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Abstract
Mangroves, integral to ecological balance and socioeconomic well-being, are facing a concerning decline worldwide. Remote 
sensing is essential for monitoring their evolution, yet its effectiveness is hindered in developing countries by economic and 
technical constraints. In addressing this issue, this paper introduces MANGLEE (Mangrove Mapping and Monitoring Tool 
in Google Earth Engine), an accessible, adaptable, and multipurpose tool designed to address the challenges associated with 
sustainable mangrove management. Leveraging remote sensing data, machine learning techniques (Random Forest), and 
change detection methods, MANGLEE consists of three independent modules. The first module acquires, processes, and 
calculates indices of optical and Synthetic Aperture Radar (SAR) data, enhancing tracking capabilities in the presence of 
atmospheric interferences. The second module employs Random Forest to classify mangrove and non-mangrove areas, pro-
viding accurate binary maps. The third module identifies changes between two-time mangrove maps, categorizing alterations 
as losses or gains. To validate MANGLEE’s effectiveness, we conducted a case study in the mangroves of Guayas, Ecuador, 
a region historically threatened by shrimp farming. Utilizing data from 2018 to 2022, our findings reveal a significant loss 
of over 2900 hectares, with 46% occurring in legally protected areas. This loss corresponds to the rapid expansion of Ecua-
dor’s shrimp industry, confirming the tool’s efficacy in monitoring mangroves despite cloud cover challenges. MANGLEE 
demonstrates its potential as a valuable tool for mangrove monitoring, offering insights essential for conservation, manage-
ment plans, and decision-making processes. Remarkably, it facilitates equal access and the optimal utilization of resources, 
contributing significantly to the preservation of coastal ecosystems.
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Introduction

Mangroves are estuarine and marine-coastal ecosystems 
formed by trees and shrubs with unique morphological and 
physiological adaptations (Das et al. 2022). Their attributes 
include exposed roots that provide oxygen, additional stem 

support structures, and leaves that excrete salt (Srikanth et al. 
2016). Mangroves are adapted to brackish water, tidal condi-
tions, and saturated soils. This type of vegetation grows in 
the intertidal zone of tropical and subtropical regions around 
the equator (Duke 2017). Mangroves are recognized as “blue 
carbon ecosystems” due to their unique ability to absorb 
carbon dioxide from the atmosphere and store it in their soil 
and biomass (Chatting et al. 2022). Mangroves are highly 
productive (Komiyama et al. 2008) and therefore important 
for local economies since they provide provisioning services 
like food and timber (Rivera-Monroy et al. 2017), coastal 
protection (Hespen et al. 2023), and cultural benefits such 
as social relations, knowledge, recreation, heritage values, 
and ecotourism (Treviño 2022).

Nonetheless, mangrove forest cover continues to decrease 
due to land use transformations into urban, agricultural, and 
aquaculture exploitations (Ashton 2022). Mangroves face 
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additional threats from contamination originating from 
wastewater, garbage, and natural factors such as coastal ero-
sion, climate change, and extreme weather events (Gorman 
2018; Hagger et al. 2022). Between 1996 and 2020, 3.6% 
(5245.24 km2) of mangrove forest was lost worldwide (Leal 
et al. 2022). Restoration and conservation programs have 
been initiated to address the loss of mangrove surface and 
ecosystem quality, with different degrees of success. The 
lack of control and monitoring by local authorities, particu-
larly in developing countries, is among the reasons for the 
dilution or failure of restoration programs (Dale et al. 2014). 
Developing robust, accessible, and user-friendly monitor-
ing systems is essential to assess mangrove health, evaluate 
management effectiveness, and ensure long-term success 
(Worthington and Spalding 2018). These systems should 
be fast, intuitive, customizable, and supported by technical 
assistance.

Monitoring mangroves through in situ observations faces 
impractical challenges related to access, cost, and time. In 
contrast, the utilization of remote sensing (RS) technology 
has proven indispensable for mangrove monitoring. Its abil-
ity to identify, map, and monitor land cover types (Kuenzer 
et al. 2011) offers the advantage of frequent revisits and the 
capacity to retrieve information over large areas using differ-
ent electromagnetic spectrum ranges (Cárdenas et al. 2017). 
The accessibility to a growing archive of open-access Earth 
observation data, coupled with advancing technological 
development, provides cost-effective solutions for assessing 
changes in marine ecosystems worldwide (Vos et al. 2019). 
These technologies have demonstrated success in various 
applications, such as seagrass monitoring (Chowdhury et al. 
2023), tracking changes within estuaries and coastal areas 
(Dahdouh-Guebas 2022), and monitoring coral reefs (Lubin 
et al. 2001). Furthermore, the integration of AI-based sur-
veillance systems is increasingly prevalent in applications 
like water quality assessment (Caballero et al. 2022), sea-
grass mapping (Kennedy et al. 2021), and the comprehensive 
examination of marine environments (Li et al. 2021, 2022).

Although optical data from passive sensors are commonly 
used in RS applications, they are hindered by cloud cover, 
which is particularly persistent in the tropics (Shikwambana 
2022) and also by other atmospheric factors such as smoke 
and fog. Synthetic Aperture Radar (SAR) sensors, on the 
other hand, are active sensors that emit pulses and measure 
the backscatter reflected from the target. SAR sensors have 
the distinct advantage of penetrating clouds and smoke. Their 
ability to differentiate mangroves from other land cover types 
is based on surface roughness and water content (Lechner 
et al. 2020). However, interpreting SAR data can be challeng-
ing (Wang et al. 2019). Studies have shown that integrating 
SAR and optical data can improve the distinction between 
mangroves and other types of forests (Ghorbanian et al. 
2021; Hu et al. 2020; Huang et al. 2022; Chan-Bagot et al. 

2024). Achieving this integration requires the implementa-
tion of automated image pre-processing and classification 
approaches (Giri 2021).

The implementation of RS techniques in developing 
countries is often hindered by economic, administrative, and 
technical constraints. Barriers such as the need for software, 
hardware, internet connectivity, and technical have impeded 
widespread adoption (Haack and Ryerson 2016). Conse-
quently, there is an urgent demand for the development of 
robust monitoring systems that can operate independently 
of governmental and administrative circumstances. These 
systems should enable regular monitoring of the mangrove 
ecosystem in a cost-effective manner.

Moreover, the utilization of RS demands a high level 
of expertise and relies on high-performance software and 
hardware, limiting its accessibility for researchers and man-
agers (Zapata-Ramírez et al. 2023). Google Earth Engine 
(GEE), a cloud computing platform designed for geospatial 
analysis (http://​earth​engine.​google.​org), serves as an alter-
native and accessible resource for coastal monitoring. GEE 
integrates petabytes of freely available RS datasets (Gore-
lick et al. 2017). Since its availability for research in 2010 
(Kumar and Mutanga 2018), GEE has been leveraged for 
numerous applications (Tamiminia et al. 2020). In the moni-
toring of marine ecosystems, GEE has proven valuable for 
global mapping of seagrass meadows (Traganos et al. 2018), 
assessment of sand spit variability (Roca et al. 2022), and 
evaluation of mangrove extension (Kolli et al. 2022). Sig-
nificantly, the results from these studies underscore the cost-
effectiveness and speed of these cloud-based applications.

Recent initiatives utilizing remote sensing have achieved 
significant advancements in worldwide mangrove moni-
toring. The Global Mangrove Watch (GMW), led by the 
Global Mangrove Alliance (GMA), is a prominent project 
providing a comprehensive extent product. Through its web-
viewer, GMW offers accessible information on the location 
and extent of mangrove changes from 1996 to 2020. GMW 
utilizes SAR data from ALOS PALSAR and optical data 
from Landsat (2010) to create a mangrove extent baseline 
(Bunting et al. 2022b). For change detection in different time 
periods, SAR L-band data from JERS-1 (1996) and ALOS 
PALSAR (2007–2010, 2015–2020) are employed (Bunting 
et al. 2022a). While GMW’s accuracy varies across loca-
tions, it remains a valuable global resource (Thomas et al. 
2017). Building upon GMW, a regional mangrove loss 
alert system has been prototyped for Africa, focusing on 
the period from 2018 to 2022. This system aims to detect 
monthly mangrove losses using Sentinel-2 normalized dif-
ference vegetation index (NDVI) thresholds and a temporal 
scoring system to reduce false positives. The estimated over-
all accuracy of this system is 92.1% (Bunting et al. 2023).

Another notable tool for mangrove mapping is 
Google Earth Engine Mangrove Mapping Methodology 

http://earthengine.google.org


Journal of Geovisualization and Spatial Analysis (2024) 8:17	 Page 3 of 15  17

(GEEMMM). GEEMMM is a local and replicable approach 
that utilizes Landsat data to generate mangrove coverage 
maps. It incorporates tidal conditions as a significant factor 
affecting the optical reflectance of mangroves. Developed 
on the GEE cloud computing platform, GEEMMM has been 
successfully evaluated on Myanmar’s coast (Burma), pro-
ducing both high-tide and low-tide products, with data from 
2014 to 2018 and overall accuracy of 96.1% (Yancho et al. 
2020). As noted, the period of analysis requires a large data 
series, so GEEMMM is limited by the availability of cloud-
free Landsat data and lacks a change detection module.

Both GMW and GEEMMM showcase how technologi-
cal advancements have facilitated the development and 
implementation of mapping methodologies, making remote 
sensing more accessible and cost-effective for a broader 
audience (Giri 2021). However, these models have limita-
tions that require addressing to enhance their effectiveness. 
GEEMMM and the GMW alert system face constraints due 
to the limited availability of optical data caused by cloud 
cover. Furthermore, GMW v3.0, being a global model, 
experiences extended update times, country-level data is 
provided only up to 2020, and it lacks the option to obtain 
data for different territorial levels or time periods, thus limit-
ing the generation of current information. Addressing these 
limitations will contribute to improving the accuracy and 
applicability of remote sensing mangrove mapping meth-
odologies at regional and local scales.

To enhance mangrove mapping, we have developed 
MANGLEE, an open and multi-user tool that leverages 
cloud computing (GEE) to prioritize the monitoring of man-
groves with a short revisit period and high spatial resolution 
(10 m). MANGLEE incorporates SAR images to circum-
vent the limitations associated with the lack of good-quality 
optical data in these coastal environments. MANGLEE per-
forms tasks of data preparation, classification, and change 
detection, organized in three modules. The results from 
MANGLEE will enable stakeholders to monitor changes in 
mangrove ecosystems in any desired period and location. To 
evaluate the performance of MANGLEE, we utilized data 
from 2018 to 2022 in Guayas, Ecuador, where the mangrove 
ecosystem faces multiple threats, including urban transfor-
mation, agriculture, and aquaculture pressures. By analyzing 
the MANGLEE results, we aim to understand its advantages 
and limitations.

Materials and Methods

MANGLEE leverages remote sensing data and employs 
machine learning classification (Random Forest) to accu-
rately identify and map the extent of mangroves. It also uti-
lizes date comparisons to assess changes in mangrove loca-
tion and extension, and since it is based on Google Earth 

Engine (GEE), it is easily accessible and freely available 
(MANGLEE). Figure 1 provides an overview of the MAN-
GLEE workflow. In the following sections, we describe each 
of the methodological steps in detail.

Input Data

Satellite Data

MANGLEE, in its fundamental design, integrates Earth 
Observation (EO) data from the Sentinel-1 and Sentinel-2 
missions within the European Union Copernicus program 
operated by the European Space Agency (ESA).

The Sentinel-1 (S1) mission comprises a constellation of 
two polar orbiting satellites, namely S1A and S1B. Each sat-
ellite is equipped with a dual-polarization C-band Synthetic 
Aperture Radar (SAR) instrument, operating at a frequency 
of 5.4 GHz. SAR has the advantage of operating efficiently 
irrespective of weather conditions, enabling it to collect data 
continuously, day or night, over any given location. Com-
bining the two S1 satellites results in a nominal revisit fre-
quency of 6 days. However, it is worth noting that in 2022, 
the S1B satellite ceased operations due to a system failure, 
leaving the mission with only one functioning satellite. Con-
sequently, the current nominal data frequency has extended 
to 12 days until the next S1 satellite becomes operational 
(ESA n.d.b) The S1 Ground Range Detected (GRD) data 
scenes are integrated into the GEE platform. ESA has pro-
cessed these scenes, utilizing the Sentinel-1 Toolbox. SAR 
pre-processing entails the following stages: 1, apply orbit 
file; 2, GRD border noise removal; 3, thermal noise removal; 
4, radiometric calibration; and 5, terrain correction (Google 
Earth Engine n.d.b).

The Sentinel-2 (S2) mission encompasses a constellation 
of two polar orbiting satellites, namely S2A and S2B. At the 
Equator, S2 has a nominal revisit of 5 days. The S2A and 
S2B satellites are equipped with a multispectral instrument 
(MSI) that comprises 13 spectral bands, each serving unique 
purposes. The blue (B2), green (B3), red (B4), and one of 
the near-infrared (B8) bands provide data with 10-m spatial 
resolution; the red edge (B5), near-infrared (B6, B7, and 
B8A), and short-wave infrared SWIR (B11 and B12) bands 
provide data with 20-m spatial resolution; and the coastal 
aerosol (B1), water vapor (B9), and SWIR cirrus (B10) 
bands provide data with 60 m (ESA n.d.a). Within the GEE 
platform, S2 data is stored at Level-1C (L1C), denoting top-
of-atmosphere reflectance, and at Level-2A (L2A), which 
has undergone atmospheric correction using the Sen2Cor 
algorithm (Google Earth Engine n.d.a). The GEE Catalog 
also includes the S2 Cloud Probability dataset, a valuable 
resource for identifying and characterizing cloud cover or 
highly reflective surfaces. The values within this dataset 
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range from 0 to 100, with higher values indicating a higher 
likelihood of clouds or highly reflective surfaces.

Auxiliary Datasets

MANGLEE requires various inputs to run. These inputs 
should be loaded as assets to the active user’s GEE account. 
The required datasets are a polygon shapefile of the study 
area (AOI); a training shapefile composed of points or poly-
gons labeled as mangrove and non-mangrove with a column 
named “Class_t” in its table and recording integer values 
(i.e., mangrove = 1, non-mangrove = 2); and a validation 
shapefile with ground truth points labeled similarly as the 
training records within a column named “Class_v.”

Construction of the MANGLEE Algorithm

MANGLEE is built on the GEE platform and leverages the 
cloud-based Jupyter environment known as Google Colabora-
tory, or Colab for short. This web-based interface runs directly 
in a browser and enables machine learning coding for artificial 
intelligence. MANGLEE’s functionalities are implemented 
through a collection of three distinct modules, each housed 
within independent notebooks. These notebooks utilize the 
geemap library for Python. By incorporating executable code 
and rich text within a single document, Collab notebooks 

empower MANGLEE users to effortlessly blend informative 
explanations with the code, fostering a comprehensive under-
standing of the underlying processes. All three MANGLEE 
modules are freely accessible at the GitHub repository.

MANGLEE Module 1 (M1): Satellite Data Preparation

Optical Data Preparation 

Obtaining cloud-free optical data is particularly challeng-
ing in tropical and subtropical areas with mangroves, due to 
persistent cloud coverage. To address this issue and achieve 
consistent information for any area of interest, MANGLEE 
M1 generates an optical temporal composite employing S2 
data for a user-specified temporal range and spatial extension. 
MANGLEE retrieves the optical data from the GEE “COPER-
NICUS/S2_SR_HARMONIZED” collection, which contains 
a harmonized time series of S2 Level-2A products. The term 
“harmonized” indicates that the spectral alignment of the data-
set has been adjusted, removing the offset added to reflectance 
bands in the 04.00 processing baseline after January 24, 2022 
(Google Earth Engine n.d.a). Worldwide coverage data are 
available from December 2018 (ESA n.d.a). Once the user sets 
the date and location of interest, all available images within the 
specified spatial and temporal ranges are selected.

Fig. 1   Schematic flowchart of MANGLEE stages
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To create the optical temporal composite free of clouds 
and cloud shadow pixels, a function adapted from the GEE 
Community is applied. This function identifies clouds from 
the probability dataset and removes shadows by intersecting 
non-water pixels with dark pixels. First, non-water pixels are 
selected by calculating the Modified Normalized Water Dif-
ference Index (MNDWI), which has values ranging from − 1 
to 1. Values greater than zero correspond to water bodies. 
Next, dark pixels are obtained by applying an NIR band 
threshold of 0.15. The intersection of dark pixels with cloud 
shadows is identified, and those pixels are removed.

A series of indices are calculated and added as individual 
bands to each image to enhance the discrimination of man-
groves from other land cover types. Among these indices, 
we selected specific ones that have been previously tested 
for the identification of mangroves, such as MMRI (Diniz 
et al. 2019) and MVI (Huang et al. 2022). Additionally, the 
tool calculates more general vegetation indices such as NDVI 
(Akbar et al. 2020), EVI (Zhang et al. 2016), SAVI (Pham 
et al. 2020), and GCVI (Hickey and Radford 2022). Consid-
ering the tidal conditions of the mangrove swamp, MAN-
GLEE also calculates water indices such as NDWI, MNDWI 
(Hu et al. 2020), and the moisture index NDMI (Zhang et al. 
2016). To fully leverage the potential of all spectral bands, we 
further computed indices such as Normalized Different Red 
Edge (NDRE) (Muhsoni 2018), NDII (Ji et al. 2011), Simple 
R (Hickey and Radford 2022), ratio SWIR-NIR (SN) (Vogel-
mann 1990), ratio NIR- SWIR (NS), and ratio RED- SWIR 
(RS). A temporal median value for each band and index 
is computed from the pixels retrieved within the specified 
period and free of clouds and shadows to build the temporal 
composite. Finally, the composite bands are clipped to the 
shape of the study area. The resulting composite is resampled 
to 10-m resolution and saved in the user’s GEE account. This 
process allows users to build temporal composites for any 
range of dates, according to their specific requirements.

SAR Data Preparation   

To achieve consistent information from SAR data, M1 gen-
erates a temporal composite of Sentinel-1 data stored in the 
“COPERNICUS/S1_GRD” collection. The S1 acquisition 
mode over land adopts the Interferometric Wide (IW) con-
figuration with VV and VH polarizations, and the GRD data 
represent backscatter intensity values stored in 10 × 10-m 

pixels (Google Earth Engine, n.d.b). The data preparation 
and compositing process involve applying cumulative selec-
tive filters to the data collection based on user-defined cri-
teria, followed by the calculation of the per pixel median 
value. Initially, the SAR data collection is filtered based on 
date and area of interest. Subsequently, the resulting data is 
filtered based on the ascending or descending character of 
the orbit. Next, SAR values are converted to linear units, and 
raw intensity data is transformed into SAR indices.

Prior studies have shown that these indices are more 
effective than raw intensity data for vegetation identification 
(Simard 2019). The ratio (R) of VV over VH polarizations, 
along with the Radar Forest Degradation Index (RFVI) and 
Radar Vegetation Index (RVI) (Saatchi 2019), is computed. 
Following the calculation of indices, the SAR temporal com-
posite is created by determining the median value per pixel. 
Then, the composite is clipped to the study area to adjust com-
puting resources. To further refine the SAR data and reduce 
noise, enhancing the quality of the final composite, a smooth-
ing morphological operator is applied. Upon completing the 
SAR data preparation and compositing process, the resulting 
temporal composite is saved in the user’s GEE account.

MANGLEE Module 2 (M2): Classification and Validation 
of Results

Random Forest Classification 

MANGLEE M2 applies per pixel classification and generates 
mangrove maps. It takes as input the composites obtained 
in M1 and other user input data. Upon entering the path to 
the files, MANGLEE creates a stack of bands. Subsequently, 
the algorithm utilizes the training points in a specific file to 
retrieve values from each band, which serve as inputs to the 
RF classifier. The RF operates on a set-based learning prin-
ciple, constructing subtrees using training samples randomly 
selected at each node (Breiman 2001). MANGLEE uses 100 
trees by default. The decision forest then consolidates the 
classification from all the trees in the forest, following the 
idea that an ensemble of classifiers yields superior results 
compared to a single classifier (Parmar et al. 2019).

The user can choose as input to the RF any number of 
bands from Table 1. MANGLEE will perform the classifica-
tion on the selected stack. The output of the classification 

Table 1   Initial input variables 
employed in the classification

Sensor Band

MSI R, G, B, NIR, SWIR, RED EDGE, NDVI, NDWI, MNDWI, NDMI, 
RATIO SWIR RED (SR), RATIO SWIR NIR (SN), RATIO RED 
SWIR (RS), GCVI, MVI, NIMI, SAVI, NDII, EVI, NDRE, MMRI

SAR VV, VH, R, RFDI, RVI
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is a raster layer with pixels classified into two categories: 
Mangrove and No-Mangrove, providing a spatially complete 
representation of mangrove distribution.

MANGLEE offers comprehensive insights into the classification 
process, providing users with detailed information to enhance 
their understanding. One of the informative features is a graph 
that depicts the relative importance value of each band in the 
classification. This graph displays the extent to which each band 
influences and contributes to the classification outcome.

Validation of Results

Validation is a crucial step in assessing the quality of remote 
sensing products resulting from image classification, as it pro-
vides essential information about the accuracy and uncertainty 
of results (Foody 2002; Chaaban et al. 2022). The validation 
process involves evaluating satellite-derived products inde-
pendently and quantifying their accuracy by comparing them 
analytically with a reference (Camacho Olmedo et al. 2022). 
A primary analysis method used in validation is cross-tabula-
tion, where two datasets are intersected to analyze their spatial 
correlation. This analysis yields an error or confusion matrix, 
which indicates whether the two datasets share the same values 
at specific locations and, if not, the relationships established 
between different values. From this matrix, various metrics 
such as overall accuracy, user accuracy, and producer accuracy 
can be derived (Congalton 1991). In the case of MANGLEE 
M2, the validation process is incorporated to answer the ques-
tion, “How good is my mangrove map?”. After the classifica-
tion process, MANGLEE M2 assesses the uncertainty of its 
products by comparing the classified images mangrove and 
non-mangrove values with a validation file that is assumed to 

represent ground truth data. The validation sample size was 
determined following Chuvieco (2020) recommendations. The 
algorithm extracts values from the classified image and com-
pares them with the validation file. Subsequently, MANGLEE 
calculates the confusion matrix (Fig. 2) and derives the overall 
accuracy, user accuracy, and producer accuracy metrics.

Refinement of Classification Results 

Land cover in mangrove areas can be heterogeneous, with 
mangrove cover often adjacent to other types of vegetation, 
such as agriculture fields, water bodies, or shrimp farms. 
The presence of these diverse covers can lead to confu-
sion in the classification process, especially when dealing 
with wetlands, rice fields, and other types of forest, as they 
might exhibit similar backscatter or reflectance properties. 
To minimize classification errors caused by spectral confu-
sion with neighboring covers and scattered points outside the 
actual mangrove zone, MANGLEE M2 implements majority 
filters. This filtering technique replaces cells in the raster 
based on most of their contiguous neighboring cells, thereby 
enhancing the classification accuracy. Furthermore, the algo-
rithm reclassifies single pixels considering its neighboring 
pixel class. Pixels with less than four neighbors of the same 
class are removed, contributing to the overall reduction of 
classification errors. Finally, the results are exported with 
10-m resolution into the user’s GEE account.

MANGLEE Module 3 (M3): Change Detection

To detect changes in mangrove areas, two mangrove maps are 
required. In MANGLEE M3, after entering the paths of the 
previously created mangrove maps using the earlier modules, 

Fig. 2   Representation of the confusion matrix
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MANGLEE performs a process of subtraction, comparing the 
cover maps pixel by pixel to generate a map depicting detected 
changes. Subsequently, MANGLEE applies a filter to elimi-
nate single-pixel change and retain only changes equal to or 
greater than 0.5 ha (50 pixels). Despite MANGLEE’s capacity 
to yield changes at a finer scale, the map is adjusted to this 
minimum of 0.5 ha, aligning with the FAO’s definition of 
forest area. Finally, the results of classification and change 
detection are presented in a viewer, allowing users to visualize 
and analyze the distribution at different dates and the detected 
changes in the mangrove areas.

Testing MANGLEE

Case Study

To assess the performance of MANGLEE, we conducted 
a study in the Guayas estuary, located in southern Ecuador 
(Fig. 3). Encompassing an extensive area of 1091 km2, this 
region is renowned for its rich mangrove ecosystems along the 
Pacific coast. The climate is tropical, characterized by two dis-
tinct seasons: a rainy period from December to May, followed 
by a dry season from June to November. Average temperatures 

Fig. 3   Location of the Guayas mangrove (Ecuador). a Overall loca-
tion in South America. b Footprints of S1 relative orbits and indica-
tion of annual observations (2018–2022) available per pixel. c Foot-

prints of S2 tiles and indication of annual observations (2018–2022) 
available per pixel. d Distribution of shrimp farms and protected 
mangrove areas
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in Guayas range from 20 to 28 °C, with annual rainfall vary-
ing between 1200 and 1800 mm (Urquizo et al. 2011). The 
Guayas estuary is home to diverse mangrove forests, represent-
ing 68% of Ecuador’s total mangrove cover (Carvajal and San-
tillán 2019). The distribution of tree species follows a salinity 
tolerance gradient, with red mangroves (Rhizophora mangle 
L., Rhizophora racemosa G. Mey, and Rhizophora harrisonii 
Leechm) located at the most saline edge, followed by black 
mangrove (Avicennia germinans L.), white mangrove (Lagun-
cularia racemosa (L.) C.F. Gaertn.), and finally the mangrove 
jeli (Conocarpus erectus L.) situated at the least saline extreme 
(Cornejo and Morales 2013). Approximately 32% of the study 
area is designated as legally protected regions, including areas 
recognized as wetlands of international importance under the 
Ramsar Convention. These protected zones strictly prohibit any 
habitat alteration or exploitation of natural resources.

In Ecuador, approximately 23% of the total mangrove 
area was lost between 1969 and 2013, with the Guayas prov-
ince experiencing an 11% decrease in coverage over the last 
50 years. This loss was primarily due to indiscriminate log-
ging for shrimp farming ponds (Fig. 3) (Carvajal and Santillán 
2019). Mangrove ecosystems in Guayas face multiple threats, 
including urban transformation, agricultural expansion, and 
aquaculture pressures. These alterations often lead to conflicts 
with local communities, as their economy, food security, and 
livelihoods heavily depend on mangrove products. Despite 
various efforts to address these environmental and social con-
flicts (López-Rodríguez 2021), systematic implementation has 
been lacking, resulting in many initiatives failing, or being 
diluted due to insufficient monitoring and control by local 
authorities (Worthington and Spalding 2018). Therefore, it 
is crucial to establish sustainable management strategies and 
strengthen monitoring practices to preserve the mangrove 
ecosystems and their role in supporting both the environment 
and local communities. The Guayas estuary, with its diverse 
mangrove ecosystems and protected areas, presents an ideal 
test bed for evaluating MANGLEE’s performance in accu-
rately classifying and detecting changes in mangrove habitats.

Importance of S1 and S2 Data Availability

Frequent mapping and monitoring of mangrove forests are 
crucial, given their constant changes, and to support sustain-
able management and legal actions against illegal activities. 
The effectiveness of MANGLEE in monitoring extensive 
areas depends on the availability of S1 and S2 data, which 
may vary across different regions. To assess the temporal limi-
tations of MANGLEE in the Guayas estuary, we conducted a 
comprehensive analysis of the quality and availability of S1 
and S2 data. The pilot study area is covered by four Senti-
nel-2 tiles identified as 17MPS, 17MPT, 17MNS, and 17MNS 
(Fig. 3c). During the 2018–2022 period, 2364 S2 images were 
acquired over this area. More than 65% of them are 50–100% 

cloud-covered, highlighting the need to work with temporal 
composites to spatially cover the entire area of interest. To 
evaluate the monthly availability of S2 L2A data with 0% 
cloud coverage probability, we selected pixels from individual 
images that met this criterion. The monthly availability was 
then determined by aggregating the number of pixels meeting 
the 0% cloud probability, into a monthly image. By combining 
monthly availability images, we calculated the annual avail-
ability, which revealed areas with limited good-quality pixels 
and those with a higher number of acquisitions meeting the 
0% cloud probability criterion. The average number of annual 
observations for the period 2018–2022 is displayed in Fig. 3c. 
Additionally, to assess data availability under different cloud 
probability conditions, we repeated the analysis with increased 
cloud probabilities of 10% and 30%. This analysis enabled us 
to identify the time interval necessary to build up a cloud-free 
spatially complete composite for mapping mangroves. The 
spatial location of cloud-free pixels varies over time, caus-
ing the monthly data to cover the study area just partially. To 
fully cover the study area with good-quality data, images from 
December to March are required, indicating that S2 data may 
enable an annual monitoring frequency in the study area.

By combining monthly availability images, we calculated 
the annual availability, which revealed areas with limited good-
quality pixels and those with a higher number of acquisitions 
meeting the 0% cloud probability criterion. The average number 
of annual observations for the period 2018–2022 is displayed 
in Fig. 3c. Additionally, to assess data availability under differ-
ent cloud probability conditions, we repeated the analysis with 
increased cloud probabilities of 10% and 30%. This analysis 
enabled us to identify the time interval necessary to build up 
a cloud-free spatially complete composite for mapping man-
groves. The spatial location of cloud-free pixels varies over time, 
causing the monthly data to cover the study area just partially. 
To fully cover the study area with good-quality data, images 
from December to March are required, indicating that S2 data 
may enable an annual monitoring frequency in the study area.

In the case of S1, unlike S2, it has the capacity to acquire 
good-quality data even under cloudy conditions. The availabil-
ity of observations depends on the number of passes and the 
overlapping of orbits, which are modified over time according 
to the priorities of the satellite acquisition plan. Relative orbit 
91 in ascending mode covers most of the area of interest regu-
larly, with up to 4 acquisitions per month during the period 
2018–2022, whereas relative orbits 40 and 18 in ascending 
mode eventually cover some of the area extent. S1 monthly and 
annual availability were calculated by cumulatively aggregat-
ing available pixels until the entire pilot area was fully covered. 
This approach helped us identify areas with the highest S1 data 
availability in the test area of Guayas and during the 2018–2022 
period of analysis (Fig. 3b). As a result, and despite the sole 
operation of S1A, monitoring mangroves in Guayas with SAR 
data could be done bimonthly, or even monthly in some areas.
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Auxiliary Reference Data

To precisely delineate the study area and acquire essential 
training data, a diverse range of cartographic sources were 
consulted (Table 2). Complementing these sources, NICFI-
Planet mosaics were integrated as a supplementary resource. 
This integration enhances the database with a comprehen-
sive array of geospatial information, thereby augmenting the 
accuracy in defining the geospatial context of our study.

Results

Running: MANGLEE Module 1

In its first module, MANGLEE prepares the optical and SAR 
data for subsequent mapping. To obtain annual cartogra-
phy, the target reference date was the 31st of December. Our 
aim was, therefore, to build up an optical composite with 
observations as close as possible to this date. This process 
was facilitated by our previous analysis. In this area, the 
GEE “COPERNICUS/S2_SR_HARMONIZED” collection 
lacks atmospherically corrected L2A data during the year 
2018. To obtain L2A products, the MANGLEE script was 
adapted ad hoc to include the SIAC atmospheric correction 
(Yin et al. 2022). The 2020 and 2022 S2 composites were 
obtained with the standard code in MANGLEE M1. The 
2018 and 2020 S2 composites were constructed with data 
from March to December, and the 2022 composite required 
data from January to December. To build the S1 SAR com-
posites for 2018 and 2020, data from September to Decem-
ber were utilized. For the 2022 S1 SAR composite, data 
from November and December were selected. The compos-
ites were stored in the GEE user account and are identified 
with an AssetID.

To facilitate building the vector training dataset without 
registration errors to the spectral data, S2 composites were 
exported from GEE to a local computer. The training file 

was therefore built in a Geographic Information System 
(GIS). Two hundred mangrove class points (M) and 200 
non-mangrove class points (NM) were retrieved employing 
local and global cartography from reference data (Table 2) 
and with the visual support of the S2 composites displayed 
in R: B8, G: B11, and B: B4. The validation sample size 
was calculated as recommended by Chuvieco (2020). For 
an expected accuracy of 95% and an acceptable error of 4% 
due to product scale, the number of sample pixels in each 
class was established as 115. The validation file was created 
from a random sampling. A stratified random sampling was 
designed with two sets of 115 points characterized as Man-
grove and Non-Mangrove. Due to the difficulty in accessing 
the mangrove zone, these points were visually selected over 
the Planet’s biannual mosaics (https://​www.​planet.​com/), 
which have high (5 m) spatial resolution (Planet Team 2017).

Running: MANGLEE Module 2

In its second module, MANGLEE classifies and maps man-
groves. Once the composites (S1 and S2) and vector (train-
ing and validation) files were routed, M2 was run for each 
target year. We tried classifying with three different sets of 
input data, that is, S1 alone, S2 alone, and S1 + S2 com-
bined, to investigate which set was more informative. Based 
on the results shown by the inputs importance graphic pro-
vided by the RF algorithm, the optical data, particularly the 
SWIR (B12-B11) and NIR (B8) bands, contributed more to 
the classification. Among the SAR inputs, VV polarization 
intensity was the most relevant. Our initial results revealed 
that the S1 alone classification categorized infrastructure and 
other vegetation cover as mangroves in agreement with other 
studies (Cárdenas et al. 2017). This issue was addressed by 
including an infrastructure mask created from the VH band. 
In addition, at the initial stages, MANGLEE confused some 
wetlands, rice crops, and other forests with mangroves, due 
to the spectral similarity.

Table 2   Sources of data employed to train and validate MANGLEE

a Ministerio del Ambiente, Agua y Transición Ecológica del Ecuador, bCentro Internacional para la Investigación del Fenómeno de El Niño, cIn-
stituto Geográfico Militar del Ecuador, dEuropean Space Agency

Layer Date Scale and spatial reso-
lution (m)

Source Format

Mangrove Cover 2016 1:75,000 MAATEa Vector
Mangrove Cover 2018 1:75,000 CIIFENb Vector
Cover Map 2018 1:25,000 IGMc Vector
Mangrove Cover 2018–2020 20 GMW Raster
ESAd World Cover 10 m V100 2020 10 ESA Raster
ESA World Cover 10 m V200 2021 10 ESA Raster
NICFI Planet Mosaics 2018–2022 5 Planet Satellite Data Program Basemaps for 

Tropical Forest Monitoring—Americas
Raster

https://www.planet.com/
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A fieldwork campaign conducted in March 2023 helped 
us understand these issues and enrich the training with 50 
samples collected across difficult land cover areas. Modifi-
cations were made to 44 points in the original training set, 
and 6 more of the “non-mangrove” class were included. In 
total, the final training file has 406 points. Our fieldwork 
also helped verify false negatives classified as water in inter-
tidal areas, and in locations where mangrove intermingles 
in small patches with other forest types. Furthermore, our 
groundwork helped us realize how mangrove species show 
spectral differences according to environmental conditions 
(Kuenzer et al. 2011). The classification algorithm was run 
again after these modifications. With the enhanced training 
file, the updated S2 alone classification achieved an overall 
accuracy of over 95%, the S1 alone classification had an 
overall accuracy of 92%, and the S1 + S2 combined clas-
sification achieved an overall accuracy of over 97%. User 
and producer accuracy for both mangler and non-mangrove 
classes were in the 89–99% range with the lower values 
achieved by the S1 alone classification. The final mangrove 
map was exported out of GEE, and the number of pixels 
was counted to assess the total mangrove area per year. The 
estimated area of mangrove forest in the province of Guayas 
was 102,287 ha in 2018, which progressively decreased to 
100,323 ha and 100,254 ha by 2020 and 2022, respectively.

Running MANGLEE Module 3

In its third module, MANGLEE evaluates the mangrove area 
changed between two dates. In Guayas, M3 was applied for 
two consecutive periods, that is, 2018–2020 and 2020–2022. 
The path of the initial and final dates cover maps obtained 
with M2 were introduced in M3. MAGLEE M3 then mapped 
and compared mangrove extents and produced a change map 
for each period. By default, in change analysis, only areas 
bigger than half a hectare are considered. In Guayas, M3 
identified two types of change: mangrove loss and recovery.

M3 results for the period 2018–2020 exhibited a loss of 
1966 ha of mangrove and a recovery of 714 ha. Focusing on 
protected areas, the loss and recovery accounted for 819 ha 
and 227 ha, respectively. During the 2020–2022 period, 
999 ha were lost (549 in protected areas), and 524 ha recov-
ered (21 ha in protected areas) (Fig. 4).

To validate the change results, two expert interpreters 
conducted a thorough visual analysis of 20% of the polygons 
identified as changes by the MANGLEE algorithm. These 
interpreters examined each polygon and assigned them to 
one of four categories based on variations in vegetation: 
total loss, partial loss, gain, or uncertain. The interpreters 
found themselves unable to assign any label to 35% of the 
change polygons in the 2018–2020 dataset and 15% of those 
in the 2020–2022 dataset, underscoring the complexity of 
some areas. During the initial evaluation period, there was 

an 89% concurrence between MANGLEE’s results and the 
visual interpretations for losses and a 57% agreement for 
gains. In the subsequent period, this agreement between the 
two methods increased, reaching 82% for losses and 96% 
for gain.

Discussion

MANGLEE is a cloud-based tool developed within the 
Google Earth Engine (GEE) platform, specifically designed 
to advance global mangrove mapping and monitoring efforts. 
MANGLEE combines high spatial resolution optical and 
Synthetic Aperture Radar (SAR) data from the Copernicus 
program with a robust machine learning classification algo-
rithm. MANGLEE comprises three distinct and autonomous 
modules that perform specialized functions: data prepara-
tion, image classification, and change assessment. This 
modular approach offers users great versatility. Remark-
ably, while MANGLEE’s primary mission was to monitor 
mangroves, it has demonstrated its adaptability for mapping 
various other land cover types. MANGLEE’s effectiveness 
was initially validated through testing in Guayas, Ecuador, 
where it delivered precise results for mangrove monitoring 
during the 2018–2022 period, providing a comprehensive 
and detailed understanding of the mangrove situation. Fur-
thermore, it underwent evaluations in diverse South Ameri-
can mangrove regions, consistently achieving accuracy rates 
exceeding 95% when compared to ground-level field data. 
Notably, it has also successfully mapped dragon fruit culti-
vation in Palora, Ecuador (available at: https://​www.​maapr​
oject.​org/​2023/​culti​vos-​pitah​aya-​fruta-​dragon-​ecuad​or/). 
These achievements underscore the tool’s versatility, user-
friendliness, and overall suitability for application across 
varying ecosystems.

The integration of SAR and optical data within MAN-
GLEE capitalizes on the strengths of both data types. While 
merging optical and SAR data can be challenging due to the 
differences in imaging mechanisms (Li et al. 2022), their 
combined use in land cover classification and change detec-
tion has proven highly effective for identifying and monitor-
ing mangroves. This synergy has previously been observed 
in other land cover studies (Sujud et al. 2021) and high-
lights the value of combining information from Copernicus 
programs. Optical data, synthesized through biochemical 
vegetation indices, provides insights into the chlorophyll 
and water status of mangrove canopies (Zeng et al. 2022). 
In contrast, C-band SAR data offers crucial canopy struc-
tural information, particularly useful for identifying ever-
green vegetation types. MANGLEE’s ability to work with 
SAR data is especially valuable in regions where cloud 
cover is persistent, such as tropical and subtropical areas 
where mangroves thrive. SAR data’s capability to acquire 

https://www.maaproject.org/2023/cultivos-pitahaya-fruta-dragon-ecuador/
https://www.maaproject.org/2023/cultivos-pitahaya-fruta-dragon-ecuador/
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high-quality information even in the presence of clouds ena-
bles an increase in the monitoring frequency. In case study 
in Ecuador, we demonstrated how Sentinel-1 acquisition 
frequency allowed for bimonthly monitoring from 2018 to 
2022, despite the unfortunate loss of one of the companion 
twin satellites in 2021 (Copernicus Data Space n.d.). In the 
future, the repositioning of the twin constellation is expected 
to improve global data frequency, further enhancing map-
ping revisit capacity. MANGLEE even offers the option to 
map mangroves exclusively based on SAR data, provided 
a base map is available. Overall, the temporal frequency 
of data acquisition provided by the Copernicus missions 
represents a significant improvement over previous satel-
lite missions like Landsat or ALOS. Utilizing these datasets 
enabled MANGLEE to enhance the spatial resolution of the 
Global Mangrove Watch mangrove maps from 20 to 10 m, as 
well as the temporal frequency of the Google Earth Engine 
Mangrove Mapping Methodology. This enhanced mapping 
resolution aids in identifying small-scale disturbances, such 
as the expansion of the aquaculture industry, which is gradu-
ally encroaching on mangrove habitats in Ecuador due to 
economic factors.

The lack of success or failure in mangrove restoration 
efforts stems from the absence of standardized monitoring 
protocols, resource constraints, limited technical capacity, 
and insufficient data integration between projects (Worthing-
ton and Spalding 2018). In developing countries, there is 
a concerted effort to address this issue through the imple-
mentation of remote sensing training programs. However, 
the sustained effectiveness of these initiatives is impeded 
by the transient nature of technicians within public insti-
tutions, coupled with technological limitations (Haack and 
Ryerson 2016; Jha and Chowdary 2007). MANGLEE avoids 
the economic issues associated with the purchase of software 
and hardware by being available through GitHub (https://​
github.​com/​SERVIR-​Amazo​nia/​MANGL​EE) GNU General 
Public License, and to address these training challenges. 
MANGLEE has been designed to be as intuitive as pos-
sible, featuring a simplified processing flowchart that maxi-
mizes the data utilization of abundant data through image 
composites in GEE. Its aim is to be accessible to users who 
may be non-experts in remote sensing tools or program-
ming, positioning itself as a practical tool for consulting 
and management. The effective monitoring of mangroves 
through remote sensing faces a significant challenge related 

Fig. 4   Examples of changes 
detected by MANGLEE (yel-
low line, change 2018–2020; 
blue line, change 2020–2018). 
a Change from mangrove to 
shrimp farm (42 ha). b Change 
from mangrove to bare soil 
(32 ha). c Mangrove loss due to 
shrimp farm maintenance: 11 ha 
in 2020 and 15 ha in 2022

https://github.com/SERVIR-Amazonia/MANGLEE
https://github.com/SERVIR-Amazonia/MANGLEE
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to data availability. MANGLEE heavily relies on Sentinel 
data, presenting a potential vulnerability highlighted by the 
setback experienced in 2022 with the loss of Sentinel-1B. 
Such incidents can jeopardize the continuity of monitoring 
efforts. To mitigate this, it is crucial for future research to 
diversify data sources, including incorporating alternatives 
like ALOS-2 PALSAR-2 for SAR data and NICFI-Planet 
for optical data. Introducing backup sources enhances the 
resilience of the monitoring system. To further enhance spa-
tial resolution, integrating MANGLEE with high-resolution 
satellite or drone imagery could be beneficial. This inte-
gration would enable a more detailed analysis of mangrove 
ecosystems. Additionally, given the demonstrated success 
of remote sensing in assessing changes in various environ-
ments such as grasslands, corals, and estuaries, there is a 
promising avenue for research to explore and validate MAN-
GLEE’s capabilities in monitoring other marine ecosystems. 
Expanding its applicability beyond mangroves could con-
tribute to a comprehensive understanding of diverse marine 
environments.

Conclusions

MANGLEE stands out as a user-friendly, accessible, 
adaptable, and highly effective tool, dedicated to bolster-
ing coastal management efforts. Leveraging the robust 
cloud computing capabilities of Google Earth Engine and 
utilizing accessible data from the Copernicus program, 
MANGLEE has demonstrated its prowess in monitoring 
mangroves, even overcoming persistent cloud cover chal-
lenges. This has resulted in the generation of invaluable 
insights for change detection. Our assessment of MAN-
GLEE over the Guayas estuary, a renowned mangrove 
region in Ecuador, has underscored the tool’s reliability 
in providing detailed identification of changes between 
2018 and 2022. To further enhance the temporal monitor-
ing capacity, future research endeavors should prioritize 
the enrichment of the Synthetic Aperture Radar (SAR) 
monitoring approach, since at least in tropical regions, 
it has much higher availability of good quality data than 
optical counterparts. SAR applicability should aim to 
extend to other mangrove areas worldwide, as well as to 
other ecosystems where monitoring with optical data is 
hindered by the persistence of cloud coverage.

MANGLEE emerges as a key asset in our pursuit of sus-
tainable practices and well-informed decision-making, not 
confined solely to mangrove ecosystems but extending its 
relevance across diverse environments. Its adaptability and 
effectiveness position MANGLEE as a key ally in advanc-
ing our understanding of ecological changes and fostering 
responsible resource management.
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