
Bulletin of the Iranian Mathematical Society (2024) 50:87
https://doi.org/10.1007/s41980-024-00948-y

ORIG INAL PAPER

Generalized Poincaré-Dulac Singularities of Holomorphic
Foliations

Percy Fernández-Sánchez1 · Jorge Mozo-Fernández2

Received: 7 October 2024 / Revised: 4 November 2024 / Accepted: 7 November 2024 /
Published online: 28 November 2024
© The Author(s) 2024

Abstract
In this paper, we study the analytic classification of a class of nilpotent singularities of
holomorphic foliations in (C2, 0), those exhibiting a Poincaré-Dulac type singularity
in their reduction process. This analytic classification is based in the holonomy of a
certain component of the exceptional divisor. Finally, as a consequence, we show that
these singularities exhibit a formal analytic rigidity.
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1 Introduction

This paper is a contribution to the study of the analytic classification of germs of holo-
morphic foliations of codimension one defined over an ambient space of dimension
two. Such a foliation may be defined, either by a holomorphic 1-form

ω = a(x, y)dx + b(x, y)dy, (1.1)

Communicated by Majid Gazor.

B Jorge Mozo-Fernández
jorge.mozo@uva.es

Percy Fernández-Sánchez
percy.fernandez@pucp.edu.pe

1 Dpto. Ciencias - Sección Matemáticas, Pontificia Universidad Católica del Perú, Av.
Universitaria 1801, San Miguel, Lima 32, Peru

2 Dpto. Álgebra, Análisis Matemático, Geometría y Topología, Facultad de Ciencias, Universidad de
Valladolid, Campus Miguel Delibes, Paseo de Belén, 7, Valladolid 47011, Spain

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s41980-024-00948-y&domain=pdf
http://orcid.org/0000-0001-5461-2625


87 Page 2 of 17 Bulletin of the Iranian Mathematical Society (2024) 50 :87

or by its dual vector field

X = b(x, y)
∂

∂x
− a(x, y)

∂

∂ y
, (1.2)

where a(x, y), b(x, y) ∈ C {x, y}. The origin is a singular point if a(0, 0) = b(0, 0) =
0, fact that will be assumed in the sequel.

A problem which has attracted the attention of many mathematicians from long
time ago is the classification of such objects, under the action of a convenient group
of transformations. Two vector fields

Xi = bi (x, y)
∂

∂x
− ai (x, y)

∂

∂ y
, i = 1, 2

as in (1.2) are analytically equivalent if there exists a germ of biholomorphism � :
(C2, 0) −→ (C2, 0) carrying orbits into orbits, in the sense that

�∗X1 = X2.

The previous expression can be written formally in terms of the power series expan-
sions of �, ai (x, y), and bi (x, y). Then, formal equivalence can also be defined when
� ∈ C[[x, y]]2 defines an invertible transformation.

Alternatively, two foliations defined by 1-forms ω1, ω2 as in (1.1) are analytically
equivalent if �∗ω2 = ω1, with � as above. Formal equivalence in this sense may be
accordingly defined.

Both notions of equivalence are substantially different. When discussing the equiv-
alence of vector fields, we take into account the (complex) time parameterizing the
solutions, whereas when considering 1-forms, we only take into account the leaves,
disregarding the time. Therefore, two analytically equivalent vector fields define ana-
lytically equivalent foliations, but the converse is not true: if U (x, y) is a unit, both
ω and U (x, y)ω define the same foliation, but the vector fields X and U (x, y)X are
not necessarily analytically equivalent in the sense of vector field equivalence. Some
authors distinguish these two notions by referring to vector fields as either equivalent
or orbitally equivalent [22–24].

In this work, we are interested in the analytic equivalence of foliations, i.e., what is
referred to as orbital analytic equivalence in the aforementioned papers. Consequently,
throughout the paper, we will primarily work with holomorphic 1-forms instead of
vector fields.

The frameworkof this paper is the search for criteria to determinewhen two formally
equivalent germs of foliations are also analytically equivalent, and to study the formal-
analytic moduli of these objects. It is convenient to recall here that any such germ
admits a reduction of singularities: consider the map π : (E, D) −→ C

2 which
consists of blowingup the origin,with D = π−1(0)being a projective line representing
the set of all (complex) directions through the origin. If ω defines a holomorphic

foliation over C2, then ω1 := 1

xν
E∗ω represents the blow-up foliation, where x = 0

is a local equation of D and ν ∈ N is the greatest power of x appearing in the expression
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of E∗ω. In fact, ν coincides with the order ν(ω) of ω in the non-dicritical case (when
D is an invariant curve of the foliation) and with ν(ω) + 1 in the dicritical case (non-
invariant D). After a finite number of point blow-ups, a germof foliation is transformed
in another foliation, defined over a different ambient space, with singularities of simple
(or reduced) type, i.e. generated locally by a germ of vector field X with non zero
linear part, such that the eigenvalues λ1, λ2 of this linear part verify λ1 �= 0 and
λ1/λ2 /∈ Q>0. A partial proof of this fact may be read in [21, 26], and a complete one
in [3, 13]. Two main cases are under consideration:

1. λ2 �= 0. Hyperbolic case.
2. λ2 = 0. Saddle-node case.

In the first case, if λ2/λ1 /∈ R, the foliation is said to be in the Poincaré domain
[19], and it is analytically linearizable. The same happens if λ2/λ1 ∈ R \ Q is not
well approximated by rationals, and no small divisors appear. In the presence of res-
onances (λ2/λ1 ∈ Q<0), the situation becomes more complicated: it appears that two
formally equivalent foliations are not necessarily analytically equivalent. The analytic
classification involves the construction of a large moduli space [12]. It is interesting
to remark here that the formal normal forms of foliations are not only analytic but
also polynomial. However, this does not mean that the normalizing transformations
are analytic, nor that formal and analytic classifications coincide.

In the saddle-node case, similar things occur. Such a foliation is formally deter-
mined by two numbers (the Milnor number of the singularity and a residue, which is
Camacho-Sad index of the weak separatrix, see below), and the analytical classifica-
tion is again much more complicated, involving a certain infinite-dimensional space.
Again, formal normal form is polynomial.

There are several techniques that have proven useful in the study of the analytic
classification and the analytic transformations of these objects. One of them is widely
used by E. Stróżyna and H. Żoła̧dek in [23, 24]: it consists in a clever use of transfor-
mations involving vector fields, complementary subspaces and homological equations
in order to guarantee convergence. Another one, of a more geometrical nature, is the
holonomy, introduced by J.-F. Mattei and R. Moussu [13]. Let us recall here that
any reduced singularity has exactly two (formal or analytic) smooth invariant vari-
eties through the singularity, transversal to each other, whose tangent spaces follow
the eigendirections of the linear part. These varieties, called separatrices are analytic
when they are tangent to the eigendirection determined by a nonzero eigenvalue, so in
the saddle-node case a formal, divergent separatrix may appear. Associated to a leaf
of the foliation, a holonomy group can be constructed: take a non-singular point P
on the leaf and a small germ of transversal � to the foliation through P . Any loop γ

on the leaf based at P can be lifted thanks to the existence of a transversal fibration
locally around γ , to a new path γ̃ with initial point on � (call it Q) and end point
h(Q). Identifying � ∼= (C, 0) a local diffeomorphism h : (C, 0) → (C, 0) is defined.
The set of these diffeomorphisms is a group called the holonomy group of the leaf.

This construction can be made locally around a singular point, taking a separatrix
as the leaf. In the resonant case, it is well known that if two formally equivalent
singularities have analytically equivalent holonomy maps computed over one of these
separatrices, the germs of foliations themselves are analytically equivalent [10, 12,
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13]. It is also the case with the separatrix associated to the non-zero eigenvalue (strong
separatrix) of a saddle-node. There is an important difference concerning the proofs,
anyhow: while in the resonant case the conjugation between both foliations can be
constructed extending the holonomy, due to the presence of a transversal fibration
to the foliation around the singular point, this technique cannot be carried out in the
saddle-node case, due to the lack of an appropriate transversal fibration.

Concerning the analytic classification of non-reduced germs of foliations, in this
paper we will focus in the nilpotent case. These are foliations generated locally by a
vector field with a non-zero nilpotent linear part. It is well-known that such a foliation,
in appropriate analytic coordinates, can be reduced to the Takens normal form [11,
23, 25]

d(y2 + xn) + x pU (x)dy,

where U (0) �= 0, n, p ∈ N, n ≥ 3, p ≥ 2. Several different cases need to be
considered:

1. 2p > n. Generalized cusp.
2. 2p = n. Generalized saddle.
3. 2p < n. Generalized saddle-node.

We borrow these names from the works of E. Stróżyna and H. Żoła̧dek [22–24].
The generalized cusp case was first studied by R. Moussu [18] when n = 3, and by
D. Cerveau and R. Moussu [4] in the general case. R. Moussu introduces the notion
of vanishing holonomy (called projective holonomy in subsequent works), which is
the holonomy of a certain component of the exceptional divisor that appears after
reduction of singularities as the main analytic invariant.

Later on, R. Meziani [16] considers the case 2p = n. He studies two subcases.
When U (0) �= ±4 and U (0) verifies certain arithmetical condition, the situation is
quite close to Case 1. If U (0) = ±4, after reduction of singularities there is only
one singular point which is not a corner, of saddle-node type with strong separatrix
transversal to the exceptional divisor. The holonomy of this separatrix is an invariant
for analytic classification. From this fact, rigidity phenomena (formal-analytic) may
be studied.

When 2p < n, we are in the generalized saddle-node case, studied in [1] and in
[22]. It remains to be studied the case when 2p = n, U (0) �= ±4 and the arithmetical
condition mentioned above fails. Under these conditions, after p blow-ups, two singu-
larities appear in the last component of the exceptional divisor (besides the corners):
a resonant one and a second one that may fall in one of the following two categories:

1. Either it is dicritical.
2. Or it is of Poincaré-Dulac type.

A non-dicritical singularity is called of Poincaré-Dulac type when defined locally
by a vector fieldX having a linear part with two eigenvalues λ1, λ2 such that λ2/λ1 =
m ∈ N≥2. This is a standard name, used widely in the literature regarding holomorphic
foliations of codimension one, as in [20, p. 52], [3, p. 49] or [9]. These are singularities
belonging to the Poincaré domain, which were studied by H. Dulac [5], and its name
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honors these two outstanding mathematicians. Let us remark that the term Poincaré-
Dulac is also used by other authors in order to describe a reduction procedure in some
cases, see for instance [7, 27].

Case 1 (dicritical) was studied by R. Meziani and P. Sad [17] from the point of
view of characterizing when these foliations have a meromorphic first integral (results
later generalized in dimension three by P. Fernández, J. Mozo and H. Neciosup [6]).
In this paper we are focusing in the Case 2 above, which will be called, in coherence
with the names given by the aforementioned authors, generalized Poincaré-Dulac.
The objective will be twofold:

1. To study the analytic classification for these generalized Poincaré-Dulac singular-
ities of holomorphic foliations, from a geometrical point of view, using projective
holonomy.

2. To study the projective holonomy groups, formal-analytic rigidity and realizability
of these groups.

Note that after p blow-ups, the foliation is not desingularized. In fact, it appears
a singularity of Poincaré-Dulac type, with a normal form xdy − (my + xm)dx , for
some m ∈ N, m ≥ 2. This integer m is the only analytic invariant. It is necessary to
blow-upm additional points for this singularity to be reduced; at the end, a saddle-node
appears in a corner, and there are no more separatrices. Nevertheless, in our research
we will not need to perform these last m blow-ups, and the analytic classification will
be obtained from the holonomy of the pth component of the exceptional divisor. This
fact (no need to desingularize completely the foliation) is new for this class of nilpotent
singularities.

Generalized saddles have also been studied by E. Stróżyna and H. Żoła̧dek in [24]
from a completely different point of view. We will relate our results to theirs when
studying the rigidity of the projective holonomy group.

Another point to be highlighted is that generalized Poincaré-Dulac singularities are
not second type foliations in the sense of [14]. This situation also occurs in Meziani’s
case U (0) = ±4, where a saddle-node in “bad” position (weak separatrix contained
in the divisor) appears. Nevertheless, we will not explore this fact.

The structure of the paper is as follows. In Sect. 2, a review of nilpotent singularities
in dimension two is given, andgeneralizedPoincaré-Dulac singularities are introduced.
The main part of Sect. 3 is devoted to the proof of the main result of the paper, which
is the following one:

Theorem 1.1 Let F1, F2 be two germs of generalized Poincaré-Dulac holomorphic
foliations, formally equivalent, with n = 2p. Assume that Hi is the holonomy group of
the pth component of the exceptional divisor obtained during the process of reduction
of singularities for Fi (i = 1, 2). If H1, H2 are analytically conjugated, the foliations
are also analytically conjugated.

Finally, in Sect. 4 we study the realizability of the groups appearing as projec-
tive holonomy, and also, the formal-analytic rigidity of generalized Poincaré-Dulac
foliations. We will make convenient connections with related results stated in [24].
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2 Nilpotent Singularities in Dimension Two. Generalized
Poincaré-Dulac singularities

Let us consider a germ of a singularity of a nilpotent holomorphic foliation F of
codimension one, over an ambient space of dimension two, defined by a 1-form ω on
(C2, 0). According to F. Takens [25], a formal prenormal form for ω is

η = d(y2 + xn) + αx pU (x)dy, (2.1)

where p, n ∈ N, n ≥ 3, p ≥ 2, α ∈ C
∗, U (x) ∈ C[[x]], U (0) = 1. E. Stróżyna

and H. Żoła̧dek [23], using direct computations, and independently F. Loray [10] with
geometrical arguments have shown that η can be obtained from ω after an analytic
change of coordinates, so we may assume that U (x) ∈ C{x}. This expression of the
1-form generating the foliation will be our starting point.

As we have stated in the Introduction, we are interested in the generalized saddle
case, so here, and in the rest of the paper, we shall assume that n = 2p ≥ 4. Let us
briefly describe, withoutmany details, the reduction of singularities ofF . After a chain
of p point blow-ups, p components D1, D2, . . . , Dp of the exceptional divisor appear
in this order. The singular points are the corners (intersection of two components of
the exceptional divisor), and one or two singular points situated in Dp. If we take
local coordinates such that this chain of blow-ups is obtaining replacing y by x pz and
eliminating powers of x from the expression, the singularities correspond with the
roots of the polynomial 2(z2 + 1) + αz = 0. Indeed, the transformed foliation Fp is
generated locally in these coordinates by

ω̃ = p(2(z2 + 1) + αzU (x))dx + x(2z + αU (x))dz,

x = 0 being the equation of the component of the divisor Dp. Several possibilities
arise:

1. α = ±4. In this case, only a singular point appears, which turns out to be a
saddle-node, with strong variety transversal to Dp and weak variety contained in
the divisor. The foliation is reduced, and this case has already been studied by R.
Meziani [15, 16].

2. α �= ±4. Two singular points appear, corresponding to the different roots z1, z2 of

the polynomial 2(z2+1)+αz = 0. If

√
α2 − 16

α
/∈ Q∩(−1, 1), both singularities

are simple. This case has also been studied by R. Meziani.

3. If

√
α2 − 16

α
∈ Q∩ (−1, 1), one singularity (say, z2) is simple, resonant, and the

quotient of the eigenvalues of the other singularity (z1) is positive rational. Under
these conditions, this singular point may be either dicritical (this case was studied
by R. Meziani and P. Sad in [17]) or a singularity of Poincaré-Dulac type.

In order to simplify computations, we begin centering the coordinates at z1, after a
translation z 
→ z + z1. The foliation is locally generated by

p(2z(z + z1 − z2) + α(z + z1)Ũ (x))dx + x(2z − 2z2 + αŨ (x))dz, (2.2)
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where we have written U (x) = 1 + Ũ (x), Ũ (0) = 0. The matrix of the linear part of
the dual vector field is

(
2z2 0
∗ 2p(z1 − z2)

)
.

We need to impose that this singularity is of Poincaré-Dulac type, its only separatrix
being the exceptional divisor. If this occurs, there exists m ∈ N, m ≥ 2, such that

p · z1 − z2
z2

= m.

This equality imposes strong conditions on α. Namely, we must have

α = − 2(m + 2p)√
p(m + p)

. (2.3)

Given such a value for α, it is not straightforward to distinguish whether we are facing
a dicritical singularity or a Poincaré-Dulac one. By Poincaré-Dulac Theorem such a
singularity must be analytically equivalent to

xdz − (mz + axm)dx, , (PDm)

for some a �= 0, as we are in the Poincaré domain (and if a = 0 the singularity would
be dicritical).

The reduction of singularities is completed after blowing-up points m additional
times: if we are in the generalized Poincaré-Dulac case, only in the corners new
singularities may appear, all of them resonant except for the last one, which turns out
to be a saddle-node, with both separatrices (weak and strong) contained in the divisor.

Example 2.1 Assume that U (x) = 1 + Ũ (x), with ν(Ũ (x)) ≥ m, i.e., U (x) = 1 +
axm + h.o.t . After m − 1 blow-ups we have the foliation of equation

[(
2z(xm−1z + z1 − z2) + αzŨ (x) + αz1

Ũ (x)

xm−1

)

+(m − 1)z(2xm−1z + 2z1 + α + αŨ (x))
]

dx

+x[2xm−1z + 2z1 + α + αŨ (x)]dz,

where the matrix of the linear part is

(
2z2 0

pαz1a 2z2

)
.

If a = 0, we are in the dicritical case, and if a �= 0 in the generalized Poincaré-Dulac
case. Both cases, then, may appear naturally.
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Example 2.2 Take p = 2, α = −5,U (x) = 1+bx . In this case, z1, z2 are the solutions
of 2z2 − 5z + 2 = 0, which are 2 and 1

2 . Here, m = 6. After the first two blow-ups,
centering in z1 = 2, we have the 1-form

ω1 = (4z2 + 6z − 10bx(z + 2))dx + x(2z − 1 − 5bx)dz.

It is necessary to blow-up 5more times to recognise ifwe have a dicritical singularity or
a generalized Poincaré-Dulac one. After these 5 blow-ups, centering the coordinates in
the only singular point appearing in the smooth part of the divisor, we get a singularity
with linear part1

(5934060b6x + z)dx − xdz,

so, it is a generalized Poincaré-Dulac singularity if b �= 0.

3 Holonomy and Analytic Classification

The main objective of this section is to show that the holonomy of a convenient
component of the exceptional divisor analytically characterizes the foliation when
considering generalized Poincaré-Dulac foliations. In previous works addressing this
problem for other classes of nilpotent singularities in two dimensions, the key tool
was the projective holonomy of a well chosen component of the exceptional divisor
obtained after the full reduction of singularities. On the contrary, we will use the
projective holonomy of the component of the exceptional divisor obtained after the
first p blow-ups. Thus, we will skip the remaining m components and work directly
with the Poincaré-Dulac singularity, without completing the reduction process.

The main result of this section, and one of the main objectives of the paper, is the
following one:

Theorem 3.1 Let F1, F2 be two germs of generalized Poincaré-Dulac holomorphic
foliations as in (2.1), formally equivalent, with n = 2p. Assume that Hi is the holonomy
group of the pth component of the exceptional divisor obtained during the process of
reduction of singularities for Fi (i = 1, 2). If H1, H2 are analytically conjugated, the
foliations are also analytically conjugated.

Let us postpone the proof to the end of this section. Remark that a closer study of
the holonomy group will allow to go beyond this result and to show in Sect. 4 that, in
fact, there is a formal-analytic rigidity phenomenon for this type of foliations. Before
that, let us precise the structure of this group, which will we useful during the proof
of Theorem 3.1.

3.1 Structure of the Holonomy Group

Call H the projective holonomy group of the pth component of the exceptional divisor
generated in the process of reduction of singularities from a generalized Poincaré-

1 Computations done with Maple 2021.2, licensed for Valladolid University.
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Dulac singularity.Computedover a transversal� to Dp, it is generated by twoelements
h1, h2, where h1 is the local holonomy of a Poincaré-Dulac singularity, and h2 the
local holonomy of a resonant one.

From the local model (PDm) of a Poincaré-Dulac singularity, it is straightforward
to compute the holonomy, which turns out to be

e
2π i
m exp

(
−2π i

m
· xm+1

m + xm
· ∂

∂x

)
.

As the singularity P1 is analytically equivalent to (PDm), we have that h1(x) =
e
2π i
m exp(Y), whereY is an analytic 1-dimensional vector field. The composition h0 :=

h1 ◦h2 is the holonomy of the corner singularity Dp−1 ∩ Dp, which is periodic ([13]),

h[p]
0 = id. So, there is an analytic coordinate z such that h0(z) = λz, λp = 1. In this

coordinate, h1(z) = μ exp(Y), μm = 1, and h2(z) = h0 ◦ h−1
1 = λ

μ
exp(−Y).

So, there exist analytic coordinates such that H = 〈μ exp(Y),
λ

μ
exp(−Y)〉, with

Y a holomorphic vector field of order m + 1, μm = 1, λp = 1. We will use this
structure along the proof of Theorem 3.1.

3.2 Previous Results and Proof of theMain Theorem

Before showing the theorem, we will need some previous results and remarks. For
a generalized Poincaré-Dulac singularity, recall from (2.2) that after p blow-ups we
find that it is generated around the Poincaré-Dulac singularity by

p(2z(z + z1 − z2) + α(z + z1)Ũ )dx + x(2z − 2z2 + αŨ (x))dz, (3.1)

where m = p · z1 − z2
z2

∈ N, m ≥ 2. Dividing (3.1) by the unit 2z − 2z2 + αŨ (x),

the following local generator can be taken:

ωP D = xdz −
[

z · m + z1z

1 − z1z
+ x A(x, z)

]
dx .

Wewill assume that it is analytically equivalent to xdz −(mz +xm)dx . Let us observe
that the fibration x = const is transversal to the foliation away from the divisor x = 0.
Indeed, dx ∧ ωP D = xdx ∧ dz.

A vector field, dual of ωP D , generating the foliation, is

X = x
∂

∂x
+ (mz + a(x, z))

∂

∂z
,

for certain holomorphic function a(x, z) not detailed here. We want to investigate the
effect of a change of variable u = z+ϕk(x, z), where ϕk is a homogeneous polynomial
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of degree k, which transformsX in a similar vector fieldY = x ∂
∂x +(mu+b(x, u)) ∂

∂u ,
for some b(x, u). Both vector fields X and Y are related by

x
∂ϕk

∂x
+ mz

∂ϕk

∂z
− mϕk = b(x, z + ϕk) − a(x, z) − a(x, z)ϕk . (3.2)

The homogeneous terms of degree smaller than k for a, b agree. The degree k terms,
ak , bk , satisfy the relation

xϕk + mzϕk,z − mϕk = bk(x, z) − ak(x, z), (3.3)

where ϕk,z denotes the partial derivative ∂ϕk
∂z , as usual. Writing ϕk(x, z) =∑

i+ j=k
ϕk,i, j x i z j , the left hand side of (3.3) is

∑
i+ j=k

(i + m( j − 1))ϕk,i j x i z j .

Therefore, if k �= m, ϕk(x, z) can be chosen in such a way that bk(x, z) = 0. As
a consequence, after a convergent (in the m-adic topology) sequence of polynomial
transformations of this type, b(x, z) can be reduced to εxm , ε ∈ C. If we only make a
finite number of such transformations, we can assume that

X = x
∂

∂x
+ (mz + εxm + g(x, z))

∂

∂z
,

with ν(g(x, z)) = r ≥ m + 1.

Proposition 3.2 Given a vector field X = x ∂
∂x + (mz + εxm + g(x, z)) ∂

∂z , ε �=
0, ν(g) = r ≥ m + 1, there exists a holomorphic conjugation z = u + ϕ(x, u)

transforming X in its normal form

Ym = x
∂

∂x
+ (mu + εxm)

∂

∂u
.

In other words, the transformation which conjugates X with its normal form can be
chosen in such a way that respects the fibration dx = 0.

Proof The proof is similar to other proofs of related results, which can be read, for
instance, in [7]. We shall include it here for the sake of completeness, adapted to our
case.

According to (3.2), we have that

xϕx + muϕu − mϕ = g(x, u + ϕ) − εxmϕu .

Denote ad(ϕ) = xϕx + muϕu −ϕ, T1(ϕ) = g(x, u +ϕ), T2(ϕ) = −εxmϕu . We have
that

ad(ϕ) = T1(ϕ) + T2(ϕ). (3.4)
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Theobjective is to find a convergent solution of (3.4). Ifρ > 0,Bρ will denote the space
of holomorphic and bounded functionsϕ(x, u) = ∑

i, j ϕi, j x i u j on D(0; ρ)×D(0; ρ)

such that
∑

i, j

∣∣ϕi j
∣∣ ρi+ j < +∞, provided with the norm ||ϕ||ρ := ∑

i, j

∣∣ϕi j
∣∣ ρi+ j ,

whichmakesBρ a Banach space. Previous operators act on the subspaceBm+1,ρ ⊆ Bρ

of series whose order is greater or equal than m + 1. Let us observe that

∣∣∣∣∣∣ad−1 ◦ T2(ϕ)

∣∣∣∣∣∣
ρ

=
∑
i, j

|ε| ∣∣ϕi j
∣∣ jρm−1

i + m( j − 1)
ρi+ j ≤ |ε| ρm−1

m2 · ||ϕ||ρ ,

if the order of ϕ is at least m + 1, given that

max

{
j

i + m( j − 1)
| i, j ≥ 0, i + j ≥ m + 1

}
= m + 1

m2 .

On the other hand,

T1(ϕ2) − T1(ϕ1) = (ϕ2 − ϕ1)

∫ 1

0

∂g

∂u
(x, u + tϕ2 + (1 − t)ϕ1)dt .

As ν

(
∂ϕ

∂u

)
≥ m,

∣∣∣∣
∣∣∣∣∂g

∂u
(x, u)

∣∣∣∣
∣∣∣∣
ρ′

≤ K · (ρ′)m, for certain K > 0, 0 < ρ′ ≤ ρ.

We have that

||u + tϕ2 + (1 − t)ϕ1||ρ ≤ ||u||ρ + max(||ϕ1||ρ , ||ϕ2||ρ) ≤ ρ + cρm+1

for some C > 0. As ad−1 is a bounded operator (because i + m( j − 1) ≥ 1 when
i + j ≥ m + 1), previous computations show that, for ρ small enough, equation
(3.4) has a solution (i.e., ϕ = ad−1(T1 + T2)(ϕ) has a fixed point), which solves the
problem. ��
Proof (Proof of Theorem 3.1) In this proof, we will take some ideas of previous related
works, as [4, 16, 22]. Let Hi be the projective holonomy group corresponding to the
foliation Fi (i = 1, 2), Hi = 〈hi1, hi2〉, where hi1 is the local holonomy of the
Poincaré-Dulac singularity (Pi1), and hi2 of the hyperbolic saddle (Pi2). As hi1, hi2
are conjugated, both Poincaré-Dulac singularities P11, P21 are of the same formal type
(same m), so they are of course analytically conjugated by a local biholomorphism
�(x, z) = (x, ϕ(x, z)), defined over a convenient neighbourhood V11 of P11. Remark
that, according to Proposition 3.2, � can be chosen fibered in x .

Let � be a germ of transversal to Dp for F1, � ⊆ V11, parametrized by (x, s1),
x ∈ (C, 0) and�′ = �(�) = (x, ϕ(x, s1)). Let h = � |� : � → �′ be the restriction
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of � to this transversal: in these coordinates, in fact, h(x) = x . Let g : � → �′ be a
conjugation between H1 and H2. By construction, h−1 ◦ g : � → � commutes with
h11.

In these coordinates, h11 = μ exp(Y), with μm = 1, and h12 = λ
μ
exp(−Y),

λp = 1. As h(x) = x conjugates h11 with h21, then h21 = μ exp(Y) and consequently,
h22 = λ

μ
exp(−Y). As a conclusion, the restriction h of � to � defines a conjugation

between H1 and H2.
The fibration dx = 0 is transversal to F1 out of the exceptional divisor and to the

curve 2z + αU (x) = 0, which cuts the divisor in a point of coordinate s0 = −α
2 . This

is a regular point for the foliation.
Let P = (x, z) be a point, neither on the separatrix through the saddle P22, nor on

the curve 2z + αU (x) = 0. Take a path (x(t), z(t)) on the leaf L p through P , joining
P with P ′ ∈ V11. As dx = 0 is transversal to the foliations F1, F2, there exists z2(t)
such that:

1. z2(1) = ϕ(x(1), z(1)) = ϕ(P ′) = Q′.
2. (x(t), z(t)) is a path on the leaf L Q′ of P2 passing through Q′.
Denote Q = (x(0), z2(0)). The map assigning Q to P defines a conjugation between
the foliations in an open set, thatwewant to extend to neighbourhoods of the singularity
P12, of the point z0 and of the corner Dp ∩ Dp−1.

We study first the saddle P12. The fibration dx = 0 is transversal to the foliation
and to the separatrix in a neighbourhood of P12. So, the procedure described above
turns out to be the lifting of the projection of the path (x(t), y(t)) over the separatrix
through P12. Using th same arguments as in [10, 12, 13], it is bounded along this
separatrix, so it can be extended. This extension of �, in a neighbourhood of P12 has
locally an analytic expression

�(x, z) =
(

x,

∞∑
n=0

ϕn(x)zn

)
,

(after a convenient translation) with ϕn(x) ∈ O(D \ {0}), D being a fixed disk around
0. We want to extend this map also to the exceptional divisor x = 0. Consider the
local foliations around P12, P22, defined by local 1-forms ω̃i (i = 1, 2) of the form
(following [12])

ω̃i = xdz + (ξ z + Bi (x, z))dx,

where ξ = m + p

mp
. ω̃1, ω̃2 are formally equivalent, so they share a formal normal

form as

ωλ,s = xyvk
(

dx

x
+

(
λ + 1

vs

)
dv

v

)
,

where v = xm+pzmp. There are formal transformations �i , i = 1, 2, such that
�∗

i ωλ,s ∧ ω̃i = 0, and these transformations are, in fact, transversely formal in z,
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i.e.,

�i (x, z) =
(

x,

∞∑
k=1

�ik zk

)
,

with ψik holomorphic in a common disk of convergence. Consider now the (trans-
versely formal)map�2◦�◦�−1

1 =: �, verifying�∗ωs,λ∧ωs,λ = 0.By construction,

�(x, y) =
(

x,

∞∑
k=1

�k(x)yk

)
,

where �k ∈ O(D \ {0}). The isotropy group of ωs,λ can be explicitely described, and
it can be seen that�k(x) can, in fact, be analytically continued to 0. As a consequence,
ϕk(x) also can be continued and�(x, z) extends to {0}×(C, 0), i.e., to the exceptional
divisor.

Consider now a neighbourhood of s0 (assume, for the sake of simplicity, that it is
the origin). As it is a regular point, a holomorphic first integral exists, having x = 0
as a level and being transversal to dx = 0 beyond the exceptional divisor. Denote
Fi (x, z) = xUi (x, z), Ui (0, 0) = 1 this first integral, i = 1, 2, for each of the
foliations Fi , defined on |x | < ε, |z| < η, Ui (0, z) �= 0, ∂Ui

∂z (0, 0) �= 0. The map
�i (x, z) = (x, Ui (x, z) − 1) defines a biholomorphism in a neighbourhood of z0
transforming the first integral in x(1 + z).

Consider now the map �2 ◦ � ◦ �−1
1 = θ(x, z), |x | < ε, 0 < ε1 < |z| < ε2,

defined on an annulus close to z1 and preserving dx = 0: θ(x, z) = (x, θ2(x, z)). The
first integral x(1 + z) is transformed on x(1 + z)V (x(1 + z)), where V (0) �= 0:

x(1 + θ2(x, z)) = x(1 + z)V (x(1 + z)),

so θ2(x, z) = (1 + z)V (x(1 + z)) − 1, well defined on a neighbourhood of z0: the
conjugation �(x, z) extends to a neighbourhood of this point. This last argument is
similar to the one detailed by Meziani [15, 16].

Finally, consider the corner Dp−1 ∩ Dp, linearizable, having a holomorphic first
integral in a neighbourhood of that point. Standard arguments as in [4, 15, 16] allows
to extend the conjugation to a neighbourhood of this point, so to a full neighbourhood
of Dp, and similarly to a neighbourhood of the exceptional divisor. Collapsing this
exceptional divisor in a point and using Hartogs’ Theorem, we end the construction
of the conjugation between both foliations. ��

4 Realizability and Rigidity

Wehave seen in Sect. 3.1 that the projective holonomygroup of a generalized Poincaré-

Dulac singularity has the form H = 〈μ exp(Y),
λ

μ
exp(−Y)〉, where Y is an analytic

vector field, μm = 1, λp = 1. In this section we will address two problems:
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1. Are all these groups realizable as the projective holonomy group of a generalized
Poincaré-Dulac singularity?

2. Are these group rigid, in the sense of formal-analytic rigidity?

Regarding the first problem, consider a vector field Y analytically equivalent to

−2π i

m
· xm+1

m + xm
· ∂

∂x
, whereμ is a primitive mth root of unity and λ is a primitive pth

root. Define h1(x) = μ exp(Y), h2(x) = λ
μ
exp(−Y), and assume that h0 := h1 ◦ h2

is linearizable. A local model of a foliation having h1(x) as its holonomy can be easily

constructed: if ϕ∗Y = −2π i

m
· xm+1

m + xm
· ∂

∂x
, then take �∗(xdy − (my + xm)dx),

where�(x, y) = (ϕ(x), y). According to [12], a local model of a resonant singularity
having h2 as holonomy can also be found. Therefore, the construction in [8] can be
applied to find an analytic surface M , an embedded projective line D ⊆ M , and a
foliation F on M such that D is a leaf of F with three singular points and prescribed
holonomy. By the Camacho-Sad Index Theorem [2], the self-intersection of D must
be −1, so these projective holonomy groups are always realizable.

Next, we will study rigidity. First, we need to study the groups that appear as pro-
jective holonomy groups in a generalized Poincaré-Dulac singularity. From previous
results, the projective holonomy group of a generalized Poincaré-Dulac singularity has

the form H = 〈μ exp(Y),
λ

μ
exp(−Y)〉, where Y is an analytic vector field, μm = 1,

and λp = 1.

The vector fieldY is analytically equivalent to
xm+1

m + xm

∂

∂x
. We know that the linear

map αz commutes with exp(Y) if and only if αm = 1. Taking this into account, if H
is abelian, it turns out that

exp(Y) ◦ λ exp(−Y) = λz,

so, exp(X ) commutes with λz, which means that λm = 1. This can happen only if p
divides m.

Assume that H is not abelian. If H would be solvable, it should be formally equiv-
alent to a subgroup of

{
a · exp

(
t xm+1 · ∂

∂x

)
| t ∈ C, a ∈ C

∗
}

,

so Y should be equivalent to xm+1 ∂
∂x , which is not true. We arrive to the following

dichotomy:

The projective holonomy group of a generalized Poincaré-Dulac singularity is:

• Either abelian, if p divides m.
• Or non solvable, if p does not divide m.

Every non-solvable group of diffeomorphisms is rigid ([4]), so in this case, formal-
analytic rigidity automatically arises from the nature of the holonomy group. In the
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general case, let us observe that the group is embeddable in a holomorphic flow. Then,
if H1 and H2 are two such groups that are formally conjugate, they are necessarily ana-
lytically conjugate. As a result, there is always a formal-analytic rigidity phenomenon.
In the abelian case, this does not follow from the nature of the group: not every finitely
generated abelian group of diffeomorphisms is rigid. If G < Diff(C, 0), G is rigid if
and only if G0 = G ∩Diff0(C, 0) is not cyclic. However, H0 = H ∩Diff0(C, 0) is a
group of diffeomorphisms of the form exp(n · X ), where n belongs to a subgroup of
(Z,+), which is necessarily cyclic.

Rigidity is a phenomenon that frequently occurs in the study of nilpotent singular-
ities. In fact, if G and G ′ are two formally equivalent subgroups of Diff(C, 0) that are
either finite, abelian non-exceptional, solvable non-exceptional, or non-solvable, they
are analytically equivalent. Here, "exceptional" means that the associated subgroups
of diffeomorphisms tangent to the identity are not cyclic [4]. As a result, in the gen-
eralized cusp case, the formal-analytic moduli are generically trivial. However, in the
generalized Poincaré-Dulac case, rigidity does not always stem from the rigidity of
the groups themselves but, as mentioned earlier, from the properties of the foliations
(rigidity of Poincaré-Dulac singularities).

Let us relate these results to those of Stróżyna and Żoła̧dek in [24]. In that paper
the authors consider nilpotent vector fields, which they call Bogdanov-Takens singu-
larities. Using Takens’ normal form, they assume that the vector fields have the form
X = VH + W, where

VH = (y + (λ + 1)xr )
∂

∂x
− λr x2r−1 ∂

∂ y

is quasi-homogeneous with degrees deg(x) = 1, deg
(

∂
∂x

) = −1, deg(y) = r ,

deg
(

∂
∂ y

)
= −r , and W gathers the (quasihomogeneous) higher order terms. In their

notation, r can assume non-integer values.When r = p ∈ N, we are in the generalized
saddle case. Indeed, using 1-forms, the foliation is generated by

ω = (y + (λ + 1)x p)dy + λpx2p−1dx + h.o.t .

= 1

2
d(y2 + λx2p) + ((λ + 1)x p + h.o.t .)dy,

or equivalently,

ω′ = 2ω = d(y2 + λx2p) + (2(λ + 1)x p + h.o.t .)dy.

A linear change of variables (x, y) → (ax, y), with λa2p = 1 leads to

d(y2 + x2p) + (2(λ + 1)λ−1/2x p + h.o.t .)dy,

so, in the notation of (2.1), α = 2(λ + 1)λ−1/2. By (2.3), we must have an equality

2(λ + 1)λ−1/2 = − 2(m + 2p)√
p(m + p)

,
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for some m ∈ N. This equation has two solutions, namely

λ = p

m + p
and λ = m + p

p
.

In [24, Section 5.1], it is assumed that λ ≥ 1, sowe set λ = 1+ m

p
. The case λ = k ∈ N

is exactly when p | m, which is the situation where the holonomy group is abelian
and rigidity is not guaranteed by the nature of the group. In the research of [24], this is
the case where the normal form is more complicated, requiring substantially greater
effort to obtain. It would be interesting to establish a complete relationship between
the cases and situations studied by Stróżyna and Żoła̧dek in their works, and the results
concerning projective holonomy studied by Cerveau, Moussu, Meziani, Loray, Sad,
and others, but this is beyond the scope of our research here.
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24. Stróżyna, E., Żoła̧dek, H.: Analytic properties of the complete formal normal form for the Bogdanov-
Takens singularity. Nonlinearity 34, 3046–3082 (2021)

25. Takens, F.: Singularities of vector fields. Inst. Hautes Études Sci. Publ. Math. 43, 47–100 (1974)
26. van den Essen, A.: Reduction of Singularities of the Differential Equation Ady = Bdx , en Équations

Différentielles et Systèmes de Pfaff dans le Champ Complexe (R. Gérard y J.-P. Ramis, eds.). Springer
LNM 712, 44–59 (1979)
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