i.e.,Mα is a

weight matrix according to the definition given in Sect. 2.5. However, in general Mα is not
log-convex.

Remark 5.5 Note that if there exist some p > 0 such that lim j→+∞( j (1−α) j M (p)
j )1/ j = ∞,

then the same is valid for all p′ > p, thanks to the fact that theM(p) ≤ M
(p′). In this situation,

since we also haveA{M(p)}(Sα) ⊆ A{M(p′)}(Sα) and the class associated to the weight matrix
M is the increasing union of such classes, in order to study stability properties in it we can
restrict our attention to the case described in the previous definition.
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In case lim j→+∞( j (1−α) j M (p)
j )1/ j is not infinity for any p > 0, then there are some

possibilities:

(i) If α > 1 and lim inf j→+∞( j (1−α) j M (p)
j )1/ j < ∞ for all p > 0, the class A{M(p)}(Sα)

only contains constant functions, see [16, Thm. 21, and p. 8], and the same holds for the
class A{M}(Sα). So, the stability results turn out to be trivial.

(ii) If 0 < α ≤ 1 and lim inf j→+∞( j (1−α) j M (p)
j )1/ j = 0 for all p > 0, the classA{M(p)}(Sα)

only contains constant functions, see [16, Thm. 20], and again we are done.
(iii) If 0 < α ≤ 1 and lim inf j→+∞( j (1−α) j M (p)

j )1/ j ∈ (0,∞) for all p > 0 (or from some
p0 > 0 on), taking into account [16, Cor. 8] we have that the classA{M(p)}(Sα) coincides
with A{Gα−1}(Sα) for all p > 0 (or for p ≥ p0), and so A{M}(Sα) = A{Gα−1}(Sα),

where Gα−1
is the matrix with all the rows equal to the sequence G

α−1
. We will study

the stability properties for this class in Sect. 7.

In order to prove the aforementioned equality of the classes associated with M andMα ,
it is convenient to recall the following result, which provides Gorny-Cartan like inequalities
for holomorphic functions in sectors.

Theorem 5.6 [16, Thm. 23] Let 0 < α ≤ 1 and f ∈ H(Sα). If Cn( f ) = supz∈Sα
| f (n)(z)|,

n ∈ N0, then the sequence Bn = n(1−α)nCn( f ) verifies

Bn ≤ Aq(1−α)n B
n2−n

n2−n1
n1 B

n−n1
n2−n1

n2 , n1 < n < n2,

where A = 4 and q = 1 if α = 1, or A = 8π and q = 2e(2− α)/(1− α) for the remaining
cases.

Theorem 5.7 Let M = {M(p) : p > 0} be a weight matrix and 0 < α ≤ 1 be given such
that lim j→+∞( j (1−α) j M (p)

j )1/ j = ∞ for all p > 0. Let Mα = {M(p,α) : p > 0} be the
matrix given in (16). Then, we have that

A{M}(Sα) = A{Mα}(Sα).

Proof Given f ∈ A{Mα}(Sα), there exists some p > 0 such that f ∈ A{M(p,α)}(Sα).

Since G
1−α

M
(p,α) is the log convex minorant of G

1−α
M

(p), we have that G
1−α

M
(p,α) ≤

G
1−α

M
(p), and thereforeM(p,α) ≤ M

(p). We conclude that f ∈ A{M}(Sα).
For the converse inclusion, let us consider f ∈ A{M}(Sα). There exist some C, D ∈ R>0

and p > 0 such that Cn( f ) = supz∈Sα
| f (n)(z)| ≤ C Dn M (p)

n , for all n ∈ N0.
Let us fix n ∈ N0 and distinguish two cases:

(i) If M (p,α)
n = M (p)

n then supz∈Sα
| f (n)(z)| ≤ C Dn M (p,α)

n .
(ii) If not, by the construction of the log convex minorant, there exist so-called principal

indices n1, n2 ∈ N0, with n1 < n < n2, such that M (p,α)
ni = M (p)

ni for i = 1, 2 (see [12,
Chapitre I] and, for a detailed discussion of the regularization process and its intricacies,
[23]). So, we have

ln
(

n(1−α)n M (p,α)
n

)
= n2 − n

n2 − n1
ln

(
n(1−α)n1
1 M (p,α)

n1

)
+ n − n1

n2 − n1
ln

(
n(1−α)n2
2 M (p,α)

n2

)

≥ n2 − n

n2 − n1
ln

(
1

C Dn1
n(1−α)n1
1 Cn1( f )

)
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+ n − n1

n2 − n1
ln

(
1

C Dn2
n(1−α)n2
2 Cn2( f )

)

.

Therefore, with the notation of the previous theorem, we deduce from above:

B
n2−n

n2−n1
n1 B

n−n1
n2−n1

n2 ≤ (C Dn1)
n2−n

n2−n1 (C Dn2)
n−n1

n2−n1 n(1−α)n M (p,α)
n = C Dnn(1−α)n M (p,α)

n .

Now, from the previous estimate and by applying Theorem 5.6, there exist some A, q > 0
such that

Cn( f ) ≤ n(α−1)n Aq(1−α)n B
n2−n

n2−n1
n1 B

n−n1
n2−n1

n2 ≤ AC(q(1−α) D)n M (p,α)
n .

We conclude that f ∈ A{Mα}(Sα). ��
We are ready to state our first main result.

Theorem 5.8 Let M = {M(p) : p > 0} be a weight matrix (not necessarily (Msc)) and
0 < α ≤ 1 be given such that lim j→+∞( j (1−α) j M (p)

j )1/ j = ∞ for all p > 0. Let

Mα = {M(p,α) : p > 0} be the matrix according to (16). Then the following assertions
are equivalent:

(a) The matrix Mα satisfies the property (M{rai}).
(b) The class A{M}(Sα) is holomorphically closed.
(c) The class A{M}(Sα) is inverse-closed.

If M has in addition (M{Cω}) and Mα has (M{dc}), then the list of equivalences can be
extended by

(d) The class A{M}(Sα) is closed under composition.
(e) The matrix Mα satisfies the property (M{FdB}).

Proof (a) ⇒ (b) First recall that by the so-called Faà-di-Bruno formula for the composition
we get

(g ◦ f )(n)(z) =
∑

∑n
i=1 ki =k,

∑n
i=1 iki =n

n!
k1! · · · kn ! g(k)( f (z))

n∏

i=1

(
f (i)(z)

i !

)ki

, z ∈ Sα, n ∈ N0.

Let now f ∈ A{M}(Sα) be given. By Theorem 5.7 we know that the classesA{Mα}(Sα) and
A{M}(Sα) are equal, therefore f ∈ A{Mα}(Sα). In particular, f is bounded and thus any
function g which is analytic in a domain containing the (compact) closure of the range of f
satisfies

∃ C1, h1 ≥ 1 ∀ k ∈ N0 ∀ z ∈ Sα : |g(k)( f (z))| ≤ C1hk
1k!. (17)

By applying this and the fact that f ∈ A{Mα}, we estimate as follows for all n ∈ N0 and
z ∈ Sα:

|(g ◦ f )(n)(z)| ≤
∑

∑n
i=1 ki =k,

∑n
i=1 iki =n

n!
k1! · · · kn ! |g

(k)( f (z))|
n∏

i=1

∣
∣
∣
∣
∣

f (i)(z)

i !

∣
∣
∣
∣
∣

ki

≤
∑

∑n
i=1 ki =k,

∑n
i=1 iki =n

n!
k1! · · · kn !C1hk

1k!
n∏

i=1

(
C2hi

2
qM (p,α)

i

)ki
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≤ C1

∑

∑n
i=1 ki =k,

∑n
i=1 iki =n

n!
k1! · · · kn !hk

1k!Ck1+···+kn
2 hk1+···+nkn

2

n∏

i=1

( qM (p,α)
i )ki

≤
︸︷︷︸
(6)

C1(C2h1h2)
n

∑

∑n
i=1 ki =k,

∑n
i=1 iki =n

n!
k1! · · · kn !k!

n∏

i=1

Hiki
1

qM (p′,α)
iki

≤
︸︷︷︸
(6)

C1(H1C2h1h2)
n

∑

∑n
i=1 ki =k,

∑n
i=1 iki =n

n!
k1! · · · kn !k!Hk1+···+nkn

2
qM (p′′,α)

k1+···+nkn

= C1(H1H2C2h1h2)
n M (p′′,α)

n

∑

∑n
i=1 ki =k,

∑n
i=1 iki =n

k!
k1! · · · kn !

≤ C1C3(H1H2C2C4h1h2)
n M (p′′,α)

n .

For the estimates also note that k ≤ n and w.l.o.g. C2, h1, h2, H1 ≥ 1. Moreover, we have
that

∑

∑n
i=1 ki =k,

∑n
i=1 iki =n

k!
k1! · · · kn ! = 2n−1,

see [10, Lemma 1.4.1] or [4, Prop. 2.1]. Finally, by taking into account that the classes
A{Mα}(Sα) and A{M}(Sα) are equal, then g ◦ f ∈ A{M}(Sα) is verified.

(b) ⇒ (c)This is obvious by taking g : z �→ 1
z since g ∈ H(C\{0}) andC\{0} contains the

(compact) closure of the image of any element f ∈ A{M}(Sα) such that inf z∈Sα | f (z)| > 0.
(c) ⇒ (a) We follow the ideas from [25, Thm. 1] and apply the constructions from the

previous section. First, recall that L(p) := G
1−α

M
(p,α)= (G

1−α
M

(p,α))lc is log-convex for
any p > 0, see (16). Let p > 0 be arbitrary but from now on fixed. According to Theorem 4.9
we put

f p(z) := TL(p) (Ẽα)(z).

By using (12) and Lemma 4.6 we estimate as follows:

| f (n)
p (z)| ≤

∞∑

k=0

1

2k
L(p)

k

(�
(p)
k )n

(�
(p)
k )k

|Ẽ (n)
α (�

(p)
k z)| ≤ 4L(p)

n
n!en

n(2−α)n

= 4M (p,α)
n

n!en

nn
≤ 4en M (p,α)

n ,

for all n ∈ N0 and z ∈ Sα . This estimate shows that f p ∈ A{Mα}(Sα) and, in particular when
being applied to n = 0, it yields supz∈Sα

| f p(z)| ≤ 4 < +∞.

Set R(p)
n := ∑∞

k=0
1
2k L(p)

k (�
(p)
k )n−k and so we get

∀ n ∈ N0 : f (n)
p (0) = R(p)

n
n!(−1)n

�((2 − α)(n + 1) + 2)
, (18)

and from Lemma 4.6

∀ n ∈ N0 : R(p)
n ≥ n(1−α)n M (p,α)

n

2n
. (19)

Take λ > 4 (note that in [24, p. 349, line 5] there is a mistake, one should write λ >

C0( f )Mα
0 ). Then, if we put f̃ p := λ − f p , we have that f̃ p ∈ A{Mα}(Sα). Moreover, since

inf z∈Sα | f̃ p(z)| > 0 and A{Mα}(Sα)(= A{M}(Sα)) is assumed to be inverse-closed, we get
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that z �→ 1
f̃ p(z)

= 1
λ− f p(z) ∈ A{Mα}(Sα). We write g : z �→ 1

λ−z , then by applying again the

Faà-di-Bruno-formula to the composition g ◦ f p ∈ A{Mα}(Sα) and thanks to the fact that
g(k)(z) = k!

(λ−z)k+1 for all k ∈ N0, yields: For some C, h > 0 and some index p′ > 0 (large)
we get for all n ∈ N0 that

|(g ◦ f p)
(n)(0)| =

∣
∣
∣
∣
∣
∣

∑

∑n
i=1 ki =k,

∑n
i=1 iki =n

n!
k1! · · · kn !

k!
(λ − f p(0))k+1

n∏

i=1

(
f (i)

p (0)

i !

)ki
∣
∣
∣
∣
∣
∣

≤ Chn M (p′,α)
n .

By (18) we see

(
f (i)

p (0)

i !

)ki

=
(

(−1)i R(p)
i

�((2 − α)(i + 1) + 2)

)ki

, 1 ≤ i ≤ n,

and by taking into account that
∏n

i=1(−1)iki = (−1)n , we deduce that for every n ∈ N0,

∑

∑n
i=1 ki =k,

∑n
i=1 iki =n

n!
k1! · · · kn !

k!
(λ − f p(0))k+1

n∏

i=1

(
R(p)

i

�((2 − α)(i + 1) + 2)

)ki

≤ Chn M (p′,α)
n .

Each summand in this sum is strictly positive and we focus now on the one given by the
choices k j = k, ki = 0 for i �= j and n = jk j = jk with j, k ∈ N. Thus

∃ C, h, p′ > 0 ∀ j, k ∈ N : ( jk)!
(λ − f p(0))k+1

⎛

⎝
R(p)

j

�((2 − α)( j + 1) + 2)

⎞

⎠

k

≤ Ch jk M (p′,α)
jk

is valid and clearly (λ − f p(0))k+1 ≤ h jk+1
1 for some h1 > 0 (large) and all k ∈ N0. Hence

∃ C, h, h1, p′ > 0 ∀ j, k ∈ N :
⎛

⎝
R(p)

j

�((2 − α)( j + 1) + 2)

⎞

⎠

k

≤ Ch1(hh1)
jk

M (p′,α)
jk

( jk)! .

(20)
By involving (19) we estimate the left-hand side of (20) as follows:

R(p)
j

�((2 − α)( j + 1) + 2)
≥ j (1−α) j M (p,α)

j

2 j�((2 − α)( j + 1) + 2)

≥ j !1−α M (p,α)
j

2 j ((2 − α)( j + 1) + 1)�((2 − α)( j + 1) + 1)
≥ M (p,α)

j

C112 j h j+1
3 j !

.

The last estimate is valid since (2 − α)( j + 1) + 1 ≤ 2( j + 1) + ( j + 1) = 3( j + 1) ≤ 6 j

for all j ∈ N, and �((2 − α)( j + 1) + 1) ≤ C1h(2−α)( j+1)
2 j !2−α for some C1, h2 ≥ 1

and all j ≥ 1 (by the properties of the Gamma function), where we have put h3 := h2−α
2 .

Consequently, by (20) we get

∃ C, C1, h, h1, h3, p′ > 0 ∀ j, k ∈ N :
⎛

⎝
M (p,α)

j

j !

⎞

⎠

k

≤ Ch1(12hC1h1h2
3)

jk
M (p′,α)

jk

( jk)! ,
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and so

∃ H ≥ 1 ∃ p′(≥ p) > 0 ∀ j, k ∈ N :
⎛

⎝
M (p,α)

j

j !

⎞

⎠

1/ j

≤ H

⎛

⎝
M (p′,α)

jk

( jk)!

⎞

⎠

1/( jk)

. (21)

(21) establishes (M{rai}) for indices p and p′ for all choices j, k ∈ N and so for all multiplies
n = jk of j ∈ N. For the remaining cases let now n ≥ 1 such that jk < n < j(k + 1)
for some j, k ∈ N. Then, by using (21) (with appearing constant H ), (2) and the fact that

j �→ ( j (1−α) j M (p′,α)
j )1/ j is non-decreasing for each index p′ > 0 (by log-convexity), we

estimate as follows:

(
M (p′,α)

n

n!

)1/n

= (n(1−α)n M (p′,α)
n )1/n

n1−α(n!)1/n
≥ (( jk)(1−α) jk M (p′,α)

jk )1/( jk)

n1−α(n!)1/n

= ( jk)1−α

n!1/nn1−α

⎛

⎝
M (p′,α)

jk

( jk)!

⎞

⎠

1/( jk)

( jk)!1/( jk)

≥ 1

H

⎛

⎝
M (p,α)

j

j !

⎞

⎠

1/ j

( jk)!1/( jk)

n!1/n

(
jk

n

)1−α

≥ 1

H

⎛

⎝
M (p,α)

j

j !

⎞

⎠

1/ j

e−1 jk

n

(
jk

j(k + 1)

)1−α

≥ 1

H

⎛

⎝
M (p,α)

j

j !

⎞

⎠

1/ j

jk

ej(k + 1)

(
1

2

)1−α

≥ 1

He22−α

⎛

⎝
M (p,α)

j

j !

⎞

⎠

1/ j

.

Summarizing, property (M{rai}) is verified for the matrix Mα between the indices p and p′
and when choosing the constant C := He22−α(> H).

(a) ⇒ (e) This follows by (ii) in Lemma 2.3.
(e) ⇒ (d) This follows by repeating the arguments in the proof of (a) ⇒ (b) above (a

word-by-word repetition of the proof in the ultradifferentiable setting), see [20, Thm. 8.3.1].
(d) ⇒ (b) For all open set U ⊆ C, the property (M{Cω}) of M implies that the class

H(U ) is contained in H{M}(U ). Since the class A{M}(Sα) is closed under composition, it
is holomorphically closed too. ��
Remark 5.9 (i) If M has (M{dc}) then Mα has it too (the converse is not clear in general).

(ii) The condition that lim j→+∞( j (1−α) j M (p)
j )1/ j = ∞ for all p > 0 can be weakened as

long as the log-convex regularization of G
1−α

M
(p) makes sense (for example, in case

M
(p) = G

α−1
). In this situation, the proof of Theorem 5.7 is still valid, Theorem 4.9 can

be applied and the availability of characteristic functions (needed in the previous proof of
the implication (c) �⇒ (a)) is guaranteed. A similar comment can be made regarding
the next corollary.

For a sequenceM ∈ R
N0
>0 such that lim j→+∞( j (1−α) j M (p)

j )1/ j = ∞, we can extend [25,

Thm. 1] by considering the constant weight matrixM = {M(p) = M : p > 0} and applying
to it the previous result.
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Corollary 5.10 Let M ∈ R
N0
>0 be a sequence, and 0 < α ≤ 1 be given such that

lim j→+∞( j (1−α) j M j )
1/ j = ∞. Let M(α) := G

α−1
(
G

1−α
M

)lc
. Then the following asser-

tions are equivalent:

(a) The sequence M
(α) has the property (rai).

(b) The class A{M}(Sα) is holomorphically closed.
(c) The class A{M}(Sα) is inverse-closed.

If lim inf j→∞( qM j )
1/ j > 0 and the sequence M

(α) is (dc), then the list of equivalences can
be extended by

(d) The class A{M}(Sα) is closed under composition.
(e) The sequence M

(α) has the property (FdB).

Remark 5.11 We may think of the situation for the ultradifferentiable class E{M}(0,+∞),
consisting of those complex-valued smooth functions on the half-line (0,+∞) subject to
similar growth restrictions for their derivatives as in the ultraholomorphic case, as the limiting
case when taking α = 0 in the previous result, i.e. when the sector Sα “collapses” to the ray
(0,+∞). Then, it turns out that we (partially) recover the main result [14, Thm. 1], see also
[13, Thm. 3.2].

Thanks to the construction of characteristic functions in classes defined in sectors of
arbitrary opening, undertaken in Sect. 4.3, we study now the stability properties for classes
defined in sectors wider than a half-plane.

Theorem 5.12 Let M = {M(p) : p > 0} be a weight matrix and consider α > 1. For each

p > 0, we suppose that there exists some αp > α such that G
1−αp

M
(p) is equivalent to a

(lc) sequence L
(p) depending on αp. Then the following assertions are equivalent:

(a) The matrix M satisfies the property (M{rai}).
(b) The class A{M}(Sα) is holomorphically closed.
(c) The class A{M}(Sα) is inverse-closed.

If M has in addition (M{Cω}) and (M{dc}), then the list of equivalences can be extended by

(d) The class A{M}(Sα) is closed under composition.
(e) The matrix M satisfies the property (M{FdB}).

Proof The proof of (a) ⇒ (b) ⇒ (c) is similar to the one in Theorem 5.8.
(c) ⇒ (a) Although the arguments are similar to those developed in the same implication

in Theorem 5.8, we consider it worthy to complete the details because now we will work
with the original weight matrix (instead ofMα), and the characteristic functions are different
in this framework. Let p > 0 be arbitrary but from now on fixed. There exist αp > α

and L
(p) log-convex such that G

1−αp
M

(p)≈L
(p). Then, there exist Ap, Bp > 0 such that

An
pn(1−αp)n M (p)

n ≤ L(p)
n ≤ Bn

pn(1−αp)n M (p)
n for all n ∈ N0. According to Theorem 4.9 we

put
f p(z) := TL(p) (gα,αp )(z).

By using (14), Lemma 4.6 and the above inequality we have

| f (n)
p (z)| ≤

∞∑

k=0

1

2k
L(p)

k

(�
(p)
k )n

(�
(p)
k )k

|g(n)
α,αp

(�
(p)
k z)| ≤ 2C Dn L(p)

n �((αp − 1)n + 1)
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≤ E B̃n
pn(1−αp)n M (p)

n n(αp−1)n = E B̃n
p M (p)

n ,

for suitable constant B̃p, C, D, E > 1 and for all n ∈ N0 and z ∈ Sα . This estimate shows
that f p ∈ A{M}(Sα) and, in particular, it yields supz∈Sα

| f p(z)| ≤ E < +∞.

Set R(p)
n := ∑∞

k=0
1
2k L(p)

k (�
(p)
k )n−k , so that

∀ n ∈ N0 : f (n)
p (0) = (−1)n�((αp − 1)n + 1)R(p)

n , (22)

and from Lemma 4.6,

∀ n ∈ N0 : R(p)
n ≥ L(p)

n

2n
≥ An

pn(1−αp)n M (p)
n

2n
. (23)

Now take λ > E and put f̃ p := λ − f p . Thus we get f̃ p ∈ A{M}(Sα), and moreover
inf z∈Sα | f̃ p(z)| > 0. Since A{M}(Sα) is assumed to be inverse-closed, we get that z �→

1
λ− f p(z) ∈ A{M}(Sα). When writing gp : z �→ 1

λ−z , the dependence on p is justified because
λ is clearly depending on this chosen index. By applying the Faà-di-Bruno-formula to the
composition gp ◦ f p we get that for some F, h > 0 and some index p′ > 0 (large) and for
all n ∈ N0,

|(gp ◦ f p)
(n)(0)| =

∣
∣
∣
∣
∣
∣

∑

∑n
i=1 ki =k,

∑n
i=1 iki =n

n!
k1! · · · kn !

k!
(λ − f p(0))k+1

n∏

i=1

(
f (i)

p (0)

i !

)ki
∣
∣
∣
∣
∣
∣

≤ Fhn M (p′)
n .

Using (22) and since
∏n

i=1(−1)iki = (−1)n , we deduce that for every n ∈ N0

∑

∑n
i=1 ki =k,

∑n
i=1 iki =n

n!
k1! · · · kn !

k!
(λ − f p(0))k+1

n∏

i=1

(
�((αp − 1)i + 1)R(p)

i

i !

)ki

≤ Fhn M (p′)
n .

Given j, k ∈ N, we focus on the summand for k j = k, ki = 0 for i �= j and n = jk j = jk,
so we get that

∃ F, h, p′ > 0 ∀ j, k ∈ N : ( jk)!
(λ − f p(0))k+1

⎛

⎝
�((αp − 1) j + 1)R(p)

j

j !

⎞

⎠

k

≤ Fh jk M (p′)
jk .

Clearly, (λ − f p(0))k+1 ≤ h jk+1
1 for some h1 > 0 (large) and all k ∈ N0. Hence, for all

j, k ∈ N we have

∃ F, h, h1, p′ > 0 ∀ j, k ∈ N :
⎛

⎝
�((αp − 1) j + 1)R(p)

j

j !

⎞

⎠

k

≤ Fh1(hh1)
jk

M (p′)
jk

( jk)! .

(24)
By involving (23) we estimate the left-hand side of (24) as follows:

�((αp − 1) j + 1)R(p)
j

j ! ≥ A j
p j (1−αp) j�((αp − 1) j + 1)M (p)

j

2 j j !

≥ Ã j
p j (1−αp) j j (αp−1) j M (p)

j

2 j j ! = M (p)
j

A
j
p j !

.
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The last inequality is a consequence of the properties of the Gamma function for a suitable
constant Ã p > 0, and we have put Ap = 2/ Ã p . Consequently, by (24) we get

∃ F, h, h1, Ap, p′ > 0 ∀ j, k ∈ N :
⎛

⎝
M (p)

j

j !

⎞

⎠

k

≤ Fh1(hh1Ap)
jk

M (p′)
jk

( jk)! ,

and so there exists H ≥ 1 such that

⎛

⎝
M (p)

j

j !

⎞

⎠

1/ j

≤ H

⎛

⎝
M (p′)

jk

( jk)!

⎞

⎠

1/( jk)

. (25)

Equation (25) establishes (M{rai}) for indices p and p′ for all choices j, k ∈ N and so for all
multiplesn = jk of j ∈ N. For the remaining cases let nown ≥ 1 such that jk < n < j(k+1)

for some j, k ∈ N. Then, by using (2), (25), the equivalenceG
1−αp′

M
(p′)≈L

(p′) and the fact

that j �→ (L(p′)
j )1/ j is non-decreasing for each index p′ > 0, we estimate

(
M (p′)

n

n!

)1/n

= (Bn
p′ n

(1−αp′ )n M (p′)
n )1/n

Bp′ n1−αp′ (n!)1/n
≥ (L(p′)

n )1/n

Bp′ n1−αp′ (n!)1/n
≥ (L(p′)

jk )1/( jk)

Bp′ n1−αp′ (n!)1/n

≥ (A jk
p′ ( jk)

(1−αp′ ) jk M (p′)
jk )1/( jk)

Bp′ n1−αp′ (n!)1/n
= Ap′ ( jk)

1−αp′

Bp′ n!1/nn1−αp′

⎛

⎝
M (p′)

jk

( jk)!

⎞

⎠

1/( jk)

( jk)!1/( jk)

≥ Ap′

Bp′ H

⎛

⎝
M (p)

j

j !

⎞

⎠

1/ j

( jk)!1/( jk)

n!1/n

(
jk

n

)1−αp′

≥ Ap′

Bp′ H

⎛

⎝
M (p)

j

j !

⎞

⎠

1/ j

e−1 jk

n

≥ Ap′

Bp′ H

⎛

⎝
M (p)

j

j !

⎞

⎠

1/ j

jk

ej(k + 1)
≥ Ap′

2Bp′ He

⎛

⎝
M (p)

j

j !

⎞

⎠

1/ j

.

Summarizing, property (M{rai}) is verified for the matrix M between the indices p and p′
and when choosing the constant C := 2Bp′ He/Ap′ .

(a) ⇒ (e) and (d) ⇒ (b) are as in Theorem 5.8.
(e) ⇒ (d)One can repeat the proof in the ultradifferentiable setting, see [20, Thm. 8.3.1].

��

Remark 5.13 In the same line of Remark 4.10, if for a weight matrix M = {M(p) : p > 0}
we know that γ (M(p)) > α − 1 for all p > 0, then there exists some αp > α such that

G
1−αp

M
(p) is equivalent to a (lc) sequence L(p) depending on αp .

Note that there exist somedifferences between the statements of theTheorems5.8 and5.12,
concerning the fact that the conditions for stability are imposed on different weight matrices,
M or Mα . In general, if α > 1 we only know that A{Mα}(Sα) ⊂ A{M}(Sα). However,
the hypotheses of the second theorem have strong implications and, under an additional
assumption, these results perfectly match, as the next proposition shows.
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Proposition 5.14 Let M = {M(p) : p > 0} be a given weight matrix. Suppose that for every

p > 0 there exists αp > 0 such that G
1−αp

M
(p) is equivalent to a (lc) sequence L

(p), and
that there exists β ∈ R such that β < αp for all p > 0. Then, for every p > 0 one has

lim j→+∞( j (1−β) j M (p)
j )1/ j = ∞, M and Mβ (defined as in (16)) are R-equivalent, and

therefore M satisfies the property (M{rai}) (resp.(M{FdB})) if and only if the matrix Mβ

satisfies this condition too. Moreover, A{Mβ }(Sγ ) = A{M}(Sγ ), for all γ > 0.

Proof Let p > 0 be arbitrary but fixed. First, note that

G
1−β

M
(p) = G

αp−β
(G

1−αp
M

(p))≈G
αp−β

L
(p) =: L̃(p),

where the sequence L̃(p) is log-convex (as the product of two such sequences).

On the one hand, the conditionL(p)≈G
1−αp

M
(p) guarantees that there exists some A > 0

such that A j L(p)
j ≤ j (1−αp) j M (p)

j , for all j ∈ N0. Moreover, let us observe that for all j > 0,

we can estimate ( j (1−β) j M (p)
j )1/ j = j (αp−β)( j (1−αp) j M (p)

j )1/ j ≥ j (αp−β)(A j L(p)
j )1/ j , and

thanks to the fact that L(p) is (lc) and αp > β, we deduce that lim j→+∞( j (1−β) j M (p)
j )1/ j =

∞. Moreover, there exists some Ã > 0 such that the (lc) sequence B
(p) := ( Ã j L̃(p)

j ) j

satisfies B(p) ≤ G
1−β

M
(p). Then, we have that B(p) = (B(p))lc ≤ (G

1−β
M

(p))lc, which

implies that L̃(p)�(G
1−β

M
(p))lc.

On the other hand, we observe thatG
1−β

M
(p)�L̃

(p), and therefore, (G
1−β

M
(p))lc�L̃

(p).

Finally, we conclude that L̃(p)≈(G
1−β

M
(p))lc.

The previous equivalence ensures that M(p,β) is equivalent to G
β−1

L̃
(p), and therefore

M
(p)≈M

(p,β). Finally, the two matrices M and Mβ are R-equivalent, and the property
(M{rai}) (resp.(M{FdB})) is stable under R-equivalence, see [20, Remark 8.2.2]. ��

Under the assumptions of the previous proposition, we can prove a weaker variant of
Theorem 5.12 using a similar technique to the one used in the proof of Theorem 5.8.

Corollary 5.15 Let M = {M(p) : p > 0} be a weight matrix and consider α > 1. For each

p > 0, we suppose that there exist some αp > α such that G
1−αp

M
(p) is equivalent to a (lc)

sequence L(p) depending on αp, and that there exists β > α such that β < αp for all p > 0.
Then the following assertions are equivalent:

(a) The matrix M, or equivalently Mβ , satisfies property (M{rai}).
(b) The class A{M}(Sα) is holomorphically closed.
(c) The class A{M}(Sα) is inverse-closed.

If M has in addition (M{Cω}) and (M{dc}), then the list of equivalences can be extended
by

(d) The class A{M}(Sα) is closed under composition.
(e) The matrix M, or equivalently Mβ , satisfies property (M{FdB}).

We end this section by providing the version of Corollary 5.10 for wide sectors, which can
be again deduced as a straightforward consequence of the corresponding result for weight
matrices, Theorem 5.12.

Corollary 5.16 Let M ∈ R
N0
>0 and α > 1. Suppose there exists α′ > α such that G

1−α′
M

is equivalent to an (lc) sequence L (depending on α′). Then the following assertions are
equivalent:
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(a) The sequence M has the property (rai).
(b) The class A{M}(Sα) is holomorphically closed.
(c) The class A{M}(Sα) is inverse-closed.

If lim inf j→∞( qM j )
1/ j > 0 and M is (dc), then the list of equivalences can be extended by

(d) The class A{M}(Sα) is closed under composition.
(e) The sequence M has the property (FdB).

6 The weight function case

We start proving, for the reader’s convenience, how the condition (M{rai}) for a weight matrix
associated to a weight function ω translates into a condition on ω. Note that this matrix has
(Mlc) and therefore (Mω)α ≡ Mω for all α ∈ (0, 1].

Lemma 6.1 Let ω ∈ W0 be given with associated weight matrix Mω := {W(�) : � > 0}.
Then the following are equivalent:

(a) The matrix Mω has (M{rai}), i.e. (recall qW (�)
j = W (�)

j / j !)

∀ � > 0 ∃ �′ > 0 ∃ H ≥ 1 ∀ 1 ≤ j ≤ k : ( qW (�)
j )1/ j ≤ H( qW (�′)

k )1/k .

(b) ω satisfies the condition (α0) (see (5)), i.e.

∃ C ≥ 1 ∃ t0 ≥ 0 ∀ λ ≥ 1 ∀ t ≥ t0 : ω(λt) ≤ Cλω(t).

Proof (a) ⇒ (b) The property (M{rai}) is preserved under equivalence of matrices, then
Mω

W(�)
has (M{rai}) for some/any � > 0. By [22, Thm. 4.5 (iv) ⇔ (i)] ωW(�) satisfies

the condition (α0), and therefore ω satisfies it too, because ω ∼ ωW(�) (see (10)) and the
condition (α0) is preserved under equivalence of weight functions.

(b) ⇒ (a) If ω satisfies the condition (α0), then ωW(�) satisfies it too (arguing as before).
By [22, Thm. 4.5 (i) ⇔ (iv)], the matrix Mω

W(�)
has (M{rai}) for some/any � > 0. Finally,

by [20, Lemma 5.3.1] the matricesMω
W(�)

andMω are equivalent, and (M{rai}) is preserved
under equivalence of matrices. ��

We can provide now a statement about stability properties for classes associated to a
weight function in small sectors.

Theorem 6.2 Let ω ∈ W be given with associated weight matrix Mω := {W(�) : � > 0}
and let 0 < α ≤ 1. Then the following are equivalent:

(a) The matrix Mω has (M{rai}).
(b) ω satisfies the condition (α0) (see (5)).
(c) The class A{ω}(Sα) is holomorphically closed.
(d) The class A{ω}(Sα) is inverse-closed.

If ω has in addition (ω2), then the list of equivalences can be extended by:

(e) The class A{ω}(Sα) is closed under composition.
(f) The matrix Mω satisfies the property (M{FdB}).
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Proof The equivalence (a) ⇔ (b) is a consequence of the Lemma 6.1. Moreover, the equiv-
alences (a) ⇔ (c) ⇔ (d) ⇔ (e) ⇔ ( f ) follow by applying Theorem 5.8 to M ≡ Mω.
Let us observe that Mα ≡ Mω, thanks to the fact that W(�) is (lc) for all � > 0. Moreover,
ω has (ω1) and therefore A{ω}(Sα) = A{Mω}(Sα), see (11). In addition, note that Mω has
automatically (M{dc}) by (8). ��
Remark 6.3 When taking α = 0 in the previous result, i.e., when the sector Sα ”collapses”
to the ray (0,+∞), then we (partially) get back the main result [14, Thm. 3] for the ultrad-
ifferentiable class E{ω}((0,+∞)), see also [13, Thm. 6.3].

The next lemma will be necessary for stating a similar result for wide sectors.

Lemma 6.4 Let ω ∈ W0 be given with associated weight matrix Mω := {W(�) : � > 0}.
Suppose there exists s > 0 such that, for ωs(t) := ω(t s), one has:

(i) ωs(t) = o(t) as t → ∞, (i.e., ωs(t) has (ω5).)
(ii) ωs satisfies the condition (α0), i.e., it is equivalent to a concave weight function.

Then there exists a weight matrix U = {U(�) : � > 0}, R-equivalent to Mω, and such that

for each � > 0, the sequence G
−s
U

(�) is equivalent to an (lc) sequence L(�) depending on s.

Proof First, let us consider the matrix Mωs := {V(�,s) : � > 0}. There exists a rela-
tion between both matrices (see [8]), more precisely, for all � > 0 we have that V(�,s) =
(W(�/s))1/s . So, we can write

W
(�) = (V(�s,s))s = G

s(qV(�s,s))s, � > 0.

Now, by taking into account thatωs satisfies the condition (α0) and (ω5)we deduce from [15,
Prop. 3] that the matrices |Mωs := {qV(�,s) : � > 0} and |Mlc

ωs are R-equivalent. Finally, since
taking the power s in each sequence of these two matrices respects R-equivalence for the
resulting matrices, we deduce that U := {Gs[(qV(�,s))lc]s : � > 0} andMω are R-equivalent.

Theorem 6.5 Let ω ∈ W0 be given with associated weight matrix Mω := {W(�) : � > 0}
and let α > 1. Suppose there exists s > α − 1 such that, for ωs(t) := ω(t s), one has:

(i) ωs(t) = o(t) as t → ∞, (i.e. ωs(t) has (ω5)).
(ii) ωs satisfies the condition (α0), i.e., it is equivalent to a concave weight function.

Then the following are equivalent:

(a) The matrix Mω has (M{rai}).
(b) ω satisfies the condition (α0).
(c) The class A{ω}(Sα) is holomorphically closed.
(d) The class A{ω}(Sα) is inverse-closed.

If ω has in addition (ω2), then the list of equivalences can be extended by:

(e) The class A{ω}(Sα) is closed under composition.
(f) The matrix Mω satisfies the condition (M{FdB}).

Proof The equivalence (a) ⇔ (b) is a consequence of Lemma 6.1. Lemma 6.4 ensures
that there exists a weight matrix U := {U(�) : � > 0}, R-equivalent to Mω (and therefore
A{U}(Sα) = A{Mω}(Sα)), such that for each � > 0 the sequence G

−s
U

(�) is equivalent to a
(lc) sequence L(�) depending on s. Then, the equivalences (a) ⇔ (c) ⇔ (d) ⇔ (e) ⇔ ( f )

follow by applying Theorem 5.12 to M ≡ U , and taking α� = s + 1. Finally, thanks to the
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fact that ωs has (α0), then ω satisfies (ω1) and therefore A{ω}(Sα) = A{Mω}(Sα), see (11).
In addition, note thatMω has automatically (M{dc}) by (8). And (ω2) for ω implies thatMω

has (MH). Finally, the conditions (M{dc}) and (MH) are stable under R-equivalence, and
therefore U satisfies both too. ��
Remark 6.6 The hypotheses (i) and (ii) onω in Theorem 6.5 can be quickly guaranteed by the
condition γ (ω) > α − 1, in terms of the index described in Sect. 2.7. Note that, by choosing
s such that γ (ω) > s > α − 1, we have γ (ωs) = γ (ω)/s > 1 (see property (i i i) in that
subsection), and this fact implies:

(a) By [6, Remark 2.15 (i) ⇒ (v)], we have property (ω5) for ωs .
(b) By [6, Thm. 2.11 (v) ⇒ (i i)], we deduce that ωs is equivalent to a concave weight

function, and so (α0) is satisfied by ωs .

Remark 6.7 In some situations it is straightforward that all the conditions on the weight
function ω in the previous result are satisfied, and so all the statements (a) through (f) are
equivalent. We comment on two special cases:

(i) If 2 > α > 1, suppose that ω(t) = O(t) as t → ∞, (i.e. ω(t) has (ω2)), and that there
exists some s > α − 1 such that ωs satisfies the condition (α0). Let us observe that we
can take s′ < s such that 1 > s′ > α − 1, and it is then easy to show that ωs′

satisfies
the conditions (ω5) and (α0).

(ii) If α ≥ 2, suppose there exists s according to the assumptions in the theorem. Then, we
will have s > 1, and since ωs satisfies the condition (ω5), we can check immediately
that ω has (ω2).

7 Examples

In this section, we apply the previous results to some well-known examples of ultraholomor-
phic classes. Let us fix α > 0.

7.1 Gevrey-related classes

Consider the sequence G
β := ( j jβ) j∈N0 of index β ∈ R. Note that this sequence has the

(rai) property if and only if β ≥ 1. We are going to study the stability of the classA{Gβ }(Sα)

in terms of the values of α and β. Let us distinguish some cases:

(a) Let α ∈ (0, 1]:
(i) If β < α − 1 then lim j→+∞( j (1−α) j j jβ)1/ j = 0, and therefore the class is stable

because it is trivial, i.e., it only contains constant functions (see Remark 5.5).

(ii) If β ∈ (α − 1, 1) Corollary 5.10, together with the fact that G
β
has not the (rai)

property, ensure that the class is non stable.

(iii) If β = α−1, the sequenceMα isG
β
, which does not satisfy (rai). So, by Remark 5.9

and Corollary 5.10 the class is not stable.
(iv) If β ≥ 1 we deduce from the Corollary 5.10 that the class is stable.

(b) Let α > 1:

(i) If β ≤ α − 1 then lim inf j→+∞( j (1−α) j j jβ)1/ j < ∞, and therefore the class is
stable because it only contains constant functions (see Remark 5.5).
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(ii) If β > α − 1, we have stability provided that β ≥ 1, thanks to the Corollary 5.16.

We include a graphic in order to see the stability (resp. non stability) regions:

We consider now a second example. Let us fix α > 1, take some β > α and consider the

weight matrix L(β) = {Gβ− 1
p+1 : p > 0}. Note that the ultraholomorphic class associated

with L(β) is strictly smaller than the class associated with the constant matrix Gβ = {Gβ :
p > 0}. Under these assumptions, let us observe that G

β− 1
p+1 is an (lc) sequence for all

p > 0. Then Theorem 5.12 guarantees that the class A{L(β)}(Sα) is stable, thanks to the fact

that β − 1
p+1 > 1 for large p, and we can ensure that the corresponding matrix has (M{rai}).

7.2 q-Gevrey case

In this subsection, we will work, for q > 1, with the q-Gevrey sequence, i.e.Mq = (q j2) j≥0.
First, thanks to the fact that the sequence Mq has (lc) and (dc), and moreover qMq is also
(lc), we can easily prove the stability properties for the class A{Mq }(Sα). For α ∈ (0, 1], the
Corollary 5.10 ensures that the class A{Mq }(Sα) is stable. On the other hand, for α > 1 and

for any β > α the sequence G
1−β

Mq is equivalent to an (lc) sequence, because the gamma
index ofMq is infinity. So, the Corollary 5.16 again ensures the stability.

Now, we want to study the stability properties for the classA{ωMq }(Sα). For this purpose,
let us observe that we can estimate the normalized weight function ωMq ,

ωMq (t) = sup
j∈N0

ln

(
t j

q j2

)

= sup
j∈N0

( j ln(t) − j2 ln(q)), t > 1.

Obviously, ωMq (t) is bounded above by the supremum of x ln(t) − x2 ln(q) when x runs
over (0,∞), which is easily obtained by elementary calculus and occurs at the point

(
ln(t)

2 ln(q)
,
ln2(t)

4 ln(q)

)

.

In particular, it is easy to check that ω(t) := ln2(t)/(4 ln(q)) verifies (after normalization
in the interval [0, 1]) that ω ∈ W , ω has (ω5) (and therefore (ω2)) and ω∼ωMq , so the
corresponding matrices Mω and MωMq

are R-equivalent. In order to compute the matrix
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associated with ω, the Legendre–Fenchel–Young-conjugate of ϕω is

ϕ∗
ω(x) := sup

y≥0
{xy − ω(exp(y))} = x2 ln(q) = ln(qx2), x ≥ 0.

So, we have that

W (�)
j = exp(

1

�
ϕ∗

ω(� j )) = q� j2 , j ≥ 0, and therefore W
(�) = (q� j2) j≥0, � > 0.

Note that each sequence W
(�) is (lc), (dc) and has the property (rai) for all � > 0, in

this situation Theorem 6.2 ensures that the class A{ω}(Sα) (resp. A{ωMq }(Sα)) is stable for

α ∈ (0, 1]. On the other hand, note that γ (ω) = ∞, since γ (ω) ≥ γ (W(�)) for all � > 0
(see Sect. 2.7) and γ (W(�)) is also infinity. In this case, Remark 6.6 ensures that we can
apply Theorem 6.5 in order to deduce that the classA{ω}(Sα) (resp.A{ωMq }(Sα)) is stable for
α > 1.
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