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Abstract

We study sequences of blow-ups at smooth centers Zs
πs−→ Zs−1

πs−1−−−→ · · · π2−→ Z1
π1−→ Z0

and the associated sequential morphism π : Zs → Z0. To this end, we introduce

the key concept of a final divisor, that is, an irreducible exceptional component Ei of

the exceptional divisor of π, strict transform of the exceptional divisor Ei
i of πi, such

that there exists an open set Ui on Zi, with Ei
i ⊂ Ui, such that the restriction of the

composition πi+1 ◦ πi+2 ◦ ... ◦ πs−1 ◦ πs above Ui defines an isomorphism. Furthermore,

we study the admissible proximity relations between two final divisors with non empty

intersection.

In the case of sequences of point blow-ups in arbitrary dimension and the correspond-

ing sequential morphisms, we define two equivalence relations on the set of sequential

morphisms: the algebraic equivalence and the combinatorial equivalence, which allow us

to classify them. By proving a result that characterizes final divisors in terms of some

relations defined over the Chow group of zero-cycles of its sky, we are able to recover

the sequence of blow-ups, modulo algebraic equivalence, from the associated sequential

morphism. As a result, we establish a connection between the corresponding algebraic

and combinatorial equivalence classes of these two objects. Moreover, when the ground

Z0 is a projective space, we give an explicit presentation of the Chow ring A•(Zs) of the

sky Zs of a sequential morphism obtained from point blow-ups and we obtain a surprising

result: this Chow ring depends only on the number of blow-ups.

In the case of sequences of point and rational curve blow-ups with ground P3, we also

characterize final divisors by explicitly giving their defining relations over A0(Zs), and

we introduce an explicit presentation of the Chow ring of its sky A•(Zs). By contrast

to the case of sequences of point blow-ups, we prove that two sequences of point and
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rational curve blow-ups may have non-isomorphic Chow rings even if they have the same

length and proximity relations.
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Introduction

Sequences of blow-ups in the literature

Sequences of blow-ups play an essential role in Algebraic Geometry research. Let us

mention some works where sequences of blow-ups appear as a key tool for resolution of

singularities. In the foundational work [25] Hironaka proved the resolution of singularities

in the category of algebraic schemes over a field of characteristic zero. In [40] Villamayor

takes those results as starting point and exhibits a constructive resolution of singularities,

and in [16] Encinas and Villamayor study a constructive proof of desingularization, as

the outcome of a process obtained by successively blowing up the maximum stratum of

a function. See [23],[24],[6] for more details and references.

Two questions, concerning factorization of birational morphisms and maps by blow-ups

along smooth varieties, are of fundamental importance in birational algebraic geometry.

Let X
′
and X

′′
be complete smooth algebraic varieties which are birationally equivalent.

Does there exist a third variety X and birational morphisms X → X
′
, X → X

′′
, which

are compositions of blow-ups along closed smooth irreducible subvarieties? Does there

exist a sequence of varieties Xi, for i = 0, ..., n, such that X0 = X
′
, Xn = X

′′
, and

Xi+1, is obtained from Xi by a blow-up or blow-down along a closed smooth irreducible

subvariety?

In [11] Danilov managed to generalize the Zariski theorem [42] proving that every pro-

jective and birational morphism between smooth algebraic varieties whose fibres are of

dimension ≤ 1 is a composition of blowing ups at smooth centers of codimension 2. In

[36] Sancho proved that a proper and birational morphism π : X
′ → X between regular

schemes whose fibres are of dimension ≤ 1 factors, locally, through a blowing-up at a
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regular center of codimension 2. Furthermore if π is projective then π is a composition of

blowing-ups at regular centers. In [41] Wlodarczyk proved that if ϕ : X1 → X2 is a toric

birational map between two complete smooth toric varieties of the same dimension, then

ϕ can be decomposed in a sequence of equivariant blow-ups and blow-downs along smooth

centers. More recently, in [1] Abramovich, Karu, Matsuki and Wlodarczyk proved that

if ϕ : X1 → X2 is a birational map between complete nonsingular algebraic varieties X1

and X2 over an algebraically closed field K of characteristic zero, and U ⊂ X1 is an open

set where ϕ is an isomorphism, then ϕ can be factored into a sequence of blow-ups and

blow-downs with nonsingular irreducible centers disjoint from U .

On the blow-up counterpart, that is blow-downs, in [30] Lascu formulates the equiva-

lent of Castelnuovo-Enriques conditions for the existence of regular contractions in higher

dimensional varieties, and Ishii in [27] gives a necessary and sufficient condition for a sub-

variety of a projective non-singular variety to be contracted in an algebraic variety which

is again nonsingular projective, and study some geometric properties of the contraction.

Given a sequence of blow-ups, there is a simple combinatorial object associated to it, the

dual complex, that generalizes to higher dimension the well known dual graph associated

to a sequence of point blow-ups in two dimensional varieties (see e.g. [8, Sect 4.4]). The

dual complex of an simple normal crossing divisor E, denoted D(E), is a CW-complex

whose vertices correspond to the irreducible components Ei of E, and whose cells of

dimension d are in correspondence with strata of codimension d in E, i.e. the connected

components of the intersection Ei0 ∩ · · · ∩ Eid . Over the complex numbers, one can

think of D(E) as the combinatorial part of the topology of E. In [9] Castellanos proved

that the dual complex with appropriate weights determines the complete geometry of

all infinitely near points associated with a given curve singularity. In [7] Campillo and

Reguera studied morphisms given by composition of a sequence of point blow-ups of

smooth d−dimensional varieties in terms of combinatorial information coming from the

d−ary intersection form on divisors with exceptional support. In [39] Tsuchihashi proves

that an arbitrary weighted graph on a compact topological surface is a weighted dual

graph of a toric divisor arising as the exceptional set of a resolution of a 3−dimensional

cusp singularity, if and only if it satisfies the monodromy condition and the convexity

condition.
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Given an embedding of a variety X in a complete variety V as an open and dense

part, and the polyhedron Π(D) of the “infinite part” D = V \ X, Danilov proved in

[10] that when D is a divisor with transversally crossing components the homotopy

type of the polyhedron Π(D) does not change under a monoidal transformation of V

with center in D. With some standard assumptions on resolution of singularities, this

assertion shows that the homotopy type of Π(D) depends only on X (and is called the

polyhedron of X at infinity). In [37] Stepanov proved that if π
′
: (Y

′
, E

′
) → (X, o) and

π
′′
: (Y

′′
, E

′′
) → (X, o) are two log-resolutions of an isolated singularity (X, o), then the

topological spaces D(E
′
) and D(E

′′
) have the same homotopy type. Moreover, in [38] he

showed that the highest cohomologies of the dual complex associated to a resolution of

an isolated rational singularity vanish, and he proved that the dual complex associated

to a resolution of an isolated hypersurface singularity is simply connected. In [12], de

Fernex, Kollár and Xu prove that the dual complex of a singularity is well defined, up

to homotopy, and in many cases, for instance for isolated singularities, they identify

and study a “minimal” representative of the homotopy class that is well defined up to

piecewise linear homeomorphism.

In [29] Kóllar proves that every simplicial complex is the dual complex of some simple

normal crossing divisor in a smooth variety and he extends earlier results on the existence

of singularities with prescribed dual complex. In [4] Arapura, Bakhtary and Wlodarczyk

prove that the homotopy type of the dual complex of E depends only the the complement

X \ E, and in fact only on its proper birational class.

Given X a connected, smooth, and proper K-variety of dimension n, where K is the

quotient field of a complete discrete valuation ring R with residue field k,in the survey

[35] Nicaise studies the connections between Xan, the Berkovich analytification of K, and

a sncd-model of X over R, that is, a regular scheme X of finite type over R, endowed

with an isomorphism of K−schemes XK → X, such that the special fiber Xk is a divisor

with strict normal crossings. In particular, one can attach a subspace Sk(X ) of Xan,

to any proper sncd−model X of X over R, called the Berkovich skeleton of X, which is

canonically homeomorphic to the dual intersection complex of the strict normal crossings

divisor Xk. This skeleton, that can be viewed as the space of real valuations on the

function field of X that extend the discrete valuation on K and that are monomial with

respect to Xk, controls the homotopy type of Xan (it is a strong deformation retract

of Xan), providing an interesting link between the geometry of Xan and the birational
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geometry of models of X.

Intersection theory has played a key roll in the development of some important results in

birational geometry. In the foundational work [33] Mori realized that given an smooth

projective variety X, then the part of the cone of curves lying in the open half-space

where the intersection number with the canonical class is negative is locally finitely

generated, its generators being called the extremal rays of X. Moreover, he showed that

every extremal ray is spanned by the homology class of a rational curve [C], and that in

dimension 3, for every extremal ray R of X there is a unique morphism gR : X → Z,

called the contraction of R, such that an irreducible curve C ⊂ X is mapped to a point

by gR iff [C] ∈ R. As a consequence, new completely different way of thinking about

morphisms of varieties arose, and since then everyone imagines an extremal ray or face

of a cone.

Regarding the computation of birational invariants, in [2] Aluffi proves that given a

birational map between smooth algebraic varieties φ : V 99K W which does not change

the canonical class, then the total homology Chern classes of V and W are push-forwards

of the same class from a resolution of indeterminacies of φ. As an example, Aluffi proves

that the push-forward of the total Chern class of a crepant resolution of a singular

variety is independent of the resolution. Furthermore, Aluffi in [3] introduces a notion of

integration on the category of proper birational maps to a given variety X, with value

in an associated Chow group, whose applications include new birational invariants and

comparison results for Chern classes and numbers of nonsingular birational varieties.

Overview of the thesis

This thesis is devoted to the study of sequences of blow-ups with regular centers (see

Definition 2.1.1):

Zs
πs−→ Zs−1

πs−1−−−→ · · · π2−→ Z1
π1−→ Z0.

In particular, we consider the final exceptional divisor E in Zs and study how the in-

tersection of the irreducible components Ei can give invariants on the total morphism

π : Zs → Z0. As a consequence, different sequences of blow-ups realizing the same mor-

phism will have the same invariants.
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We focus in conditions characterizing when an irreducible component can correspond to

the last blow-up of the sequence (final components).

First we restrict to the special case of point blow-ups (Chapters 3 and 4) and we have

obtained surprising results on the Chow ring A•(Zs).

Then, we restrict to the case Z0 = P3 and consider sequences of blow-ups with centers

that are either points or rational curves.

The thesis is divided into six chapters whose main results are summed up in the rest of

the introduction.

The content of Chapter 2

In Chapter 2 we introduce the basic objects of this research, that is, sequences of blow-

ups, sequential morphisms and final divisors. In Section 2.1 we define the key concepts

of sequences of blow-ups at smooth centers (Definition 2.1.1) and sequential morphism

(Definition 2.1.2). Given a sequence of blow-ups Zs
πs−→ Zs−1

πs−1−−−→ · · · π2−→ Z1
π1−→ Z0,

we will say that Zs and Z0 are the sky and the ground of the sequence, respectively.

Moreover, we generalize the usual proximity relations for higher dimensional centers

(Definitions 2.1.5 and 2.1.7) which lead us to introduce a new proximity relation, the

t−proximity.

In Section 2.2 we give a short result (Lemma 2.2.1) about the normal bundle of the

complete intersection of two irreducible components of the exceptional divisor. Section

2.3 is devoted to the definition of the key concept of final divisor for both sequences of

blow-ups and sequential morphisms.

Definition. 2.3.1 Let (Zs, ..., Z0, π) be a sequence of blow-ups as in Definition 2.1.1.

The components of the exceptional divisor E in Zs are {E1, ..., Es}. Assume that Ei is

an irreducible component. Set Ei
i to be the image of Ei in Zi. We say that Ei is final

with respect to (Zs, ..., Z0, π) if there exists an open set Ui on Zi such that Ei
i ⊂ Ui,

Vi = π−1
s,i (Ui) ⊂ Zs, and πs,i|Vi : Vi → Ui is an isomorphism (see Remark 2.1.3 for πs,i).

Definition. 2.3.3 Let π : Zs → Z0 be a sequential morphism. We say that an irreducible

component Ei of E is final if there exists a sequence of blow-ups (Zs, ..., Z0, π) associated

to π : Zs → Z0 such that Ei is final with respect to this sequence.
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Moreover, we recall the concept of regular projective contraction (Definition 2.3.4), and

characterize the only admissible proximity relations between two final divisors with non

empty intersection within the next result.

Theorem. 2.3.10 Let Ei, Ej ⊂ Zs be both final divisors for the sequential morphism

π : Zs → Z0. Then Ei ∩ Ej ̸= ∅ if and only if Ei is proximate to Ej and Ej is

t−proximate to Ei, or vice versa.

Figure 1: Example of two blow up processes which lead to a same sequential morphism

with two intersecting final divisors

Finally, in Section 2.4, in order to obtain a combinatorial object associated to the in-

tersections of the exceptional divisor, we have the n−ary multilinear intersection form

on the abelian group of divisors with exceptional support (Definition 2.4.1), that will be

intensively used in Chapters 3, 4 and 6 in order to give a numerical characterization of

final divisors.

The content of Chapter 3

In Chapter 3 we focus on the study of sequences of blow-ups as in Definition 2.1.1 over al-

gebraically closed fields, where all the centers Ci+1 are points. In section 3.1 we define the
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notions of algebraic and combinatorial equivalence for both sequences of points blow-ups

and sequential morphisms (Definitions 3.1.1, 3.1.2, 3.1.5 and 3.1.7). Roughly speaking,

algebraic equivalence is determined by the existence of an isomorphism between the skies,

that is between the varieties obtained after the last blow-up of the sequences, whereas

combinatorial equivalence is determined by the existence of a permutation relating the

n−ary intersection forms.

Section 3.2 is devoted to give a numerical characterization of final divisors in terms of

values of the n−ary intersection form on the abelian groups of divisors with exceptional

support.

Proposition. 3.2.4 Ei is final if and only if

(ei)
n = (−1)n−1

In Section 3.3, we use the previous result in order to recover the sequences of point

blow-ups from the associated sequential morphism modulo algebraic equivalence.

Theorem. 3.3.3 Let π : Zs → Z0 be a sequential morphism. Given the n−ary multilinear

intersection form we can recover all the sequences of point blow-ups that are associated

to sequential morphisms in the same algebraic equivalence class of π : Zs → Z0.

Section 3.4 is devoted to prove some relations between algebraic and combinatorial equiv-

alence classes of sequences of point blow-ups and sequential morphisms.

Proposition. 3.4.1 Any of the sequences obtained as in 3.3.4, that is, by decomposing

a regular projective contraction from a fixed sky Zs and a fixed simple normal crossing

divisor E, are associated to sequential morphisms in the same algebraic equivalence class

(see Definition 3.1.1).

Theorem. 3.4.5 Two sequences of point blow-ups (Zs, ..., Z0, π) and (Z
′

s, ..., Z
′

0, π
′
), with

s = s
′
, are combinatorially equivalent as in Definition 3.1.7 if and only if their associated

sequential morphisms π : Zs → Z0 and π
′
: Z

′

s → Z
′

0 are combinatorially equivalent as

in Definition 3.1.2, and both statements are true if and only if the associated multilinear

maps ΦZ,E and ΦZ′ ,E′ are equivalent too as in Definition 3.1.2

Theorem. 3.4.7 Given two sequential morphisms π : Zs → Z0 and π
′
: Z

′

s′
→ Z

′

0, then

they are algebraically equivalent as in Definition 3.1.1 if and only if there are sequences

7



of point blow-ups (Zs, ..., Z0, π) and (Z
′

s′
, ..., Z

′

0, π
′
) associated to π : Zs → Z0 and π

′
:

Z
′

s′
→ Z

′

0 respectively such that they are algebraically equivalent as in Definition 3.1.5.

Finally, in Section 3.5, we give two explicit presentations of the Chow ring of the sky of a

sequence of point blow-ups A•(Zs) when Z0
∼= Pn. The first one using the classes of the

total transforms of the exceptional components as generators and the second one using

the classes of the strict transforms ones.

Theorem. 3.5.3 The Chow ring of the sky A•(Zs), when Z0
∼= Pn, is isomorphic to

A•(Zs) ∼= Z [x0, x1, ..., xs] /({xi · xj}si,j=0
i ̸=j

, {(−1)n(xi)
n + (x0)

n}si=1),

by sending x0 to the class hs∗ and xi to the class es∗i for i = 1, ..., s.

Theorem. 3.5.6 A presentation of A•(Zs), when Z0
∼= Pn, using

{
h̃s, {esi}

s
i=1

}
as

generators is the following one:

A•(Zs) ∼=
Z [y0, y1, ..., ys]

A
, (1)

where

A = (({y0 · yi}si=1 ,

(yi +

s∑
k=i+1

bk,iyk) · (yj +
s∑

l=j+1

bl,jyl)


s

i,j=1
i̸=j

,

{
(yi)

n + ((−1)n +# {j}j→i)(y0)
n
}s
i=1

)),

by sending y0 to hs∗ and yi to esi for i = 1, ..., s.

Furthermore, we prove the surprising fact that when Z0
∼= Pn the skies of two sequences

of point blow-ups of the same length have isomorphic Chow rings (Corollary 3.5.5).

The content of Chapter 4

In Chapter 4 we extend the results of the previous one in order to consider sequences of

point blow-ups over perfect fields. This more general setting lead us to define in Section

4.1 algebraically and combinatorially compatible partitions of the exceptional divisor.
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Definition. 4.1.4 Given a sequential morphism π : Zs → Z0 as in Definition 2.1.2 and

a partition E = ⊔li=1Fi, we will say that the partition is combinatorially compatible with

π if for each i = 1, .., l, and Hj1 , Hj2 ∈ Fi there exists σ ∈ Sm such that

a σ(j1) = j2,

b IZs,E(Hi1 , Hi2 , ...,Hin) = IZs,E(Hσ(i1), Hσ(i2), ...,Hσ(id)) ∀i1, .., in

Definition. 4.1.5 Given a sequence of point blow-ups (Z0, ..., Zs, π) and a partition of

the exceptional divisor E = ⊔li=1Fi, we will say that the partition is combinatorially

compatible with the sequence (Z0, ..., Zs, π) if for each i = 1, .., l and Hj1 , Hj2 ∈ Fi there

exists σ ∈ Sm such that

a σ(j1) = j2,

b deg(Hj1) = [K(Pj1) : K] =
[
K(Pσ(j1)) : K

]
= deg(Hσ(j1)),

c if Hj1 ∈ Fi1 , Hjk ∈ Fik and Hjk → Hj1 , then Hσ(jk) → Hσ(j1)

Definition. 4.1.7 Given a sequential morphism π : Zs → Z0 as in Definition 2.1.2

and a partition of the exceptional divisor E = ⊔li=1Fi, we will say that the partition is

algebraically compatible with the morphism π if there exist a smaller field K̃ ⊂ K with

k ⊂ K̃, there are K̃−varieties Z̃0 and Z̃ and a K̃−morphism Z̃
π̃−→ Z̃0

Z ∼= Z̃ ×Spec(K̃) Spec(K)
π //

β

��

Z0
∼= Z̃0 ×Spec(K̃) Spec(K)

��
Z̃

π̃ // Z̃0

such that the exceptional divisor of π̃, Ẽ, has irreducible components H̃1, ..., H̃l and for

each i = 1, ..., l then ∀H ∈ Fi β(H) = H̃i

Definition. 4.1.8 Given a sequence of point blow-ups (Z0, ..., Zs, π) and a partition of the

exceptional divisor E = ⊔li=1Fi, we sill say that the partition is algebraically compatible

with the sequence (Z0, ..., Zs, π) if there exist a smaller field K̃ ⊂ K with k ⊂ K̃ and

there are K̃−varieties Z̃i and K̃−morphisms Z̃i+1
π̃i+1−−−→ Z̃i

Zs
πs //

β
��

Zs−1

πs−1 //

��

· // Z1
π1 //

��

Z0

��
Z̃s

π̃s // Z̃s−1

π̃s−1 // · // Z̃1
π̃1 // Z̃0
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where Zi ∼= Z̃i ×Spec(K̃) Spec(K) ∀i = 1, ..., s ,such that the exceptional divisor of

(Z̃0, ..., Z̃l, π̃) has irreducible components H̃1, ..., H̃l and for each i = 1, ..., l then ∀H ∈ Fi

β(H) = H̃i.

The following section runs in parallel with the ones of Chapter 3, that is, Section 4.2 deals

with the natural extension of the definitions of algebraic and combinatorial equivalences

of sequences of point blow-ups and sequential morphisms, when considering algebraically

and combinatorially compatible partitions of the exceptional divisor.

Definition. 4.2.1 We say that two algebraically marked sequential morphisms (π : Z →

Z0,⊔li=1Fi)alg and (π
′
: Z

′ → Z
′

0,⊔l
′

i=1F
′

i )alg over K are algebraically equivalent, and we

denote it by (π : Z → Z0,⊔li=1Fi)alg
alg∼K (π

′
: Z

′ → Z
′

0,⊔l
′

i=1F
′

i )alg , if and only if there

exist smaller fields K̃, K̃ ′ ⊂ K with K̃ ∼=k K̃ ′ satisfying the conditions of Definition 4.1.7

Zs ∼= Z̃s ×Spec(K̃) Spec(K)
π //

β

��

Z0
∼= Z̃0 ×Spec(K̃) Spec(K)

��
Z̃s

π̃ // Z̃0

Z
′

s
∼= Z̃ ′

s ×
Spec(K̃′ )

Spec(K)
π
′
//

β
′

��

Z
′

0
∼= Z̃

′
0 ×Spec(K̃′ )

Spec(K)

��

Z̃ ′
s

π̃′
// Z̃

′
0

and there exist isomorphisms a and b such that the following diagram is commutative

Z̃
b //

π̃
��

Z̃ ′oo

π̃′

��

Z̃0
a // Z̃

′
0

oo

Definition. 4.2.3 Given two combinatorially marked sequential morphisms (π : Zs →

Z0,⊔li=1Fi)comb and (π
′
: Z

′

s → Z
′

0,⊔li=1F
′

i )comb we say that the associated multilin-

ear forms ΦZ,⊔l
i=1Fi

and ΦZ′ ,⊔l
i=1F

′
i

are equivalent, and we denote it by ΦZ,⊔l
i=1Fi

∼

ΦZ′ ,⊔l
i=1F

′
i
, if there exists τ ∈ Sl such that

τ(ΦZ,⊔l
i=1Fi

) = ΦZ′ ,⊔l
i=1F

′
i
.

Moreover, the combinatorially marked sequential morphisms (π : Zs → Z0,⊔li=1Fi)comb

and (π
′
: Z

′

s → Z
′

0,⊔li=1F
′

i )comb are said to be combinatorially equivalent, and we denote

10



it by (π : Zs → Z0,⊔li=1Fi)comb
comb∼ (π

′
: Z

′

s → Z
′

0,⊔li=1F
′

i )comb, when their associated

multilinear maps ΦZ,⊔l
i=1Fi

and ΦZ′ ,⊔l
i=1F

′
i

are equivalent.

Definition. 4.2.5 We say that two algebraically marked sequences of point blow ups,

(Zs, ..., Z0, π,⊔li=1Fi)alg , and (Zs′ , ..., Z
′

0, π
′
,⊔l

′

i=1F
′

i )alg, are algebraically equivalent over

K, and we denote it by (Zs, ..., Z0, π,⊔li=1Fi)alg
alg∼K (Zs′ , ..., Z

′

0, π
′
,⊔l

′

i=1F
′

i )alg, if and

only if l = l
′
and there exist smaller fields K̃, K̃ ′ ⊂ K with K̃ ∼=k K̃ ′

Zs
πs //

β
��

Zs−1

πs−1 //

��

· π2 //

��

Z1
π1 //

��

Z0

��
Z̃s

π̃s // Z̃s−1

π̃s−1 // · π̃2 // Z̃1
π̃1 // Z̃0

Z
′

s

π
′
s //

β
′

��

Z
′

s−1

π
′
s−1 //

��

·
π
′
2 //

��

Z
′

1

π
′
1 //

��

Z
′

0

��
Z̃

′

s

π̃
′
s // Z̃

′

s−1

π̃
′
s−1 // ·

π̃
′
2 // Z̃

′

1

π̃
′
1 // Z̃

′

0

with Zi ∼= Z̃i ×Spec(K̃) Spec(K) (resp. Z
′

i
∼= Z̃

′

i ×Spec(K̃′ ) Spec(K)) and algebraic iso-

morphisms a, b = bt, bt−1, ..., b1, with t ≤ s, such that there are indexes r1, ..., rt = s ∈

{1, ..., l} and r
′

1, ..., r
′

t = s
′ ∈

{
1, ..., s

′
}
, where Zri → Zri−1 → ... → Zri−1

(resp.

Z
′

ri → Z
′

ri−1 → ... → Z
′

ri−1
), with ri > ri−1 (resp r

′

i > r
′

i−1), is a brick blow-up ∀i = 1...t

as in Definition 4.2.4 and the diagram

Z̃s //

b

��

Z̃rt−1
//

bt−1

��

Z̃rt−2
//

bt−2

��

· //

��

Z̃r1 //

��

Z̃0

a

��
Z̃

′

s′
// Z̃

′

r
′
t−1

// Z̃
′

r
′
t−2

// · // Z̃
′

r
′
1

// Z̃
′

0

is commutative.

Definition. 4.2.6 We say that two combinatorially marked sequences of point blow ups,

(Zs, ..., Z0,⊔li=1Fi, π)comb and (Z
′

s, ..., Z
′

0,⊔li=1F
′

i , π
′
)comb as before with respective parti-

tions E = ⊔li=1Fi and E
′
= ⊔li=1F

′

i and irreducible components of the exceptional divisor

H1, ...,Hm; H
′

1, ...,H
′

m, with l = l
′
, are combinatorially equivalent, and we denote it by

(Zs, ..., Z0,⊔li=1Fi, π)comb
comb∼ K (Z

′

s, ..., Z
′

0,⊔li=1F
′

i , π
′
)comb, if and only there is a per-

mutation τ in Sl such that for every two different indexes i, j one has

a Fi is proximate to Fj if and only if F
′

τ(i) is proximate to F
′

τ(j),
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b deg(Fi) =
∑
H∈Fi

deg(H) =
∑
H′∈F ′

i
deg(H

′
) = deg(F

′

τ(i))

Section 4.3 is devoted to the numerical characterization of final divisors and its natural

extension to final elements of a partition.

Proposition. 4.3.1 Hi is final if and only if

(hi)
n = (−1)r(hi)

s · (hj)r and (hi) · (hj)n−1 > 0

for every j such that Hi ∩ Hj ̸= ∅ (see Lemma 3.2.3 for a numerical characterization)

and for all natural numbers r and s with r + s = n.

Proposition. 4.3.3 Given an algebraically marked sequence (Zs, ..., Z0,⊔li=1Fi, π)alg then

Fi is final if and only if

(Fi)
n = (−1)r(Fi)

s · (Fj)r and (Fi) · (Fj)n−1 > 0

for every j such that Fi ∩ Fj ̸= ∅ and for all natural numbers r and s with r + s = d.

Within the next two sections, that is Section 4.4 and Section 4.5, we recover the sequences

of point blow-ups from the associated sequential morphism modulo algebraic equivalence,

and prove some relations between algebraic and combinatorial equivalence classes of

sequences of point blow-ups and sequential morphisms.

Theorem. 4.4.2 Let (π : Zs → Z0,⊔li=1Fi)alg be an algebraically marked sequential

morphism. Given the n−ary multilinear intersection form associated to the partition

IZ,⊔l
i=1Fi

(see Definition 4.2.2) we can recover all the algebraically marked sequences of

point blow-ups that are associated to algebraically marked sequential morphisms in the

same algebraic equivalence class of (π : Zs → Z0,⊔li=1Fi)alg.

Proposition. 4.5.1 Any of the sequences obtained as in 4.4.3, that is, by decomposing

a regular projective contraction from a fixed sky Zs and a fixed simple normal crossing

divisor E, are associated to sequential morphisms in the same algebraic equivalence class

(see Definition 4.2.1).

Theorem. 4.5.5 Two combinatorially marked sequences of point blow-ups

(Zs, ..., Z0,⊔li=1Fi, π)comb and (Z
′

s, ..., Z
′

0,⊔l
′

i=1F
′

i , π
′
)comb, with l = l

′
, are combi-

natorially equivalent over K as in Definition 4.2.6 if and only if their associated

12



combinatorially marked sequential morphisms (π : Zs → Z0,⊔li=1Fi)comb and

(π
′
: Z

′

s → Z
′

0,⊔l
′

i=1F
′

i )comb are combinatorially equivalent over K as in Definition 4.2.3,

and both statements are true if and only if the associated multilinear maps ΦZ,⊔l
i=1Fi

and Φ
Z′ ,⊔l

′
i=1F

′
i

are equivalent too as in Definition 4.2.3

Theorem. 4.5.8 Given two algebraically marked sequential morphisms (π : Zs →

Z0,⊔li=1Fi)alg and (π
′
: Z

′

s → Z
′

0,⊔l
′

i=1F
′

i )alg , then they are algebraically equivalent

over K as in Definition 4.2.1 if and only if there exist algebraically marked sequences

of point blow-ups (Zs, ..., Z0,⊔li=1Fi, π)alg and (Z
′

s, ..., Z
′

0,⊔l
′

i=1F
′

i , π
′
)alg associated to

(π : Zs → Z0,⊔li=1Fi)alg and (π
′
: Z

′

s → Z
′

0,⊔l
′

i=1F
′

i )alg respectively such that they

are algebraically equivalent over K as in Definition 4.2.5.

The content of Chapter 5

In Chapter 5 we recall some technical results about rational ruled surfaces, which we

will use in Chapter 6. Section 5.1 is devoted to the study of some general properties

of vector bundles of rank 2 over curves. In Section 5.2 we review some definitions and

results about ruled surfaces, and in section 5.3 we focus on the study of rational ruled

surfaces over a smooth rational curve, that is Hirzebruch surfaces Fδ, and specify the

classes of the irreducible non-singular rational curves in its Chow ring.

Let us recall that S0 and F generate the Chow ring of Hirzebruch surface Fδ. By an

abuse of notation we will denote in the same way these curves and their images in A•(Fδ.

Proposition. 5.3.5 Given a Hirzebruch surface Fδ, then any irreducible non-singular

rational curve C ⊂ Fδ is of one of the following types

A. either a section of class S0 + bF with b = 0 or b ≥ δ,

B. or a fiber F ,

C. or a curve of class 2S0 + 2F if δ = 1,

D. or a curve of class aS0 + F with a > 0 if δ = 0.

Finally, in Section 5.4 we give a basic example of a Hirzebruch surface arising as the

exceptional divisor of the blow-up of P3 with center a rational curve, and sum up the
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previous known results about admissible splitting of the normal bundle of a rational

curve in P3.

Proposition. 5.4.3 Let C ⊂ P3 be an irreducible rational smooth curve of degree γ. Then

its normal bundle NC/P3 satisfies

NC/P3 ∼=



O(1)⊕O(1) if γ = 1,

O(4)⊕O(2) if γ = 2,

O(5)⊕O(5) if γ = 3,

O(2γ − 1− a)⊕O(2γ − 1 + a) if γ ≥ 4,

where |a| ≤ γ − 4.

The content of Chapter 6

In Chapter 6 we focus on the study of sequences of blow-ups at either points or rational

curves, with Z0
∼= P3. Section 6.1 is devoted to establish some numerical properties of

rational curves when considered as centers of blow-ups. First of all we define the concepts

of “old” and “new” curves. Before giving these definitions, let us recall that whereas we

denote by Cγ to the center of the blow-up πα : Zα → Zα−1, we use the notation Cγ to

refer to the strict transform of a curve C.

Definition. 6.1.1 We will say that a curve Cα ⊂ Zα is an “old” curve if there exists

a curve C ⊂ Z0 such that Cα is the strict transform of C by the sequential morphism

πα,0 : Zα → Z0.

We will say that an “old” curve Cα ⊂ Zα is unmodified with respect to the sequential

morphism πα,0 : Zα → Z0 if the following condition holds:

Cβ ∩ Cβ = ∅, (2)

for β = 1, ..., α.

On the other hand, we will say that an “old” curve Cα ⊂ Zα is modified by the blow-up

πα+1 : Zα+1 → Zα if

a. either dim(Cα+1) = 0 and Cα+1 ∈ Cα, and in this case we will say that πα+1 is a

modification of type I,

14



b. or dim(Cα+1) = 1 and Cα+1 ∩ Cα ̸= ∅, and in this case we will refer to πα+1 as a

modification of type II.

Moreover, we state the particular case of Theorem 2.3.10 where dim(Z0) = 3, and we

give necessary conditions for all possible configurations of final divisors in terms of the

intersection numbers given by the n−ary multilinear intersection form

Theorem. 6.1.5 Let Ei, Ej ⊂ Zs be both final divisors for the sequential morphism

π : Zs → Z0. Then Ei ∩ Ej ̸= ∅ if and only if Ei is proximate to Ej and Ej is

t−proximate to Ei, or vice versa.

Proposition. 6.1.7 Let Ei ⊂ Zs be a final divisor for the sequential morphism π : Zs →

Z0, and let j, k be two indices such that Ei ∩ Ej ̸= ∅ and Ei ∩ Ek ̸= ∅. Then one of the

following conditions must be verified, where ηj , ηk ∈ Z+:

I. either dim(Ci) = 1 and Ci is proximate to Cj and t−proximate to Ck, or vice

versa, and in this case we have that

(ei + ej)
2 · ei = 0

(ei)
2 · ek = −ηk

ei · (ek)2 = 0

ei · ej · ek = ηk

II. or dim(Ci) = 1 and Ci is t−proximate to both Cj and Ck, and in this case we have

ei · (ej)2 = 0

(ei)
2 · ej = −ηj

ei · (ek)2 = 0

(ei)
2 · ej = −ηk

ei · ej · ek = 0

III. or dim(Ci) = 1 and Ci is proximate to both Cj and Ck, and the following relations
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are satisfied

(ei + ej)
2 · ei = 0

(ei + ek)
2 · ei = 0

ei · (ek)2 = −ei · (ej)2,

(ei)
2 · ek = (ei)

2 · ej + ei · (ej)2,

IV. or dim(Ci) = 0 and Ci is proximate to both Cj and Ck, and the following relations

are satisfied

(ei + ej) · ei = (ei + ek) · ei = 0

(ei)
2 · ej = (ei)

2 · ek = −1

ei · (ej)2 = ei · (ek)2 = 1

ei · ej · ek = 1

In section 6.2 we establish a numerical criterion that characterizes final divisors in terms

of some relations defined over the Chow group A0(Zs) of zero-cycles of its sky Zs. Firstly,

we prove that the relations defining an admissible configuration of type III hold if and

only if Ei is final.

Proposition. 6.2.6 Given a sequence of point and rational curve blow-ups (Zα, ..., Z0, π),

let Eα
i ⊂ Zα be an irreducible exceptional component . Furthermore, let us suppose that

the following conditions are satisfied:

a. there exists just two indexes j, k, with Eα
i ∩ Eα

j ̸= ∅ and Eα
i ∩ Eα

k ̸= ∅, that verify

the following conditions:

a.i. (eαk )
2 · eαi = −(eαj )

2 · eαi ,

a.ii. eαk · (eαi )2 = eαj · (eαi )2 + (eαj )
2 · eαi ,

a.iii. and (eαj + eαi )
2 · eαi = (eαk + eαi )

2 · eαi = 0,

a.iv. eαi · eαj · eαk = 0.

b. there exists at most one index β, with Eα
i ∩ Eα

β ̸= ∅, such that eαi · (eαβ)2 < 0, if

(eαj )
2 · eαi ̸= 0, (eαk )

2 · eαi ̸= 0, otherwise such an index does not exist,
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c. if there exists any other index γ, with γ ̸= j, k, such that Eα
i ∩ Eα

γ ̸= ∅, then the

following relations are satisfied, where η ∈ Z+:

(eαi )
2 · eαγ = −η

eαi · (eαγ )2 = 0

eαi · eαj · eαγ = eαi · eαk · eαγ = η.

d. and in the particular case (eαk )
2 · eαi = (eαj )

2 · eαi = 0, with eαk · (eαi )2 = eαj · (eαi )2 =

−λ < 0, if the following relations hold:

(eαγ )
2 · eαj = −1,

eαγ · (eαj )2 = 0,

(eαγ )
2 · eαk = −1,

eαγ · (eαk )2 = 0,

thus # {γ} ≥ λ+ 1.

Then Eα
i
∼= Fδ, with δ =

∣∣(eαj )2 · eαi ∣∣ = ∣∣(eαk )2 · eαi ∣∣, and NEα
i /Zα

∼= OEα
i
(−1).

Secondly, we give a proof of the fact that relations defining an admissible configuration

of type IV hold if and only if Ei is final.

Proposition. 6.2.7 Let Eα
i ⊂ Zα be the strict transform of the exceptional irreducible

component Ei
i . Let us suppose that the following conditions hold:

a. there exists two indexes j, k, with Eα
i ∩ Eα

j ̸= ∅ and Eα
i ∩ Eα

k ̸= ∅, verifying

a.i. (eαj )
2 · eαi = (eαk )

2 · eαi = 1,

a.ii. eαj · (eαi )2 = eαk · (eαi )2 = −1,

a.iii. ei · ej · ek = 1,

a.iv. and (eαi + eαj )
2 · eαi = (eαi + eαk )

2 · eαi = 0.
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b. if there exists any other index γ, with γ ̸= j, k, such that Eα
i ∩Eα

γ ̸= ∅, the following

relations are satisfied:

(eαi )
2 · eαγ = −1

eαi · (eαγ )2 = 1

eαi · eαj · eαγ = eαi · eαk · eαγ = 1.

Then Eα
i
∼= P2 and NEα

i /Zα
∼= OEα

i
(−1).

Before proving the main result of this section, that is Theorem 6.2.11, we introduce

the key concept of an admissible final configuration for an irreducible component Ei of

the exceptional divisor, whose definition is fully explained in terms of the intersection

numbers of the irreducible components {E1, E2, . . . , Es}.

Definition. 6.2.10 We will say that an irreducible exceptional component Ei has an

admissible final configuration whenever it satisfies:

a. If there exists just one index j such that Ei ∩ Ej ̸= ∅, then

a.i. either (ej + ei)
2 · ei = 0 with the following exceptions:

a.i.i. (ei)
3 = 3ei · (ej)2, (ei)2 · ej = −2ei · (ej)2, and (ej)

3 = 0,

a.i.ii. (ei)
3 = 2ei · (ej)2, (ei)2 · ej = − 3

2ei · (ej)
2, and (ej)

3 = − 1
2ei · (ej)

2,

a.ii. or (ej)
2 · ei = 0 and ej · (ei)2 = −η.

b. If the cardinal set of indexes {γ} such that Ei ∩ Eγ ̸= ∅ is greater or equal to 2,

# {γ} ≥ 2, then it verifies one of the conditions stated in Proposition 6.1.7 with re-

spect to any pair {j, k} ⊂ {γ}, that is, Ei has an admissible proximity configuration

with respect to Ej and Ek. Moreover, in case the irreducible exceptional component

Ei has an admissible proximity configuration of type III, then it is with respect to

at most two irreducible exceptional components, and if it has an admissible prox-

imity configuration of type IV then it is with respect to at most three irreducible

exceptional components.

c. There exists at most one index γ such that (eγ)2 · ei < 0.

18



d. If there exists some index β such that (ei+eβ)
2·ei = 0, with (ei)

3 > 0 and ei·(eβ)2 =

0, then Ei verifies the conditions of Proposition 6.1.11 about the cardinality of the

set of index {γ} verifying Ei ∩Eγ ̸= ∅. Moreover, if it has an admissible proximity

configuration of type III with respect to Ej and Eβ then Ei verifies Proposition 6.2.1

and Corollary 6.2.2 (if the other hypothesis also hold), or if it has an admissible

proximity configuration of type I with respect to Eβ and Ej then it verifies Lemma

6.2.3 (if the other hypothesis are verified too).

e. If there exists some index λ such that (ei)2 ·eλ = −1, ei · (eλ)2 = 0 that also verifies

the above conditions then

e.i. if there exists some index µ such that Eλ has an admissible proximity con-

figuration of type III with respect to Ei and Eµ, then Ei already verifies the

above conditions and the same relations with respect to all the same indexes

but Eλ just by replacing ei by ēi = (ei + eλ) and eµ by ēµ = (eµ + eλ) in the

computations, and it also satisfies (ēi)
2 · ēµ = −1 and ēi · (ēµ)2 = 0,

e.ii. otherwise, Ei already verifies the above conditions and the same relations with

respect to all the same indexes but Eλ just by replacing ei by ēi = (ei+ eλ) in

the computations.

Finally, we prove the main theorem of this section, where we characterize final divisors of

sequences of point and rational curves blow-ups in terms of some relations defined over

the Chow group of zero-cycles of its sky A0(Zs).

Theorem. 6.2.11 An irreducible exceptional component Ei ⊂ Zs is a final final divisor

for the sequential morphism π : Zs → Z0 if and only if Ei has an admissible final

configuration.

Finally, in section 6.3 we give a presentation of the Chow ring A•(Zs) of the sky of a

sequence of point and rational curve blow-ups considering the total transforms of the

exceptional components as generators, and as a corollary we prove that whereas the

Chow ring of a sequence of point blow-ups depends only on the length of the sequence

(see Corollary 3.5.5), this is not the case for sequences of point and rational curve blow-

ups.
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Theorem. 6.3.2 The Chow ring of Zα+1, A•(Zα+1), is isomorphic to

A•(Zα+1) ∼=
A•(Zα)

[
eα+1
α+1, w

α+1
α+1

]
Jα+1

,

where

Jα+1 = (keri∗α+1 · eα+1
α+1, h

α+1∗ · eα+1
α+1 − µ0w

α+1
α+1,

{
eα∗β · eα+1

α+1 − µβw
α+1
α+1

}
, (wα+1

α+1)
2,

hα+1∗·wα+1
α+1,

{
eα∗β · wα+1

α+1

}α
β=1

, (eα+1
α+1)

2−c1(NCα+1/Zα
)wα+1

α+1+[Cα+1] , e
α+1
α+1·w

α+1
α+1+(hα+1∗)3),

with µβ = eα∗β · [Cα+1].

Corollary. 6.3.3 The Chow ring of the sky A•(Zs) is isomorphic to

A•(Zs) ∼=
Z
[
hs∗, {es∗α }α∈I1

,
{
es∗β , ws∗β

}
β∈I2

]
A

,

where

A = ((hs∗)4,
{
{hs∗ · es∗α } ,

{
es∗α · es∗β

}
α ̸=β ,

{
−(es∗α )3 + (hs∗)n

}}
α,β∈I1

,{
keris∗α · es∗α , hs∗ · es∗α − µ0w

s∗
α ,

{
es∗β · es∗α − µβw

s∗
α

}
β<α

, (ws∗α )2, hs∗ ·ws∗α ,
{
es∗β · ws∗α

}
β<α

,

(es∗α )2 − c1(NCα/Zα−1
)ws∗α + [Cα]

s∗
, es∗α · ws∗α + (hs∗)3

}
α,β∈I2

).

Corollary. 6.3.4 Given two sequences of blow-ups (Zs, ..., Z0, π), (Z
′

s, ..., Z
′

0, π
′
), where

Z0
∼= Z

′

0, of the same length and with indentical proximity relations, then A•(Zs) and

A•(Z
′

s) may be non-isomorphic.

This result follows from the fact that, when considering the blow-up πα+1 : Zα+1 →

Zα of a rational curve Cα, there are some relations in the Chow ring A•(Zα+1) that

highly depend on the geometry of Cα through the first Chern class of its normal bundle

c1(NCα/Zα
), as it is showed in Theorem 6.3.2.
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Chapter 1

Preliminaries

In this chapter, we recall some basic definitions and results which will be used to prove

the main results.

In the first section of this chapter, we review some basics of Algebraic Geometry such as

divisors, vector bundles and projective bundles and blow-ups. Most of the results in this

section can be found in [22] as well as in Appendix B of [17]. In the second section we recall

definitions and basic result of Intersection Theory, in particular, rational equivalence,

Chern and Segre classes, the Chow ring of a projective bundle, excess intersections and

intersection theory of blow-ups. The main references for this are [17] and [15].

1.1 Divisors and Blow-ups

1.1.1 Vector bundles and projective bundles

Definition 1.1.1. A vector bundle V of rank r on a scheme X is a scheme V equipped

with a morphism π : V → X, satisfying the following condition. There must be an open

covering {Ui} of X and isomorphisms φi of π−1(Ui) with Ui×Ar over Ui, such that over

Ui ∩ Uj the composites φi ◦ φ−1
j are linear, i.e., given by a morphism

gij : Ui ∩ Uj → GL(r,K).
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These transitions functions satisfy: gik = gijgjk, g−1
ij = gji and gii = 1. Conversely,

any such transition functions determine a vector bundle. Data (U
′

i , φ
′

i) determine an

isomorphic bundle if all composites φ
′

i ◦ φj are linear on U
′

i ∩ Uj.

Definition 1.1.2. A section of V is a morphism s : X → V such that π ◦ s = idX . If V

is determined by transition functions gij, a section of V is determined by a collection of

morphisms si : Ui → Ar, such that

si = gijsj

on Ui ∩ Uj. The sheaf of sections of V is a locally free sheaf V of OX−modules of rank

r. Conversely, a locally free sheaf V (of constant rank) comes from a vector bundle V ,

unique up to isomorphism. This may be seen by using transition functions. For an

affine open set U ⊂ X with coordinate ring A, π−1(U) is an affine open set in V , with

coordinate ring the symmetric algebra

SymAΓ(U,V∨),

where V∨ = HomOX
(V,OX), and Γ(U,V∨) = H0(U,V∨) is the space of sections.

Before continue with the definition of the Proj of a sheaf of graded algebras, we now

recall the construction of the Proj of a graded ring.

Let S = ⊕d≥0Sd be a graded ring. If we denote by S+ the ideal ⊕d>0Sd, then we define

the set ProjS to be the set of all homogeneous prime ideals p, which do not contain all

of S+.

If a is a homogeneous ideal of S, we define the subset V (a) = {p ∈ ProjS| p ⊇ a}. It

can be proved that if a and b are homogeneous ideals in S, then V (ab) = V (a) ∪ V (b).

Moreover, if {ai} is any family of homogeneous ideals of S, then V (
∑

ai) = ∩V (ai) (see

[22, Lemma 2.4.]), so we can define a topology on ProjS by taking the closed subsets to

be the subsets of the form V (a).

Next we will define a sheaf of rings O on ProjS. For each p ∈ ProjS, we consider the ring

S(p) of elements of degree zero in the localized ring T−1S, where T is the multiplicative

system consisting of all homogeneous elements of S which are not in p. For any open

subset U ⊆ ProjS, we define O(U) to be the set of functions s : U →
∐

S(p) such that

for each p ∈ U , s(p) ∈ S(p), and such that s is locally a quotient of elements of S: for
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each p ∈ U , there exists a neighborhood V of p in U , and homogeneous elements a, f in

S, of the same degree, such that for all q ∈ V , f /∈ q, and s(q) = a/f in S(q). Now it is

clear that O is a presheaf of rings, with the natural restrictions, and it is also clear from

the local nature of the definition that O is a sheaf.

Definition 1.1.3. If S is any graded ring, we define (ProjS,O) to be the topological

space together with the sheaf of rings constructed above.

In fact ProjS is a scheme as it is proved in the following result.

Proposition 1.1.4. [22, Proposition 2.5.] Let S be a graded ring.

a For any p ∈ ProjS, the stalk Op is isomorphic to the local ring S(p)

b For any homogeneous f ∈ S+, let D+(f) = {p ∈ ProjS| f /∈ p}.Then D+(f) is

open in ProjS. Furthermore, these open sets cover ProjS, and for each such open

set, we have an isomorphism of locally ringed spaces

(D+(f),O|D+(f)) ∼= SpecS(f)

where S(f) is the subring of elements of degree 0 in the localized ring Sf

c ProjS is a scheme.

Claim 1.1.5. Let X be a noetherian scheme and let S be a quasi-coherent sheaf of

OX−modules, which has a structure of a sheaf of graded OX−algebras. Thus S ∼=

⊕d≥0Sd, where Sd is the homogeneous part of degree d. We assume furthermore that

S0
∼= OX , that S1 is a coherent OX−module, and that S is locally generated by S1 as an

OX−algebra.

Let X be a scheme and S a sheaf of graded OX−algebras satisfying the conditions

above. For each open affine subset U = SpecA of X, let S(U) be the graded A−algebra

Γ(U,S|U ). Then we consider ProjS(U) and its natural morphism pU : ProjS(U) → U .

If f ∈ A, and Uf = SpecAf , then since S is quasi-coherent, we see that ProjS(Uf ) ∼=

p−1
U (Uf ). It follows that if U, V are two open affine subsets of X, then p−1

U (U ∩ V ) is

naturally isomorphic to p−1
V (U ∩ V ). These isomorphisms allow us to glue the schemes

ProjS(U) together. Thus we obtain a scheme ProjS together with a morphism p :
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ProjS → X such that for each open affine U ⊆ X, p−1(U) ∼= ProjS(U). Furthermore

the invertible sheaves O(1) on each ProjS(U) are compatible under this construction,

so they glue together to give an invertible sheaf O(1) on ProjS, canonically determined

by this construction.

The cone of S over X is defined by C = Spec(S) together with the natural morphism

π : C → X. If X is affine, with coordinate ring A, then S is determined by a graded

A−algebra, which we denote also by S. If x0, ..., xn are generators for S1, then S =

A [x0, ..., xn] /I for a homogeneous ideal I. In this case C is the affine sub scheme of

X × An+1 defined by the ideal I.

The zero section embedding of X in C is determined by the augmentation homomorphism

from S to OX , which vanishes on Si for i > 0, and is the canonical isomorphism of S0

with OX . If C = Spec(S) is a cone on X, and f : Z → X is a morphism, the pull-back

f∗C = C ×X Z is the cone on Z defined by the sheaf of OZ−algebras f∗S. If Z ⊂ X we

write C|Z .

Let z be a variable, S• [z] the graded algebra whose nth graded piece is

Sn ⊕ Sn−1z ⊕ ...⊕ S1zn−1 ⊕ S0zn.

The corresponding cone is denoted C ⊕ 1. The projective cone P (C ⊕ 1) is called the

projective completion of C. The element z in (S• [z])1 determines a regular section

of OC⊕1(1) on P (C ⊕ 1) whose zero-scheme is canonically isomorphic to P (C). The

complement to P (C) in P (C ⊕ 1) is canonically isomorphic to C. With this embedding

in P (C ⊕ 1), P (C) is called the hyperplane at infinity.

Definition 1.1.6. Let X be a noetherian scheme, and let E be a locally free coher-

ent sheaf on X. We define the associated projective space bundle P (E) as follows. Let

S = Sym(E) be the symmetric algebra of E, S = ⊕d≥0Symd(E). Then S is a sheaf of

graded OX−algebras satisfying the conditions above 1.1.5, and we define P (E) = ProjS.

Consequently, it comes with a projection morphism p : P (E) → X, and an invertible sheaf

OP (E)(1). Note that if E is free of rank n+ 1 over an open set U , then p−1(U) ∼= PnU , so

P (E) is a “relative projective space” over X.

Proposition 1.1.7. [22, Proposition 7.11.] Let X, E and P (E) be as in the above

definition. Then:

a if rank E ≥ 2, there is a canonical isomorphism of graded OX−algebras S ∼=
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⊕l∈Zπ∗(O(l)), with the grading on the right hand side given by l. In particular,for

l < 0, p∗(O(l)) = 0; for l = 0, p∗(OP (E)) = OX , and for l = 1, p∗(OP (E)(1)) = E;

b there is a natural surjective morphism p∗E → OP (E)(1).

Now, since a vector bundle V on X is the cone associated to the graded sheaf Sym(V∨),

where V is the sheaf of sections of V , then we have the following definition

Definition 1.1.8. The projective bundle associated to V is defined by P (V ) = Proj(Sym(V∨)).

There is a canonical surjection p∗V ∨ → OP (V )(1) on P (V ), which gives an embedding

OP (V )(−1) → p∗V.

Thus P (V ) is the projective bundle of lines in V , and OP (V )(−1) is the universal, or

tautological line sub-bundle.

Proposition 1.1.9. [15, Proposition 9.2.] Given a vector bundle V on a scheme X,

commutative diagrams of maps of schemes

Y
φ //

q

��

P (V )

p
||

X

are in natural one-to-one correspondence with line subbundles L ⊂ q∗V .

Corollary 1.1.10. [15, Corollary 9.5.] Let X be a scheme. Two projective bundles

p : P (V ) → X and p
′
: P (V

′
) → X are isomorphic as X−schemes if and only if there

is a line bundle L on X such that L ⊗ V
′
= V . In this case the line bundle OP (V )(−1)

corresponds under the isomorphism to p
′∗(L)⊗OP (V ′ )(−1).

Proposition 1.1.11. [17, Appendisx B, B.5.6] If W is a sub-bundle of a vector bundle

V , with quotient bundle G = V/W , there is a canonical embedding of P (W ) in P (V ). If

p : P (V ) → X is the projection, the composite of the canonical maps OP (V )(−1) → p∗V

and p∗V → p∗G corresponds to a section of p∗G⊗OP (V )(1). This section is regular, and

its zero-scheme is P (W ).
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1.1.2 Divisors

Let (X,OX) be a scheme (see [22, II.2]). For each affine open set U of X, let K(U)

be the total quotient ring of the coordinate ring A(U), i.e. the localization of A(U) at

the multiplicative system of elements which are not zero divisors. The map U → K(U)

determines a presheaf on X, whose associated sheaf of rings is denoted K. Let K∗ denote

the (multiplicative) subsheaf of invertible elements in K, and O∗
X the sheaf of invertible

elements OX . Note that if X is a variety, then K is the constant sheaf equal to K(X).

Definition 1.1.12. A Cartier divisor D on X is a global section of the sheaf K∗/O∗
X .

A Cartier divisor is determined by a collection of affine open sets Ui which cover X, and

elements fi in K(Ui), such that fi/fj ∈ O∗
X(Ui∩Uj) for each i, j. Such fi are called local

equations for D. The Cartier divisors on X form a group Div(X). The group operation

of Div(X) is denoted additively.

If D ∈ Div(X), the support of D, denoted Supp(D), or sometimes |D|, is the subset

of X consisting of points x such that if fi ∈ K(Ui) a local equation with x ∈ Ui then

fi /∈ O∗
X,x. The support of a Cartier divisors D, like the support of the section of any

sheaf, is a closed subset of X.

Definition 1.1.13. A Cartier divisor is principal if the corresponding section of K∗/O∗
X

is the image of a global section of K∗. If X is a variety, the principal divisor of r ∈ K(X)∗

is denoted div(r).

Since the support of div(r) is a proper closed subset of X, there are only a finite number

of subvarieties V of codimension one in X such that r /∈ O∗
X,V .

A Cartier divisor D on a scheme X determines a line bundle on X, denoted OX(D). The

sheaf of sections of OX(D) can be defined to be the OX−subsheaf of K generated on every

Ui as above by f−1
i . Equivalently, transition functions for OX(D), with respect to the

covering Ui, are gij = fi/fj . The canonical divisor KX on a non-singular n−dimensional

variety X is the divisor whose line bundle OX(KX) is ΩnX =
∧n

(T∨
X).

Definition 1.1.14. A Cartier divisor D is effective if the local equations fi are sections

of OX on Ui. In this case there is a canonical section of OX(D), which we denote by
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sD. Regarding OX(D) as a subsheaf of K, sD corresponds to the section 1; with respect

to the covering Ui, sD is given by the collection of functions fi, which clearly satisfies

fi = gijfj on Ui ∩ Uj. The section sD vanishes only on the support of D.

1.1.3 Blow-ups

Let X be a closed subscheme of a scheme Y , defined by an ideal sheaf I. The normal

cone CX/Y to X in Y is the cone over X defined by the graded sheaf of OX algebras

⊕In/In+1:

CX/Y = Spec(⊕n≥0In/In+1).

If the embedding of X in Y is a regular embedding of codimension d, then CX/Y is a

vector bundle of rank d on X, and is denoted also NX/Y ; the sheaf of sections of NX/Y

is (I/I2)∨.

Definition 1.1.15. The blow-up of Y along X, denoted BlXY , is the projective cone

over Y of the sheaf of OY−algebras ⊕In:

BlXY = Proj(⊕n≥0In).

Let Ỹ = BlXY , and let π denote the projection from Ỹ to Y . The canonical invertible

sheaf (line bundle) O(1) on the projective cone Ỹ is the ideal sheaf of π−1(X), which is

therefore a Cartier divisor on Ỹ , called the exceptional divisor. Let E = π−1(X). By

construction E is the projective cone of (⊕In)⊗OY
OX = ⊕In/In+1, so

E = P (CX/Y )

is the projective normal cone to X in Y . Moreover, the following result describes how E

is embedded in Ỹ .

Proposition 1.1.16. [15, Proposition 13.11.] The normal bundle of E in Ỹ is

NE/Ỹ = OỸ (E)|E = OE(−1). (1.1)

Let η be the projection from E = P (C) to X. If the embedding of X in Y is regular,

then the canonical embedding of normal cones NE/Y ⊂ η∗NX/Y is the embedding of the
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universal line bundle OE(−1) in η∗NX/Y .

An interesting example of a blow-up preserving the projective bundle structure of Y is

described in the following proposition.

Proposition 1.1.17. [15, Proposition 9.11.] Let V
′ ⊂ V be an r−dimensional subspace

of an n+ 1−dimensional vector space V , and let

W = OPn−r (−1)⊕ (V
′
⊗OPn−r ), (1.2)

so that W is a vector bundle of rank r + 1 on Pn−r = P (V/V
′
). The blow-up Z of

P (V ) along the r− 1−dimensional subspace P (V
′
), together with its projection to Pn−r,

is isomorphic to the projective bundle p : P (W ) → Pn−r. Under this isomorphism, the

blow-up map Z → Pn corresponds to the complete linear series
∣∣OP (W )(1)

∣∣.
In general, π induces an isomorphism from Ỹ −E onto Y −X, and is fully characterized

by the following universal property.

Proposition 1.1.18. [22, Proposition 7.14 (Universal Property of Blowing Up)] Let X

be a noetherian scheme, I a coherent sheaf of ideals, and π : X̃ → X the blow-up with

respect to I. If f : Z → X is any morphism such that f−1I · OZ is an invertible sheaf of

ideals on Z, then there exists a unique morphism g : Z → X̃ factoring f

Z
g //

f

��

X̃

π

��
X

If X ⊂ Y is a closed imbedding, and f : Y
′ → Y is a morphism, set X

′
= f−1(X),

g : X
′ → X the induced morphism. Then there is a closed imbedding

BlX′Y
′
⊂ BlXY ×Y Y

′

If f̃ is the induced morphism from BlX′Y to BlXY , then f̃−1(E) = E
′
, where E and E

′

are the exceptional divisors.

In particular, if X ⊂ Y ⊂ Z are closed imbeddings, there is a canonical imbedding

of BlXY in BlXZ, with the exceptional divisor of BlXZ restricting to the exceptional

divisor of BlXY .
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Next result, that will be a key tool for the rest of the work, allow us to explicitly compute

the normal bundle of the strict transform of a given subvariety Y ⊂ Z under some

regularity assumptions.

Proposition 1.1.19. [17, Appendix B.6.10.] If X ⊂ Y and Y ⊂ Z are regular embed-

dings, let Z̃ = BlXZ, E the exceptional divisor in Z̃, ρ the projection from Z̃ to Z. Let

Ỹ = BlXY . Then Ỹ ⊂ ρ−1(Y ), E ⊂ ρ−1(Y ), and Ỹ is the residual scheme to E in

ρ−1(Y ), i.e., the ideal sheaves of Ỹ , E and ρ−1(Y ) in Z̃ are related by

I(Ỹ ) · I(E) = I(ρ−1(Y )).

In addition, the canonical embedding of Ỹ in Z̃ is a regular imbedding, with normal

bundle

NỸ /Z̃
∼= π∗NY/Z ⊗O(−F )

where π is the projection from Ỹ to Y , and F is the exceptional divisor on Ỹ of such

projection.

1.2 Intersection theory

1.2.1 Rational equivalence

Let X be an algebraic scheme over a field k .

Definition 1.2.1. A k−cycle on X is a finite formal sum
∑

ni [Vi] where the Vi are

k−dimensional subvarieties of X, and the ni are integers. The group of k−cycles on

X, denoted ZkX, is the free abelian group on the k−dimensional subvarieties of X; to a

subvariety V of X corresponds [V ] in ZkX.

For any (k+1)−dimensional subvariety W of X, and any r ∈ R(W )∗, define a k−cycle

[div(r)] on X by

[div(r)] =
∑

ordV (r) [V ] , (1.3)

the sum over all codimension one subvarieties V of W ; here ordV is the order function

on R(W )∗ defined by the local ring OV,W .

A k−cycle α is rationally equivalent to zero, written α ∼ 0, if there are a finite number
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of (k + 1)−dimensional subvarieties Wi of X, and ri ∈ R(W )∗, such that

α =
∑

[div(ri)] .

Since
[
div(r−1)

]
= − [div(r)], the cycles rationally equivalent to zero form a subgroup

RatkX of ZkX. The group of k−cycles modulo rational equivalence on X is the factor

group

AkX = ZkX/RatkX.

Definition 1.2.2. Define Z∗X (resp. A∗X) to be the direct sum of the ZkX (resp.

AkX) for k = 0, 1, ..., dim(X). A cycle (resp. cycle class) on X is an element of Z∗X

(resp. A∗X).

If α is a class in A∗X, and k is an integer, we denote by {α}k the component α in AkX.

Thus α =
∑
k≥0 {α}k.

A cycle is positive if it is not zero, and each of its coefficients is a positive integer. A

cycle class is positive if it can be represented by a positive cycle.

1.2.1.1 Push-forward and pull-back of cycles

Let f : X → Y be a proper morphism. For any subvariety V of X, the image W = f(V )

is then a (closed) subvariety of Y . There is an induced imbedding of R(W ) in R(V ),

which is a finite field extension if W has the same dimension as V . Set

deg(V/W ) =

 [R(V ) : R(W )] if dim(W)=dim(V)

0 if dim(W)<dim(V)

where [R(V ) : R(W )] denotes the degree of the field extension. Define f∗[V ] = deg(V/W ) [W ].

This extends linearly to a homomorphism

f∗ : ZkX → ZkY.

These homomorphisms are functorial: if g is a proper morphism from Y to Z, then

(g ◦ f)∗ = g∗ ◦ f∗, as follows from the multiplicativity of degrees of field extensions.
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Proposition 1.2.3. [17, Proposition 1.4.] Let f : X → Y be a proper, surjective

morphism of varieties, and let r ∈ R(X)∗. Then{
f∗ [div(r)] = 0 if dim(Y ) < dim(X) (1.4)

f∗ [div(r)] = [div(N(r))] if dim(Y ) = dim(X) (1.5)

In 1.5, R(X) is a finite extension of R(Y ), and N(r) is the norm of r, i.e., the determi-

nant of the R(Y )−linear endomorphism of R(X) given by multiplication by r.

Theorem 1.2.4. [17, Theorem 1.4.] If f : X → Y is a proper morphism, and α is a

k−cycle on X which is rationally equivalent to zero, then f∗(α) is rationally equivalent

to zero on Y .

Definition 1.2.5. [17, Definition 1.4.] If X is a complete scheme, i.e., X is proper over

S = Spec(K), K the ground field, and α =
∑
P nP [P ] is a zero-cycle on X, the degree

of α, denoted deg(α), or
∫
X
α, is defined by

deg(α) =

∫
X

α =
∑
P

nP [R(P ) : K] .

Equivalently, deg(α) = p∗(α), where p is the structure morphism from X to S, and

A0S = Z [S] is identified with Z. By the theorem, rationally equivalent cycles have the

same degree. We extend the degree homomorphism to all of A∗X,∫
X

: A∗X → Z

by defining
∫
X
α = 0 if α ∈ AkX, k > 0. For any morphism f : X → Y of complete

schemes, and any α ∈ A∗X, ∫
X

α =

∫
Y

f∗(α),

a special case of functoriality. We often write
∫

instead of
∫
X

.

Let f : X → Y be a flat morphism of relative dimension n. The examples of primary

importance for us will be:

A an open imbedding (n = 0),

B the projection of a vector bundle or An−bundle, or a projective bundle, to its base,

C the projection from a Cartesian product X = Y ×Z to the first factor, where Z is

a purely n−dimensional scheme,
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D any dominant morphism from an (n + 1)−dimensional variety to a nonsingular

curve.

Remark 1.2.6. In this thesis, a flat morphism is always assumed to have relative di-

mension n for some integer n ∈ Z.

For such f : X → Y , and any subvariety V of Y , set

f∗ [V ] =
[
f−1(V )

]
.

Here f−1(V ) is the inverse image scheme, a subscheme of X of pure dimension dim(V )+n,

and
[
f−1(V )

]
is its cycle. This extends by linearity to pull-back homomorphisms

f∗ : ZkY → Zk+nX.

Lemma 1.2.7. [17, Lemma 1.7.1.] If f : X → Y is flat, then for any subscheme Z of

Y ,

f∗ [Z] =
[
f−1(Z)

]
.

It follows from this lemma that flat pull-backs are functorial: if f : X → Y and g : Y → Z

are flat, then g ◦ f is flat, and (g ◦ f)∗ = f∗ ◦ g∗. For if V is a subvariety of Z, then

(g ◦ f)∗ [V ] =
[
(g ◦ f)−1(V )

]
=

[
f−1 ◦ g−1(V )

]
= f∗ [g−1(V )

]
= f∗ ◦ g∗ [V ] .

Theorem 1.2.8. [17, Theorem 1.7.] Let f : X → Y be a flat morphism of relative

dimension n, and α a k−cycle on Y which is rationally equivalent to zero. Then f∗α

is rationally equivalent to zero in Zk+nX. There are therefore induced homomorphisms,

the flat pull-backs,

f∗ : AkY → Ak+nX,

so that A∗ becomes a contravariant functor for flat morphisms.

Proposition 1.2.9. [17, Proposition 1.8.] Let Y be a closed subscheme of a scheme X,

and let U = X − Y . Let i: Y → X, j : U → X be the inclusions. Then the sequence

AkY
i∗−→ AkX

j∗−→ AkU −→ 0

is exact for all k.
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Corollary 1.2.10. [17, Example 1.8.1.] Let

Y
′ j //

q

��

X
′

p

��
Y

i // X

be a fibre square, with i a closed imbedding, p proper, such that p induces an isomorphism

of X
′ − Y

′
onto X − Y . Then the sequence

AkY
′ a−→ AkY ⊕AkX

′ b−→ AkX −→ 0

is exact, where a(α) = (q∗(α),−j∗(α)), b(α, β) = i∗(α) + p∗(β).

1.2.1.2 An alternative definition of rational equivalence

Now that the push-forward of cycles i well defined, a more classical definition of A∗X

will be given. Let X be a scheme, and let X×P1 be the Cartesian product of X with P1.

Let p be the projection from X × P1 to X. Let V be a (k + 1)−dimensional subvariety

of X × P1 such that the projection to the second factor induces a dominant morphism

f from V to P1. For any point P ∈ P1 which is rational over the ground field, the

scheme-theoretic fiber f−1(P ) is a subscheme of X × {P}, which p maps isomorphically

onto a subscheme of X; we denote this subscheme by V (P ). Note in particular that

p∗
[
f−1(P )

]
= [V (P )] in ZkX. The morphismf : V → P1 determines a rational function

f ∈ R(V )∗. It follows that [
f−1(0)

]
−
[
f−1(∞)

]
= [div(f)] ,

where 0 = (1 : 0) and ∞ = (0 : 1) are the usual zero and infinity points of P1. Therefore

[V (0)]− [V (∞)] = p∗ [div(f)] ,

which is rationally equivalent to zero on X.

Proposition 1.2.11. [17, Proposition 1.6.] A cycle α in ZkX is rationally equivalent

to zero if and only if there are (k+1)−dimensional subvarieties V1, ..., Vt of X×P1, such

that the projections from Vi to P1 are dominant, with

α =

t∑
i=1

[Vi(0)]− [Vi(∞)]

in ZkX.
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1.2.2 Divisors

Let X be an n−dimensional variety. A Weil divisor on X is an (n−1)−cycle on X. The

Weil divisors form the group Zn−1X. Given a Cartier divisor D, define the associated

Weil divisor [D] of D by setting

[D] =
∑

ordVD [V ]

the sum over all codimension one subvarieties V of X; note that there are only finitely

many V with ordVD ̸= 0. The Cartier divisors form an abelian group Div(X): if D and

E are given by data (Uα, fα) and (Uα, gα), the sum D + E is given by (Uα, fα · gα). By

the additivity of the order functions, the mapping D → [D] is a homomorphism

Div(X) → Zn−1(X)

Any f in R(X)∗ determines a principal Cartier divisor div(f), by taking all local equa-

tions equal to f . Note that the Weil divisor associated to div(f) is the cycle [div(f)]

defined in equation 1.3. Two divisors D,D
′

are linearly equivalent if they differ by a

principal divisor: D
′
D + div(f). From the definition of rational equivalence, it follows

that [D] and
[
D

′
]

are rationally equivalent cycles. If Pic(X) denotes the group of linear

equivalence classes of Cartier divisors, there is an induced homomorphism

Pic(X) → An−1(X)

This homomorphism is in general neither injective nor surjective.

If D is a Cartier divisor on X, and α a k−cycle on X we define an intersection class

D · α ∈ Ak−1(|D| ∩ |α|).

By linearity it suffices to define D · [V ] if V is a subvariety of X. Let i be the inclusion

of V in X. There are two cases:

A If V is not contained in the support of D, then by restricting local equations, D

determines a Cartier divisor, denoted i∗(D), on V . In this case, set

D · [V ] = [i∗(D)] ,

the associated Weil divisor of i∗(D) on V . In this case D · [V ] is a well-defined

cycle.
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B If V ⊂ |D|, then the line bundle OX(D) restricts to a line bundle i∗OX(D) on

V . Choose a Carrier divisor C on V whose line bundle is isomorphic to this line

bundle: OV (C) ∼= i∗OX(D), and set

D · [V ] = [C]

the associated Weil divisor of C. Since C is well defined up to a principal divisor

on V , [C] is well defined in Ak−1V .

This intersection product satisfies the formal properties one would expect for a “cap

product”. For example:

a If α ∼ α
′
, then D · α = D · α′

in A∗(|D|).

b If D −D
′
is principal, then D · α = D

′ · α in A∗(|α|).

c (Projection formula) If f : Y → X is a proper surjective morphism of varieties, D

a Carrier divisor on X, and α a k−cycle on Y , then

f
′

∗(f
∗(D) · α) = D · f∗(α) (1.6)

in Ak−1(Z), with Z = |D| ∩ f(|α|), and f
′
: f−1(Z) → Z the morphism induced

by f . There is a similar compatibility with flat pull-backs.

From i) and ii) it follows that the operation product D · α determines products

Pic(X)⊗AkX → Ak−1(X).

The following proposition is obtained as a particular case of the one above.

Proposition 1.2.12. [13, Proposition 1.10] Let f : Z → X be a proper surjective

morphism. Let D1, D2, ..., Dr be Cartier divisors on X with r = d = dim(X). Then, one

has

f∗D1 · f∗D2 · · · f∗Dr = deg(f)D1 ·D2 · · ·Dr

where deg(f) = [K(Z) : K(X)], if deg(f) is finite.
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1.2.2.1 Chern class of a line bundle

Let L be a line bundle on a scheme X. For any k−dimensional subvariety V of X,

the restriction L|V of L to V is isomorphic to OV (C) for some Cartier divisor C on

V , determined up to linear equivalence. The Weil divisor [C] determines a well-defined

element in Ak−1(X), which we denote by c1(L) ∩ [V ]:

c1(L) ∩ [V ] = [C] . (1.7)

This is extended by linearity to define a homomorphism α → c1(L) ∩ α from Zk(X) to

Ak−1(X). If L = OX(D) for a pseudo-divisor D on X (see [17, Definition 2.2.1.]), it

follows from the definition of the intersection class that

c1(OX(D)) ∩ α = D · α

in Ak−1(X).

Proposition 1.2.13. [17, Proposition 2.5.]

a If α is rationally equivalent to zero on X, then c1(L) ∩ α = 0. There is therefore

an induced homomorphism

c1(L) ∩ _ : AkX → Ak−1X.

b (Commutativity). If L, L
′
are line bundles on X, α a k−cycle on X, then

c1(L) ∩ (c1(L
′
) ∩ α) = c1(L

′
) ∩ (c1(L)α)

in Ak−2(X).

c (Projection formula). If f : X
′ → X is a proper morphism, L a line bundle on X,

α a k−cycle on X
′
, then

f∗(c1(f
∗L) ∩ α) = c1(L) ∩ f∗(α) (1.8)

in Ak−1(X).

d (Flat pull-back). If f : X
′ → X is flat of relative dimension n, L a line bundle on

X, α a k−cycle on X, then

c1(f
∗L) ∩ f∗α = f∗(c1(L) ∩ α)

in Ak+n−1(X
′
).
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e (Additivity). If L, L
′
are line bundles on X, α a k−cycle on X, then

c1(L⊗ L
′
) ∩ α = c1(L) ∩ α+ c1(L

′
) ∩ α

and

c1(L
∨) ∩ α = −c1(L) ∩ α

in Ak−1X.

1.2.2.2 Gysin map for divisors

If D is an effective Cartier divisor on a variety X, the restriction of OX(D) to D is the

normal bundle ND/X , and

[D] = c1(Ox(D)) ∩ [X] .

Definition 1.2.14. [17, Section 2.6] Let D be an effective Cartier divisor on a variety

X, and let i : D → X be the inclusion. There are Gysin homorphisms

i∗ : ZkX → Ak−1D

for k = 1, ..., dim(X) defined by the formula

i∗(α) = D · α

Proposition 1.2.15. [17, Proposition 2.6.] There are therefore induced homomor-

phisms:

i∗ : AkX → Ak−1D

for k = 1, ..., dim(X) such that one has

a If α is a k-cycle on X, then

i∗i
∗(α) = c1(OX(D)) ∩ α

b If α is a k-cycle on D, then

i∗i∗(α) = c1(ND/X) ∩ α (1.9)
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c If X is purely n-dimensional, then

i∗ [X] = [D]

in An−1D.

d If L is a line bundle on X, then

i∗(c1(L) ∩ α) = c1(i
∗L) ∩ i∗(α)

in Ak−2(D) for any k−cycle α on X.

1.2.3 Segre classes and Chern classes of vector bundles

Let V be a vector bundle of rank e + 1 on an algebraic scheme X. Let P (V ) be the

projective bundle of lines in V , p the projection from P (V ) to X, and let O(1) = OP (V )(1)

denote the canonical line bundle on P (V ), i.e., its dual OP (V )(−1) is the tautological

subbundle of p∗V . Define homomorphisms α → si(V ) ∩ α from AkX to Ak−iX by the

formula

si(V ) ∩ α = p∗(c1(O(1))e+i ∩ p∗(α)).

Here p∗ is the flat pull-back from AkX to Ak+eP (V ), c1(O(1))e+i∩_ is the iterated first

Chern class homomorphism from Ak+eP (V ) to Ak−iP (V ), and p∗ is the push-forward

from Ak−iP (V ) to Ak−iX.

Now we define Chern class operator

cl(E) ∩ _ : AkX → Ak−lX

by formally inverting the Segre classes

1 + c1(E) + c2(E) + ... = (1 + s1(E) + s2(E) + ...)−1

Explicitly

cp(E) = (−1)pdet

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

s1(E) 1 0 · · · 0

s2(E) s1(E) 1 · · · 0

·

· 0

s1(E) 1

sp(E) sp−1(E) · · · · · · s1(E)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
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Theorem 1.2.16. [17, Theorem 3.2.] The Chern classes satisfy the following properties:

a (Vanishing) For all vector bundles E on X, all i > rank(E),

ci(E) = 0.

b (Commutativity) For all vector bundles E, F on X, integers i,j, and cycles α on

X,

ci(E) ∩ (cj(F ) ∩ α) = cj(F ) ∩ (ci(E) ∩ α)

c (Projection formula) Let E be a vector bundle on X, f : X
′ → X a proper mor-

phism. Then

f∗(ci(f
∗E) ∩ α) = ci(E) ∩ f∗(α)

for all cycles α on X
′
, all i.

d (Pull-back) Let E be a vector bundle on X, f : X
′ → X a flat morphism. Then

ci(f
∗E) ∩ f∗α = f∗(ci(E) ∩ α)

for all cycles α on X, all i.

e (Whitney sum) For any exact sequence

0 → E
′
→ E → E

′′
→ 0

of vector bundles on X, then

ct(E) = ct(E
′
) · ct(E

′′
),

i.e.,

ck(E) =
∑
i+j=k

ci(E
′
)cj(E

′′
);

f (Normalization) If E is a line bundle on a variety X, D a Cartier divisor on X

with O(D) ∼= E, then

c1(E) ∩ [X] = [D] .

Note that from c and f it follows that the first Chern class for a line bundle defined here

agrees with the definition given in 1.7.
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1.2.4 Segre class of a subscheme and excess intersections

The Segre class of a cone C, denoted s(C), is the class in A•(X) defined by the formula

s(C) = q∗(
∑
i≥0

((c1(O(1)))i ∩ [P (C ⊕ 1)])

Proposition 1.2.17. [17, Proposition 4.1.] If E is a vector bundle on X, then

s(E) = c(E)−1 ∩ [X] ∈ A•(X)

Let X be a closed subscheme of a scheme Y .The Segre class of X in Y , denoted s(X,Y ),

is defined to be the Segre class of the normal cone CX/Y :

s(X,Y ) = s(CX/Y ) ∈ A•(X).

In case X is regularly imbedded in Y , so the normal cone is a vector bundle, it follows

from Proposition 1.2.17 that s(X,Y ) is the cap product of the total inverse Chern class

of the normal bundle with [X].

Proposition 1.2.18. [17, Proposition 4.2.] Let f : Y
′ → Y be a morphism of pure-

dimensional schemes, X ⊂ Y a closed subscheme, X
′
= f−1(X) the inverse image

scheme, g : X
′ → X the induced morphism.

a If f is proper, Y irreducible, and f maps each irreducible component of Y
′
onto Y ,

then

g∗(s(X
′
, Y

′
)) = deg(Y

′
/Y )s(X,Y ).

b If f is flat, then

g∗(s(X,Y )) = s(X
′
, Y

′
).

Corollary 1.2.19. [17, Corollary 4.2.2.] Let X be a proper closed subscheme of a variety

Y . Let Ỹ be the blow-up of Y along X, X̃ = P (CX/Y ) the exceptional divisor, η : X̃ → X

the projection. Then

s(X,Y ) =
∑
k≥1

(−1)k−1η∗(X̃
k)

=
∑
i≥0

η∗((c1(O(1)))i ∩
[
P (CX/Y )

]
).
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For an irreducible subvariety X of a variety Y , the coefficient of [X] in the class s(X,Y )

is called the multiplicity of Y along X, or the algebraic multiplicity of X on Y , and is

denoted eXY . If codim(X,Y ) = n > 0, then

eXY [X] = q∗((c1(O(1)))n ∩ [P (C ⊕ 1)])

= p∗((c1(O(1)))n−1 ∩ [P (C)])

= (−1)n−1p∗(X̃
n).

Here C = CX/Y , p and q are the projections from P (C) and P (C ⊕ 1) to X, Ỹ is the

blow-up of Y along X, with exceptional divisor X̃ = P (C). This definition is equivalent

to the definition of the multiplicity of the local ring OX,Y given by Samuel (I).

If X = P is a point, C = CP/Y is the tangent cone to P in Y , and

ePY =

∫
P (C)

(c1(O(1)))n−1 ∩ [P (C)] = deg [P (C)] .

In this case ePY is called the multiplicity of Y at P .

The excess intersection problems arise in situations in which we wish to describe some-

thing about improper intersections, where the intersection has components of dimension

greater than expected.

Suppose that X is a smooth projective variety, D ⊂ X is a Cartier divisor and iC : C → X

the inclusion morphism of a subvariety C in X. If C intersects D generically transversely,

then the intersection class [C] · [D] of D and C is [C ∩D]; but what if C is contained in

D?

Proposition 1.2.20. [15, Proposition 13.1.] Suppose that X is a smooth projective

variety. Let iC : C → X be the inclusion morphism of a subvariety of codimension k in

X, and let D ⊂ X be an effective Cartier divisor containing C. We have

[C] [D] = iC∗(γC) ∈ Ak−1(X),

where γC = c1(ND/X |C)

The previous proposition is in fact a special case of a much more general result.

Theorem 1.2.21. [15, Theorem 13.3. (Excess intersection formula)] If S ⊂ X is a

subvariety of a smooth variety X and T is a locally complete intersection subvariety of
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X, then

[S] · [T ] =
∑
C

iC∗(γC),

where:

a The sum is taken over the connected components C of S ∩ T .

b iC : C → X denotes the inclusion morphism.

c γC =
{
s(C, S)c(NT/X |C)

}
d
∈ Ad(C), where d = dimX − codimS − codimT is

the“expected dimension” of the intersection.

If the subvariety S is locally a complete intersection as well, then we have a symmetric

form

γC =
{
s(C,X)c(NS/X |C)c(NT/X |C)

}
d
.

One frequently occurring situation in which excess intersection arises is the case of cycles

[A] and [β] on a smooth variety X that happen to both lie on a proper subvariety Z ⊊ X.

Although as cycles on X their intersection cannot even be dimensionally transverse, we

can relate their intersection class [A] · [B] ∈ A•(Z) in Z to the intersection of their classes

on X.

Proposition 1.2.22. [15, Proposition 13.6. (Key formula)] Let i : Z → X be an

inclusion of smooth projective varieties of codimension m, and let NZ/X be the normal

bundle of Z in X. If α ∈ Aa(Z) and β ∈ Ab(Z), then

i∗(α) · i∗(β) = i∗(α · β · cm(NZ/X)) ∈ Aa+b+2m(X).

This proposition follows from the following theorem , that generalizes 1.9 for arbitrary

smooth projective subvarieties

Theorem 1.2.23. [15, Theorem 13.7.] Let iZ : Z → X be an inclusion of smooth

projective varieties of codimension m, and let NZ/X be the normal bundle of Z in X.

For any class α ∈ A•(Z) we have

i∗Z(iZ∗(α)) = α · cm(NZ/X) ∈ Aa+m(Z)
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1.2.5 Chow ring of projective bundles

We start this section by a well known result about the Chow ring of the most basic

projective bundle, that is, the one defined over a point.

Theorem 1.2.24. [15, Theorem 2.1.] The Chow ring of Pn is

A•(Pn) = Z [ς] /(ςn+1), (1.10)

where ς ∈ A1(Pn) is the rational equivalence class of a hyperplane; more generally, the

class of a variety of codimension k and degree d is dςk.

Next theorem extends the previous one to projective bundles defined over higher dimen-

sional projective varieties.

Theorem 1.2.25. [15, Theorem 9.6.] Let V be a vector bundle of rank r + 1 on a

smooth projective variety X, and let ς = c1(OP (V )(1)) ∈ A1(P (V )), and p : P (V ) → X

the projection of the induced projective bundle. The map p∗ : A(X) → A(P (V )) is

an injective ring homomorphism, and via this map one has the isomorphism of A(X)-

algebras given by

A(P (V )) ∼= A(X) [ς] /(ςr+1 + c1(V )ςr + · · ·+ cr+1(V ))

In particular, the group homomorphism A(X)⊕r+1 → A(P (V )) / given by (α0, ..., αr) 7→∑
ςip∗(αi) is an isomorphism, so that

A(P (V )) ∼=
r⊕
i=0

ςiA(X)

as groups.

Continuing with the example appearing in Proposition 1.1.17, next result gives an explicit

description of the Chow ring of the blow-up of Pn at a linear subspace.

Corollary 1.2.26. [15, Corollary 9.12.] Let Z ⊂ Pn × Pn−r be the blow-up of an

r − 1−plane ∆ in Pn. Writing α, ς ∈ A1(Z) for the pullbacks of the hyperplane classes

on Pn−r and Pn respectively, we have

A(Z) = Z [α, ς] /(αn−r+1, ςr+1 − αςr). (1.11)
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With this notation the class of the exceptional divisor E ⊂ Z, the preimage of ∆ in Z, is

[E] = ς − α. (1.12)

Finally, given a projective bundle, the following proposition gives a presentation of the

class of projective subbundle in terms of the generators its Chow ring.

Proposition 1.2.27. [15, Proposition 9.13] If X is a smooth projective variety and

W ⊂ V are vector bundles on X of ranks s and r respectively, then

[P (W )] = ςr−s + γ1ς
r−s−1 + ...+ γr−s ∈ Ar−s(P (V )),

where ς = c1(OP (V )(1)) and γk = ck(V/W ). Moreover, the normal bundle of P (W ) in

P (V ) is OP (W )(1)⊗ p∗(V/W ).

Proposition 1.2.28. [15, Proposition 9.14.] If L ⊂ V is a line subbundle of a vector

bundle V on a variety X, then P (L) ⊂ P (V ) is the image of a section X → P (V ) of the

projection P (V ) → X, and every section has this form.

1.2.6 Intersection theory of blow-ups

Let X be a regularly imbedded subscheme of a scheme Y , of codimension d, with normal

bundle NX/Y . Let Ỹ be the blow-up of Y along X, and let X̃ = P (NX/Y ) be the

exceptional divisor. We have a fiber square

X̃
j //

g

��

Ỹ

f

��
X

i // Y

Since NX̃/Ỹ = OX̃(−1), the excess normal bundle Q is the universal quotient bundle on

P (NX/Y ):

Q = g∗NX/Y /NX̃/Ỹ = g∗NX/Y /OX̃(−1).

Proposition 1.2.29. [17, Proposition 6.7.]

a (Key Formula). For all x ∈ AkX,

f∗i∗(x) = j∗(cd−1(Q) ∩ g∗x)

in AkY .
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b For all y ∈ AkY , f∗f∗y = y in AkY .

c If x̃ ∈ AkX̃, and g∗x̃ = j∗j∗x̃ = 0, then x = 0.

d If ỹ ∈ AkỸ , and f∗ỹ = j∗ỹ = 0, then y = 0.

e There are split exact sequences

0 −→ AkX
α−→ AkX̃ ⊕AkY

β−→ AkỸ −→ 0 (1.13)

with α(x) = (cd−1(Q) ∩ g∗x,−i∗x), and β(x̃, y) = j∗x̃ + f∗y. A left inverse for α

is given by (x̃, y)
g−→∗ (x).

Moreover, we can generalize the pull-back formula for flat morphisms (see Lemma 1.2.7)

to the case of blow-ups.

Theorem 1.2.30. [17, Theorem 6.7] (Blow-up Formula). Let V be a k−dimensional

subvariety of Y , and let Ṽ ⊂ Ỹ be the proper transform of V , i.e. the blow-up of V along

V ∩X. Then

f∗ [V ] =
[
Ṽ
]
+ j∗ {c(Q) ∩ g∗s(V ∩X,V )}k (1.14)

in AkỸ .

Corollary 1.2.31. [17, Corollary 6.7.1.] If X = P is a point in Y , then

f∗ [V ] = [V ] + ePV j∗ [L] ,

where L is a k−dimensional linear subspace of E = Pd−1
K , K the residue field of OY,P ,

and ePV is the multiplicity of P on V .

Corollary 1.2.32. [17, Corollary 6.7.2.] If dimV ∩X ≤ k − d, then

f∗ [V ] =
[
Ṽ
]
.

The following result gives the multiplication rules in the Chow ring A•(Ỹ ), but it does

not provide an explicit presentation of the ring.

Proposition 1.2.33. [17, Example 8.3.9.] Let

X̃
j //

g

��

Ỹ

f

��
X

i // Y
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be a blow-up diagram, with Y , X, and therefore Ỹ , X̃ non singular. The ring structure

on A•(Ỹ ) is determined by the following rules:

a f∗y · f∗y
′
= f∗(y · y′

).

b j∗(x̃) · j∗(x̃
′
) = j∗(c1(j

∗OỸ (X̃)) · x̃ · x̃′
).

c f∗(y) · j∗(x̃) = j∗((g
∗i∗y) · x̃).

Finally, the following theorem provides an explicit presentation of A•(Ỹ ) under some

restrictive assumptions.

Theorem 1.2.34. [28, Appendix Theorem 1.] Suppose the map of bivariant rings

i∗ : A•(Y ) → A•(X)

is surjective, then A•(Ỹ ) is isomorphic to

A•(Y ) [T ] /(P (T ), (T ·Ker(i∗))),

where P (T ) ∈ A•(Y ) [T ] is any polynomial whose constant term is [X] and whose re-

striction to A•(X)is the Chern polynomial of the normal bundle NX/Y i.e.

i∗(P (T )) = td + c1(NX/Y )T
d−1 + · · ·+ cd−1(NX/Y )T + cd(NX/Y ),

(where d = codim(X,Y )). This isomorphism is induced by

f∗ : A•(Y ) → A•(Ỹ )

and by sending −T to the class of the exceptional divisor.
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Chapter 2

Sequences of blow-ups at smooth

centers.

In this chapter, we define the basic objects of this research, that is, sequences of blow-ups,

sequential morphisms and final divisors.

In the first section of this chapter, apart from defining the key concepts of sequences

of blow-ups at smooth centers and sequential morphisms, we also generalize the usual

proximity relations for higher dimensional centers. In the second section we give a short

result about the normal bundle of the irreducible components of the exceptional divi-

sor.The third section is devoted to the definition of final divisors for both sequences of

blow-ups and sequential morphisms, as well as regular projective contractions, and study

some properties of the former. Finally, in the last section of this chapter we define the

n−ary multilinear intersection form on the abelian group of divisors with exceptional

support and its associated multilinear form.

The main references for this chapter are [27] and [30].

Remark 2.0.1. Given a variety Z and a subvariety V ⊂ Z of codimension d, from now

on we will denote by v to the class [V ] ∈ Ad(Z).
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2.1 Sequences of blow-ups and sequential morphisms.

Fix an algebraic closed field k . From now on, unless otherwise stated, a variety will mean

a reduced projective scheme over k .

Definition 2.1.1. A sequence of blow-ups over K is defined as a sequence of blow-ups

at smooth closed subvarieties Ci of smooth d−dimensional varieties Zi

Zs
πs−→ Zs−1

πs−1−−−→ · · · π2−→ Z1
π1−→ Z0,

such that for i ∈ {0, 1, ..., s− 1}:

a if we denote by Ci+1 to the center of πi+1, then Ci+1 is a smooth subvariety of Zi,

b codim(Ci+1) ≥ 2,

c if we denote by Ej
j the exceptional divisor of πj, and for k > j we denote by Ek

j the

strict transform of Ej
j in Zk, then Ci+1 has normal crossings with {Ei

1, E
i
2, ..., E

i
i}.

We denote by π the composition π1 ◦ π2 ◦ ... ◦ πs−1 ◦ πs.

Definition 2.1.2. A morphism π : Zs → Z0 which can be expressed, in at least one

way, as a composition of blow-ups with the conditions in Definition 2.1.1 will be called a

sequential morphism .

Remark 2.1.3. Given a sequence of blow-ups (Zs, ..., Z0, π), we denote by πs,i : Zs → Zi

where πs,i = πi+1 ◦ πi+2 ◦ ... ◦ πs−1 ◦ πs.

Remark 2.1.4. We will refer to Z0 and Zs as the ground and the sky of the sequential

morphism π : Zs → Z0 respectively. Moreover we will denote by Eβ the irreducible

components over k of the exceptional divisor E of π, that is we have E =
⋃
β Eβ.

The centers Ci, in general, can have any dimension. We extend the well-known notion

of proximity for point blow-ups.

Definition 2.1.5. Given a sequence of blow-ups (Zs, ..., Z0, π) as in Definition 2.1.1,

we say that Cj is proximate (resp. t−t−t−proximate) to Ci, and write Cj −→ Ci (resp.

Cj
t−→ Ci) if Cj ⊂ Ej−1

i (resp. Cj ∩ Ej−1
i ̸= ∅ but Cj ̸⊂ Ej−1

i ).
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Note that, if Cj is either proximate or t−proximate to Ci then j > i.

Remark 2.1.6. For j > i we denote by Ej∗
i the total transform of Ei

i by the morphism

πj,i : Zj → Zi. By an abuse of notation Ei∗
i = Ei

i . Note that by definition of the total

transform and Theorem 1.2.30, we have

Ek∗
i = Ek

i +
∑
j>i

pijE
k∗
j

where pij = 1 if i < j ≤ k and Cj is proximate to Ci and pij = 0 in any other case.

Definition 2.1.7. Given a sequential morphism π : Z → Z0 and two irreducible excep-

tional components Ei, Ej ⊂ E, then we will say that Ej is proximate (resp. t−proximate)

to Ei if there exists a sequence of blow-ups (Zs, ..., Z0, π) realizing the sequential mor-

phism π : Z → Z0, such that Cj is proximate (resp. t−proximate) to Ci.

2.2 A brief note on the normal bundle of the intersec-

tion of two exceptional components

Within this short section, we introduce a technical lemma about the splitting of the nor-

mal bundle of the complete intersection of two irreducible components of the exceptional

divisor, that will be widely used in the rest of this work.

Lemma 2.2.1. Let D and F be two irreducible components of a simple normal crossing

divisor E that is regularly embedded in X. If we denote by G = D ∩ F then

NF/X |G ∼= NG/D

Proof. Let iG,D : G → D and iD,X : D → X be regular embeddings. Then the composite

iD,X ◦ iG,D is a regular embedding, and there is an exact sequence of vector bundles on

G (see [20, Proposition 19.1.5])

0 → NG/D → NG/X → ND/X |G → 0

Since D and F meet regularly in X, then (see [18, IV Proposition 3.6.]):

NG/X
∼= ND/X |G ⊕NF/X |G
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So, we have the following exact sequences of vector bundles on G

0 → NG/D → ND/X |G ⊕NF/X |G → ND/X |G → 0

Then it follows that NG/D
∼= NF/X |G.

2.3 Final divisors. Regular projective contractions.

We start this section by defining one of the key objects of this thesis, that is, final divisors

for both sequences of blow-ups and sequential morphisms.

Definition 2.3.1. Let (Zs, ..., Z0, π) be a sequence of blow-ups as in Definition 2.1.1.

The components of the exceptional divisor E in Zs are {E1, ..., Es}. Assume that Ei

is an irreducible component. Set Ei
i to be the image of Ei in Zi. We say that Ei is

finalfinal with respect to (Zs, ..., Z0, π) if there exists an open set Ui on Zi such that

Ei
i ⊂ Ui, Vi = π−1

s,i (Ui) ⊂ Zs, and πs,i|Vi : Vi → Ui is an isomorphism (see Remark 2.1.3

for πs,i).

Remark 2.3.2. Note that Ei = E∗
i is a necessary condition for Ei to be final but it is

not a sufficient one, since even if Cj
t−→ Ci, E

j∗
i = Ej

i although Ei may not be final.

Definition 2.3.3. Let π : Zs → Z0 be a sequential morphism. We say that an irreducible

component Ei of E is finalfinal if there exists a sequence of blow-ups (Zs, ..., Z0, π)

associated to π : Zs → Z0 such that Ei is final with respect to this sequence.

Now we will define a key tool for our study of final divisors, that of a regular projective

contraction.

Definition 2.3.4. Let Z and C be two varieties, and let D be a proper closed subvariety

of Z. Then we say that D is contractable to C within Z, if there exist a variety W , and

a proper birational morphism f : Z → W such that

a f(D) = C, and

b D is the closed subset of Z which consists of the points where f is not an isomor-

phism.
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We call this triple (Z, f,W ) a contraction of D to C, or simply a contraction. We shall

say that D is normally (resp. regularly, projectively) contractable to C within Z when

moreover

c W is a normal (resp. non-singular, projective) variety.

In this case we call this triple (Z, f,W ) a normal (resp. regular, projective) contraction

of D to C.

The following results give some necessary and sufficient conditions for such a regular

projective contraction to exists as well as prove its uniqueness.

Theorem 2.3.5. [27, Theorem 3., Corollary 2.] Let Z be an n−dimensional non-

singular projective variety, D a divisor on Z, and C be an r−dimensional non-singular

projective variety with r < n− 1. Then there exists a regular projective contraction of D

to C within Z if and only if they satisfy the conditions

a D is isomorphic to a projective bundle P (N) for a vector bundle N on C. We

denote by p the canonical projection of E to C and by ID the ideal of D in OZ ,

b the normal bundle ND/Z = ID

I2
D

∨ ∼= OD(−1) and

c there is a line bundle L′
on Z generated by its global sections, whose restriction to

D is isomorphic to the inverse image by p of an ample line bundle on C.

Moreover, f : Z → W is the blow-up of W with center C.

Proposition 2.3.6. [30, Corollaire 2.] Let f : Z → W a surjective birational morphism,

S(f) ⊂ Z the closed subset of point where f is not biregular, and D an irreducible

component of S(f), such that X is factorial over each point of C = f(D). Let f
′
: Z →

W
′
a birational morphism, such that S(f

′
) = D and each fiber of f

′ |D is contained in a

fiber of f |D. We suppose furthermore that W
′
is normal over each point of C

′
= f

′
(D).

Then, it exists a canonical isomorphism h : W
′ → W satisfying h ◦ f ′

= f .

Now, we give some necessary algebraic conditions that an irreducible component Ei of

the exceptional divisor E have to satisfy in order to be final.
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Proposition 2.3.7. Let Ei be an irreducible component of E. If Ei is final then it

satisfies the three conditions of Theorem 2.3.5, that is

a Ei is isomorphic to a projective bundle P (N) for a vector bundle N on Ci. We

denote by p the canonical projection of Ei to Ci and by IEi
the ideal of Ei in OZ ,

b the normal bundle NEi/Zs
=

IEi

I2
Ei

∨ ∼= OEi
(−1) and

c there is a line bundle L′
on Z generated by its global sections, whose restriction to

Ei is isomorphic to the inverse image by p of an ample line bundle on Ci.

Proof. If Ei is final then Ei is isomorphic to a projective bundle P (NCi/Zi−1
) over Ci.

Moreover NEi/Z
∼= OEi

(−1) by Proposition 1.1.16, and condition c is satisfied by con-

sidering L′
= π∗

s,i−1L, where L is an ample line bundle over Zi−1.

A natural question arises when dealing with final divisors: Given a sequential morphism

π : Z → Z0 is it possible for two irreducible exceptional components Ei and Ej to be

final with Ei ∩ Ej ̸= ∅? And in this case, which type of proximity relation could exist

between them? Moreover, what is the geometric structure of Ei ∩ Ej when Ei is final?

Lemma 2.3.8. Let (Zs, ..., Z0, π) be a sequence of blow-ups such and let Ei be a final

component with respect to this sequence. If Ei ∩Ej ̸= ∅ and Ei is proximate to Ej, then

Ei ∩ Ej ⊂ Ei is isomorphic to a projective subbundle of Ei.

Proof. We have that Ei
i ∩ Ei

j = P (NCi/E
i−1
j

), where NCi/E
i−1
j

⊂ NCi/Zi−1
is a vector

subbundle as Ci has normal crossing with Ei−1
j . Now, the results follows since Ei is

final.

Theorem 2.3.9. Let (Zs, ..., Z0, π) be a sequence of blow-ups satisfying the following

conditions:

a πi : Zi → Zi−1 is the blow-up at the smooth subvariety Ci,

b D ⊂ Ci is a Cartier divisor and πi+1 : Zi+1 → Zi is the blow-up at π−1
i (D),
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c and there exists an open subset Ui−1 ⊂ Zi−1 such that Ci ⊂ Ui−1. If Ui+1 = (πi+1◦

πi)
−1Ui−1, then Ei+1

i ∪ Ei+1
i+1 ⊂ Ui+1, Vi+1 = π−1

s,i+1(Ui+1) ⊂ Z, and πs,i+1|Vi+1
:

Vi+1 → Ui+1 is an isomorphism.

Then, the irreducible components Ei, Ei+1 are both finals with respect to the sequential

morphism π : Zs → Z0 satisfying Ei
t−→ Ei+1 and Ei+1 −→ Ei.

Proof. Let us consider the two following sequences of blow-ups:

Zi+1

πi+1

  

Z
′

i+1

π
′
i+1~~

Zi

πi
!!

Z
′

i

π
′
i}}

Zi−1

where π
′

i denotes the blow-up of Zi−1 with center D and π
′

i+1 denotes the blow-up of Z
′

i

with center the strict transform of Ci, that is C̃i. By the universal property of blow-ups

there exists a unique morphism pi : Zi+1 → Z
′

i such that the following diagram commutes

Zi+1

πi+1
!!

pi

**Zi

πi
!!

Z
′

i

π
′
i}}

Zi−1

Note that as a consequence, pi|Wi+1\Ei+1
i ∪Ei+1

i+1
is an isomorphism. Moreover, if we denote

by IC̃i
to the ideal defining C̃i, since Ci ∼= C̃i, p−1

i (IC̃i
) is an invertible sheaf. So by the

universal property of blow-up there must exist a unique morphism pi+1 : Zi+1 → Z
′

i+1

such that

Zi+1 pi+1

//

pi

))

Z
′

i+1

π
′
i+1~~

Z
′

i

, where pi+1|Wi+1\Ei+1
i ∪Ei+1

i+1
is an isomorphism.

Now, since Ei+1
i

∼= Ei
i , then Ei+1

i is isomorphic to a projective bundle over Ci, and
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consequently over C̃i, p : Ei+1
i → C̃i. Moreover, by Proposition 1.1.19

NEi+1
i /Zi+1

∼= π∗
i+1OEi

i
(−1)⊗O(−Ei+1

i ∩ Ei+1
i+1),

∼= OP (NCi/Zi−1
)(−1)⊗ π∗

i+1 ◦ π∗
iO(−D),

and considering the vector bundle N
′
= NCi/Zi−1

) ⊗ O(−D), then Ei+1
i

∼= P (N
′
) and

NEi+1
i /Zi+1

∼= OP (N ′ )(−1). Finally, let L an ample line bundle on Zi−1, then π∗
i+1 ◦ π∗

i L

will be generated by its global sections and its restriction to Ei+1
i will be isomorphic to

the inverse image by πi ◦ πi+1 of an ample line bundle on C̃i. Therefore, by Theorem

2.3.5 there exists a regular projective contraction of Ei+1
i to C̃i within Zi+1, (Zi+1, f,W ),

such that f : Zi+1 → W is the blow-up of W with center C̃i. The restriction f |Zi+1\Ei+1
i

will be an isomorphism and we have the following diagram

Zi+1

f

~~

pi

!!
X Z

′

i

Both, f and pi are birational morphisms, with S(f) = S(pi) = Ei+1
i . Moreover, and

due to the commutativity of diagram 2.3, a fiber of pi|Ei+1
i

is contained in a fiber of

f |Ei+1
i

so by Proposition 2.3.6 there exists a canonical isomorphism h : W → Z
′

i such

that h ◦ f = pi. As a result, Zi+1 must be isomorphic to Z
′

i+1.

Note that Ei+1
i+1 is proximate to Ei+1

i with respect to the sequence (Zi+1, Zi, Zi−1, π) and

Ei+1
i is t−proximate to Ei+1

i+1 with respect to the sequence (Zi+1, Z
′

i , zi−1, π
′
).

Theorem 2.3.10. Let Ei, Ej ⊂ Zs be both final divisors for the sequential morphism

π : Zs → Z0. Then Ei ∩ Ej ̸= ∅ if and only if Ei is proximate to Ej and Ej is

t−proximate to Ei, or vice versa.

Proof. Let us suppose that Ei ∩ Ej ̸= ∅. Then one of the following conditions must be

satisfied:

A either Ei −→ Ej and Ej −→ Ei,

B or Ei
t−→ Ej and Ej

t−→ Ei,
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C or Ei −→ Ej and Ej
t−→ Ei (or vice versa).

In the case A, let us consider a sequence of blow-ups, associated to the sequential mor-

phism π : Zs → Z0, realizing Ej as a final divisor. If we focus on the blow-up corre-

sponding at the j−level, that is πj : Zj → Zj−1, and we restrict it to Ej−1
i , then we have

the following diagram:

Ej
i

pij

!!
πj |

E
j
i

��

Ej
i ∩ Ej

j
oo

qij

{{
gj |

E
j
i
∩E

j
j

��

Bi

Ej−1
i

gi
!!

Cjoo

Ci

, (2.1)

where Ej
i ∩ Ej

j ⊂ Ej
i must be a projective subbundle of Ej

i , since Ei is final too. Before

going on we should distinguish between the two following cases:

A.i either codim(Cj , E
j−1
i ) = 1, that is, Cj is a divisor of Ej−1

i ,

A.ii or codim(Cj , E
j−1
i ) > 1.

In the case A.i, by Proposition 1.1.19 we have that

NEj
i /Zj

= π∗
j (NEj−1

i /Zj−1
)⊗O(−Ej

i ∩ Ej
j ), (2.2)

so the necessary condition to be final NEj
i /Zj

∼= OEj
i
(−1) (see Proposition 2.3.7) fails to

be true.

In the case A.ii the morphism πj |Ej
i
: Ej

i → Ej−1
i defines a divisorial contraction, and

as a consequence of [21, Theorem 1.1.], πj |Ej
i
: Ej

i → Ej−1
i is a Sarkisov link of type I,

so there must exists a morphism hi : Bi → Ci, giving Bi a projective bundle structure

over Ci. Now, if we denote by Fi to g−1
i (P ), where P ∈ Ci is a point, then we have the
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following diagram, obtained just by restriction of the previous one:

πj |−1

Ej
i

(Fi)

pij |πj |
−1

E
j
i

(Fi)

##

��

g−1
j (Cj ∩ Fi)oo

qij |g−1
j

(Cj∩Fi)

zz

��

h−1
i (P )

hi|h−1
i

(P )

��

Fi

gi|Fi

$$

Cj ∩ Fioo

P

, (2.3)

Since Fi ∼= Pm, where r = codim(Ci, Zi−1), then by [31, Lemma 2.] the dimension

dim(h−1
i (P )) is at least m− dim(Cj ∩ Fi)− 1. Now we will prove that in fact this must

be an equality, that is,

dim(h−1
i (P )) = m− dim(Cj ∩ Fi)− 1. (2.4)

Since g−1
j (Cj ∩ Fi) has a projective bundle structure over h−1

i (P ) then from Theorem

1.2.25 we know that

A•(g−1
j (Cj ∩ Fi)) ∼= A•(h−1

i (P )) [ζ] /(ζr+1 + c1(V )ζr + · · ·+ cr+1(V )), (2.5)

where V is a vector bundle such that r+ 1 = rank(V ) ≤ dim(Cj ∩ Fi) + 1. Moreover, if

Q ∈ Cj ∩Fi is a point, then we have that codim(g−1
j (Q), g−1

j (Cj ∩Fi)) = codim(Q,Cj ∩

Fi) = dim(Cj ∩ Fi), so the class
[
g−1
j (Q)

]
∈ A1(g−1

j (Cj ∩ Fi)) is expressed as

[
g−1
j (Q)

]
= a0ζ

dim(Cj∩Fi)+a1ζ
dim(Cj∩Fi)−1 ·α1+. . .+adim(Cj∩Fi)−1ζ ·αdim(Cj∩Fi)−1+

+ adim(Cj∩Fi)αdim(Cj∩Fi) in A•(g−1
j (Cj ∩ Fi)), (2.6)

where αi ∈ Ai(h−1
i (P )) for i = 1, ..., dim(Cj ∩ Fi). Now, let us consider a point

O ∈ qij |g−1
j (Cj∩Fi)

(g−1
j (Q)), where qij |g−1

j (Cj∩Fi)
: g−1

j (Cj ∩ Fi) → h−1
i (P ) defines the

projective bundle structure. Then the following relation must hold:

qij∗|g−1
j (Cj∩Fi)

(
[
qij |∗g−1

j (Cj∩Fi)
(O)

]
·
[
g−1
j (Q)

]
) = [O] ∈ A•(h−1

i (P )), (2.7)
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but in order to satisfy qij∗|g−1
j (Cj∩Fi)

(

[
qij |∗g−1

j (Cj∩Fi)
(O)

]
·
[
g−1
j (Q)

]
) ̸= 0 then a0 ̸= 0

in equation 2.6, and now it follows from [15, Lemma 9.7.] that r + 1 = rank(V ) =

dim(Cj ∩ Fi) + 1. We can conclude then that dim(h−1
i (P )) = m− dim(Cj ∩ Fi)− 1.

As a consequence, by [31, Theorem 4.], we have that Cj ∩ Fi is a linear subspace in Fi.

Moreover, by Proposition 1.1.17 the pull back by pij |πj |−1

E
j
i

(Fi)
of the hyperplane class

ξi ∈ A1(Fi) satisfies (see Corollary 1.2.26):

pij |∗πj |−1

E
j
i

(Fi)
(ξi) =

[
g−1
j (Cj ∩ Fi)

]
+ f, (2.8)

where f ∈ A1(πj |−1

Ej
i

(Fi)) denotes the class of a fiber F ⊂ πj |−1

Ej
i

(Fi). Now, by Proposition

1.1.19 we have that:

NEj
i /Zj

∼= π∗
j (NEj−1

i /Zj−1
)⊗O(−Ej

i ∩ E − jj),

so in particular, if we restrict to Fi:

NEj
i /Zj

|πj |−1

E
j
i

(Fi)
∼= πj |∗πj |−1

E
j
i

(Fi)
(NEj−1

i /Zj−1
)⊗Oπj |−1

E
j
i

(Fi)
(−g−1

j (Cj ∩ Fi)),

∼= pij |∗πj |−1

E
j
i

(Fi)
(OFi

(−1))⊗Oπj |−1

E
j
i

(Fi)
(−g−1

j (Cj ∩ Fi)),

∼= Oπj |−1

E
j
i

(Fi)
(−g−1

j (Cj ∩ Fi))⊗ L⊗Oπj |−1

E
j
i

(Fi)
(−g−1

j (Cj ∩ Fi)),

where L denotes a line bundle in h−1
i (P ), so the necessary condition to be final NEj

i /Zj

∼=

O(−1) (see Proposition 2.3.7) fails to be true.

Now, let us consider the case B. Since Ei
t−→ Ej and Ej

t−→ Ei, then Ei ∩ Ej must be

isomorphic to a fiber of both Ei and Ej . Let us suppose that both are finals and let

(Z0, ..., Zs, π) be a sequence realizing Ei as a final divisor. Then there must exists a

regular projective contraction f : Zs → Xs−1 such that f(Ei) = Ci. However, if we

consider the restriction f |Ej
then it can not be a regular projective contraction any more

since it contracts Ei ∩ Ej whereas NEi∩Ej/Ej
≇ OEi∩Ej

(−1).

Finally, in the case C, that is Ei −→ Ej and Ej
t−→ Ei (or vice versa), if Cj ∩ Ej−1

i is a

projective subbundle of rank one or equivalently C
′

i = πj |−1

Ej
j

(D), where D ∈ A1(C
′

j) is a

Cartier divisor, then it follows from Theorem 2.3.9 that both are finals.
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Figure 2.1: Example of two blow up processes which lead to a same sequential morphism

with two intersecting final divisors

Corollary 2.3.11. Let πα : Zα → Zα−1 be the blow-up of Zα−1 with center Cα and

πα+1 : Zα+1 → Zα the blow-up of Zα with center the image of a section Cα → Eα
α of

the projection Eα
α → Cα. Then Eα+1

α is isomorphic to a projective bundle P (N) over

P (NCα/Zα−1
/L), where L is the line bundle corresponding to Cα+1, and if we denote by p :

P (NCα/Zα−1
/L) → Ci, then N ∼= p∗L ⊕ OP (NCα/Zα−1

/L)(−1). Moreover, NEα+1
α /Zα+1

∼=

OP (N)(−2)⊗M, where M is the pull-back a line bundle defined over P (NCα/Zα−1
/L).

Proposition 2.3.12. Let (Zs, ..., Z0, π) be a sequence of blow-ups such and let Ei be a

final component with respect to this sequence. We denote by ei, ej ∈ A1(Zs to the classes

of Ei and Ej respectively. If Ei ∩ Ej ̸= ∅ then one of the following relations holds:

A ej · ei = ςi if dim(Ci) = 0,

B (ej + ei) · ei =
∑

dj if Ci −→ Cj,with dim(Ci) ≥ 1,

C ej · ei =
∑

dj if Ci
t−→ Cj,

with dj = ji∗(g
∗
i (fj)), where fj ∈ A1(Ci) denotes a Weil divisor of Ci.

Proof. The case A follow directly from Lemma 2.3.8.
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For the other cases, let us consider the blow-up πi : Zi → Zi−1. Then ei−1
j ∈ A1(Zi−1),

and by Proposition 1.2.33 we have

π∗
i (e

i−1
j ) · eii = ji∗(g

∗
i (i

∗
Ci
(ei−1
j ))).

Moreover, π∗
i (e

i−1
j ) = eij + eii if Ci → Cj and π∗

i (e
i−1
j ) = eij otherwise. Finally, since Ei

is final, there must exist an open Ui on Zi such that Ei
i ⊂ Ui, Vi = π−1

s,i (Ui) ⊂ Zs, and

πs,i|Vi
: Vi → Ui is an isomorphism, and the result follows.

2.4 The n−ary intersection form

This section is devoted to the definition of the n−ary multilinear intersection form on the

abelian groups of divisors with exceptional support and its associated multilinear form, as

we will make an intensive use of them in order to establish the numerical characterization

of final divisors and the combinatorial equivalence of sequences of blow-ups and sequential

morphisms.

Definition 2.4.1. Given a sequential morphism π : Zs → Z0, we consider the n−n−n−ary

multilinear intersection form

IZs,E :

n︷ ︸︸ ︷
E× E× · · · × E → Z,

defined by intersecting cycles in the sky Zs and taking degrees, that is

IZs,E(Ei1 , Ei2 , ..., Ein) = deg(ei1 · ei2 · ei3 · · · ein),

where ei1 · ei2 · ei3 · · · ein is an intersection class of 0−cycles in the abelian group A0(Zs),

and deg stands for the degree.

Remark 2.4.2. For the sake of simplicity we will denote ei1 · ei2 · · · ein =

IZs,EZs
(Ei1 , Ei2 , ..., Ein).

Definition 2.4.3. Given a sequential morphism π : Zs → Z0 as in Definition 2.1.2,

it induces a natural isomorphism E ∼= Zs, where the standard basis of Zs is the image

of the Z-basis {Ei}si=1. In this way, the multilinear form of intersection give rise to a

multilinear form

ΦZs,E :

n︷ ︸︸ ︷
Zs × · · · × Zs → Z
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We say that ΦZs,E is the multilinear form associated to π. The permutation group Ss
acts on the set of multilinear forms Zs × · · · × Zs → Z by interchanging the elements

of the standard basis of Zs. It is clear that if we denote by ΨZs,E to the orbit of ΦZs,E,

then ΨZs,E does not depend on the labeling of the elements of the basis {Ei}.
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Chapter 3

Sequences of point blow-ups over

an algebraically closed field.

In this chapter we focus on the study of sequences of blow-ups as in Definition 2.1.1, that

is

Zs
πs−→ Zs−1

πs−1−−−→ · · · π2−→ Z1
π1−→ Z0,

where all the centers Ci+1 are points. In the first section we define the notion of alge-

braic and combinatorial equivalence for both sequences of points blow-ups and sequential

morphisms. The second section is devoted to give a numerical characterization of final

divisors in terms of the values of the n−ary intersection form of the abelian groups of

divisors with exceptional support. In the next sections, we make use of this previous

result in order to recover the sequences of point blow-ups from the associated sequen-

tial morphism modulo algebraic equivalence, and prove some relations between algebraic

and combinatorial equivalence classes of sequences of point blow-ups and sequential mor-

phisms. Finally, in the last section of this chapter, we give two explicit presentation of

the Chow ring of the sky of a sequence of point blow-ups. The first one using the classes

of the total transforms of the exceptional components as generators and the second one

using the classes of the strict transforms ones. Furthermore, we prove that the skies of

two sequences of point blow-ups of the same length have isomorphic Chow rings.
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3.1 Algebraic and combinatorial equivalence of sequences

of point blow-ups and the associated sequential

morphisms

First of all we define our notions of equivalence (algebraic and combinatorial) for sequen-

tial morphisms (Definitions 3.1.1 and 3.1.2).

Definition 3.1.1. We say that two sequential morphisms π : Zs → Z0 and π
′
: Z

′

s′
→

Z
′

0, with s = s
′
, are algebraically equivalent, and we denote it by π

alg∼ π
′
, if and only

if there exist isomorphisms a and b such that the following diagram is commutative

Zs
b //

π

��

Z
′

s′
oo

π
′

��
Z0

a // Z
′

0
oo

Definition 3.1.2. Given two sequential morphisms π : Zs → Z0 and π
′
: Z

′

s′
→ Z

′

0, with

s = s
′
, we say that the associated multilinear forms ΦZs,E and ΦZ′

s
′ ,E

′ are equivalent,

and we denote it by ΦZs,E ∼ ΦZ′

s
′ ,E

′ , if there exists τ ∈ Ss such that

τ(ΦZs,E) = ΦZ′

s
′ ,E

′ .

Moreover, the sequential morphisms π : Zs → Z0 and π
′
: Z

′

s → Z
′

0 are said to

be combinatorially equivalent, and we denote it by π
comb∼ π

′
, when their associated

multilinear maps ΦZs,E and ΦZ′

s
′ ,E

′ are equivalent.

Remark 3.1.3. If π : Zs → Z0 and π
′
: Z

′

s′
→ Z

′

0 are algebraically equivalent, then

b(Ei) = E
′

σ(i) for some permutation σ ∈ Ss, so the multilinear intersection forms are

equivalent as in Definition 3.1.2 . However, the converse is not true. For instance, for

n = 2 we consider sequences of five point blow-ups, the first on a rational point of a smooth

surface and the other at four different rational points of the exceptional divisor created by

the blow-up of the original point. Then the 5−multilinear form, up to a permutation of

S5, is independent on the choice of the four exceptional points; however, two choices with

a different cross-ratio provide sequential morphism which are not algebraically equivalent.

Definition 3.1.4. Given a variety X we will call a brick blow-up with ground X to

a sequential morphism obtained as a composition of point blow-ups with disjoint centers

⊔lj=1Cj ⊂ X, X
′
= Xl → Xl−1 → ... → X1 → X.
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Definition 3.1.5. We say that two sequences of point blow-ups, (Zs, ..., Z0, π) , and

(Z
′

s′
, ..., Z

′

0, π
′
), are algebraically equivalent, and we denote it by (Zs, ..., Z0, π)

alg∼

(Zs′ , ..., Z
′

0, π
′
), if and only if s = s

′
and there exist algebraic isomorphisms a, b =

bt, bt−1, ..., b1, with t ≤ s, such that there are indexes r1, ..., rt = s ∈ {1, ..., l} and

r
′

1, ..., r
′

t = s
′ ∈

{
1, ..., s

′
}
, where Zri → Zri−1 → ... → Zri−1

(resp. Z
′

ri → Z
′

ri−1 →

... → Z
′

ri−1
), with ri > ri−1 (resp r

′

i > r
′

i−1), is a brick blow-up ∀i = 1...t as in Definition

3.1.4 and the diagram

Zs //

b

��

Zrt−1
//

bt−1

��

Zrt−2
//

bt−2

��

· //

��

Zr1
//

��

Z0

a

��
Zs′

// Z
′

r
′
t−1

// Z
′

r
′
t−2

// · // Z
′

r
′
1

// Z
′

0

is commutative.

Remark 3.1.6. If two sequences of point blow-ups (Zs, ..., Z0, π) and (Z
′

s, ..., Z
′

0, π
′
) are

algebraically equivalent, then their associated sequential morphisms are also algebraically

equivalent. Therefore, in particular, one has b(Ei) = E
′

σ(i) where σ ∈ Ss is a permutation.

Moreover, for two different indexes i, j, one has that Ei is proximate to Ej if and only

if E
′

σ(i) is proximate to E
′

σ(j).

Definition 3.1.7. We say that two sequences of point blow ups, (Zs, ..., Z0, π) and

(Z
′

s, ..., Z
′

0, π
′
), with s = s

′
, are combinatorially equivalent, and we denote it by

(Zs, ..., Z0, π)
comb∼ (Zs′ , ..., Z

′

0, π
′
), if and only there is a permutation τ in Ss such that

for every two different indexes i, j one has

a Ei is proximate to Ej if and only if E
′

τ(i) is proximate to E
′

τ(j),

3.2 Final divisors: Numerical characterization

Lemma 3.2.1. In the case of sequences of point blow-ups, if two irreducible components

Ei and Ej are both final, then Ei ∩ Ej = ∅.

Proof. Set Pi ∈ Zi−1, Pj ∈ Zj−1, to be the points such that Ei maps to Pi and Ej

maps to Pj . If Eβ is final, with β ∈ {i, j}, then Eβ ∼= Pn−1 and NEβ/Zs
∼= OEβ

(−1) by
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Proposition 2.3.7.

Let us suppose that Ei ∩ Ej ̸= ∅. Then either Pi is proximate to Pj or Pj is proximate

to Pi. In the first case Ej ̸∼= Pn−1 and NEj/Zs
̸∼= OEj

(−1) so Ej is not final, whereas in

the second case Ei ̸∼= Pn−1 and NEi/Zs
̸∼= OEi(−1) so Ei is not final. Through any of

them we get to a contradiction.

The result above makes a huge difference with respect to the more general case of blow-

ups at higher dimensional centers, where two final divisors may not have an empty

intersection (see Theorem 2.3.9).

Remark 3.2.2. Assume that we have a sequential morphism associated to a sequence

of point blow-ups. If an irreducible component Eα of E is final with respect to one

representative of the sequences associated to this sequential morphism then it is final with

respect to all. This fact drastically changes when more general centers are allowed (see

Theorem 2.3.9).

Before characterizing numerically final divisors, we need a numerical characterization of

empty intersections Ei ∩ Ej = ∅.

Lemma 3.2.3. In case of sequences of point blow-ups Ei ∩ Ej = ∅ if and only if (ei)s ·

(ej)
r = 0 for all r ̸= 0 and s ̸= 0 with r + s = n.

Proof. If Ei ∩ Ej = ∅ then (ei)
s · (ej)r = 0 follows directly.

In order to prove the necessary condition, we will prove that Ei ∩ Ej ̸= ∅ implies that

∃r ̸= 0, s ̸= 0 such that (ei)
s(ej)

r ̸= 0; it is enough to prove it in the case of a sequence

of point blow-ups of length s = 3 since the general result follows by induction.

First let π1 : Z1 → Z0 be the blow-up with center P1. Now we blow-up Z1 with center

P2 such that P2 ∈ E1
1 , that is such that P2 is proximate to P1. If we denote by D1,2

to E2
1 ∩ E2

2 , thus we have the following diagram where all the morphisms are regular
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embeddings

E2
1

j
E2

1 ,Z2

  
D1,2

iD1,2,Z2 //

i
D1,2,E2

1

==

i
D1,2,E2

2 !!

Z2

E2
2

j
E2

2 ,Z2

>>

Then it follows by Proposition 1.2.20 that

e21 · e22 · e22 = iD1,2,Z2∗(c1(NE2
1/Z2

|D1,2))

e21 · e22 · e21 = iD1,2,Z2∗(c1(NE2
2/Z2

|D1,2
))

Moreover, we have the following diagram

D1,2

i
D1,2,E2

1 //

��

E2
1

π2|E1
1

��
P2

i
P2,E1

1 // E1
1

so by proposition 1.1.19

NE2
1/Z2

∼= π∗
2 |E1

1
(NE1

1/Z1
)⊗O(−D1,2)

Since O(D1,2)|D1,2
∼= ND1,2/E2

1
, then we have

NE2
1/Z2

|D1,2
∼= L⊗N∨

D1,2/E2
1
,

where L denotes a trivial line bundle. Moreover, as a consequence of Lemma 2.2.1 we

have ND1,2/E2
1

∼= NE2
2/Z2

|D1,2 so

c1(NE2
1/Z2

|D1,2
) ∼= −c1(NE2

2/Z2
|D1,2

)

By induction on r and s respectively it follows

e21 · (e22)r = iD1,2,Z2∗((c1(NE2
2/Z2

|D1,2
))r−1)

(e21)
s · e22 = (−1)s−1iD1,2,Z2∗((c1(NE2

2/Z2
|D1,2

))s−1)

Finally, as NE2
2/Z2

∼= OE2
2
(−1) and D1,2 ⊂ E2

2 is a projective sub-bundle, it follows that

(e21)
s · (e22)r = (−1)s−1iD1,2,Z2∗(c1(OD1,2(−1))r+s−2)
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Note that (e21)
s · (e22)

r ̸= 0 and furthermore if we denote by ∆1,2 to

iD1,2,Z2∗(c1(OD1,2
(−1))r+s−2)) then (e21)

s · (e22)r = (−1)s−1∆1,2 if r + s = n.

Let π3 : Z3 → Z2 be the blow-up of Z2 with center P3, such that P3 ∈ E2
1 ∩ E2

2 , that is

P3 is proximate to P1 and to P2. Then it follows that by theorem 1.2.30

(e31)
s · (e32)r = (π∗

3(e
2
1)− e33)

s · (π∗
3(e

2
2)− e33)

r

and due to the Projection formula 1.6, then

(e31)
s(e32)

r = (π∗
3(e

2
1))

s · (π∗
3(e

2
2))

r + (−1)r+s(jE3
3 ,Z3∗(c1(OE3

3
(−1))r+s−1) (3.1)

= (e21)
s · (e22)r + (−1)r+s(jE3

3 ,Z3∗(c1(OE3
3
(−1))r+s−1) (3.2)

Since (e21)
s · (e22)r ̸= 0 and furthermore that it is of the form (e21)

s · (e22)r = (−1)s−1∆1,2,

then it must exist r, s with r ̸= 0 and s ̸= 0 such that (e31)
s(e32)

r ̸= 0.

For the more general case, let us suppose that {Pα1 , Pα2 , ..., Pαk
} are proximate to both

P1 and P2. Then by iterating equation 3.1

(eαk
1 )s · (eαk

2 )r = (e21)
s · (e22)r + (−1)n

k∑
j=1

(j
E

αj
αj
,Zαj

∗(c1(OE
αj
αj

(−1))n−1),

so it must exist r, s with r ̸= 0 and s ̸= 0 such that (eαk
1 )s · (eαk

2 )r ̸= 0.

Now we are ready to characterize numerically when an irreducible component Ei of the

exceptional divisor E is final.

Proposition 3.2.4. Ei is final if and only if

(ei)
n = (−1)n−1

Proof. Firstly, let us suppose that Ei is final. Then by Proposition 1.2.22 we have

(ei)
n = jEi,Zs∗((c1(NEi/Zs

))n−1)

but NEi/Zs
∼= OEi

(−1), so if we denote by ς to c1(OEi
(−1)), it follows that

(ei)
n = jEi,Zs∗((−ς)n−1)

so we can conclude the result (ei)
n = (−1)n−1.
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Now, let us suppose that Ei is not final. Then by Proposition 1.1.19 its normal bundle

satisfies

NEi/Zs
= π∗

n,i|Ei
i
(NEi

i/Zi
)⊗

⊗
α→i

π∗
n,α|Eα

i
(O(−Eα

i ∩ Eα
α)),

and by the Projection formula 1.6 we have

(ei)
n = jEi,Zs∗((−ς)n−1) +

∑
α→i

jEi,Zs∗((−Eα
i ∩ Eα

α)
n−1)

Since
∑
α→i jEi,Zs∗((−Eα

i ∩ Eα
α)
n−1) ̸= 0, we can conclude that (ei)

n ̸= (−1)n−1.

3.3 Recovering of the sequence of point blow-ups

Before continuing, we need to prove the following technical lemma that is crucial for the

uniqueness of the regular projective contractions.

Lemma 3.3.1. Let X and Y be two affine normal varieties such that X = Spec(A) and

Y = Spec(B). Let π : Z → X and π
′
: Z

′ → Y be proper morphisms. If Z is isomorphic

to Z
′
then A ∼= B.

Proof. By [19, Theorem 3.2.1], since π and π
′

are proper morphisms then π∗(OZ) and

π
′

∗(OZ′ ) are a coherent sheaves on X and Y respectively. Since X and Y are both normal,

then OX
∼= π∗(OZ) and OY

∼= π
′

∗(OZ′ ), so

A ∼= H0(X,OX) ∼= H0(Z,OZ),

B ∼= H0(Y,OY ) ∼= H0(Z
′
,OZ′ ).

Since H0(Z,OZ) ∼= H0(Z
′
,OZ′ ), then it follows that A ∼= B.

Proposition 3.3.2. Let (Zs, ..., Z0, π) be a sequence of point blow-ups (as in Definition

2.1.1) of length s and let Ei be an irreducible component of the exceptional divisor E of

π. If Ei is final, then there exists a regular projective contraction (Zs, fs, Xs−1) of Ei

to a point such that fs(E) is a simple normal crossing divisor and Xs−1 is the sky of a

sequence of point blow-ups with ground Z0.

Proof. Since Ei is final there must exist an isomorphism between the two opens sets

Ui ⊂ Zi and Vi ⊂ Zs via πs,i. After shrinking Ui if necessary, we may assume that
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Ui \ Ei
i is isomorphic via πi to an open set of Zi−1 \ {Pi} where Pi = πi(E

i
i).

Note that Wi = πi(Ui) is an open set in Zi−1. In fact πi|Ui
is the blow-up of Wi at Pi.

Vi
πs,i|Vi // Uioo

πi|Ui

��
Wi

Set ϕ = (πi ◦ πs,i)|Vi the composition morphism from Vi to Wi

Vi
πs,i|Vi //

ϕ

  

Ui

πi|Ui

��

oo

Wi

where ϕ := πi ◦ πs,i.

Set W i = Z \ Ei. We construct Xs−1 by gluing Wi and W i along the open isomorphic

sets Wi \ {Pi} ⊂ Wi and Vi \ Ei ⊂ W i. Note that Wi \ {Pi}
πi∼= Ui \ Ei

i

πs,i∼= Vi \Hi.

Now we define fs : Z → Xs−1, fs|W i
= IdW i

, fs|Vi = ϕ, which is well defined by the

isomorphisms.

Finally, it is clear from the construction that if we denote by DXs−1
to the image fs(E),

then DXs−1
is a simple normal crossing divisor.

An alternative construction of the contraction.

Since Ei is final, then Ei ∼= Pn−1, where Pi = πs,i(Ei), and moreover by Proposition

1.1.16 its normal bundle NEi/Zs
∼= OEi

(−1). Let F be a very ample line bundle on Zs.

Then F ⊗ OEi
= L2 ⊗ OEi

(u). If we consider the line bundle L := F ⊗ O(Ei)
⊗u, then

by [27, Corollary 2.] there exists a regular projective contraction (Zs, φ,X
′

s−1) of Ei to

a closed point, that we will denote by P
′

i , with φ|Ei = P
′

i , such that φ is defined by the

complete linear system |L|. To see that DX
′
s−1

:= φ(E) is still a simple normal crossing

divisor we prove that the contraction is unique up to isomorphism. By [27, Theorem

3] φ : Zs → X
′

s−1 is the blowing up of X
′

s−1 at a point P
′

i . Let Yi be an affine open

neighborhood of Pi in Xs−1. If we denote by Y
′

i := φ(f−1
s (Yi)), then is Y

′

i is an affine
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neighborhood of P
′

i in X
′

s−1 and there exist two proper morphisms

f−1
s (Yi)

fs|f−1
s (Yi)

||

φ|
f
−1
s (Yi)

""
Yi Y

′

i

By Lemma 3.3.1 this implies that Yi ∼= Y
′

i , so its then clear that DX
′
s−1

is a simple normal

crossing divisor.

So we have proved that there exists a regular projective contraction (Zs, fs, Xs−1) of Ei

to a point Pi ∈ Xs−1.

Zs

πs

��

fs

''
· Xs−1

·

��
Zi

πi

��
Zi−1

��
·

·

��
Z1

π1

��
Z0

Following the notations of Definition 2.3.1, let Wi = πi(Ui). Then by Definition 2.3.1

fs|Zs\Vi
: Zs \ Vi → Xs−1 \ fs(Vi) is an isomorphism. Now we define g : Xs−1 → Zi−1

as follows: g|W i
= πs,i−1|W i

and g|Wi = IdWi . By our construction of Xs−1 g is well

defined, and by the definition g : Xs−1 → Zi−1 is a sequence of point blow-ups.

Hence the composition Xs−1 → Zi−1 → Z0 is a sequence of point blow-ups.
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Z

πs

��

fs

((
· Xs−1

ψs−1





g

��

·

��
Zi

πi

��
Zi−1

��
·

·

��
Z1

π1

��
Z0

Theorem 3.3.3. Let π : Zs → Z0 be a sequential morphism. Given the n−ary multilin-

ear intersection form we can recover all the sequences of point blow-ups that are associated

to sequential morphisms in the same algebraic equivalence class of π : Zs → Z0.

Proof. We will prove this result first by contracting one irreducible component of the

exceptional divisor Ẽ each time.

Since the set formed by final divisors is not empty, let us suppose that Ei is final, then

by Proposition 3.3.2 there exists a regular projective contraction (Zs, fs, Xs−1) of Ei to

a point such that Xs−1 is the sky of a sequence of point blow-ups with ground Z0 .
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Zs

πs

��

fs

''
· Xs−1

ψs−1





·

��
Zi

πi

��
Zi−1

��
·

·

��
Z1

π1

��
Z0

The next step in our proof refers to how to obtain the intersection form in Xs−1 associated

to the simple normal crossing divisor DXs−1
.

If we denote by DXs−1,α to fs(Eα), then by the Projection formula 1.6

dXs−1,i1 · dXs−1,i2 · · · dXs−1,in = f∗
s (dXs−1,i1) · f∗

s (dXs−1,i2) · · · f∗
s (dXs−1,in),

Applying the result of Theorem 1.2.30 then

dXs−1,i1 · dXs−1,i2 · · · dXs−1,in = (ei1 + δi1,iei) · (ei2 + δi2,iei) · · · (ein + δin,iei), (3.3)

where δij ,i = 1 if Ei ∩ Eij ̸= ∅ (see numerical characterization in lemma 3.2.3) and

δij ,i = 0 otherwise.

Remark 3.3.4. It follows then that by iterating the above process, that is by contracting

a final divisor at each step, we will obtain a sequence of point blow-ups of length s.

The obtained sequence depends on the choice of final components. Below we will prove

that all the sequential morphisms associated to the sequences constructed in this way are

algebraically equivalent.
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3.4 Relations between algebraic and combinatorial equiv-

alence classes of sequences of point blow-ups and

sequential morphisms

Proposition 3.4.1. Any of the sequences obtained as in 3.3.4, that is, by decomposing

a regular projective contraction from a fixed sky Zs and a fixed simple normal crossing

divisor E, are associated to sequential morphisms in the same algebraic equivalence class

(see Definition 3.1.1).

Before proving this, we need the following lemma

Lemma 3.4.2. Given a fixed sky Zs and a fixed simple normal crossing divisor E, let

us suppose that Ei and Ej are both finals. Then there is an isomorphism Xs−2
∼= X

′

s−2

making the following diagram commutative

Zs
f
′
s

!!

fs

}}
Xs−1

fs−1

��

X
′

s−1

f
′
s−1

��
Xs−2

∼= // X
′

s−2
oo

where fs is the contraction of Ei and fs−1 is the contraction of DXs−1,j, whereas f
′

s is

the contraction of Ej and f
′

s−1 is the contraction of DX
′
s−1,i

.

Proof. To begin with, if we denote by Oi,s−2 = fs−1 ◦ fs(Ei), Oj,s−2 = fs−1(DXs−1,j),

O
′

j,s−2 = f
′

s−1 ◦ f
′

s(Ej) and O
′

i,s−2 = f
′

s−1(DX
′
s−1,i

), then it follows that

Xs−2 \ {Oi,s−2, Oj,s−2} ∼= Zs \ Ei ∪ Ej ∼= X
′

s−2 \
{
O

′

i,s−2, O
′

j,s−2)
}

Let Wj be an open affine open neighborhood of Oj,s−2. If we denote by Vj to the

inverse image f−1
s ◦ f−1

s−1(Wj), then the image W
′

j = f
′

s ◦ f
′

s−1(Vj) will be an affine

open neighborhood of O
′

j,s−2. Then since fs−1 ◦ fs|Vj
and f

′

s−1 ◦ f
′

s|Vj
are both proper

morphisms, it follows by lemma 3.3.1 Wj
∼= W

′

j .

If we denote by Wi to an open affine neighborhood of Oi,s−2 and W
′

i = f
′

s−1◦f
′

s(Vi), where

72



Vi is the inverse image f−1
s ◦f−1

s−1(Wi), then in a similar way we can prove that Wi
∼= W

′

i ,

so it follows Xs−2
∼= X

′

s−2 since all isomorphisms are given by global sections.

Consequently, we have the following corollary, which means that proposition 3.4.1 holds

for length 2.

Corollary 3.4.3. If Zs is the sky of a sequence of point blow-ups of length 2, then

any of the two sequences of point blow-ups obtained following the procedure in 3.3.4 are

associated to sequential morphisms in the same algebraic equivalence class .

In order to prove proposition 3.4.1 we need the following definition.

Definition 3.4.4. We say that two sequences of point blow-ups obtained as in remark

3.3.4, that is through the composition of regular projective contractions from a fixed sky

Zs and a fixed simple normal crossing divisor E,

Zs
fs //

��

Xs−1

fs−1 //

��

Xs−2

fs−2 // . // . // . // X2
f2 // X1

f1 // X0

��
Zs

f
′
s //

OO

X
′

s−1

f
′
s−1 //

OO

X
′

s−2

f
′
s−2 // . // . // . // X

′

2

f
′
2 // X

′

1

f
′
1 // X

′

0

OO

have the same end if at least the first contraction is common to both. i.e. one has fs = f
′

s.

Proof of Proposition 3.4.1. Let us suppose then that Zn+1 is the sky of a sequence of

n + 1 point blow ups and that proposition 3.4.1 is true for sequences of length lower

or equal than n. If two sequences obtained as above ρ := f1 ◦ f2 ◦ ... ◦ fn ◦ fn+1 and

ρ
′
:= f

′

1 ◦ f
′

2 ◦ ... ◦ f
′

n ◦ f ′

n+1 have the same end, then it is clear that both are associated

to algebraically marked sequential morphism in the same algebraic equivalence class. It

is a direct consequence of the fact that by hypothesis the assertion is true for sequences
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of length lower or equal than n.

Zn+1

f
′
n+1

fn+1

��
Xn

fn

{{

f
′
n

##
Xn−1

fn−1

��

X
′

n−1

f
′
n−1

��
·

��

·

��
·

f2

��

·

f
′
2��

X1

f1

��

X
′

1

f
′
1
��

X0

∼= // X
′

0
oo

If two sequences ρ := f1 ◦ f2 ◦ ... ◦ fn ◦ fn+1 and σ := g1 ◦ g2 ◦ ... ◦ gn ◦ gn+1 have not the

same end, then let us suppose that fn+1 and gn+1 correspond to the contraction of Ei

and Ej respectively. Consider all the sequences that belong to the tree contracting Ej

first, there must exist a sequence ρ
′
:= f

′

1 ◦ f
′

2 ◦ ... ◦ f
′

n ◦ f
′

n+1 contracting EXn,i secondly.

Analogously, if we consider all sequences contracting Ei first, there must exist a sequence

σ
′
:= g

′

1 ◦ g
′

2 ◦ ... ◦ g
′

n ◦ g′

n+1 contracting EYn,j secondly.

By corollary 3.4.3 the sequences f
′

n ◦ f
′

n+1 and g
′

n ◦ g
′

n+1 of length 2 are associated to

sequential morphism in the same algebraic equivalence class, so it just remain to proof

that f
′

1◦f
′

2◦...◦f
′

n−2◦f
′

n−1 belong to the same equivalence class that g
′

1◦g
′

2◦...◦g
′

n−2◦g
′

n−1.
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But this equivalence follows directly from the hypothesis, so ρ
′ ∼ σ

′
.

Zn+1

fn+1

f
′
n+1uu

gn+1

g
′
n+1 ))

Xn

fn

||

f
′
n

""

Yn
g
′
n

}}

gn

!!
Xn−1

fn−1

��

X
′

n−1

f
′
n−1

��

∼= // Y
′

n−1

g
′
n−1

��

oo Yn−1

gn−1

��
·

��

·

��

·

��

·

��
·

f2

��

·

f
′
2��

·

g
′
2 ��

·

g2

��
X1

f1

��

X
′

1

f
′
1
��

Y
′

1

g
′
1
��

Y1

g1

��
X0

∼= // X
′

0

∼= //oo Y
′

0
oo ∼= // Y0

oo

Now since ρ
alg∼ ρ

′
and σ

alg∼ σ
′
, then ρ

alg∼ σ.

With this we conclude also the proof of Theorem 3.3.3.

Theorem 3.4.5. Two sequences of point blow-ups (Zs, ..., Z0, π) and (Z
′

s, ..., Z
′

0, π
′
), with

s = s
′
, are combinatorially equivalent as in Definition 3.1.7 if and only if their associated

sequential morphisms π : Zs → Z0 and π
′
: Z

′

s → Z
′

0 are combinatorially equivalent as

in Definition 3.1.2, and both statements are true if and only if the associated multilinear

maps ΦZ,E and ΦZ′ ,E′ are equivalent too as in Definition 3.1.2

First we will prove that if two sequential morphisms π : Zs → Z0 and π
′
: Z

′

s →

Z
′

0 are combinatorially equivalent then the associated sequences of points blow-ups are

combinatorially equivalent too. To begin with, we need a numerical characterization of

proximity.

Lemma 3.4.6. Let (Zs, ..., Z0, π)comb be a sequence of point blow-ups. Then Pi → Pj if

and only if
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a ∃α ∈ {2, 3, ..., s− 1, s} such that DXα,i∩DXα,j ̸= ∅ (see numerical characterization

of lemma 3.2.3).

b (dXα,i)
n = (−1)n−1

where Zs =→ Xs−1 → · · · → Xα → · · · → X0 = Z0 is any sequence of contractions

obtained as in remark 3.3.4.

Proof. If Pi is proximate to Pj then Ei
i ∩ Ei

j ̸= ∅, con condition i. holds. Moreover, if

Pi ∈ Zr, then Ei
i is final for the sequence πr+1 ◦ πr ◦ · · · ◦ π1, for some r ≥ i and we have

condition ii.

Conversely, if DXα,i is final for the sequence πr+1 ◦ πr ◦ · · · ◦ π1 for some r ≥ i then by

proposition 3.3.2 there exist a regular projective contraction fα : Xα → Xα−1 of EDα,i

such that fα(DXα,i) = Oi,α−1 ⊂ DXα−1,j .

Proof of Theorem 3.4.5. Assume that the sequential morphisms π : Zs → Z0 and π
′
:

Z
′

s′
→ Z

′

0 are combinatorially equivalent. If Ei is final, then there exists τ ∈ Ss such

that

a E
′

τ(i) is final,

b Ei ∩ Eβ ̸= ∅ if and only if E
′

τ(i) ∩ E
′

τ(β) ̸= ∅,

c eβ1
· eβ2

· · · eβn
= e

′

τ(β1)
· e′

τ(β2)
· · · e′

τ(βn)

Furthermore, by Theorem 1.2.30

dXs−1,β1
· dXs−1,β2

· · · dXs−1,βn
= (eβ1

+ δβ1,iei) · (eβ2
+ δβ2,iei) · · · (eβd

+ δβd,iei),

so it follows then that there exists τ̃ ∈ Ss−1 such that

dXs−1,β1
· dXs−1,β2

· · · dXs−1,βn
= d

′

X
′
m−1,τ̃(β1)

· d
′

X
′
m−1,τ̃(β2)

· · · d
′

X
′
m−1,τ̃(βn)

Consequently we have that ΦXs−1,DXs−1
∼ ΦX′

s
′−1

,D
X

′
s
′−1

. Furthermore, by iterating

the above process, then ΦXα,DXα
∼ ΦX′

α,DX
′
α

for α = 1, .., s − 2. So as a consequence

of Lemma 3.4.6 any two sequential morphisms combinatorially equivalent preserve the
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proximity relations.

Conversely assume now that two sequences of point blow-ups with s = s
′

are com-

binatorially equivalent. We want to prove that their associated sequential morphisms

π : Zs → Z0 and π
′
: Z

′

s′
→ Z

′

0 are combinatorially equivalent. First, there exists σ ∈ Ss

such that by applying iteratively Theorem 1.2.30 we get

ei = e∗i −
∑
β→i

e∗β

e
′

σ(i) = e
′∗
σ(i) −

∑
σ(β)→σ(i)

e
′∗
σ(β)

Moreover, as a consequence of the Projection formula 1.6

e∗β1
· e∗β2

· · · e∗βn
̸= 0 if and only if β1 = β2 = ... = βn

and if Ei is final then Ei = E∗
i , so it follows that there exists τ ∈ Ss such that

(e∗i )
n = (e

′∗
τ(i))

n ∀i = 1, .., s

Finally, by the Theorem 1.2.30

eβ1 · eβ2 · · · eβn = (e∗β1
−

∑
δ→β1

e∗δ) · (e∗β2
−

∑
δ→β2

e∗δ) · · · (e∗βn
−

∑
δ→βn

e∗δ)

so we have

eβ1
· eβ2

· · · eβn
= e

′

τ(β1)
· e

′

τ(β2)
· · · e

′

τ(βn)

Theorem 3.4.7. Given two sequential morphisms π : Zs → Z0 and π
′
: Z

′

s′
→ Z

′

0

, then they are algebraically equivalent as in Definition 3.1.1 if and only if there are

sequences of point blow-ups (Zs, ..., Z0, π) and (Z
′

s′
, ..., Z

′

0, π
′
) associated to π : Zs → Z0

and π
′
: Z

′

s′
→ Z

′

0 respectively such that they are algebraically equivalent as in Definition

3.1.5.

Proof. If two sequences of point blow-ups are algebraically equivalent, then it follows

directly by Definition 3.1.5 that the associated sequential morphisms are algebraically

equivalent too.

Now we will prove that if two sequential morphism π : Zs → Z0 and π
′
: Z

′

s′
→ Z

′

0 are

algebraically equivalent, then there exist sequences of point blow-ups associated to them

77



that are algebraically equivalent too. By theorem 3.3.3 given a certain sky Zs associated

to a sequential morphism π : Zs → Z0 , all the sequences of point blow-ups obtained

by regular projective contractions are associated to sequential morphisms in the same

algebraic equivalence class. Since π : Zs → Z0 and π
′
: Z

′

s → Z
′

0 are algebraically

equivalent, then there exist an isomorphism b : Zs → Z
′

s′
. By applying proposition 3.3.2

and proposition 3.4.1 we conclude the result.

3.5 The Chow ring of the sky Zs

Note that Proposition 1.2.33 does not give a presentation of A•(Zα+1) as a A•(Zα)−algebra,

but only states the rules of multiplication.

If we could find generators of A•(Eα+1
α+1) as a Z−algebra, {γ1, ..., γr} ∈ A•(Eα+1

α+1), then

A•(Zα+1) ∼= A•(Zα) [jα+1∗(γ1), ..., jα+1∗(γr)]

would be a A•(Zα)−algebra of finite type. One would like to have a presentation

A•(Zα+1) ∼= A•(Zα) [w1, ..., wr] /J

by sending wi to jα+1∗(γi), with an explicit description of the ideal J . The ideal Jwill

be computed in Theorems 3.5.3 and 3.5.6. We will restrict ourselves to the case of

sequences of point blow-ups, that is Cα = Pα, with the ground variety Z0
∼= Pn. By

[15, Theorem 2.1.], A•(Z0) ∼= Z [u] /(un+1), by sending u to h, where h ∈ A1(Z0) is the

rational equivalence class of any hyperplane [H] in Pn, and ∀α A•(Eα
α)

∼= Z [w] /(wn) by

sending w to ςα, with ςα ∈ A1(Eα
α) is the rational class of any hyperplane.

Lemma 3.5.1. The Chow ring of the sky A•(Zs) is generated by
{
hs∗, {es∗i }si=1

}
as a

Z−algebra.

Proof. This follows by induction on α. It is clear that A•(Z0) is generated by {h}. Let

us suppose that A•(Zα) is generated by
{
hα∗, {eα∗i }αi=1

}
. Now by Proposition 1.2.33 and

due to the fact that Eα+1
α+1

∼= Pn−1, that is A•(Eα+1
α+1)

∼= Z [t] /(tn), by sending t to ςα+1,

with ςα+1 the rational equivalence class of any hyperplane in Pn−1, and eα+1∗
α+1 · eα+1∗

α+1 =

−jα+1∗(ςα+1) by equation (4) then A•(Zα+1) is generated by
{
hα+1∗,

{
eα+1∗
i

}α+1

i=1

}
as a

Z−algebra.
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Remark 3.5.2. It makes sense then to define the augmented free Z−modules with basis{
Hk∗,

{
Ek∗
i

}k
i=1

}
and

{
Hk∗,

{
Ek
i

}k
i=1

}
and the augmented change of basis matrix B∗

k

B∗
k =



1 0 · · · · · · 0 0

0 1 0 · · ·
...

...

0 −p12 1
. . .

...
...

... −p13 −p23
. . .

...
...

...
...

...
. . . 1

...

0 −p1k −p2k · · · −pk−1k 1


(3.4)

and its inverse B∗−1
k .

Theorem 3.5.3. The Chow ring of the sky A•(Zs), when Z0
∼= Pn, is isomorphic to

A•(Zs) ∼= Z [x0, x1, ..., xs] /({xi · xj}si,j=0
i ̸=j

, {(−1)n(xi)
n + (x0)

n}si=1), (3.5)

by sending x0 to the class hs∗ and xi to the class es∗i for i = 1, ..., s.

Proof. By lemma 3.5.1 there exist a exists a surjective morphism

ϕ : Z [x0, x1, ..., xs] → A•(Zs),

such that ϕ(x0) = hs∗ and ϕ(xi) = es∗i for i = 1, ...s. Firstly we will prove that

J :=

〈
{xi · xj}si,j=0

i ̸=j
, {(−1)n(xi)

n + (x0)
n}si=1

〉
⊂ Ker(ϕ). To begin with, let us express

the classes of the basis
{
Eα+1∗
i

}α+1

i=1
in terms of the classes of the basis

{
Eα+1
i

}α+1

i=1
, that

is, since

eα∗i = eαi +

α∑
j=i+1

bj,ie
α
j ,

then

eα+1∗
i = eα+1

i +

α∑
j=i+1

bj,ie
α+1
j + (

α∑
j=i

pjα+1bj,i)e
α+1
α+1

where bj,i denotes the coefficients of the augmented change of basis matrix B∗−1
α .

If we denote by ςα+1 ∈ A1(Eα+1
α+1) the class of any hyperplane in Eα+1

α+1 then we have the

following intersection products
eα+1
α+1 · e

α+1
α+1 = −jα+1∗(ςα+1) (3.6)

eα+1
j · eα+1

α+1 = jα+1∗(ςα+1) if Pα+1 → Pj (3.7)

eα+1
j · eα+1

α+1 = 0 otherwise (3.8)
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where Equation 3.6 follows from Proposition 1.2.33 and Equation 3.7 is a direct conse-

quence of [17, Corollary 6.7.1], that is π∗
α+1(e

α
j ) = eα+1

j + eα+1
α+1, and Proposition 1.2.33

and Equation 3.6. So the following intersection product is 0

(eα+1
j + pjα+1e

α+1
α+1) · e

α+1
α+1 = 0, (3.9)

and we can conclude that

eα+1∗
i · eα+1∗

α+1 = (eα+1
i +

α∑
j=i+1

bj,ie
α+1
j + (

α∑
j=i

pjα+1bj,i)e
α+1
α+1) · e

α+1
α+1 = 0.

On the other hand hα+1∗ · eα+1
α+1 = 0 is a consequence of the moving lemma (see [17, 11.4

Moving lemma]). If we make the pull back through π∗
s,α+1 for all α, then it follows that〈

{xi · xj}si,j=0
i ̸=j

〉
⊂ ker(ϕ). By [17, Example 16.1.11], A0(Z0) is a birational invariant,

that is A0(Zi) ∼= Z(hi∗)n for i = 1, ..., s, so since (eα+1
α+1)

n = (−1)n−1jα+1∗(ς
n
α+1) then

(eα+1
α+1)

n = (−1)n−1(hα+1∗)n, and by making the pull back through π∗
s,α+1 we conclude

that ⟨{(−1)n(xi)
n + (x0)

n}si=1⟩ ⊂ Ker(ϕ).

Now we will prove that Ker(ϕ) ⊂ J . Note that ϕ : Z [x0, x1, ..., xs] → A•(Zs) is

homogenous, so ker(ϕ) is an homogenous ideal, and J is an homogenous ideal too by

construction. Let us suppose that P [x] ∈ Ker(ϕ)/J with deg(P ) = η. Then 2 ≤ η ≤

n, since
{
xn+1
i

}s
i=0

∈ J , and P [x] must be of the form P [x] =
∑s
i=0 aix

η
imod(J ),

since {xi · xj}si,j=0
i ̸=j

∈ J . Now if η < n, then xn−ηi P [x] will be also in Ker(ϕ), then

ϕ(xn−ηi P [x]) = ai(e
s∗
i )n = 0, since (es∗i )n ̸= 0 then ai = 0 for i = 0, 1, ..., s. If η = n,

since {(−1)n(xi)
n + (x0)

n}si=1 ∈ Ker(ϕ) then it follows that a0 + (−1)n+1
∑s
i=1 ai = 0,

so P [x] = 0mod(J ).

Remark 3.5.4. Note that ⟨x0, x1, ..., xs⟩Ker(ϕ) =

〈
{xixjxk}si,j,k=0

i ̸=j
j ̸=k

,
{
xn+1
i

}s
i=0

〉
, so

we have that

Ker(ϕ)/ ⟨x0, x1, ..., xs⟩Ker(ϕ) is a free Z−module of finite rank
(
n+1
2

)
+ n. Any set of

generators of the ideal Ker(ϕ) is a set of generators of Ker(ϕ)/ ⟨x0, x1, ..., xs⟩Ker(ϕ) as

Z−module, so{
{xi · xj}si,j=0

i ̸=j
, {(−1)n(xi)

n + (x0)
n}si=1

}
is a minimal set of generators for Ker(ϕ).

Corollary 3.5.5. Given two sequences of point blow-ups (Z0, ..., Zs, π) and (Z
′

0, ..., Z
′

s′
, π

′
),

if s = s
′
then A•(Zs) ∼= A•(Z

′

s′
).

Proof. It follows directly from Equation (3.5) in Theorem 3.5.3.
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We can use
{
hs∗, {esi}

s
i=1

}
as generators of the Chow ring A•(Zs) as Z−algebra instead.

Theorem 3.5.6. A presentation of A•(Zs), when Z0
∼= Pn, using

{
hs+, {esi}

s
i=1

}
as

generators is the following one:

A•(Zs) ∼=
Z [y0, y1, ..., ys]

A
, (3.10)

where

A = (({y0 · yi}si=1 ,

(yi +

s∑
k=i+1

bk,iyk) · (yj +
s∑

l=j+1

bl,jyl)


s

i,j=1
i̸=j

,

{
(yi)

n + ((−1)n +# {j}j→i)(y0)
n
}s
i=1

)),

by sending y0 to hs∗ and yi to esi for i = 1, ..., s.

Proof. In this case there exists a surjective morphism

ϕ
′
: Z [y0, y1, ..., ys] → A•(Zs)

with ϕ
′
(y0) = hs∗ and ϕ

′
(yi) = esi for i = 1, ..., s. Moreover we have the following

commutative diagram

Z [x0, ..., xs]

ϕ

&&
Z [y0, ..., ys]

ρ

OO

ϕ
′

// A•(Zs)

where ρ : Z [y0, ..., ys] → Z [x0, ..., xs] is the isomorphism induced by the augmentated

change of basis matrix B∗
s , that is ρ(y0) = x0 and ρ(yi) = xi −

∑s
j=i+1 pijxj . Now, by

considering the following images through ρ:

ρ((yi)
n + ((−1)n +# {j}j→i)(y0)

n) = (xi −
s∑

k=i+1

pikxk)
n + ((−1)n +# {j}j→i)(x0)

n

= (xi)
n + (−1)n

s∑
k=i+1

pik(xk)
n + ((−1)n +# {j}j→i)(x0)

n+

∑
ni+ni+1+...+ns=n

ni,...,ns ̸=n

(−1)n−ni

(
n

ni, ni+1..., ns

) s∏
β=i

(piβxβ)
nβ

= (−1)n((−1)n(xi)
n + (x0)

n) +

s∑
k=i+1

pik((−1)n(xk)
n + (x0)

n)+

∑
ni+ni+1+...+ns=n

ni,...,ns ̸=n

(−1)n−ni

(
n

ni, ni+1..., ns

) s∏
β=i

(piβxβ)
nβ ;
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ρ(y0 · yi) = x0 · (xi −
s∑

k=i+1

pikxk)

= x0 · xi −
s∑

k=i+1

pi,kx0 · xk;

ρ((yi +

s∑
k=i+1

bk,iyk) · (yj +
s∑

l=j+1

bl,jyl)) = xi · xj ;

we can conclude that A ⊂ Ker(ϕ
′
). The inclusion Ker(ϕ

′
) ⊂ A is straightforward by

Remark 3.5.4.

The next examples illustrate some interesting consequences of Corollary 3.5.5. In partic-

ular, the first one shows how the presentation of the Chow ring of the sky of a sequence

of point blow-ups in terms of the total transforms of the exceptional components fails to

detect the proximity configuration of the sequence.

Example 3.5.7. Let us consider all possible proximity configurations for a sequence of

point blow-ups of length 4 verifying that at least Pi+1 → Pi, that is

a P1, P2 → P1, P3 → P2 and P4 → P3,

b P1, P2 → P1, P3 → {P1, P2} and P4 → P3,

c P1, P2 → P1, P3 → {P1, P2} and P4 → {P2, P3},

d P1, P2 → P1, P3 → {P1, P2} and P4 → {P1, P3},

e P1, P2 → P1, P3 → {P1, P2} and P4 → {P1, P2, P3},

f P1, P2 → P1, P3 → P2 and P4 → {P2, P3}

We can compute a presentation of the Chow ring of the skies of these 6 proximity con-

figurations using both the total transforms of the exceptional components and the strict

ones as generators. Firstly, we give the presentations in terms of the strict transforms:

a A•(Z4) ∼= Z [h∗, e1, e2, e3, e4] /A1 where

(a) A1 = ({h∗ · ei}4i=1 , (e1 + e2) · (e2 + e3), e1 · e3, (e2 + e3) · (e3 + e4), e1 · e4, e2 ·

e4, (e3 + e4) · e4, (e1)n, (e2)n, (e3)n, (−1)(e4)
n + (h∗)n) if n is odd,
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(b) A1 = ({h∗ · ei}4i=1 , (e1 + e2) · (e2 + e3), e1 · e3, (e2 + e3) · (e3 + e4), e1 · e4, e2 ·

e4, (e3 + e4) · e4, (e1)n+2(h∗)n, (e2)
n+2(h)n, (e3)

n+2(h∗)n, (e4)
n+ (h∗)n) if

n is even,

b A•(Z4) ∼= Z [h∗, e1, e2, e3, e4] /A2 where

(a) A2 = ({h∗ · ei}4i=1 , (e1 + e2) · (e2 + e3), (e1 + e3) · (e3 + e4), (e2 + e3) · (e3 +

e4), e1 · e4, e2 · e4, (e3 + e4) · e4, (e1)n + (h∗)n, (e2)
n, (e3)

n, (−1)(e4)
n

+(h∗)n) if n is odd,

(b) A2 = ({h∗ · ei}4i=1 , (e1+e2)·(e2+e3), (e1+e3)·(e3+e4), (e2+e3)·(e3+e4), e1 ·

e4, e2·e4, (e3+e4)·e4, (e1)n+3(h∗)n, (e2)
n+2(h∗)n, (e3)

n+2(h∗)n, (e4)
n+(h∗)n)

if n is even,

c A•(Z4) ∼= Z [h∗, e1, e2, e3, e4] /A3 where

(a) A3 = ({h∗ · ei}4i=1 , (e1+e2) · (e2+e3+2e4), (e1+e3) · (e3+e4), (e2+e3) · (e3+

e4), e1·e4, (e2+e4)·e4, (e3+e4)·e4, (e1)n+(h∗)n, (e2)
n+(h∗)n, (e3)

n, (−1)(e4)
n+

(h∗)n) if n is odd,

(b) A3 = ({h∗ · ei}4i=1 , (e1+e2) · (e2+e3+2e4), (e1+e3) · (e3+e4), (e2+e3) · (e3+

e4), e1 · e4, (e2 + e4) · e4, (e3 + e4) · e4, (e1)n + 3(h∗)n, (e2)
n + 3(h∗)n, (e3)

n +

2(h∗)n, (e4)
n + (h∗)n) if n is even,

d A•(Z4) ∼= Z [h∗, e1, e2, e3, e4] /A4 where

(a) A4 = ({h∗ · ei}4i=1 , (e1+ e2) · (e2+ e3+ e4), (e1+ e3) · (e3+ e4), (e2+ e3) · (e3+

e4), (e1 + e4) · e4, e2 · e4, (e3 + e4) · e4, (e1)n + 2(h∗)n, (e2)
n, (e3)

n,

(−1)(e4)
n + (h∗)n) if n is odd,

(b) A4 = ({h∗ · ei}4i=1 , (e1+ e2) · (e2+ e3+ e4), (e1+ e3) · (e3+ e4), (e2+ e3) · (e3+

e4), (e1 + e4) · e4, e2 · e4, (e3 + e4) · e4, (e1)n + 4(h∗)n, (e2)
n + 2(h∗)n, (e3)

n +

2(h∗)n, (e4)
n + (h∗)n) if n is even,

e A•(Z4) ∼= Z [h∗, e1, e2, e3, e4] /A5 where

(a) A5 = ({h∗ · ei}4i=1 , (e1 + e2) · (e2 + e3 + 2e4), (e1 + e3) · (e3 + e4), (e2 + e3) ·

(e3 + e4), (e1 + e4) · e4, (e2 + e4) · e4, (e3 + e4) · e4, (e1)n + 2(h∗)n, (e2)
n +

(h∗)n, (e3)
n, (−1)(e4)

n + (h∗)n) if n is odd,
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(b) A5 = ({h∗ · ei}4i=1 , (e1+e2) · (e2+e3+2e4), (e1+e3) · (e3+e4), (e2+e3) · (e3+

e4), (e1+e4)·e4, (e2+e4)·e4, (e3+e4)·e4, (e1)n+4(h∗)n, (e2)
n+3(h∗)n, (e3)

n+

2(h∗)n, (e4)
n + (h∗)n) if n is even,

f A•(Z4) ∼= Z [h∗, e1, e2, e3, e4] /A6 where

(a) A6 = ({h∗ · ei}4i=1 , (e1 + e2) · (e2 + e3 + 2e4), e1 · e3, (e2 + e3) · (e3 + e4), e1 ·

e4, (e2 + e4) · e4, (e3 + e4) · e4, (e1)n, (e2)n + (h∗)n, (e3)
n, (−1)(e4)

n

+(h∗)n) if n is odd,

(b) A6 = ({h∗ · ei}4i=1 , (e1+e2)·(e2+e3+2e4), e1 ·e3, (e2+e3)·(e3+e4), e1 ·e4, (e2+

e4)·e4, (e3+e4)·e4, (e1)n+2(h∗)n, (e2)
n+3(h∗)n, (e3)

n+2(h∗)n, (e4)
n+(h∗)n)

if n is even.

However, the presentations of the Chow ring of the skies of these 6 different proximity

configurations coincide when considering the total transforms as generators:

A•(Z4) ∼= Z [h∗, e∗1, e
∗
2, e

∗
3, e

∗
4] /A, (3.11)

where A = ({h∗ · e∗i }
4
i=1 ,

{
e∗i · e∗j

}4
i,j=1
i ̸=j

, {(−1)n(e∗i )
n + (h∗)n}4i=1).

Now, if we restrict ourselves to the study of sequences of point blow-ups with a fixed

proximity configuration, the following example exhibits that even although the skies of

two sequences may not be isomorphic, there will exist an isomorphism between their

Chow rings.

Example 3.5.8. Let us consider all sequences of point blow-ups of length 5 with Z0
∼= P2

and the following proximity configuration: P1, P2 → P1, P3 → P1, P4 → P1 and P5 →

P1. Then a presentation of the Chow ring of any of the skies of these sequences using

the strict transforms of the exceptional components as generators is

A•(Z5) ∼= Z [h∗, e1, e2, e3, e4, e5] /B, (3.12)

where

B = ({h∗ · ei}5i=1 , {(e1 + ej) · ej}5j=2 , {ej · ek}
5
j,k=2
j ̸=k

, (e1)
2 + 5(h∗)2,{

(ej)
2 + (h∗)2

}5

j=2
).
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Nonetheless, since E1
1
∼= P1, it is clear that if we choose two sequences of point blow-ups

as above such that the centers {P2, P3, P4, P5} and
{
P

′

2, P
′

3, P
′

4, P
′

5

}
have different cross

ratios, then the skies of the associated sequences will not be isomorphic but their Chow

rings will do.

In Example 3.5.7 we can foresee that the proximity relations of a sequence of point

blow-ups are encoded in some way in the presentation of the Chow ring of the sky when

using the strict transforms of the exceptional components as generators. Now we can use

Theorem 3.5.6 ir order to refine the numerical characterization of Proposition 3.2.4.

Corollary 3.5.9. Ei is final if and only if its class in A1(Zs), that is esi , satisfies the

following two conditions {
(esi )

n = (−1)r(esi )
n−r(esj)

r (3.13)

(esj)
n−1esi = (hs∗)n (3.14)

for every j such that esi · esj ̸= 0.

Proof. If Ei is final then ∄k such that Pk is proximate to Pi. By Equation (3.9) (eij +

eii) · eii = 0 if Pi is proximate to Pj and eii · eij = 0 otherwise. Since Ei is final then it

follows that

{
(esj + esi ) · esi = 0 if Pi → Pj (3.15)

esi · esj = 0 otherwise (3.16)

From Equation (3.15) we can deduce that (esi )n = (−1)r(esi )
n−r(esj)

r. Moreover (hs∗)n =

(−1)n+1(es∗i )n, so (hs∗)n = (−1)2nesi (e
s
j)
n−1 = esi (e

s
j)
n−1.

Now we will prove that if Ei is not final, then some of the above conditions fails. Among

all the index {β} satisfying Pβ → Pi there must exist an index j such that Pj → Pi but

that there not exists k with Pk → Pi and Pk → Pj . Since Ej
j is final for the sequence

(Z0, ..., Zj , πj,0), then (ejj) · (e
j
i )
n−1 = (hj∗)n and (eji )

n−1−β(ejj)
1+β = (−1)β(eji )

n−1ejj .

Moreover, since ∄Pk with Pk proximate to both Pi and Pj , then we can conclude that

(esj) · (esi )n−1 = (hs∗)n and (esi )
n−1−β(esj)

1+β = (−1)β(esi )
n−1esj . If n is even, although

(esj)
n−1esi = (hs∗)n since n−2 is even too, (esi )n ̸= (−1)n−1(esi )(e

s
j)
n−1 since by Theorem
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3.5.6 (esi )
n = −(1 + # {β})(hs∗)n with # {β} ≥ 1 so condition (3.13) fails.

If n is odd, (esj)n−1esi = −(hj∗)n, since n− 2 is odd too, so condition 3.14 fails.
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Chapter 4

Sequences of point blow-ups over

a perfect field.

In this chapter we extend the results of the previous one in order to consider sequences

of point blow-ups over perfect fields. This more general setting, lead us to define in the

first section algebraically and combinatorially compatible partitions of the exceptional

divisor. The following sections run in parallel with the ones of chapter 3, that is, the

second section deals with the definition of algebraic and combinatorial equivalences of

sequences of point blow-ups and sequential morphisms, the third section is devoted to

the numerical characterization of final divisors and the next two sections we recover the

sequences of point blow-ups from the associated sequential morphism modulo algebraic

equivalence, and prove some relations between algebraic and combinatorial equivalence

classes of sequences of point blow-ups and sequential morphisms.
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4.1 Algebraically and combinatorially compatible par-

titions of the exceptional divisor

Fix a perfect field k and chose an algebraic closure k . Throughout this chapter, a

variety will mean a reduced projective scheme over a perfect field K , with K an algebraic

extension of k , so it is also perfect, such that K ⊂ k , and a point will mean a closed

point.

In contrast to the case of sequences of point blow-ups over an algebraically closed field,

now we consider sequences of point blow-ups where the centers Ci+1 (see Definition 2.1.1)

could be reducible, that is Ci+1 = ⊔Ci+1,j with Ci+1,j irreducible over K . This difference

leads us to define the concept of the length of a sequence of point blow-ups.

Definition 4.1.1. The length m over K of a sequence of blow-ups is defined as
∑s
i=1 #Ci,

where #Ci denotes the number of irreducible components of Ci over K . Notice that it

coincides with the number of irreducible components of the exceptional divisor E (over K

too). Therefore, the length depends on the sequential morphism π : Zs → Z0 and it can

be also called the length of π over K , and it will be denoted by m = lenghtK (π). Notice

that s ≤ m, and s = m exactly when all the blow up centers are irreducible over K .

Remark 4.1.2. Note that in the case of sequences of point blow-ups if K = k , with k

the algebraic closure of k , then m = lenghtK (π) =
∑s
i=1 [K (Ci) : K ].

Remark 4.1.3. Moreover we will denote by Hβ the irreducible components over K

of the exceptional divisor E of π, that is we have E =
⋃
β Hβ.

In order to consider different fields K , with k ⊂ K ⊂ k , we define the notion of compatible

partition of the exceptional divisor E.

Combinatorial compatibility with a sequential morphism 4.1.4 will mean compatibility

of the d−ary multilinear intersection form. Compatibility with a sequence of point blow-

ups 4.1.5 will mean compatibility of proximity relations and degrees of the residue field

extensions.

Also we will define the notion of algebraic compatibility, stronger than combinatorial,

where the partition comes, by fiber product, from a sequential morphism 4.1.7 (resp. a

sequence of blow-ups 4.1.8) defined over a smaller field K̃ , with k ⊂ K̃ ⊂ K .
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Definition 4.1.4. Given a sequential morphism π : Zs → Z0 as in Definition 2.1.2 and

a partition E = ⊔li=1Fi, we will say that the partition is combinatorially compatible

with π if for each i = 1, .., l, and Hj1 , Hj2 ∈ Fi there exists σ ∈ Sm such that

a σ(j1) = j2,

b IZs,E(Hi1 , Hi2 , ...,Hin) = IZs,E(Hσ(i1), Hσ(i2), ...,Hσ(id)) ∀i1, .., in

Let (Zs, ..., Z0, π) be a sequence of blow ups of length m, and H1, ...,Hm the irreducible

components of the exceptional divisor over K of the associated sequential morphism. For

each i, with i = 1, 2, ..,m, let r(i) be the integer such that the image of Hi at Zr(i) is

a component of the center (codimension at least 2) whose blow-up creates Hi. If j is

different from i, and the image of Hj at Zr(i) has codimension 1 and contains the image

of Hi at Zr(i), then Hi is said to be proximate to j and we denote it by Hi → Hj . It is

clear that one has r(i) > r(j) when Hi is proximate to Hj .

For sequences of point blow-ups we denote deg(Hi) = [K(Pi) : K], where Pi is the point

in the center of πr(i) such that the image of Hi in Zr(i) is Pi.

Definition 4.1.5. Given a sequence of point blow-ups (Z0, ..., Zs, π) and a partition of

the exceptional divisor E = ⊔li=1Fi, we will say that the partition is combinatorially

compatible with the sequence (Z0, ..., Zs, π) if for each i = 1, .., l and Hj1 , Hj2 ∈ Fi there

exists σ ∈ Sm such that

a σ(j1) = j2,

b deg(Hj1) = [K(Pj1) : K] =
[
K(Pσ(j1)) : K

]
= deg(Hσ(j1)),

c if Hj1 ∈ Fi1 , Hjk ∈ Fik and Hjk → Hj1 , then Hσ(jk) → Hσ(j1)

Remark 4.1.6. Note that it makes sense to define Fi → Fj if ∃Hi ∈ Fi, Hj ∈ Fj with

Hi → Hj.

Definition 4.1.7. Given a sequential morphism π : Zs → Z0 as in Definition 2.1.2

and a partition of the exceptional divisor E = ⊔li=1Fi, we will say that the partition is

algebraically compatible with the morphism π if there exists a smaller field K̃ ⊂ K
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with k ⊂ K̃, there are K̃−varieties Z̃0 and Z̃ and a K̃−morphism Z̃
π̃−→ Z̃0

Z ∼= Z̃ ×Spec(K̃) Spec(K)
π //

β

��

Z0
∼= Z̃0 ×Spec(K̃) Spec(K)

��
Z̃

π̃ // Z̃0

such that the exceptional divisor of π̃, Ẽ, has irreducible components H̃1, ..., H̃l and for

each i = 1, ..., l then ∀H ∈ Fi β(H) = H̃i

Definition 4.1.8. Given a sequence of point blow-ups (Z0, ..., Zs, π) and a partition of

the exceptional divisor E = ⊔li=1Fi, we sill say that the partition is algebraically

compatible with the sequence (Z0, ..., Zs, π) if there exist a smaller field K̃ ⊂ K with

k ⊂ K̃ and there are K̃−varieties Z̃i and K̃−morphisms Z̃i+1
π̃i+1−−−→ Z̃i

Zs
πs //

β
��

Zs−1

πs−1 //

��

· // Z1
π1 //

��

Z0

��
Z̃s

π̃s // Z̃s−1

π̃s−1 // · // Z̃1
π̃1 // Z̃0

where Zi ∼= Z̃i ×Spec(K̃) Spec(K) ∀i = 1, ..., s ,such that the exceptional divisor of

(Z̃0, ..., Z̃l, π̃) has irreducible components H̃1, ..., H̃l and for each i = 1, ..., l then ∀H ∈ Fi

β(H) = H̃i.

Remark 4.1.9. Note that since k is perfect then K̃ ⊂ K is a separable algebraic exten-

sion, so K̃ and K are both perfect fields.

A combinatorially (resp. algebraically) marked sequential morphism is denoted

(π : Zs → Z0,⊔li=1Fi)comb (resp. (π : Zs → Z0,⊔li=1Fi)alg) where ⊔li=1Fi is a partition

combinatorially (resp. algebraically) compatible with π. The same notation holds for

sequences.

Note also that if a partition is algebraically compatible with a sequential morphism

(resp. a sequence) then the partition is combinatorially compatible with the sequential

morphism (resp. the sequence).
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4.2 Algebraic and combinatorial equivalence of sequences

of point blow-ups and the associated sequential

morphisms

Now we define our notions of equivalence (algebraic and combinatorial) for marked se-

quential morphisms (Definitions 4.1.7 and 4.1.4).

Definition 4.2.1. We say that two algebraically marked sequential morphisms (π :

Z → Z0,⊔li=1Fi)alg and (π
′
: Z

′ → Z
′

0,⊔l
′

i=1F
′

i )alg over K are algebraically equivalent,

and we denote it by (π : Z → Z0,⊔li=1Fi)alg
alg∼K (π

′
: Z

′ → Z
′

0,⊔l
′

i=1F
′

i )alg , if there

exist smaller fields K̃, K̃ ′ ⊂ K with K̃ ∼=k K̃ ′ satisfying the conditions of Definition 4.1.7

Zs ∼= Z̃s ×Spec(K̃) Spec(K)
π //

β

��

Z0
∼= Z̃0 ×Spec(K̃) Spec(K)

��
Z̃s

π̃ // Z̃0

Z
′

s
∼= Z̃ ′

s ×
Spec(K̃′ )

Spec(K)
π
′
//

β
′

��

Z
′

0
∼= Z̃

′
0 ×Spec(K̃′ )

Spec(K)

��

Z̃ ′
s

π̃′
// Z̃

′
0

and there exist isomorphisms a and b such that the following diagram is commutative

Z̃
b //

π̃
��

Z̃ ′oo

π̃′

��

Z̃0
a // Z̃

′
0

oo

Definition 4.2.2. Given a combinatorially marked sequential morphism (π : Zs →

Z0,⊔li=1Fi)comb, we can also consider the n-ary multilinear intersection form associated

to the partition

IZ,⊔l
i=1Fi

:

n︷ ︸︸ ︷
F× F× · · · × F → Z,

where F is the free abelian group generated by {Fi} and by an abuse of notation Fi =∑
H∈Fi

H. The intersection form is defined by intersecting cycles in the sky Zs and

taking degrees, that is

IZ,⊔l
i=1Fi

(Fi1 , Fi2 , ..., Fin) = deg((
∑
H∈Fi1

h) · (
∑
H∈Fi2

h) · (
∑
H∈Fi3

h) · · · (
∑

H∈Fin

h),
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where (
∑
H∈Fi1

h) · (
∑
H∈Fi2

h) · (
∑
H∈Fi3

h) · · · (
∑
H∈Fin

h) is a intersection class of

0−cycles in the abelian group A0(Zs), and deg stands for the degree.

Definition 4.2.3. Given two combinatorially marked sequential morphisms (π :

Zs → Z0,⊔li=1Fi)comb and (π
′
: Z

′

s → Z
′

0,⊔li=1F
′

i )comb we say that the associated mul-

tilinear forms ΦZ,⊔l
i=1Fi

and ΦZ′ ,⊔l
i=1F

′
i

are equivalent, and we denote it by ΦZ,⊔l
i=1Fi

∼

ΦZ′ ,⊔l
i=1F

′
i
, if there exists τ ∈ Sl such that

τ(ΦZ,⊔l
i=1Fi

) = ΦZ′ ,⊔l
i=1F

′
i
.

Moreover, the combinatorially marked sequential morphisms (π : Zs → Z0,⊔li=1Fi)comb

and (π
′
: Z

′

s → Z
′

0,⊔li=1F
′

i )comb are said to be combinatorially equivalent, and we

denote it by (π : Zs → Z0,⊔li=1Fi)comb
comb∼ (π

′
: Z

′

s → Z
′

0,⊔li=1F
′

i )comb, when their

associated multilinear maps ΦZ,⊔l
i=1Fi

and ΦZ′ ,⊔l
i=1F

′
i

are equivalent.

Definition 4.2.4. Given a variety X we will call a brick blow-up with ground X to a

sequential morphism obtained as a composition of point blow-ups with disjoint centers

⊔lj=1Cj ⊂ X, X
′
= Xl → Xl−1 → ... → X1 → X. Note that Zi → Zi−1 is the brick

blow-up at Ci, where Ci need not to be irreducible.

Definition 4.2.5. We say that two algebraically marked sequences of point blow ups,

(Zs, ..., Z0, π,⊔li=1Fi)alg , and (Zs′ , ..., Z
′

0, π
′
,⊔l

′

i=1F
′

i )alg, are algebraically equivalent

over K, and we denote it by (Zs, ..., Z0, π,⊔li=1Fi)alg
alg∼K (Zs′ , ..., Z

′

0, π
′
,⊔l

′

i=1F
′

i )alg, if

l = l
′
and there exist smaller fields K̃, K̃ ′ ⊂ K with K̃ ∼=k K̃ ′

Zs
πs //

β
��

Zs−1

πs−1 //

��

· π2 //

��

Z1
π1 //

��

Z0

��
Z̃s

π̃s // Z̃s−1

π̃s−1 // · π̃2 // Z̃1
π̃1 // Z̃0

Z
′

s

π
′
s //

β
′

��

Z
′

s−1

π
′
s−1 //

��

·
π
′
2 //

��

Z
′

1

π
′
1 //

��

Z
′

0

��
Z̃

′

s

π̃
′
s // Z̃

′

s−1

π̃
′
s−1 // ·

π̃
′
2 // Z̃

′

1

π̃
′
1 // Z̃

′

0

with Zi ∼= Z̃i ×Spec(K̃) Spec(K) (resp. Z
′

i
∼= Z̃

′

i ×Spec(K̃′ ) Spec(K)) and algebraic iso-

morphisms a, b = bt, bt−1, ..., b1, with t ≤ s, such that there are indexes r1, ..., rt = s ∈

{1, ..., l} and r
′

1, ..., r
′

t = s
′ ∈

{
1, ..., s

′
}
, where Zri → Zri−1 → ... → Zri−1 (resp.
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Z
′

ri → Z
′

ri−1 → ... → Z
′

ri−1
), with ri > ri−1 (resp r

′

i > r
′

i−1), is a brick blow-up ∀i = 1...t

as in Definition 4.2.4 and the diagram

Z̃s //

b

��

Z̃rt−1
//

bt−1

��

Z̃rt−2
//

bt−2

��

· //

��

Z̃r1 //

��

Z̃0

a

��
Z̃

′

s′
// Z̃

′

r
′
t−1

// Z̃
′

r
′
t−2

// · // Z̃
′

r
′
1

// Z̃
′

0

is commutative.

Definition 4.2.6. We say that two combinatorially marked sequences of point

blow ups, (Zs, ..., Z0,⊔li=1Fi, π)comb and (Z
′

s, ..., Z
′

0,⊔li=1F
′

i , π
′
)comb as before with re-

spective partitions E = ⊔li=1Fi and E
′
= ⊔li=1F

′

i and irreducible components of the

exceptional divisor H1, ...,Hm; H
′

1, ...,H
′

m, with l = l
′
, are combinatorially equiva-

lent, and we denote it by (Zs, ..., Z0,⊔li=1Fi, π)comb
comb∼ K (Z

′

s, ..., Z
′

0,⊔li=1F
′

i , π
′
)comb, if

there exits a permutation τ in Sl such that for every two different indexes i, j one has

a Fi is proximate to Fj if and only if F
′

τ(i) is proximate to F
′

τ(j),

b deg(Fi) =
∑
H∈Fi

deg(H) =
∑
H′∈F ′

i
deg(H

′
) = deg(F

′

τ(i))

4.3 Final divisors: Numerical characterization

Proposition 4.3.1. Hi is final if and only if

(hi)
n = (−1)r(hi)

s · (hj)r and (hi) · (hj)n−1 > 0

for every j such that Hi ∩ Hj ̸= ∅ (see Lemma 3.2.3 for a numerical characterization)

and for all natural numbers r and s with r + s = n.

Proof. We have the following commutative diagram where we denote by Di,j to the
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scheme theoretic intersection Hi ∩Hj and all the morphism are regular embeddings

Hi

jHi,Zs

  
Di,j

iDi,j,Zs //

iDi,j,Hi

==

iDi,j,Hj !!

Zs

Hj

jHj,Zs

>>

First let us suppose that Hi is final .Then Hi
∼= Pn−1

K(Pi)
and by Proposition 1.1.16

NHi/Zs
= OHi

(−1), so it follows by Proposition 1.2.22 that

(hi)
n = (−1)n−1jHi,Zs∗(ς

n−1),

where ς = c1(OHi(1)).

It follows by Proposition 1.2.20 that

hi · hj · hj = iDi,j ,Zs∗(c1(NHj/Zs
|Di,j

)

hi · hj · hi = iDi,j ,Zs∗(c1(NHi/Zs
|Di,j )

By Proposition 1.1.19 the normal bundle of Hj satisfies

NHj/Zs
= π∗

n,j |Hj
j
(NHjj/Zj

)⊗
⊗
α→j

π∗
n,α|Hα

j
(O(−Hα

j ∩Hα
α )),

so since Hi is final

NHj/Zs
|Di,j

∼= L⊗O(−Di,j)|Di,j
,

∼= L⊗N∨
Di,j/Hj

,

where L denotes a trivial line bundle. As E is a simple normal crossing divisor, then by

Lemma 2.2.1 NDi,j/Hj
∼= NHi/Zs

|Di,j
, so it follows that

hi · hj · hj = iDi,j ,Zs∗(−c1(NEi/Zs
|Di,j ))

By induction on r and s respectively it follows

hi · (hj)r = (−1)r−1iDi,j ,Zs∗((c1(NEi/Zs
|Di,j

))r−1)

(hi)
s · hj = iDi,j ,Zs∗((c1(NEi/Zs

|Di,j ))
s−1)
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So we can conclude that

(hi)
s · (hj)r = (−1)r−1iDi,j ,Zs∗((c1(NHi/Zs

|Di,j ))
r+s−2),

Moreover, as a consequence of Proposition 1.2.15

iDi,j ,Zs∗((c1(NEi/Zs
|Di,j

))r+s−2) = jHi,Zs∗iDi,j ,Hi∗((c1(NHi/Zs
|Di,j

))r+s−2)

= jHi,Zs∗(c1(NHi/Zs
)r+s−3 · di,j),

so since di,j = ς

(hi)
s · (hj)r = (−1)2r+s−3deg(jHi,Z∗(ς

r+s−1)) = (−1)s−1jEi,Z∗(ς
r+s−1)

Then (hi)
n = (−1)r(hi)

s · (hj)r. Moreover (hi) · (hj)n−1 = jEi,Zs∗(ς
n−1) > 0.

Now let us suppose that Hi is not final. If Pα is proximate to Pi, then we have the

following commutative diagram

Hα
i ∩Hα

α

iHα
i

∩Hα
α,Hα

i //

��

Hα
i

πα|
H

α−1
i

��
Pα

i
Pα,H

α−1
i // Hα−1

i

Among all the index satisfying α → i there must exist an index j such that j → i but

that there not exists k with k → i and k → j. Let j be such index. Since Hi is not final

then by Proposition 1.1.19 its normal bundle satisfies

NHi/Zs
= π∗

n,i|Hi
i
(NEi

i/Zi
)⊗

⊗
α→i

π∗
n,α|Hα

i
(O(−Hα

i ∩Hα
α ))

Now, by the Projection formula 1.6

jHi,Zs∗(π
∗
n,i|Hi

i
(c1(NHi

i/Zi
)ni))

∏
α→i

(π∗
n,α|Hα

i
((−1)n−1(iHi∩Hα

α ,H
α
i ∗(H

α
i ∩Hα

α )
n−1))) = 0

with ni +
∑
α→i nα = n, so

(hi)
n = jHi,Zs∗(π

∗
n,i|Hi

i
(c1(NHi

i/Zi
)n−1)) +

∑
α→i

jHi,Zs∗(π
∗
n,α|Hα

i
((−1)n−1((di,α)

n−1)))

Furthermore, by an analogous reasoning to the case when Hi is final we have

hi · hj · hj = iDi,j ,Zs∗(c1(NHj/Zs
|Di,j

))

hi · hj · hi = iDi,j ,Zs∗(c1(NHi/Zs
|Di,j ))
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Now NHi/Zs
|Di,j

∼= L⊗N∨
Di,j/Ei

and by Lemma 2.2.1 NEj/Zs
|Di,j

∼= NDi,j/Ei
.

By induction on r and s respectively it follows

hi · (hj)r = iDi,j ,Zs∗((c1(NDi,j/Hi
)r−1)

(hi)
s · hj = (−1)s−1iDi,j ,Zs∗((c1(NDi,j/Hi

)s−1)

so it follows that

(hi)
s · (hj)r = (−1)s−1iDi,j ,Zs∗((c1(NDi,j/Hi

)r+s−2)

Moreover, by Proposition 1.2.15

iDi,j ,Zs∗((c1(NDi,j/Hi
))r+s−2) = jEi,Zs∗iDi,j ,Hi∗((c1(NDi,j/Hi

)r+s−2))

= jEi,Zs∗((di,j)
r+s−1)

If n is even then

(−1)r(hi)
s · (hj)r = (−1)r+s−1jHi,Zs∗((di,j)

r+s−1) ̸= (hi)
n

since

jHi,Zs∗(π
∗
n,i|Hi

i
(c1(NHi

i/Zi
)n−1))) +

∑
α→i
α̸=j

jHi,Zs∗(π
∗
n,α|Hα

i
((−1)n−1((di,α)

n−1))) < 0

If n is odd then

(hi) · (hj)n−1 = jHi,Zs∗((di,j)
r+s−1),

so (hi) · (hj)n−1 < 0 and Hi.

Proposition 4.3.2. Given an algebraically marked sequence (Zs, ..., Z0,⊔li=1Fi, π)alg

with H,H
′ ∈ Fi, then H is final if and only if H

′
is final too.

Proof. If H,H
′ ∈ Fi then there exist a sequence (Z̃s, ..., Z̃0, Ẽ, π̃) over K̃ such that

β(H) = β(H
′
), where β : Zs = Z̃s ×Spec(K̃) Spec(K) → Z̃s, so it follows that if H

satisfies the numerical condition of proposition 4.3.1, H
′
will satisfy it too.

Proposition 4.3.3. Given an algebraically marked sequence (Zs, ..., Z0,⊔li=1Fi, π)alg

then Fi is final if and only if

(Fi)
n = (−1)r(Fi)

s · (Fj)r and (Fi) · (Fj)n−1 > 0

for every j such that Fi ∩ Fj ̸= ∅ and for all natural numbers r and s with r + s = d.
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Proof. This is a consequence of proposition 4.3.1, since if H,H
′ ∈ Fi and H ̸= H

′
then

H ∩H
′
= ∅.

Corollary 4.3.4. Let (π : Zs → Z0,⊔li=1Fi)alg and (π
′
: Z

′

s → Z
′

0,⊔l
′

i=1F
′

i )alg alge-

braically marked sequential morphisms that are algebraically equivalent. If we denote by

b
′
to be the isomorphism b

′
: Zs = Z̃s ×Spec(K̃) Spec(K) → Z

′

s = Z̃
′

s ×Spec(K̃′ ) Spec(K),

that is the extension of that in Definition 4.2.1, then Fi is final if and only if b
′
(Fi) is

final.

4.4 Recovering of the sequence

Proposition 4.4.1. Let (Zs, ..., Z0, π) be a sequence of point blow-ups (as in Definition

2.1.1) of length m and let Hi ∈ Ei be an irreducible component of the exceptional divisor

of π. If Hi is final, then there exists a regular projective contraction (Z, fm, Xm−1) of

Hi to a point such that fm(E) is a simple normal crossing divisor and Xm−1 is the sky

of a sequence of point blow-ups with ground Z0.

Proof. The proof is analogous to that of Proposition 3.3.2 with the exception that the

alternative proof is no longer valid it makes use of the algebraic closure of the field.

Theorem 4.4.2. Let (π : Zs → Z0,⊔li=1Fi)alg be an algebraically marked sequential

morphism. Given the n−ary multilinear intersection form associated to the partition

IZ,⊔l
i=1Fi

(see Definition 4.2.2) we can recover all the algebraically marked sequences of

point blow-ups that are associated to algebraically marked sequential morphisms in the

same algebraic equivalence class of (π : Zs → Z0,⊔li=1Fi)alg.

Proof. Since ⊔li=1Fi is a partition algebraically compatible with π then ∃K̃ ⊂ K as in

Definition 4.1.7. If H ∈ Fi is final then H̃ = β(H) is final for π̃ : Z̃s → Z̃0. We will prove

this result first by contracting one irreducible component of the exceptional divisor Ẽ

each time.

Since the set formed by final divisors is not empty, let us suppose that H̃i is final, then

by proposition 4.4.1 there exists a regular projective contraction (Z̃s, f̃l, X̃l−1) of H̃i to

a point such that X̃l−1 is the sky of a sequence of point blow-ups with ground Z̃0 .
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Z̃s

π̃s

��

f̃l

''
· X̃l−1

ψ̃l−1





·

��
Z̃i

π̃i

��
Z̃i−1

��
·

·

��
Z̃1

π̃1

��
Z̃0

The next step in our proof refers to how to obtain the intersection form in X̃l−1 associated

to the simple normal crossing divisor D̃X̃l−1
.

If we denote by H̃X̃l−1,i
to f̃l(H̃i), then by the Projection formula 1.6

h̃X̃l−1,i1
· h̃X̃l−1,i2

· · · h̃X̃l−1,in
= f̃∗

l (h̃X̃l−1,i1
) · f̃∗

l (h̃X̃l−1,i2
) · · · f̃∗

l (h̃X̃l−1,in
),

Applying the result of Theorem 1.2.30 then

h̃X̃l−1,i1
· h̃X̃l−1,i2

· · · h̃X̃l−1,in
= (h̃i1 + δi1,ih̃i) · (h̃i2 + δi2,ih̃i) · · · (h̃in + δin,ih̃i), (4.1)

where δij ,i = 1 if H̃i ∩ H̃ij ̸= ∅ (see numerical characterization in lemma 3.2.3) and

δij ,i = 0 otherwise.

Remark 4.4.3. It follows then that by iterating the above process, that is by contracting

a final divisor at each step, we will obtain a sequence of point blow-ups of length l. The

algebraically marked sequence obtained depends on the choice of final components. Below
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we will prove that all the algebraically marked sequential morphisms associated to the

sequences constructed in this way are algebraically equivalent.

4.5 Relations between algebraic and combinatorial equiv-

alence classes of sequences of point blow-ups and

sequential morphisms

Proposition 4.5.1. Any of the algebraically marked sequences obtained as in 4.4.3, that

is as composition of regular projective contractions from a fixed sky Zs and a fixed simple

normal crossing divisor E, are associated to algebraically marked sequential morphisms

in the same algebraic equivalence class (see Definition 4.2.1).

Before proving this, we need the following lemma

Lemma 4.5.2. Given a fixed sky Zs and a fixed simple normal crossing divisor E, let

us suppose that Hi and Hj are both finals. Then there is an isomorphism Xm−2
∼= X

′

m−2

making the following diagram commutative

Z
f
′
m

!!

fm

}}
Xm−1

fm−1

��

X
′

m−1

f
′
m−1

��
Xm−2

∼= // X
′

m−2
oo

where fm is the contraction of Hi and fm−1 is the contraction of HXm−1,j, whereas f
′

m

is the contraction of Hj and f
′

m−1 is the contraction of HX
′
m−1,i

.

Proof. The proof is completely analogous to that of Lemma 3.4.2.

Consequently, we have the following corollary, which means that Proposition 4.5.1 holds

for length 2.
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Corollary 4.5.3. If Z is the sky of a sequence of point blow-ups of length 2, then

any of the two sequences of point blow-ups obtained following the procedure in 4.4.3 are

associated to algebraically marked sequential morphisms in the same algebraic equivalence

class .

In order to prove proposition 4.5.1 we need the following definition.

Definition 4.5.4. We say that two sequences of point blow-ups obtained as in Remark

4.4.3, that is through the composition of regular projective contractions from a fixed sky

Zs and a fixed simple normal crossing divisor E,

Zs
fm //

��

Xm−1

fm−1 //

��

Xm−2

fs−2 // . // . // . // X2
f2 // X1

f1 // X0

��
Zs

f
′
m //

OO

X
′

m−1

f
′
m−1 //

OO

X
′

m−2

f
′
s−2 // . // . // . // X

′

2

f
′
2 // X

′

1

f
′
1 // X

′

0

OO

have the same end if at least the first contraction is common to both. i.e. one has

fm = f
′

m.

Proof of Proposition 4.5.1. The proof is completely analogous to that of Proposition

3.4.1.

We can apply proposition 4.5.1 to the sequential morphism Z̃s → Z̃0 and by scalar exten-

sion ×Spec(K̃)Spec(K) the algebraically marked sequences of point blow-ups constructed

as above

Zs //

��

Xl−1
//

��

· // X1
//

��

X0

��
Z̃s // X̃l−1

// · // X̃1
// X̃0

where Xi
∼= X̃i ×Spec(K̃) Spec(K), so Theorem 4.4.2 is proved.

Theorem 4.5.5. Two combinatorially marked sequences of point blow-ups (Zs, ..., Z0,⊔li=1Fi, π)comb

and (Z
′

s, ..., Z
′

0,⊔l
′

i=1F
′

i , π
′
)comb, with l = l

′
, are combinatorially equivalent over K as in

Definition 4.2.6 if and only if their associated combinatorially marked sequential mor-

phisms (π : Zs → Z0,⊔li=1Fi)comb and (π
′
: Z

′

s → Z
′

0,⊔l
′

i=1F
′

i )comb are combinatorially
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equivalent over K as in Definition 4.2.3, and both statements are true if and only if the

associated multilinear maps ΦZ,⊔l
i=1Fi

and Φ
Z′ ,⊔l

′
i=1F

′
i

are equivalent too as in Definition

4.2.3

First we will prove that if two combinatorially marked sequential morphisms (π : Zs →

Z0,⊔li=1Fi)comb and (π
′
: Z

′

s → Z
′

0,⊔l
′

i=1F
′

i )comb are combinatorially equivalent then

the associated combinatorially marked sequences of points blow-ups are combinatorially

equivalent too. To begin with, we need a numerical characterization of proximity.

Lemma 4.5.6. Let (Zs, ..., Z0,⊔li=1Fi, π)comb be a combinatorially marked sequence.

Then Pi → Pj if and only if

a ∃α ∈ {2, 3, ...,m− 1,m} such that HXα,i ∩HXα,j ̸= ∅ (see numerical characteriza-

tion of Lemma 3.2.3).

b (hXα,i)
n = (−1)r(hXα,i)

s · (hXα,k)
r and (hXα,i) · (hXα,k)

n−1 > 0 ∀k,HXα,i ∩

HXα,k ̸= ∅.

where Zs = Xm → Xm−1 → · · · → Xα → · · · → X0 = Z0 is any sequence of contractions

obtained as in remark 4.4.3.

Proof. The proof is completely analogous to that of Lemma 3.4.6.

Remark 4.5.7. The result of the previous lemma also holds for characterizing numeri-

cally the proximity between elements of the combinatorially compatible partition Fi → Fj.

Proof of Theorem 4.5.5. Assume that the combinatorially marked sequential morphisms

(π : Zs → Z0,⊔li=1Fi)comb and (π
′
: Z

′

s → Z
′

0,⊔l
′

i=1F
′

i )comb are combinatorially equiva-

lent. If Fi is final, then there exists τ ∈ Sl such that

a F
′

τ(i) is final,

b Fi ∩ Fβ ̸= ∅ if and only if F
′

τ(i) ∩ F
′

τ(β) ̸= ∅,

c Fβ1
· Fβ2

· · · Fβn
= F

′

τ(β1)
· F ′

τ(β2)
· · · F ′

τ(βn)
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Furthermore, by Theorem 1.2.30

hXm−1,β1
· hXm−1,β2

· · · hXm−1,βn
= (hβ1

+ δβ1,ihi) · (hβ2
+ δβ2,ihi) · · · (hβd

+ δβd,ihi),

so it follows then that there exists τ̃ ∈ Sl−1 such that

FXl−1,β1 · FXl−1,β2 · · · FXl−1,βn = F
′

X
′
l−1,τ̃(β1)

· F
′

X
′
l−1,τ̃(β2)

· · · F
′

X
′
l−1,τ̃(βn)

Consequently we have that ΦXl−1,⊔l−1
i=1FXl−1,i

∼ ΦX′
l−1,⊔

l−1
i=1FX

′
l−1

,i

. Furthermore, by iter-

ating the above process, then ΦXα,⊔α
i=1FXα,i

∼ ΦX′
α,⊔α

i=1FX
′
α,i

for α = 1, .., l − 2. So as a

consequence of Lemma 4.5.6 any two combinatorially marked sequential morphisms com-

binatorially equivalent preserve the proximity relations. Moreover, deg(Fi) = deg(F
′

τ(i))

so combinatorially equivalent sequential morphism also preserve degrees.

Conversely assume now that the two combinatorially marked sequences of point blow-

ups with l = l
′

are combinatorially equivalent. We want to prove that their asso-

ciated combinatorially marked sequential morphisms (π : Zs → Z0,⊔li=1Fi)comb and

(π
′
: Z

′

s → Z
′

0,⊔l
′

i=1F
′

i )comb are combinatorially equivalent. First, there exists σ ∈ Sm

such that by applying iteratively Theorem 1.2.30 we get

Hi = H∗
i −

∑
β→i

H∗
β

H
′

σ(i) = H
′∗
σ(i) −

∑
σ(β)→σ(i)

H
′∗
σ(β)

Moreover, as a consequence of the Projection formula 1.6

h∗
β1

· h∗
β2

· · · h∗
βn

̸= 0 if and only if β1 = β2 = ... = βn

and if Hi is final then Hi = H∗
i , so it follows that there exists τ ∈ Sl such that

deg(F ∗
i ) = deg(F

′∗
τ(i)) ∀i = 1, .., l

Finally, and as a consequence of Theorem 1.2.30

hβ1 · hβ2 · · · hβn = (h∗
β1

−
∑
δ→β1

h∗
δ) · (h∗

β2
−

∑
δ→β2

h∗
δ) · · · (h∗

βn
−

∑
δ→βd

h∗
δ)

so we have

Fβ1
· Fβ2

· · · Fβn
= F

′

τ(β1)
· F

′

τ(β2)
· · · F

′

τ(βn)
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Theorem 4.5.8. Given two algebraically marked sequential morphisms (π : Zs →

Z0,⊔li=1Fi)alg and (π
′
: Z

′

s → Z
′

0,⊔l
′

i=1F
′

i )alg , then they are algebraically equivalent

over K as in Definition 4.2.1 if and only if there exist algebraically marked sequences

of point blow-ups (Zs, ..., Z0,⊔li=1Fi, π)alg and (Z
′

s, ..., Z
′

0,⊔l
′

i=1F
′

i , π
′
)alg associated to

(π : Zs → Z0,⊔li=1Fi)alg and (π
′
: Z

′

s → Z
′

0,⊔l
′

i=1F
′

i )alg respectively such that they

are algebraically equivalent over K as in Definition 4.2.5.

Proof. If two algebraically marked sequences of point blow-ups are algebraically equiva-

lent, then it follows directly by Definition 4.2.5 that the associated algebraically marked

sequential morphisms are algebraically equivalent too.

Now we will prove that if two algebraically marked sequential morphism (π : Zs →

Z0,⊔li=1Fi)alg and (π
′
: Z

′

s → Z
′

0,⊔l
′

i=1F
′

i )alg are algebraically equivalent, then there

exist algebraically marked sequences of point blow-ups associated to them that are al-

gebraically equivalent too. By Theorem 4.4.2 given a certain sky Zs associated to an

algebraically marked sequential morphism (π : Zs → Z0,⊔li=1Fi)alg , all the algebraically

marked sequences of point blow-ups obtained by regular projective contractions are as-

sociated to algebraically marked sequential morphisms in the same algebraic equivalence

class. Since (π : Zs → Z0,⊔li=1Fi)alg and (π
′
: Z

′

s → Z
′

0,⊔l
′

i=1F
′

i )alg are algebraically

equivalent, then ∃K̃ ⊂ K such that there exist an isomorphism b̃ : Z̃s → Z̃
′

s. By apply-

ing Proposition 4.4.1 and Proposition 4.5.1 we conclude the result by scalar extension

×Spec(K̃)Spec(K).
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Chapter 5

Hirzebruch surfaces. A basic

example.

In this chapter we recall some technical results about rational ruled surfaces. The first

section is devoted to the study of some general properties of vector bundles of rank 2

over curves. In the second section we review some definitions and results about ruled

surfaces, and in the third section we focus on the study of rational ruled surfaces, that is

Hirzebruch surfaces. Finally, in the last section we give a basic example of a Hirzebruch

surface arising as the exceptional divisor of the blow-up of P3 with center a rational

curve. The main references for this chapter are [32], [22] and [14].

5.1 Vector bundles of rank 2 over curves

Let C be an algebraic curve of genus g and let V be a vector bundle of rank 2 over C.

Lemma 5.1.1. [32, Lemma 1.1.] Degrees of subbundles of V are bounded above.

Definition 5.1.2. [32, Definition 1.1.] A subbundle L of V is called a maximal

subbundle[?] of V if and only if deg(L) is maximal. M(V ) denotes the maximal degree.
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We know that V has at least one subbundle (see [5]). Hence there always exists a

maximal subbundle by Lemma 5.1.1. The following lemma and Corollary 5.1.6 show

that a maximal subbundle of V is uniquely determined under some conditions.

Lemma 5.1.3. [32, Lemma 1.2.] If deg(V ) − 2M(V ) < 0, where deg(V ) =
∫
c1(V ),

then there is only one maximal subbundle of V .

Lemma 5.1.4. [32, Lemma 1.4.] If L1 and L2 are distinct subbundles of V such that

deg(V ) = deg(L1) + deg(L2), then we have that V ∼= L1 ⊕ L2.

Maximal subbundles of V cannot be isomorphic each other except for some special cases.

In fact, we have the following result fully characterized these cases.

Lemma 5.1.5. [32, Lemma 1.5.] If L1 and L2 are distinct maximal subbundles of V

and L1
∼= L2 then V = L1 ⊕ L1.

Corollary 5.1.6. [32, Corollary 1.6.]

a If deg(V ) − 2M(V ) = 0 and if V is indecomposable, then the maximal subbundle

of V is unique.

b If deg(V )− 2M(V ) = 0, V is decomposable and if V ≇ L⊕L for any subbundle L

of V , then there are only two maximal subbundles of V .

Remark 5.1.7. [32, Remark 1.7.] It is clear that it holds that if V = L ⊕ L, then V

has infinitely many maximal subbundles. But all maximal subbundles are isomorphic to

L in the case.

Lemma 5.1.8. [32, Lemma 1.8.] The integer deg(V ) − 2M(V ) is bounded above when

V ranges over all vector bundles of rank 2 over X. In fact, we have

deg(V )− 2M(V ) ≤

 2g − 1 if g ≥ 1

0 if g = 0

Now, if we denote by ϵC to the set of the isomorphism classes of vector bundles of rank

2 over C, we define the following equivalence relation in ϵC .

Definition 5.1.9. [32, Definition 1.2.] V1, V2 ∈ ϵC are called equivalent if and only if

there exists a line bundle L such that V1 = V2 ⊗ L. Then we denote this relation by

V1 ∼ V2.
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Remark 5.1.10. It is obvious that the relation ∼ is an equivalence relation. Let PC
the quotient set ϵC/ ∼. Then PC can be identified with the set of isomorphism classes of

P1−bundles over C (see Proposition 5.2.2). The class of V in PC is denoted by P (V )

and P (V ) is regarded as a P1−bundle too.

Definition 5.1.11. We define N(V ) = deg(V )− 2M(V ) and D(V ) =
{
det(V )⊗ L−2

}
,

where L ranges over all maximal subbundles of V , and if L−2
1

∼= L−2
2

∼= ... ∼= L−2
r for r

maximal subbundles L1, L2, ..., Lr, then det(V )⊗L−2
1 is counted r times. The degrees of

elements of D(V ) are N(V ).

We have that N(V ) and D(V ) verify the following statements.

Proposition 5.1.12. [32, Proposition 1.9.]

a N(V ) is an integer and is not greater than g.

b Both N(V ) and D(V ) depend only on P (V ) (see Remark 5.1.10).

c D(V ) contains only one element if one of the following conditions is satisfied:

(a) N(V ) < 0

(b) N(V ) = 0 and V is indecomposable.

d D(V ) contains only two elements and they are dual each other if N(V ) = 0, V is

decomposable and P (V ) ̸= P (I ⊕ I), where I denotes a trivial line bundle.

Definition 5.1.13. [32, Definition 1.3.] A vector bundle V of rank 2 is called of canon-

ical type if I is a maximal subbundle of V .

Remark 5.1.14. It is clear that the class P (V ) contains at least one vector bundle of

canonical type. Thus, if P (V ) has only one vector bundle of canonical type, the classi-

fication of PX is reduced to that of vector bundles of canonical type. In fact, under a

certain condition P (V ) determines uniquely a vector bundle of canonical type. But the

determination is not always true (see [5, Sect 5.]).

Lemma 5.1.15. [32, Lemma 1.10.]

a Under one of the conditions of Proposition 5.1.12, iii., the class P (V ) contains

only one vector bundle of canonical type.
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b If V = L1 ⊕ L2, N(V ) = 0, (hence deg(L1) = deg(L2)) and L1 ≇ L2, then the

vector bundles of canonical type in P (V ) are I ⊕ (L2 ⊗ L−1
1 ) and (L1 ⊗ L−1

2 )⊕ I.

Put ζ0C =
{
(D, ξ)| D = divisor class onX with deg(D) ≤ 0, ξ ∈ P (H1(X,L(−D))) ∪ {0}

}
,

where P (H1(X,L(−D))) is the projective space H1(X,L(−D))−{0} /k∗. Let ζC be the

quotient set of ζ0C by the relation such that (D, ξ) and (D
′
, ξ

′
) are equivalent if and only

if i. D = D
′

and ξ ∼= ξ
′
, or ii. D

′
= −D and ξ = ξ

′
= 0. Then we get the following

theorem.

Theorem 5.1.16. [32, Theorem 1 .11.] P−
X = {P (V )| P (V ) ∈ PC and N(P (V )) ≤ 0}

bijectively corresponds to ζC .

5.2 Ruled surfaces

In this section, the words “vector bundle” and “locally free sheaf of finite rank” are used

interchangeably (see Definition 1.1.2 for the correspondence).

Definition 5.2.1. [22, Definition 2.0] A geometrically ruled surface, or simply ruled

surface, is a surface X, together with a surjective morphism p : X → C to a (nonsingu-

lar) curve C, such that the fiber Xy is isomorphic to P1 for every point y ∈ C, and such

that p admits a section (i.e., a morphism σ : C → X such that p ◦ σ = idC).

Proposition 5.2.2. [22, Proposition 2.2.] If p : X → C is a ruled surface, then there

exists a locally free sheaf V of rank 2 on C such that X ∼= P (V) over C (see Definition

1.1.6 for the definition of P (V).) Conversely, every such P (V) is a ruled surface over

C. If V and V ′
are two locally free sheaves of rank 2 on C, then P (V) and P (V ′

) are

isomorphic as ruled surfaces over C if and only if there is an invertible sheaf L on C

such that V ′ ∼= V ⊗ L.

Note that if V ′ ∼= V ⊗ L and we denote by V
′

and V to the associated vector bundles,

respectively, then V
′ ∼ V for the equivalence relation of Definition 5.1.9.

Proposition 5.2.3. [22, Proposition 2.6.] Let V be a locally free sheaf of rank 2 on

the curve C, and let X be the ruled surface P (V). Let OX(1) be the invertible sheaf

OP (V)(1). Then there is a one-to-one correspondence between sections σ : C → X and
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surjections V → L → 0, where L is an invertible sheaf on C, given by L = σ∗OX(1).

Under this correspondence, if N = ker(V → L), then N is an invertible sheaf on C, and

N ∼= p∗(OX(1)⊗ L(−D)), where D = σ(C), and p∗(N ) ∼= OX(1)⊗ L(−D).

Then we have the corresponding result in terms of the associated vector bundle V .

Lemma 5.2.4. [32, Lemma 1.14.] To give a section of P (V ) is equivalent to give a

subbundle of V .

Now, we can give the geometric meaning of the invariant N(P (V )) defined in the previous

section (see Definition 5.1.11).

Lemma 5.2.5. [32, Lemma 1.15] N(P(V )) is the minimum of self-intersection numbers

of sections of P(V ).

Definition 5.2.6. [32, Definition 1.4.] A section s of P(V ) is called a minimal section

of P(V ) if s cot s = N(P(V )).

Theorem 5.2.7. [32, Theorem 1.16.] The set of minimal sections of P (V ) is bijective

with the set of maximal subbundles of V . Moreover, if S is a minimal section of P (V ),

then L(π(s · s)) is an element of D(P (V )) and the map: s → L(π(s · s)) of the set of

minimal sections of P (V ) into D(P (V )) is bijective.

Corollary 5.2.8. [32, Corollary 1.17.] If N(P (V )) < 0 or if N(P (V )) = 0 and V

is indecomposable, then P (V ) has only one minimal section. On the other hand, if

N(P (V )) = 0, V is decomposable and if P (V ) is not the trivial bundle, then P (V ) has

only two minimal sections.

For the self-intersection number of an arbitrary section, we have the following result.

Proposition 5.2.9. [32, Proposition 1.18.] Let s be a section of P(V ) which is not a

minimal section.

a If N(P(V )) < 0, then s · s ≥ −N(P(V )).

b If N(P(V )) > 0, then s · s ≥ 2 +N(P(V )).

Moreover, if N(P(V )) is even, then s · s is even and if N(P(V )) is odd, then s · s is odd.
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Remark 5.2.10. [32, Remark 1.19.] Let S and S
′
be distinct sections of P (V ) and let

L(S) and L(S
′
), be subbundles of V corresponding to S and S

′
respectively. Then we have

that p(s·s′
) ∈

∣∣∣(detV )⊗ L(S)−1 ⊗ L(S
′
)−1

∣∣∣ , where p is the projection morphism of P (V )

and |L| is the complete linear system of a divisor defined by L. Thus, p(s ·s)+p(s
′ ·s′

) =

2p(s · s′
), if one regards p(s · s), p(s′ · s′

) and p(s · s′
) as the divisor classes on X.

Proposition 5.2.11. [22, Proposition 2.8.] If p : X → C is a ruled surface, it is possible

to write X ∼= P(V) where V is a locally free sheaf on C with the property that H0(V) ̸= 0

but for all invertible sheaves L on C with deg(L) < 0, we have H0(V ⊗ L) = 0. In this

case the integer δ = −deg(V) is an invariant of X. Furthermore in this case there is a

section σ0 : C → X with image S0, such that L(S0) ∼= OX(1).

The translation of Proposition 5.2.11 in terms of the associated vector bundle V cor-

responds to Remark 5.1.14, that is, every class P (V ) contains at least one element of

canonical type.

We write X ∼= P (V), where V satisfies the conditions of Proposition 5.2.11, in which

case we say V is normalized. This does not necessarily determine V uniquely, but it does

determine deg(V). We let D be the divisor on C corresponding to the invertible sheaf∧
2V, so that δ = −deg(D). We fix a section S0 of X with L(S0) ∼= OP (V)(1). If B is

any divisor on C, then we denote the divisor p∗(B) on X by BF , by abuse of notation.

Thus any element of Pic(X) can be written aS0+BF with a ∈ Z and B ∈ Pic(C). Any

element of Num(X) can be written aS0 + bF with a, b ∈ Z.

Proposition 5.2.12. [22, Proposition 2.9.] If S is any section of X, corresponding to a

surjection V → L → 0 , and if L = L(B) for some divisor B on C, then deg(B) = s0 · s,

and

S = S0 + (B −D)F

In particular, we have (s0)
2 = deg(D) = −δ.

We can rewrite Proposition 5.2.12 in terms of the associated vector bundle V . Since any

section S is isomorphic to P (L), where L is a line subbundle of V , then by Proposition

1.2.27

s = ς + c1(
V

L
)f. (5.1)
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In particular, if V is of canonical type, then V = I ⊕ L2, with deg(L2) < 0. Moreover,

by Theorem 5.2.7, minimal sections correspond to maximal subbundles, so

s0 = ς + c1(
V

I
)f, (5.2)

= ς + c1(L2)f, (5.3)

and s0 · s0 = −c1(L2) + 2c1(L2) = c1(L2).

Theorem 5.2.13. [22, Theorem 2.12.] Let X be a ruled surface over the curve C of

genus g, determined by a normalized locally free sheaf V.

a If V is decomposable (i.e., a direct sum of two invertible sheaves) then V ∼= OC ⊕L

for some L with deg(L) ≤ 0. Therefore δ ≥ 0. All values of δ ≥ 0 are possible.

b If V is indecomposable, then −2g ≤ δ ≤ 2g − 2.

Lemma 5.2.14. [22, Lemma 2.10.] The canonical divisor K on X is given by

K = −2S0 + (K+D)F,

where K is the canonical divisor on C.

Corollary 5.2.15. [22, Corollary 2.11.] For numerical equivalence, we have

K ≡ −2S0 + (2g − 2− δ)F,

and therefore (k)2 = 8(1− g).

Proposition 5.2.16. [22, Proposition 2.20.] Let X be a ruled surface over a curve C,

with invariant δ ≥ 0.

a If Y = aS0 + bF is an irreducible curve, with Y ̸= S0, F , then a > 0, b ≥ aδ.

b A divisor D = aS0 + bF is ample if and only if a > 0, b > aδ.

Proposition 5.2.17. [22, Proposition 2.21.] Let X be a ruled surface over a curve C

of genus g, with invariant δ < 0, and assume furthermore either char k = 0 or g ≤ 1.

a If Y = aS0 + bF is an irreducible curve with Y ̸= S0, F , then either a = 1, b ≥ 0

or a ≥ 2, b ≥ 1
2aδ.

b A divisor D = aS0 + bF is ample if and only if a > 0, b > 1
2aδ.
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5.3 Rational ruled surfaces

In this section we study the particular case when C is an algebraic curve of genus 0.

Lemma 5.3.1. [22, Corollary 2.14.] Every locally free sheaf V of rank 2 on P1 is

decomposable.

So in particular, there exists just one element of canonical type in P (V ).

Corollary 5.3.2. [22, Corollary 2.13.] If g = 0, then δ ≥ 0, and for each δ ≥ 0 there

is exactly one rational ruled surface with invariant δ, Fδ, given by V = O ⊕O(−δ) over

C ∼= P1.

Moreover, we can particularize Proposition 5.2.12 and Proposition 5.2.16 to the case of

rational ruled surfaces.

Theorem 5.3.3. [22, Theorem 2.17.] Let Fδ, for any δ ≥ 0, be the rational ruled surface

defined by V = O ⊕O(−δ) on C ∼= P1. Then:

a there is a section S = S0 + nF if and only if n = 0 or n ≥ δ. In particular, there

is a section S1 = S0 + δf with S0 ∩ S1 = ∅ and s1 · s1 = δ;

b the linear system |S0 + nF | is base-point-free if and only if n ≥ δ;

c the linear system |S0 + nF | is very ample if and only if n > δ.

Corollary 5.3.4. [22, Corollary 2.18.] Let D be the divisor aS0 + bF on the rational

ruled surface Fδ, with δ ≥ 0. Then:

a D is very ample ⇔ D is ample ⇔ a > 0 and b > aδ;

b the linear system |D| contains an irreducible nonsingular curve ⇔ it contains an

irreducible curve ⇔ a = 0, b = 1 (namely F ); or a = 1, b = 0 (namely S0); or

a > 0, b > aδ; or e > 0, a > 0, b = aδ.

A natural question that arises is: Given a rational ruled surface Fδ, with δ ≥ 0, can we

characterize the classes of the irreducible non-singular rational curves on it?
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Proposition 5.3.5. Given a Hirzebruch surface Fδ, then any irreducible non-singular

rational curve C ⊂ Fδ is of one of the following types

A. either a section of class S0 + bF with b = 0 or b ≥ δ,

B. or a fiber F ,

C. or a curve of class 2S0 + 2F if δ = 1,

D. or a curve of class aS0 + F with a > 0 if δ = 0.

Proof. By the Adjunction formula (see [22, Proposition 1.5.]) and Corollary 5.2.15 we

have

g(C) =
C · C +KFδ

· C
2

+ 1,

=
(as0 + bf)2 + (−2s0 + (−2− δ)f) · (as0 + bf)

2
+ 1,

=
−a2δ + 2ab+ 2aδ − 2b− 2a− aδ

2
+ 1,

so if g(C) = 0, then the coefficients a and b must be integer solutions of the equation

−a2δ + 2ab+ 2aδ − 2b− 2a− aδ = −2. (5.4)

Moreover, since C is irreducible and non-singular, then by Corollary 5.3.4 C must be of

one of the following types

C =



F if a = 0 b = 1 (5.5)

S0 if a = 1 b = 0 (5.6)

aS0 + bF if a > 0 b > aδ (5.7)

aS0 + aδF if a > 0 and δ > 0 (5.8)

In the cases 5.5 and 5.6 the equation 5.4 is satisfied for any δ.

In the case 5.6 the equation 5.4 has two types of integer solutions: a = 1, b > δ for any

δ, and a > 0, b = 1 for δ = 0.

In the case 5.8 the equation 5.4 has as integer solutions: a = 1, b = δ for any δ > 0, and

a = 2, b = 2 for δ = 1.

Proposition 5.3.6. [34, Proposition 5.] If X is a rational ruled surface, then X is an

Fδ with a δ. If, furthermore, X has another structure as a ruled surface, then δ = 0 and

has no more such structure.
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5.4 A basic example

Let C ⊂ P3 be a smooth rational curve of degree γ , and let π : Z1 → Z0 = P3 be the

blow-up of P3 with center C, so that we have the diagram

E1
j //

g

��

Z1

π

��
C

i // Z0

Thus E1
∼= P (NC/P3), that is E1 is a rational ruled surface. Some natural question that

arise are: the value of δ such that E1
∼= Fδ, is it uniquely determined? Otherwise, which

values of δ are admissible?

In this basic example the image of the n−ary intersection form IZs,E (see Definition 2.4.1)

consists of just one value, that of (e1)
3. Since NE1/Z1

∼= O(−1), then by Proposition

1.2.33

e1 · e1 · e1 = j∗(1) · j∗(1) · j∗(1)

= j∗(ς
2)

As a consequence of Theorem 1.2.25 j∗(ς
2) = j∗(−ς · c1(NC/P3)), so we have

e1 · e1 · e1 = −deg(c1(NC/P3). (5.9)

Finally, deg(c1(NC/P3) = 4γ − 2, so the value (e1)
3 just give us information about the

degree γ of the curve C.

We can then reformulate the questions above. Given a smooth rational curve C ⊂ P3

of a certain degree γ, let π : Z1 → P3 be the blow-up with center C and let E1 be

the exceptional divisor. the value of δ such that E1
∼= Fδ, is it uniquely determined?

Otherwise, which values of δ are admissible? The answer to these questions can be found

in the following results

Theorem 5.4.1. [14, Theorem 4.] Given any integer γ ≥ 4, there exist smooth rational

curves C of degree n in P3 with normal bundle isomorphic to OC(2γ− 1− a)⊕OC(2γ−

1 + a) if and only if |a| ≤ γ − 4.

It is a well know result that any smooth rational space curve C of degree 1 < n ≤ 3 is

contained in a smooth quadric.
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Theorem 5.4.2. [26, Theorem 1.] If C is a smooth curve on a smooth quadric Q then

one of the following possibilities holds:

a C has bidegree (a, a). Then it is the complete intersection with a surface of degree

a. Its normal bundle splits as NC/P3 ∼= OC(2)⊕OC(a).

b C is rational but not a hyperplane section. Then C has bidegree (1, a) or (a, 1) with

a ̸= 1. Its normal bundle is NC/P3 ∼= O(2a+ 1)⊕O(2a+ 1).

Finally, any smooth rational space curve C of degree n = 1 is contained in the intersec-

tion of two hyperplane sections of P3, so in this particular case NC/P3 ∼= O(1)⊕O(1).

We sum up the previous results in the following proposition.

Proposition 5.4.3. Let C ⊂ P3 be an irreducible rational smooth curve of degree γ.

Then its normal bundle NC/P3 satisfies

NC/P3 ∼=



O(1)⊕O(1) if γ = 1, (5.10)

O(4)⊕O(2) if γ = 2, (5.11)

O(5)⊕O(5) if γ = 3, (5.12)

O(2γ − 1− a)⊕O(2γ − 1 + a) if γ ≥ 4, (5.13)

where |a| ≤ γ − 4.

So even in this basic example, if deg(C) ≥ 5, then the value of δ such that E1
∼= Fδ is

not uniquely determined, and it depends on the embedding iC : C → P3.
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Chapter 6

Sequences of point and rational

curve blow-ups in dimension 3.

In this chapter we will focus on the study of sequences of blow-ups at either points or

rational curves, with Z0
∼= P3. The first section is devoted to establish some numerical

properties of rational curves when considered as centers of blow-ups. In the second

section we establish a numerical criterion that characterizes final divisors in terms of

some relations defined over the Chow group of zero-cycles of its sky A0(Zs). Finally, in

the last section of this chapter we give a presentation of the Chow ring of the sky of a

sequence of point and rational curve blow-ups A•(Zs) considering the total transforms

of the exceptional components as generators.

6.1 Some algebraic and numerical properties when ra-

tional curves are allowed as centers of blow-ups

Let Zs
πs−→ Zs−1

πs−1−−−→ · · · π2−→ Z1
π1−→ Z0 be a sequence of blow-ups as in Definition 2.1.1

with Z0
∼= P3 and such that the centers Ci are either points o rational curves.

Definition 6.1.1. We will say that a curve Cα ⊂ Zα is an “old” curve if there exists
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a curve C ⊂ Z0 such that Cα is the strict transform of C by the sequential morphism

πα,0 : Zα → Z0. Otherwise, we say that Cα is a “new” curve.

We will say that an “old” curve Cα ⊂ Zα is unmodified with respect to the sequential

morphism πα,0 : Zα → Z0 if the following condition holds:

Cβ ∩ Cβ = ∅, (6.1)

for β = 1, ..., α.

On the other hand, we will say that an “old” curve Cα ⊂ Zα is modified by the blow-up

πα+1 : Zα+1 → Zα if

a either Cα+1 ∈ Cα, with dim(Cα+1) = 0, and in this case we will say that πα+1 is a

modification of type I,

b or Cα+1 ∩ Cα ̸= ∅, with dim(Cα+1) = 1, and in this case we will refer to πα+1 as

a modification of type II.

Lemma 6.1.2. Let Cα ⊂ Zα be an “old” curve and let πα+1 : Zα+1 → Zα be a blow-up

verifying Cα+1 ∩ Cα ̸= ∅. Then one of the following conditions is satisfied:

A either dim(Cα+1) = 0, Cα+1 ∈ Cα, and in this case we have

NCα+1/Zα+1
∼= π∗

α+1(NCα/Zα
)⊗O(−Eα+1

α+1 ∩ Cα+1), (6.2)

B or dim(Cα+1) = 1, Cα+1 intersects Cα improperly, and in this case

NCα+1/Zα+1
∼= π∗

α+1(NCα/T )⊕π∗
α+1(NT/Zα

|Cα)⊗O(−Eα+1
α+1 ∩Tα+1 ∩Cα+1), (6.3)

where T ⊂ Zα denotes a smooth surface such that Cα+1, Cα ⊂ T and booth are

regularly embedded.

Proof. In the first case A, the expression for the normal bundle of the strict transform

Cα+1 in Zα+1 follows directly from Proposition 1.1.19.

Let us now consider the case arising when Cα+1 and Cα intersect improperly. First of all,
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let T ⊂ Zα be a smooth surface such that Cα+1, Cα ⊂ T are both regularly embedded.

As a consequence of Proposition [20, Proposition 19.1.5]), we have the following exact

sequence

0 → NCα/T → NCα/Zα
→ NT/Zα

|Cα → 0, (6.4)

and the splitting

NCα/Zα
∼= NCα/T ⊕NT/Zα

|Cα . (6.5)

Moreover, it follows from proposition 1.1.19 that the normal bundle of the strict transform

of T , that we denote by Tα+1, satisfies

NTα+1/Zα+1
∼= π∗

α+1(NT/Zα+
)⊗O(−Tα+1 ∩ Eα+1

α+1), (6.6)

and, again, it follows from Proposition [20, Proposition 19.1.5]) that

NCα+1/Zα+1
∼= NCα+1/Tα+1 ⊕NTα+1/Zα+1

|Cα+1 . (6.7)

so, since NCα+1/Tα+1
∼= π∗

α+1(NCα/T ) we can conclude that

NCα+1/Zα+1
∼= π∗

α+1(NCα/T )⊕ π∗
α+1(NT/Zα

|Cα)⊗O(−Eα+1
α+1 ∩ Tα+1 ∩ Cα+1), (6.8)

Definition 6.1.3. We will say that the blow-up πα : Zα → Zα−1 corresponding at the

α−level of a sequence of blow-ups is

a an extrinsic elementary modification with respect to an irreducible exceptional

component Eα−1
i if

dim(Cα) = 1 and Cα −→ Ci,

b or an intrinsic elementary modification with respect to an irreducible excep-

tional component Eα−1
i if

dim(Cα) = 1 and Cα
t−→ Ci,

c or a mixed elementary modification with respect to an irreducible exceptional

component Eα−1
i if

dim(Cα) = 0 and Cα −→ Ci.
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Remark 6.1.4. Note that an extrinsic elementary modification just varies the normal

bundle NEα−1
i /Zα−1

of the irreducible exceptional component Eα−1
i , whereas an intrinsic

elementary modification varies only the normal bundle NW/Eα−1
i

of the subvarieties W ⊂

Eα−1
i satisfying W ∩ Cα ̸= ∅. A mixed elementary modification produces a variation on

both, NEα−1
i /Zα−1

and NW/Eα−1
i

.

Theorem 6.1.5. Let Ei, Ej ⊂ Zs be both final divisors for the sequential morphism

π : Zs → Z0. Then Ei ∩ Ej ̸= ∅ if and only if Ei is proximate to Ej and Ej is

t−proximate to Ei, or vice versa.

Proof. Let us suppose that Ei ∩ Ej ̸= ∅. Then one of the following conditions must be

satisfied:

A either Ei −→ Ej and Ej −→ Ei,

B or Ei
t−→ Ej and Ej

t−→ Ei,

C or Ei −→ Ej and Ej
t−→ Ei (or vice versa).

In the case A, let us consider a sequence of blow-ups associated to the sequential mor-

phism π : Zs → Z0 realizing Ej as a final divisor. If we focus on the blow-up correspond-

ing at the j−level, that is πj : Zj → Zj−1, and we restrict it to Ej−1
i , then we have the

following diagram:

Ej
i

!!
πj |

E
j
i

��

Ej
i ∩ Ej

j
oo

{{
gj |

E
j
i
∩E

j
j

��

Bi

Ej−1
i

gi
!!

Cjoo

Ci

, (6.9)

where Ej
i ∩ Ej

j must be a projective subbundle of Ej
i , since Ei is final too. In order to

continue with the proof, we need to distinguish between the two following cases:

A.i dim(Ci) = 0,
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A.ii dim(Ci) = 1.

In the particular case A.i, let us suppose that the morphism πj |Ej
i
: Ej

i → Ej−1
i is a

divisorial contraction, that is dim(Cj) = 0. Then, as a consequence of [21, Theorem

1.1.], πj |Ej
i
: Ej

i → Ej−1
i is a Sarkisov link of type I, so there must exists a morphism

hi : Bi → Ci, giving Bi a projective bundle structure over Ci. Moreover, by Proposition

1.1.17 Ej
i is isomorphic to a projective bundle over P1, and the pull back of the hyperplane

class ςi ∈ A1(Ei
i) satisfies (see Corollary 1.2.26):

πj |∗Ej
i

(ςi) =
[
Ej
i ∩ Ej

j

]
+ f, (6.10)

where f denotes the class of a fiber F ⊂ Ej
i . Finally, as a consequence of Proposition

1.1.19, we have that

NEj
i /Zj

∼= πj |∗Ej
i

(NEj−1
i /Zj−1

)⊗O(−Ej
i ∩ Ej

j ), (6.11)

so the necessary condition to be final NEj
i /Zj

∼= OEj
i
(−1) (see Proposition 2.3.7) fails to

be true.

Now, if dim(Cj) is 1, then the class [Cj ] ∈ A1(Ej−1
i ) must be an integer multiple of the

hyperplane section ςi, so applying Proposition 1.1.19 we have

NEj
i /Zj

∼= πj |∗Ej
i

(NEj−1
i /Zj−1

)⊗O(−Ej
i ∩ Ej

j ), (6.12)

and the necessary condition to be final NEj
i /Zj

∼= OEj
i
(−1) does not hold.

In the particular case A.ii, let us suppose that the morphism πj |Ej
i
: Ej

i → Ej−1
i is a

divisorial contraction. Then, as a consequence of [21, Theorem 1.1.], πj |Ej
i
: Ej

i → Ej−1
i

should be a Sarkisov link of type I, so there must exists a morphism hi : Bi → Ci giving

Bi a projective bundle structure over Ci. Now, if we denote by Fi to g−1
i (P ), where

P ∈ Ci is a point, then we have the following diagram, obtained just by restriction of
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the previous one:

πj |−1

Ej
i

(Fi)

$$

��

g−1
j (Cj ∩ Fi)oo

xx

��

h−1
i (P )

hi|h−1
i

(P )

��

Fi

gi|Fi &&

Cj ∩ Fioo

P

, (6.13)

Note that it must be verified dim(Cj ∩ Fi) = 0, so dim(Cj) = 1 and πj |Ej
i
: Ej

i → Ej−1
i

is not a divisorial contraction any more. Moreover, since we are supposing that Ei is

final too, then Cj must be isomorphic to a projective line subbundle of Ej−1
i , that is

[Cj ] = ςi + c1(NCi/Zi−1
/Li+1)f , where Li+1 ⊂ NCi/Zi−1

denotes a line subbundle. As a

consequence of Proposition 1.1.19 it holds

NEj
i /Zj

∼= πj |∗Ej
i

(NEj−1
i /Zj−1

)⊗O(−Ej
i ∩ Ej

j ), (6.14)

so the necessary condition to be final NEj
i /Zj

∼= OEj
i
(−1) is not satisfied in this case too.

Now, let us consider the case B. Since both Ei
t−→ Ej and Ej

t−→ Ei, then Ei ∩ Ej must

be isomorphic to a fiber of both Ei and Ej . Let us suppose that both are finals and

let (Z0, ..., Zs, π) be a sequence realizing Ei as a final divisor. Then there must exists

a regular projective contraction f : Zs → Xs−1 such that f(Ei) = Ci. However, if we

consider the restriction f |Ej
then it can not be a regular projective contraction any more

since it defines a contraction of Ei ∩ Ej whereas NEi∩Ej/Ej
≇ OEi∩Ej

(−1).

Finally, in the case C, that is Ei −→ Ej and Ej
t−→ Ei (or vice versa), it follows from

Theorem 2.3.9 that both are finals.

Corollary 6.1.6. Let Ei ⊂ Zs be a final divisor that is not a minimal surface, that is

such that there exists a rational curve C ∈ Ei verifying [C] · [C] = −1. Let us suppose that

there exist just one index β such that Ei ∩ Eβ ̸= ∅, verifying ei · (eβ)2 = −1. Then the

following conditions are satisfied:
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a Ei ∼= F1,

b there exists a sequence of blow-ups associated to the sequential morphism π : Zs →

Z0 such that:

b.i Ei
i
∼= P2, that is dim(Ci) = 0,

b.ii there exists a center Cβ, with dim(Cβ) = 1, such that Cβ
t−→ Ci and Eα

i ∩Eα
β

is an irreducible curve,

b.iii and Ei ∼= Eα
i .

Proof. Firstly, since Ei is final and ei · (eβ)2 = −1, then by our hypothesis about the

centers of the sequence of blow-ups we have Ei ∼= F1. Moreover, it follows directly from

Theorem 6.1.5 that if Ei is final and there exists an index β verifying ei · (eβ)2 = −1,

then there must exist a sequence of blow-ups associated to the sequential morphism

π : Zs → Z0 that satisfies conditions b.i, b.ii and b.iii.

Proposition 6.1.7. Let Ei ⊂ Zs be a final divisor for the sequential morphism π : Zs →

Z0, and let j, k be two indices such that Ei ∩ Ej ̸= ∅ and Ei ∩ Ek ̸= ∅. Then one of the

following characterizations is satisfied, where ηj , ηk ∈ Z+:

I either dim(Ci) = 1, with Ci proximate to Cj and t−proximate to Ck (or vice versa),

and in this case we have that:

(ei + ej)
2 · ei = 0

(ei)
2 · ek = −ηk

ei · (ek)2 = 0

ei · ej · ek = ηk

II or dim(Ci) = 1, with Ci t−proximate to both Cj and Ck, and then the following
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relations are verified:

ei · (ej)2 = 0

(ei)
2 · ej = −ηj

ei · (ek)2 = 0

(ei)
2 · ej = −ηk

ei · ej · ek = 0

III or dim(Ci) = 1, with Ci proximate to both Cj and Ck, and in this case we have

that:

(ei + ej)
2 · ei = 0

(ei + ek)
2 · ei = 0

ei · (ek)2 = −ei · (ej)2,

(ei)
2 · ek = (ei)

2 · ej + ei · (ej)2,

IV or dim(Ci) = 0, with Ci proximate to both Cj and Ck, and tehn the following

relations are verified:

(ei + ej) · ei = (ei + ek) · ei = 0

(ei)
2 · ej = (ei)

2 · ek = −1

ei · (ej)2 = ei · (ek)2 = 1

ei · ej · ek = 1

Proof. Let Ei be a final divisor, with dim(Ci) = 1, and let α be an index such that

Ci −→ Cα, that is Ei
α = π∗

i (E
i−1
α )−Ei

i . Then, as a consequence of Proposition 1.2.33 we

have that

π∗
i (e

i−1
α ) · eii = jEi

i∗(mαf),

so

(π∗
i (e

i−1
α ))2 · eii = jEi

i∗(0ςi · f),

and the relation (ei + eα)
2 · ei = 0 is satisfied.

Let us consider now an index λ such that Ci
t−→ Cλ, that is Ei

λ = π∗
i (E

i−1
λ ) . Then, as a

consequence of Proposition 1.2.33 we have

π∗
i (e

i−1
λ ) · eii = jEi

i∗(ηλf),
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so

(π∗
i (e

i−1
λ ))2 · eii = jEi

i∗(0ςi · f),

π∗
i (e

i−1
λ ) · (eii)2 = jEi

i∗(−ηλςi · f)

and the relations (eλ)
2 · ei = 0 and eλ · (e2i ) = −ηλ are verified.

In the case I, since Ci −→ Cj , and Ci
t−→ Ck we have that

eii · eij · eik = eii · (π∗
i (e

i−1
j )− eii) · πi(ei−1

k ),

= eii · (π∗
i (e

i−1
j ) · πi(ei−1

k )− (eii)
2 · πi(ei−1

k ),

= jEi∗
i
(ηkςi · f),

so the relation ei · ej · ek = ηk also holds.

In the case II, since Ci
t−→ Cj and Ci

t−→ Ck, then it follows that

eii · eij · eik = eii · π∗
i (e

i−1
j ) · πi(ei−1

k ),

= jE∗
i
(ηjηkf · f),

= jE∗
i
(0ςi · f),

so the relation ei · ej · ek = 0 is also satisfied.

In the case III, since Ci −→ Cj and Ci −→ Ck, then as a consequence of Lemma 2.2.1 we

have that the normal bundle NCi/Zi−1
has the following splitting:

NCi/Zi−1
∼= NCi/E

i−1
j

⊕NCi/E
i−1
k

.

Moreover, as a consequence of Lemma 2.3.8, the classes of Ei∩Ej and Ei∩Ek in A1(Ei)

satisfy

[Ei ∩ Ej ] = ςi + c1(
NCi/E

i−1
j

⊕NCi/E
i−1
k

NCi/E
i−1
j

)f,

[Ei ∩ Ek] = ςi + c1(
NCi/E

i−1
j

⊕NCi/E
i−1
k

NCi/E
i−1
k

)f.
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so

ei · (ej)2 = jEi∗((ςi + c1(NCi/E
i−1
k

)f)2),

= jEi∗((c1(NCi/E
i−1
k

)− c1(NCi/E
i−1
j

))ςi · f);

(ei)
2 · ej = jEi∗(−ςi · (ςi + c1(NCi/E

i−1
k

)f)),

= jEi∗((c1(NCi/E
i−1
j

))ςi · f);

ei · (ek)2 = jEi∗((ςi + c1(NCi/E
i−1
j

)f)2),

= jEi∗((−c1(NCi/E
i−1
k

) + c1(NCi/E
i−1
j

))ςi · f);

(ei)
2 · ek = jEi∗(−ςi · (ςi + c1(NCi/E

i−1
j

)f)),

= jEi∗((c1(NCi/E
i−1
k

)ςi · f).

We can conclude then that the following relations are verified:

(ei + ej)
2 · ei = 0

(ei + ek)
2 · ei = 0

ei · (ek)2 = −ei · (ej)2,

(ei)
2 · ek = (ei)

2 · ej + ei · (ej)2.

In the case IV, since Ci −→ Cj and Ci −→ Ck, with dim(Ci) = 0, then the classes of

Ei ∩ Ej and Ei ∩ Ek in A1(Ei) satisfy

[Ei ∩ Ej ] = ςi,

[Ei ∩ Ek] = ςi,

so we have that

(e2i ) · ej = jEi∗(ςi · −ςi),

= jEi∗((−1)(ςi)
2);

ei · e2j = jEi∗((ςi)
2),

= jEi∗(1(ςi)
2);

(e2i ) · ek = jEi∗(ςi · −ςi),

= jEi∗((−1)(ςi)
2);

ei · e2k = jEi∗((ςi)
2),

= jEi∗(1(ςi)
2);
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and

ei · ej · ek = jEi∗(ςi · ςi),

= jEi∗(1(ςi)
2).

It follows then that the following relations are satisfied:

(ei + ej) · ei = (ei + ek) · ei = 0,

(ei)
2 · ej = (ei)

2 · ek = −1,

ei · (ej)2 = ei · (ek)2 = 1,

ei · ej · ek = 1.

In order to motivate the following results, let us suppose that Ei is an irreducible excep-

tional component that is not final with respect to the sequential morphism π : Zs → Z0,

and let j be an index such that either Ej → Ei or Ej
t−→ Ei. Now, if we consider the

blow-up corresponding to the (j − 1)−level of a sequence realizing the sequential mor-

phism π : Zs → Z0, that is πj : Zj → Zj−1, since Ej
j is final for the sequential morphism

πj,0 : Zj → Z0, then one of the following characterizations is verified:

a either Ej
j is proximate to Ej

i , and then it is satisfied

(eji + ejj)
2 · ejj = 0. (6.15)

b or Ej
j is t−proximate to Ej

i and then the following relations hold

(ejj)
2 · eji = −ηj , (6.16)

ejj · (e
j
i )

2 = 0, (6.17)

with η ∈ Z+.

We are interested in studying the very special configurations where

a either the following relation is verified:

(eji + ejj)
2 · eji = 0, (6.18)
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b or the following relations hold:

(eji )
2 · ejj = −ηi, (6.19)

eji · (e
j
j)

2 = 0. (6.20)

By adding Equations 6.15 and 6.18 we have that

(eji + ejj)
3 = 0, (6.21)

and as a consequence of the Projection formula 1.6, it follows that

(ej−1
i )3 = 0, (6.22)

so we will be interested in characterizing configurations leading to (ej−1
i )3 = 0 (Proposi-

tion 6.1.8).

On the other hand, if relations (6.16) and (6.18) are both satisfied, then this implies that

(ej−1
i )3 = η > 0, so we will be also interested in characterizing configurations leading to

(ej−1
i )3 = η > 0 (Propositions 6.1.9 and 6.1.10).

Finally we will focus our attention to configurations where the relations (eji )
2 · ejj = −ηi

and eji · (e
j
j)

2 = 0 hold (Proposition 6.1.13).

Proposition 6.1.8. Let Eα
i be an irreducible exceptional component of a sequence of

point and rational curve blow-ups (Zα, ..., Z0, π), such that:

a (eαi )
3 = 0,

b and there exits at most one index β, with Eα
i ∩ Eα

β ̸= ∅, such that eαi · (eαβ)2 < 0.

Then one of the following charaterizations holds:

A either Eα
i is not final, dim(Ci) = 0 and there exists just an index β such that

Cβ −→ Ci, with dim(Cβ) = 0,

B or Eα
i is not final, and Ci is an unmodified “old” curve, that is there exists at least

one index γ such that Cγ −→ Ci, with Cγ non isomorphic to a generic fiber F of

Ei
i ,

C or Eα
i is final, Ci is an “old” curve, and there exists at least one index β such that
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C.i either Cβ −→ Ci, with Cβ isomorphic to a generic fiber of Ei
i ,

C.ii or dim(Cβ) = 1, and Ci
t−→ Cβ,

that is, Ci is a modified “old” curve,

D or Eα
i is final or not final, and Ci is a “new” curve.

Moreover, in the case D, if Eα
i is final, that is Eα

i
∼= Ei

i , and there exists just one index

β such that Ci −→ Cβ, then one of the following set of relations is satisfied: either

(eαβ)
2 · eαi = −2a,

(eαi )
2 · eαβ = a,

(6.23)

or

(eαβ)
2 · eαi = 2a,

(eαi )
2 · eαβ = −a,

(6.24)

Proof. Firstly, we consider the case where dim(Ci) = 1. Let us suppose that Ci is an

unmodified “old curve” and Eα
i is a final divisor. Since Ci is unmodified then, as a

consequence of Theorem 6.1.5 it does not exist any index β, with Cβ −→ Ci, with Cβ

isomorphic to a generic fiber of F ⊂ Ei
i . Now, by Proposition 2.3.7 NEα

i /Zα
∼= OEi

i
(−1),

so we have that:

(eαi )
3 = π∗

α,i(ji∗(ς
2)),

= −c1(NCi/Zi−1
),

but according to Proposition 5.4.3, since Ci is an unmodified “old” curve, it follows that

(eαi ) < 0, so condition a does not hold.

Now, we study the case where dim(Ci) = 0. Let us suppose that there exists an index λ

such that Cλ −→ Ci, with dim(Cλ) = 1. Then Cλ must a rational curve and [Cλ] = γλςi

in A(Ei
i), where ςi denotes the hyperplane class and γ the degree of Cλ. By Proposition

1.1.19 we have that

NEλ
i /Zλ

∼= π∗
i,λ(NEi

i/Zi
)⊗O(−Eλ

i ∩ Eλ
λ),

∼= O(−1− γλ),
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Now, as a consequence of Proposition 1.2.22, it follows that

(eλi ∗)3 = (−1− γλ)
2 ̸= 0.

Finally, let us suppose that Eα
i is final and there exists just one index β such that

Ci −→ Cβ . Firstly, since (eαi )
3 = 0, then we know that Eα

i = P (O(a) ⊕ O(−a)), with

a ∈ Z. Now, as a consequence of [20, Proposition 19.1.5] we have the following splitting

of the normal bundle NCi/Zi−1
:

NCi/Zi−1
= NCi/E

i−1
β

⊕NEi−1
β /Zi−1

|Ci
.

Moreover, since Eα
i is final, then we know that the class

[
Eα
i ∩ Eα

β

]
∈ A1(Eα

i ) corre-

sponds to the section associated to the line subbundle NCi/E
i−1
β

, so by Proposition 1.2.22

and Lemma 2.2.1

(eαβ)
2 · eαi = jEα

β ∗(c1(NEα
β /Zα

) ·
[
Eα
i ∩ Eα

β

]
β
),

= jEα
i ∗((ςi + c1(NEi−1

β /Zi−1
|Ci)f)

2),

= jEα
i ∗((−c1(NCi/E

i−1
β

) + c1(NEi−1
β /Zi−1

|Ci
))ςi · f),

and

(eαi )
2 · eαβ = jEα

i ∗((ςi + c1(NEi−1
β /Zi−1

|Ci
)f) · (−ςi)),

= jEα
i ∗(c1(NCi/E

i−1
β

)ςi · f).

Thus, we can conclude that either relations 6.23 or relations 6.24 hold.

Proposition 6.1.9. Let Eα
i be an irreducible exceptional component of the sequence of

point and rational curve blow-ups (Zs, ..., Z0, π), such that:

a (eαi )
3 = 1,

b and there exists at most one index β, with Eα
i ∩ Eα

β ̸= ∅, such that eαi · (eαβ)2 < 0.

Then one of the following characterizations is verified:

A either Eα
i is final, with dim(Ci) = 0,

B or Eα
i is not final, with dim(Ci) = 0, and there exists at least an index β such that

Cβ
t−→ Ci, where the number of connected components #

{
Eα
β ∩ Eα

i

}
> 1,

128



C or Eα
i is final, Ci is a modified “old” curve with a modification of type II, that is,

there exists at least one index β such that dim(Cβ) = 1, and Ci
t−→ Cβ,

D or Eα
i is not final, with Ci a modified “old” curve,

E or Eα
i is final or not final, and Ci is a “new” curve.

Proof. Firstly, let us suppose that Ei
i
∼= P2, that is dim(Ci) = 0, and there exists an

index λ, such that Cλ −→ Ci, with dim(Cλ) = 1. Then, since Ei
i
∼= P2, we have that

[Cλ] = γλςi in A1(Ei
i), where γ ∈ Z+. It follows now from Proposition 1.1.19 that

NEλ
i /Zλ

∼= π∗
λ,i(NEi

i/Zi
)⊗O(−Eλ

i ∩ Eλ
λ),

∼= OEλ
i
(−1− γλ)

so by Proposition 1.2.22

(eλi )
3 = jEλ

i ∗((c1(NEλ
i /Zλ

))2) ̸= 1.

Now, let us suppose that Eα
i is final, with dim(Ci) = 1, and Ci is either an unmodi-

fied “old” curve or a modified “old” curve with modifications just of type I. Then, by

Proposition 2.3.7 we have that NEα
i /Zα

∼= OEα
i
(−1), so it follows that

(eαi )
3 = jEα

i ∗((c1(NEα
i /Zα

))2),

= jEα
i ∗((−ςi)

2),

= jEα
i ∗((−c1(NCi/Zi−1

)ςi · f).

In the former case, that is Ci is unmodified, it follows from Proposition 5.4.3 that (eαi )3 is

even, so condition a is not satisfied. In the latter case, that is Ci has been modified with

modification of type I, as a consequence of Proposition 1.1.19 we have that c1(NCi/Zi−1
)

is even too, so condition a is not satisfied either.

Proposition 6.1.10. Let Eα
i be an irreducible exceptional component of a sequence of

point and rational curve blow-ups (Zα, ..., Z0, π), such that:

a (eαi )
3 = η, with η > 1,

b and there exits at most one index β, with Eα
i ∩ Eα

β ̸= ∅, such that eαi · (eαβ)2 < 0.
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Then one of the following charaterizations holds:

A either Eα
i is not final, where dim(Ci) = 0, and there exists at least one index β,

with dim(Cβ) = 1, such that Cβ −→ Ci,

B or Eα
i is final, with dim(Ci) = 1, where Ci is a modified “old” curve, and there

exists at least one index β such that

B.i either Cβ −→ Ci, with Cβ isomorphic to a generic fiber of Ei
i if η is even,

B.ii or dim(Cβ) = 1, and Ci
t−→ Cβ,

C or Eα
i is not final, where Ci is an“old” curve, that is there exists at least one index

γ such that Cγ −→ Ci,

D or Eα
i is final or not final, where Ci is a “new” curve.

Proof. Firstly, we consider the case where dim(Ci) = 0, that is Ei
i
∼= P2. Let us suppose

that there exists just one index β such that Cβ −→ Ci, with dim(Cβ) = 0 . Then, as

a consequence of Proposition 1.1.17 and Corollary 1.2.26, Eβ
i

∼= F1. Moreover, if we

denote by ς̃i to c1(OEβ
i
(1)), it is verified that c1(NEβ

i /Zβ
) = −2ς̃i + f in A1(Eβ

i ), so by

Proposition 1.2.22

(eβi )
3 = jEβ

i ∗((−2ς̃i + f)2),

= jEβ
i ∗(0ς̃i · f).

Thus, we can conclude that condition a does not hold. Now let us suppose that dim(Ci) =

1. If Eα
i is final, then it follows from Proposition 2.3.7 that NEα

i /Zα
∼= OEα

i
(−1), so we

have that

(eαi )
3 = jEα

i ∗((−ςi)
2),

= jEα
i ∗(−c1(NCi/Zi−1

)ςi · f).

However, as a consequence of Proposition 5.4.3, if Ci is an unmodified “old curve” then

c1(NCi/Zi−1
> 0, so (eαi )

3 < 0 and condition a is not satisfied.

Proposition 6.1.11. Let Eα
i be an irreducible exceptional component of a sequence of

point and rational curve blow-ups (Z0, ..., Zα, π), verifying the following conditions:
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a Eα
i is final, with base a “new” curve Ci,

b Eα
i
∼= F0,

c and (eαi )
3 > 0

Then, the cardinal of the set of indexes γ such that such that Eα
i ∩ Eα

γ ̸= ∅ must be at

least two. Moreover, if # {γ} = 2, that is, this set just contains two indexes η and κ,

and Ci −→ Cη then Cκ can not be a point P , that is dim(Cκ) = 1.

Proof. Firstly, since Eα
i is final, then by Proposition 2.3.7 we have that

(eαi )
3 = jEα

i ∗((−ςi)
2), (6.25)

= jEα
i ∗(−c1(NCi/Zi−1

)ςi · f). (6.26)

Moreover, as Eα
i
∼= F0 by our hypothesis, then there exists an integer a ∈ Z such that

NCi/Zi−1
∼= O(a)⊕O(a). Now, it follows from 6.25 that

(eαi )
3 = −2a,

so condition c implies that a < 0. Let us suppose that the cardinal set of indexes # {γ}

such that Eα
i ∩Eα

γ ̸= ∅ is 1. Since Ci is a “new” curve, then there must exist a curve Cλ

such that Ci −→ Cλ. Moreover, since NCi/Zi−1
∼= O(a)⊕O(a), with a < 0, it follows that

Ci must be isomorphic to the unique section of Ei−1
λ with negative self-intersection. Since

we are just considering as centers of blow-ups rational curves, we have that Eλ
λ
∼= Fδλ , so

in particular there is and integer b ∈ Z such that NCλ/Zλ−1
∼= O(b) ⊕ O(b − δλ). Then,

Ci is associated with the line subbundle of maximal degree and its class [Ci] in A1(Eλ
λ)

satisfies:

[Ci] = ςλ + (b− δλ)f,

so

c1(NEi−1
λ /Zi−1

|Ci
= b

[Ci] · [Ci] = −δλ.

This lead us to conclude that b < 0. As a consequence of Proposition 5.4.3, Cλ must

be a “new curve”, that is there must exists a curve Cµ such that Cλ −→ Cµ . As we are

supposing that the set of indexes {γ} such that Eα
i ∩ Eα

γ ̸= ∅ just contains λ, then Cλ
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must be isomorphic to the section of Eµ
µ with negative self-intersection, and reasoning

in an analogous manner as above, we conclude that NCµ/Zµ−1
∼= O(c)⊕O(c− δµ), with

c < 0. The hypothesis considering γ as the only index such that Eα
i ∩Eα

γ ̸= ∅ led us to a

sequence of centers {Cν} verifying NCν/Zν−1
∼= O(nν)⊕O(nν − δν), with nν < 0, which

is an absurd as a consequence of Proposition 5.4.3.

Remark 6.1.12. Sometimes, given a rational curve C contained in an irreducible ex-

ceptional component Eα
i , for some technical reasons our interest is focus on the self-

intersection number [C] · [C], where by [C] we denote its equivalence class in A1(Eα
i ). As

a consequence, when applying Proposition 1.1.19 to compute NEα+m
i

in the sequence

Zα+m
πα+m−−−−→ Zα+m−1

πα+m−1−−−−−→ · · · πα+2−−−→ Zα+1
πα+1−−−→ Zα, where Cα+1 = C and

Cα+j = Eα+j−1
i ∩ Eα+j−1

α+j−1 for j = 2, . . . ,m, with a slight abuse of notation, we write:

NEα+m
i

∼= π∗
α+m,α(NEα

i /Zα
)⊗O(−C)⊗m.

Proposition 6.1.13. Let Eα
i be an irreducible exceptional component of a sequence of

point and rational curve blow-ups (Z0, ..., Zα, π), verifying the following conditions:

a Cα −→ Ci,

b the following relations are satisfied

(eαi )
2 · eαα = −η, (6.27)

eαi · (eαα)2 = 0, (6.28)

where η ∈ Z+, with η > 1,

c and there exists at most one index β, with Eα
i ∩Eα

β ̸= ∅, such that eαi · (eαβ)2 < 0.

Then there must exist at least one index γ ̸= α such that Eα
i ∩ Eα

γ ̸= ∅. In fact, one of

the following characterizations is verified:

A.i either Eα−1
i

∼= F0 is final, with base a modified “old” curve Ci with a mod-

ification of type I, that is, such that there exists at least one index β, with

Cβ −→ Ci, where Cβ is isomorphic to a generic fiber of Ei
i , and Cα ∼= S0,

A.ii or Eα−1
i

∼= F0 is final, with base an “new” curve Ci, and Cα ∼= S0,
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B.i or Eα−1
i

∼= F1 is not final, with dim(Ci) = 0, and Cα is isomorphic to a

generic fiber F of Eα−1
i ,

B.ii or Eα−1
i is not final, it is a birational model of F1, and there exists just one

index β such that

i. either dim(Cβ) = 0, Cβ −→ Ci, with Cβ ∈ S1,

ii. or dim(Cβ) = 1, Cβ
t−→ Ci, with Eβ−1

i ∩ Cβ ∈ S1,

and Cα ∼= Sβ1 ,

C.i or Eα−1
i is not final, it is a birational model of Fδ,and there exists just one

index β, with dim(Cβ) = 1, Cβ
t−→ Ci, verifying #

{
Cβ ∩ Eβ−1

i

}
= δ + 2n,

Eβ−1
i ∩ Cβ ∈ Sδ+2n, and Cα ∼= Sβδ+2n,

C.ii or Eα−1
i

∼= Fδ is not final, there exists at least one index β such that Cβ −→ Ci,

and Cα is isomorphic to a fiber F of Ei
i .

Proof. By our hypothesis Eα
i is a birational model of either P2 or Fδ, with δ ∈ Z+.

Moreover, if we denote by Ci,α = Eα
i ∩ Eα

α , and [Ci,α] ∈ A1(Eα
i to its corresponding

class, then condition 6.28 implies that:

[Ci,α] · [Ci,α] = 0.

By considering condition c, it follows from Proposition 5.3.5 that one of the following

characterizations holds:

A either Eα−1
i is a birational model of F0 and Cα ∼= S0,

B or Eα−1
i is a birational model of F1, and there exists just one index β such that

B.i either dim(Cβ) = 0, Cβ −→ Ci and Cβ ∈ S1,

B.ii or dim(Cβ) = 1, Cβ
t−→ Ci and Eβ−1

i ∩ Cβ ∈ S1,

with Cα ∼= Sβ1 ,

C or Eα−1
i is a birational model of Fδ, with δ ∈ Z+, and

C.i either there exists just one index β, with dim(Cβ) = 1, Cβ
t−→ Ci, verifying

#
{
Cβ ∩ Eβ−1

i

}
= δ + 2n, Eβ−1

i ∩ Cβ ∈ Sδ+2n, and Cα ∼= Sβδ+2n,
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C.ii or Cα is isomorphic to a fiber F of Ei
i ,

Now, let us suppose that the set of indexes {γ}, such that Eα
i ∩ Eα

γ ̸= ∅, just contains

the index α. Then, one of the following characterizations is verified:

A.iii either Eα−1
i

∼= F0 is final, with base Ci an unmodified “old” curve, and Cα ∼=

S0,

A.iv or Eα−1
i

∼= F0 is not final, with base Ci an unmodified “old” curve, there exists

just one index β such that Cβ ∼= S0 and Cα ∼= Eα−1
i ∩ Eα−1

β .

C.iii or Eα
i
∼= Fδ is final, with base Ci an unmodified “old” curve, and Cα is iso-

morphic to a fiber of Ei
i ,

C.iv or Eα
i
∼= Fδ is final, with base Ci a modified curve, with a simply modification

of type I, that is there exists just one index β such that Cβ is isomorphic to

a fiber of Ei
i , and Cα ∼= Eα−1

i ∩ Eα−1
β ,

Note that we are not considering the case where Eα
i
∼= F0 is not final, with base a “new

curve” Ci, since as a consequence of Proposition 6.1.11 the cardinal of the set of indexes

# {µ} verifying Eα−1
i ∩ Eα−1

µ ̸= ∅ is at least two.

In the case A.iii, since Eα−1
i is final, then by Proposition 2.3.7 we have that NEα−1

i /Zα−1

∼=

OEα−1
i

(−1). Moreover, as Ci is an unmodified “old” curve, and Eα−1
i

∼= F0, then

NCi/Zi−1
∼= O(a) ⊗ O(a), for some a ∈ Z+. Now, by Proposition 1.1.19, we know that

NEα
i /Zα

∼= π∗
α(NEα−1

i /Zα−1
)⊗O(−Eα

i ∩Eα
α), and since Cα ∼= S0, then [Eα

i ∩ Eα
α ] = ςi+af

in A1(Eα
i ), then by Proposition 1.2.22 we have that

(eαi )
2 · eαα = jEα

i ∗((ςi + af) · (−2ςi − af)),

= jEα
i ∗(aςi · f).

As a result, (eαi )2 · eαα = a > 0, so condition 6.27 fails to be true.

In the case A.iv, we know from the previous case that c1(NEα−1
i /Zα−1

) = −2ςi−af . If we

apply again Proposition 1.1.19 we have that NEα
i /Zα

∼= π∗
α(NEα−1

i /Zα−1
)⊗O(−Eα

i ∩Eα
α),

and since Cα ∼= S0 too, then reasoning in an analogous manner we have that

(eαi )
2 · eαα = jEα

i ∗((ςi + af) · (−3ςi − 2af)),

= jEα
i ∗(aςi · f).
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It follows that (eαi )
2 · eαα = a > 0, so in this case condition 6.27 does not hold either.

In the case C.iii, since Eα
i is final, then from Proposition 2.3.7 we know that NEα

i /Zα
∼=

OEα
i
(−1), and since Cα ∼= Fi, by Proposirion 1.2.22 we have that

(eαi )
2 · eαα = jEα

i ∗(f · (−ςi)). (6.29)

As a result, (eαi )2 · eαα = −1 > −η, so condition 6.27 does not hold. Finally, in the case

C.iv, since Eα
i is final too, then we can proceed in an analogous manner to the previous

case. we can conclude then that in this case (eαi )
2 · eαα = −1 > −η too, so condition 6.27

is not satisfied either.

6.2 Final divisors: Numerical characterization

This section is devoted to give a numerical characterization of final divisors for sequential

morphisms associated to sequences of point and rational curve blow-ups. Before proving

the main results, that is Propositions 6.2.6, 6.2.7 and Theorem 6.2.11, we introduce some

auxiliary technical results that will be used on their corresponding proofs.

Proposition 6.2.1. Let Eα
i be an irreducible exceptional component of a sequence of

point and rational curve blow-ups (Z0, ..., Zα, π), verifying the following conditions:

a Eα
i is final, with base a “new” curve Ci,

b there exists two indexes j and k, such that Ci −→ Cj and Ci −→ Ck,

c Eα
i
∼= F0,

d and (eαi )
3 > 0.

Then there exists another index γ, verifying Eα
i ∩ Eα

γ , E
α
j ∩ Eα

γ , E
α
k ∩ Eα

γ ̸= ∅.

Proof. To begin with, let us suppose that Ci = Ei−1
j ∩ Ei−1

k and there not exists any

other index γ such that Ei−1
j ∩ Ei−1

γ , Ei−1
k ∩ Ei−1

γ , Ei−1
j ∩ Ei−1

k ∩ Ei−1
γ ̸= ∅. Since

Ei−1
j ∩ Ei−1

k ̸= ∅, then some of the following characterizations holds:

A either Cj −→ Ck (or vice versa), and
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A.i either dim(Cj) = 0 (dim(Ck) = 0),

A.ii or Cj (Ck) is an exceptional curve,

A.iii or dim(Cj) = 1 (dim(Ck) = 1) but it is not an exceptional curve, that is (see

Proposition 5.3.5)

A.iii.i if δ ̸= 0, 1, then Cj (Ck) is isomorphic to either a section or a generic fiber

of Ek
k
∼= P (O(a)⊕O(a− δ)),

A.iii.ii if δ = 1, then Cj (Ck) is isomorphic to either a section, or a generic fiber

of Ek
k
∼= P (O(a)⊕O(a−1)) or to the pull-back of a conic by the morphism

π : F1 → P2

A.iii.iii if δ = 0, then Cj (Ck) is isomorphic to either a section, or a generic

fiber of Ek
k
∼= P (O(a) ⊕O(a)) or to a rational curve C whose class [C] =

nςk + (na+ 1)f ∈ A1(Ek
k ).

B or Cj
t−→ Ck (or viceversa).

In all cases, it follow from Lemma 2.2.1, that the normal bundle of Ci, NCi/Zi−1
, verifies

the following splitting:

NCi/Zi−1
= NCi/E

i−1
j

⊕NCi/E
i−1
k

.

In the subcase A.i, it follows directly that

NCi/Zi−1
= O(1)⊕O(−1),

so condition c does not hold.

In the subcase A.ii, as a consequence of Proposition 1.1.19 we have

NEj
k/Zj

∼= π∗
j,k(NEk

k/Zk
)⊗O(−Ce)⊗mj ,

where mj ∈ Z+, with mj ≥ 1, so

NCi/E
i−1
j

∼= NEj
k/Zj

|Ci
∼= O(mj + 1).

Since NCi/E
i−1
k

∼= O(−1), we can conclude that Ei
i ≇ F0, so condition c is not satisfied

either.

In the subcase A.iii, as a consequence of Proposition 1.1.19 we have that

NEj
k/Zj

∼= π∗
j,k(NEk

k/Zk
)⊗O(−Ej

k ∩ Ej
j )

⊗mj ,
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where mj ∈ Z+, with mj ≥ 1.

The case where Cj is isomorphic to a generic fiber is equivalent to the case where Ck
t−→ Cj

by Theorem 6.1.5, so we will focus on the remaining cases. Firstly, let us suppose that

Cj is isomorphic to a section of Ej−1
k . Since Ej−1

k = P (O(a)⊕O(a− δk)), then either

[Cj ] = ςk + (a− δk)f ∈ A1(Ek
j−1),

or

[Cj ] = ςk + (a+ nj)f ∈ A1(Ek
j−1),

where nj ∈ Z+. As a consequence, by Proposition 1.2.22 and Lemma 2.2.1 we have that

either

(ejk)
2 · ejj = jEj

k∗
((ςk + (a− δk)f) · (−(1 +mj)ςk −mj(a− δk)f)),

= jEj
k∗
((a+mjδk)ςk · f);

ejk · (e
j
j)

2 = jEj
j∗
(c1(NEj

j/Zj
) ·

[
Ej
k ∩ Ej

j

]
j
),

= jEj
k∗
((ςk +mj(a− δk)f)

2),

= jEj
k∗
((−δk)ςk · f);

or

(ejk)
2 · ejj = jEj

k∗
((ςk + (a+ nj)f) · (−(1 +mj)ςk −mj(a+ nj)f)),

= jEj
k∗
((a− (1 +mj)δk − (1 + 2mj)nj)ςk · f);

ejk · (e
j
j)

2 = jEj
j∗
(c1(NEj

j/Zj
) ·

[
Ej
k ∩ Ej

j

]
j
),

= jEj
k∗
((ςk +mj(a+ nj)f)

2),

= jEj
k∗
((δk + 2nj)ςk · f).

Thus, it follows that either NCi/Zi−1
∼= O(a+mjδ)⊕O(−δ) or NCi/Zi−1

∼= O((a− (1 +

mj)δ − (1 + 2mj)n)⊕ (δ + 2n). In the former case Ei
i
∼= F0 only if a = −(mj + 1)δ, but

by an analogous reasoning to that of Proposition 6.1.11 this would lead to a sequence of

centers {Cµ} with negative normal bundle, which is an absurd. In the latter case, even

if there exists values of a > 0 such that Ei
i
∼= F0, condition d fails to be true.

Now, if Cj is isomorphic to the pull-back of a conic by the morphism π : F1 → P2, so

Ej−1
k = P (O(a)⊕O(a− 1)), then

[Cj ] = 2ςk + 2af ∈ A1(Ek
j−1),
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and as a consequence of Proposition 1.1.19 we have

NEj
k/Zj

∼= π∗
j,k(NEk

k/Zk
)⊗O(−Ej

k ∩ Ej
j )

⊗mj ,

where mj ∈ Z+, with mj ≥ 1. Now, by Proposition 1.2.22 and Lemma 2.2.1 we have

that

(ejk)
2 · ejj = jEj

k∗
((2ςk + 2af) · (−(1 + 2mj)ςk − 2amjf)),

= jEj
k∗
((2a− 2− 4mj)ςk · f);

ejk · (e
j
j)

2 = jEj
j∗
(c1(NEj

j/Zj
) ·

[
Ej
k ∩ Ej

j

]
j
),

= jEj
k∗
((2ςk + 2af)2),

= jEj
k∗
(4ςk · f);

so we can conclude that even if there exists some values of a > 0 such that Ei
i
∼= F0,

condition d does not hold for these ones.

Finally, if δk = 0 and Cj = C, then by Proposition 1.2.22 and Lemma 2.2.1 we have that

(ejk)
2 · ejj = jEj

k∗
((njςk + (nja+ 1)f) · (−(1 + njmj)ςk −mj(nja+ 1)f)),

= jEj
k∗
((nja− 2njmj − 1)ςk · f);

ejk · (e
j
j)

2 = jEj
j∗
(c1(NEj

j/Zj
) ·

[
Ej
k ∩ Ej

j

]
j
),

= jEj
k∗
((njςk + (nja+ 1)f)2),

= jEj
k∗
((2nj)ςk · f),

so we can conclude, as in the previous case, that even if there exists some values of a > 0

such that Ei
i
∼= F0, condition d fails to be true for these ones either.

In the case B, since Cj
t−→ Ck then it follows directly that

NCi/Zi−1
∼= O ⊕O(−1),

so condition c, that is Ei
i
∼= F0, does not hold.

Corollary 6.2.2. Let Eα
i be an irreducible exceptional component of a sequence of point

and rational curve blow-ups (Z0, ..., Zα, π), verifying the conditions of Proposition 6.2.1,

that is:
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a Eα
i is final, with base a “new” curve Ci,

b there exists two indexes j and k, such that Ci −→ Cj and Ci −→ Ck,

c Eα
i
∼= F0,

d and (eαi )
3 > 0.

If (eαi )2 · eαj = (eαi )
2 · eαk = −λ, for λ ∈ Z+, and all the centers associated to the set of

indexes {γ} in Proposition 6.2.1 verify dim(Cγ) = 0, then the cardinal # {γ} verifies

# {γ} ≥ λ+ 1.

Proof. It follows from the proof of Proposition 6.2.1 that if Eα
i is final, it satisfies con-

dition c, and it does not exists any index γ such that Ei−1
j ∩ Ei−1

γ , Ei−1
k ∩ Ei−1

γ , Ei−1
j ∩

Ei−1
k ∩Ei−1

γ ̸= ∅, then Eα
i = P (O(a)⊕O(a)), with a ≥ 1. Let us consider Cγ ∈ Ej

j ∩Ej
k,

where dim(Cγ) = 0. Now, as a consequence of Proposition 1.1.19 we have that the

normal bundle NCγ
i /Zγ

verifies

NC̃γ
i /Zγ

∼= π∗
γ,j(NCi/Zj

)⊗O(−Cγ
i ∩ Eγ

γ ),

so

NC̃γ
i /Zγ

∼= O(a− 1)⊕O(a− 1).

By induction, if we denote by N to the cardinal # {γ}, it follows that

NC̃γ+N−1
i /Zγ+N−1

∼= O(a−N)⊕O(a−N),

so N > a in order to satisfy condition d. Moreover, by Proposition 1.2.22 we have that

(eαi )
2 · eαj = jEα

i ∗((ςi + (a−N)f) · −ςi),

= jEα
i ∗((a−N)ςi · f);

(eαi )
2 · eαk = jEα

i ∗((ςi + (a−N)f) · −ςi),

= jEα
i ∗((a−N)ςi · f).

Since a ≥ 1, if (eαi )2 · eαj = (eαi )
2 · eαk = −λ then it follows that N ≥ λ+ 1.

Lemma 6.2.3. Let Eα
i be an irreducible exceptional component of a sequence of point

and rational curve blow-ups (Z0, ..., Zα, π), verifying the following conditions:
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a Eα
i is final, with base a “new” curve Ci,

b there exists just two indexes j and k, such that Eα
i ∩Eα

j , E
α
i ∩Eα

k ̸= ∅, and Ci −→ Cj

and Ci
t−→ Ck,

c Eα
i
∼= F0,

d and the following conditions are satisfied: (eαi )
3 > 0, (eαi )2 · eαj = (eαi )

2 · eαk .

Then Ci is isomorphic to a fiber of Ej
j , Ck

t−→ Cj and (eαi )
3 = 2.

Proof. Firstly, since Eα
i
∼= F0, in particular Eα

i = P (O(a) ⊕ O(a)) for some a ∈ Z. As

by the hypothesis Eα
i is final, then NEα

i /Zα
∼= OEα

i
(−1) so we have that

(eαi )
3 = jEα

i ∗((−ςi)
2),

= jEα
i ∗((−2a)ςi · f).

Since (eαi )
3 > 0, it follows that a < 0. Moreover, as a consequence of Lemma 2.2.1, the

normal bundle of Ci, NCi/Zi−1
, verifies the following splitting:

NCi/Zi−1
∼= NCi/E

i−1
j

⊕NEi−1
j /Zi−1

|Ci
,

Since Ei−1
j ∩ Ei−1

k ̸= ∅, then one of the following conditions holds:

A either Ck −→ Cj , with dim(Ck) = 1 (or vice versa),

B or Ck
t−→ Cj (or vice versa).

In the case A, as a consequence of Proposition 1.1.19, we have that NEk
j /Zk

= π∗
k(NEk−1

j /Zk−1
)⊗

O(−Ek
j ∩ Ek

k ), so

c1(NEi−1
j /Zi−1

|Ci
) = π∗

i−1,k−1(c1(NEk−1
j /Zk−1

) · [Ci]) + π∗
i−1,k(−

[
Ek
j ∩ Ek

k

]
· [Ci]).

Now, by Propositions 1.2.33 and 1.2.22 we have that

(eii)
2 · eik = jEi

i∗(
[
Ci−1
i

]
· Ei−1

k · c1(NEi
i/Zi

)),

= π∗
i−1,k(−

[
Ek
j ∩ Ek

k

]
·
[
Ck
i

]
),

= −a,
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so it follows that π∗
i−1,k−1(c1(NEk−1

j /Zk−1
) ·

[
Ck−1
i

]
) = 0. Thus, we have that Ei−1

j =

P (O ⊕ O(−a)). From condition b, Cj is an unmodified “old” curve, but then we get to

a contradiction by Proposition 5.4.3.

In the case B, since the blow-up πk : Zk → Zk−1 is an intrinsic elementary modification

of Ek−1
j , then we have that

NCi−1
i /Ei−1

j

∼= π∗
i,k−1(NCk−1

i /Ek−1
j

)⊗O(−Ek
j ∩ Ek

k ∩ Ci),

and since c1(NCi−1
i /Ei−1

j
) = −a, then it follows that π∗

i−1,k−1(c1(NCk−1
i /Ek−1

j
)) = 0. As a

result, we have that either Ci is isomorphic to a fiber of Ek−1
j or Ek−1

j
∼= F0 and Ck−1

i is

isomorphic to a section S0. In the latter case, we have that Ek
j = P (O(−a)⊕O(−a)), so

by Proposition 6.1.11 there must exists some other index γ verifying Ek
j ∩Ek

k ∩Ek
γ ̸= ∅.

In the former case, we have that NEk
j /Zk

|Ck
i

∼= O(−1), so it follows

NCk
i /Zk

= O(−1)⊕O(−1),

and condition (eαi )
3 = 2 is satisfied.

Proposition 6.2.4. Let Eα
i be the irreducible exceptional component of a sequence of

point and rational curve blow-ups (Z0, ..., Zα, π). If Eα
i is final and there exists an index

γ such that the following relations hold

a (eαi )
3 = c,

b (eαi )
2 · eαγ = −c,

c eαi · (eαγ )2 = c,

with c ∈ Z+, then there must exist some other index λ, with λ ̸= γ, verifying Eα
i ∩Eα

λ ̸= ∅.

Proof. Let us suppose that γ is the only index such that Eα
i ∩ Eα

γ ̸= ∅. There must

exist an integer a ∈ Z+ such that NCi/Zi−1
∼= O(a)⊕O(a− δi), so Eα

i
∼= Fδi . Moreover,

since by the hypothesis Eα
i is final, then Eα

i ∩ Eα
γ must be isomorphic to a section of

Eα
i . As eαi · (eαγ )2 = c > 0, then the class of Eα

i ∩ Eα
γ in A1(Eα

i ) must be of the form[
Eα
i ∩ Eα

γ

]
= ςi + (a + nγ)f . Now, as a consequence of Proposition 2.3.7 we have that
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NEα
i /Zα

∼= OEα
i
(−1), so

(eαi )
3 = jEα

i ∗((−ςi)
2),

= jEα
i ∗(−2a+ δi)ςi · f);

(eαi )
2 · eαγ = jEα

i ∗(−ςi · (ςi + (a+ nγ)f)),

= jEα
i ∗((a− δi − nγ)ςi · f);

eαi · (eαγ )2 = jEα
i ∗((ςi + (a+ nγ)f)

2),

= jEα
i ∗((δi + 2nγ)ςi · f),

Then, we have that

−2a+ δi = c

a− δi − nγ = −c

δi + 2nγ = c,

and by solving the following linear system we get to a = 0, δi = c, and nγ = 0, so

Eα
i
∼= Fc. Moreover, eαi )2 · eαγ = −c < 0, so Ci must be isomorphic to the unique section

of Eγ
γ with negative self-intersection. Since we are just considering points and rational

curves as centers of the blow-ups, we have that Eγ
γ
∼= Fδγ , so in particular there exits an

integer b ∈ Z such that NCγ/Zγ−1
∼= O(b) ⊕ O(b − δγ). Then, Ci is associated with the

line subbundle of maximal degree and its class [Ci] in A1(Ei−1
γ ) satisfies:

[Ci] = ςγ + (b− δγ)f,

so we have that

c1(NEi−1
γ /Zi−1

|Ci
= b,

[Ci] · [Ci] = −δγ .

This fact lead us to conclude that it must be verified b = 0 and δγ = c. As a consequence

of Proposition 5.4.3, Cγ must be a “new curve”, that is, there must exists a curve Cµ such

that Cγ −→ Cµ . As we are supposing that that γ is the only index such that Eα
i ∩Eα

γ ̸= ∅,

then it must be verified that eγγ · (eγµ)2 = c, so Cγ must be isomorphic to the unique

section of Eγ−1
µ with negative self-intersection. Reasoning in an analogous manner as

above, we can conclude that NCµ/Zµ−1
∼= O ⊕ O(−c), so the hypothesis considering γ

as the only index such that Eα
i ∩ Eα

γ ̸= ∅ led us to a sequence of centers {Cν} verifying

NCν/Zν−1
∼= O ⊕O(−c), which has non sense as a consequence of Proposition 5.4.3.
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Corollary 6.2.5. Let Eα
i = P (O ⊕ O(−1)) be an irreducible exceptional component of

a sequence of point and rational curve blow-ups (Z0, ..., Zα, π). If Eα
i is final and there

exists an index γ such that Ci → Cγ , with Ci non isomorphic to a fiber of Ei−1
γ , and

(eαi )
2 ·eαγ = −1, then there exists some other index λ, with λ ̸= γ, verifying Eα

i ∩Eα
λ ̸= ∅.

Proposition 6.2.6. Given a sequence of point and rational curve blow-ups (Zα, ..., Z0, π),

let Eα
i ⊂ Zα be an irreducible exceptional component . Furthermore, let us suppose that

the following conditions are satisfied:

a There exists just two indexes j, k, with Eα
i ∩Eα

j ̸= ∅ and Eα
i ∩Eα

k ̸= ∅, that verify

the following conditions:

a.i (eαk )
2 · eαi = −(eαj )

2 · eαi ,

a.ii eαk · (eαi )2 = eαj · (eαi )2 + (eαj )
2 · eαi ,

a.iii and (eαj + eαi )
2 · eαi = (eαk + eαi )

2 · eαi = 0,

a.iv eαi · eαj · eαk = 0.

b there exists at most one index β, with Eα
i ∩ Eα

β ̸= ∅, such that eαi · (eαβ)2 < 0, if

(eαj )
2 · eαi ̸= 0, (eαk )

2 · eαi ̸= 0, otherwise such an index does not exist,

c if there exists any other index γ, with γ ̸= j, k, such that Eα
i ∩ Eα

γ ̸= ∅, then the

following relations are satisfied, where η ∈ Z+:

(eαi )
2 · eαγ = −η

eαi · (eαγ )2 = 0

eαi · eαj · eαγ = eαi · eαk · eαγ = η.

d and in the particular case where (eαk )
2 · eαi = (eαj )

2 · eαi = 0, with eαk · (eαi )2 =

eαj · (eαi )2 = −λ, for some λ ∈ Z+, if the following relations hold:

(eαγ )
2 · eαj = −1,

eαγ · (eαj )2 = 0,

(eαγ )
2 · eαk = −1,

eαγ · (eαk )2 = 0,

thus # {γ} ≥ λ+ 1.
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Then Eα
i
∼= Fδ, with δ =

∣∣(eαj )2 · eαi ∣∣ = ∣∣(eαk )2 · eαi ∣∣, and NEα
i /Zα

∼= OEα
i
(−1).

Proof. By our hypotheses about the centers of the sequences of blow-ups we are working

with, if we denote by Ci,j = Eα
j ∩ Eα

i and Ci,k = Eα
k ∩ Eα

i , then both Ci,j , Ci,k must

be rational curves. Moreover, if we denote by [Ci,j ] , [Ci,k] to the classes of Ci,j , Ci,k in

A1(Eα
i ), then condition a.i implies that ([Ci,k])2 = −([Ci,j ])2, so it follows from condition

a.iv that [Ci,j ] · [Ci,k] = 0. Let us suppose that eαi · (eαj )2 ≥ 0. Note that if (eαj )2 · eαi > 0,

then by condition b there can not exists any other index γ, with γ ̸= k, such that

Eα
i ∩ Eα

γ ̸= ∅ and verifying eαi · (eαγ )2 < 0. This fact led us to distinguish between the

three following cases:

A (eαj )
2 · eαi = (eαk )

2 · eαi = 0.

B (eαj )
2 · eαi , (eαk )2 · eαi = ±1.

C (eαj )
2 · eαi , (eαk )2 · eαi ̸= 0,±1,

Firstly, we consider the case C. Let us suppose then that (eαj )2 ·eαi = λ > 1. As conditions

a.i and a.iv are both satisfied, then it follows from Proposition 5.3.5 and Theorem 5.3.3

that some of the following characterizations hold:

C.i either Eα
i
∼= Fδi , with δi = λ, in particular Eα

i
∼= P (O(a) ⊕ O(a − δi)), and

Ci,j ⊂ Eα
i is isomorphic to the section corresponding to the line subbundle

O(a− δi) so

[Ci,j ] = ςi + af ∈ A1(Eα
i ),

and Ci,k ⊂ Eα
i is isomorphic to the section corresponding to the maximal line

subbundle O(a), that is

[Ci,k] = ςi + (a− δi)f ∈ A1(Eα
i ).

C.ii or Eα
i
∼= Fδi , with λ = δi+2n for some n ∈ Z+, in particular Eα

i
∼= P (O(a)⊕

O(a − δi)), and Ci,j ⊂ Eα
i must be isomorphic to the section corresponding

to the line subbundle O(a− δi − n) so

[Ci,j ] = ςi + (a+ n)f ∈ A1(Eα
i ),
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and Ck
t−→ Ci, so Ci,k ⊂ Eα

i is isomorphic to λ fibers of Eα
k , and

[Ci,k] = λf ∈ A1(Eα
k ),

C.iii or if
√
λ ∈ Z+, Eα

i is a birational model of P2, and Ci,j ⊂ Eα
i is isomorphic

to a rational curve of degree
√
λ and Ck

t−→ Ci, so Ci,k ⊂ Eα
i is isomorphic to

λ fibers of Eα
k , and

[Ci,k] = λf ∈ A1(Eα
k ),

In the subcase C.i, let us suppose that NEα
i /Zα

≇ OEα
i
(−1). Then, there must exists an

extrinsic modification of Ei
i , that is, either Cj −→ Ci, or Ck −→ Ci, or Cj , Ck −→ Ci. Now,

it follows from Proposition 1.1.19 that

NEα
i /Zα

∼= π∗
α,i(NEi

i/Zi
)⊗ (O(χi,j(−Eα

i ∩ Eα
j )))

⊗mj ⊗ (O(χi,k(−Eα
i ∩ Eα

k )))
⊗mk ,

where mj ,mk ∈ Z+, with mj ,mk ≥ 1, and either χi,j = 1 or χi,k = 1 or χi,j = χi,k = 1,

so by Proposition 1.2.22

(eαi )
2 · eαj = jEα

i ∗((ςi + af) · (−(1 + χi,jmj + χi,kmk)ςi − (χi,jmja+ χi,kmk(a− δi))f)),

= jEα
i ∗((a− δi(1 + χi,jmj + χi,k2mk))ςi · f),

and

(eαi )
2 · eαk = jEα

i ∗((ςi + (a− δi)f) · (−(1 + χi,jmj + χi,kmk)ςi − (χi,jmja+ χi,kmk(a− δi))f))

= jEα
i ∗((a− δi(χi,kmk))ςi · f).

As a result, condition a.ii does not hold since by our hypothesis either χi,j or χi,k are

not 0.

In the subcase C.ii, since Ck
t−→ Ci, by Proposition 1.2.22 we have that

(eαi )
2 · eαk = jEα

i ∗(c1(NEα
i /Zα

|Eα
i ∩Eα

k
)ςi · f),

= jEα
i ∗(0ςi · f),

so in order to satisfy condition a.ii (eαi )2 ·eαj = −λ. Moreover, in order to satisfy condition

a.iii then (eαi )
3 = λ. It then follows, as a consequence of Proposition 6.2.4, that there

must exist some index γ, with γ ̸= j, such that Eα
i ∩Eα

γ ̸= ∅, and verifying either Ci −→ Cγ

or Ci
t−→ Cγ . In the former case, since Ci −→ Cj and Ci −→ Cγ , then by Proposition 6.1.7
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we have that eαi · (eαγ )2 = −λ, so condition b fails to be true. In the latter case, that is

Ci
t−→ Cγ , in order to satisfy condition c, then Ck −→ Cγ , so by Proposition 1.2.33

(ekγ)
2 · eki = (π∗

k(e
k−1
γ )− ekk)

2 · π∗
k(e

k−1
i ),

= (ekk)
2 · eki .

We can conclude then that (eαγ )
2 · eαi ̸= 0, so condition c does not hold.

In the subcase C.iii, since Ck
t−→ Ci, then by Proposition 1.2.22 we have that

(eαi )
2 · eαk = jEα

i ∗(c1(NEα
i /Zα

|Eα
i ∩Eα

k
)ςi · f),

= jEα
i ∗(0ςi · f),

so in order to satisfy condition a.ii (eαi )2 ·eαj = −λ. Moreover, in order to satisfy condition

a.iii then (eαi )
3 = λ. Now, as a consequence of Proposition 6.2.4 there must exist some

index γ, with γ ̸= j, such that Eα
i ∩ Eα

γ ̸= ∅, and verifying either Ci −→ Cγ or Ci
t−→ Cγ .

In the former case, since Ci −→ Cj and Ci −→ Cγ , then by Proposition 6.1.7 we have that

eαi · (eαγ )2 = −λ, so condition b fails to be true. In the latter case, that is Ci
t−→ Cγ , in

order to satisfy condition c, then Ck −→ Cγ , so by Proposition 1.2.33

(ekγ)
2 · eki = (π∗

k(e
k−1
γ )− ekk)

2 · π∗
α(e

k−1
i ),

= (ekk)
2 · eki .

As a result, we have that (eαγ )
2 · eαi ̸= 0, so condition c is not satisfied.

Now, let us consider the case B. To begin with, let us suppose that (eαj )2 · eαi = 1. Then,

as a consequence of Proposition 5.3.5 and Theorem 5.3.3, conditions a.i and a.iv imply

that Eα
i must be either a birational model of P2 or a birational model of F1, so one of

the following characterizations holds:

B.i either Eα
i

∼= F1, in particular Eα
i

∼= P (O(a) ⊕ O(a − 1)), and Ci,j ⊂ Eα
i is

isomorphic to the section corresponding to the line subbundle O(a− 1) so

[Ci,j ] = ςi + af ∈ A1(Eα
i ),

and Ci,k ⊂ Eα
i is isomorphic to the section corresponding to the maximal line

subbundle O(a), that is

[Ci,k] = ςi + (a− 1)f ∈ A1(Eα
i ),
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B.ii or Eα
i

∼= F1, in particular Eα
i

∼= P (O(a) ⊕ O(a − 1)), and Ci,j ⊂ Eα
i is

isomorphic to the section corresponding to the line subbundle O(a− 1) so

[Ci,j ] = ςi + af ∈ A1(Eα
i ),

and Ck
t−→ Ci, so Ci,k ⊂ Eα

i is isomorphic to an exceptional curve, and

[Ci,k] = ei,k ∈ A1(Eα
i ),

B.iii or Eα
i
∼= F1, in particular Eα

i
∼= P (O(a)⊕O(a− 1)), and Ci,j ⊂ Eα

i must be

isomorphic to the section corresponding to the line subbundle O(a− 1) so

[Ci,j ] = ςi + af ∈ A1(Eα
i ),

and Ck −→ Ci, with dim(Ck) = 0, so Ci,k ⊂ Eα
i is isomorphic to an exceptional

curve, and

[Ci,k] = ei,k ∈ A1(Eα
i ),

B.iv or Eα
i

∼= F1, in particular Eα
i

∼= P (O(a) ⊕ O(a − 1)), and Ci,j ⊂ Eα
i is

isomorphic to the section corresponding to the line subbundle O(a− 1), so

[Ci,j ] = ςi + af ∈ A1(Eα
i ),

and Ck −→ Ci, with dim(Ck) = 1, so Ci,k ⊂ Eα
i is isomorphic to the exceptional

curve Ck, and

[Ci,k] = [Ck] ∈ A1(Eα
i ).

In the subcase B.i, let us suppose that NEα
i /Zα

≇ OEα
i
(−1). Then, there must exist

an extrinsic elementary modification of Ei
i , that is, either Cj −→ Ci, or Ck −→ Ci, or

Cj , Ck −→ Ci. Now, it follows from Proposition 1.1.19 that

NEα
i /Zα

∼= π∗
α,i(NEi

i/Zi
)⊗ (O(χi,j(−Eα

i ∩ Eα
j )))

⊗mj ⊗ (O(χi,k(−Eα
i ∩ Eα

k )))
⊗mk ,

where mj ,mk ∈ Z+ and mj ,mk ≥ 1 and either χi,j = 1 or χi,k = 1 or χi,j = χi,k = 1.

Now, by Proposition 1.2.22 we have that

(eαi )
2 · eαj = jEα

i ∗((ςi + af) · (−(1 + χi,jmj + χi,kmk)ςi − (χi,jmja+ χi,kmk(a− 1))f)),

= jEα
i ∗((a− 1(1 + χi,jmj + χi,k2mk))ςi · f),
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and

(eαi )
2 · eαk = jEα

i ∗((ςi + (a− δ)f) · (−(1 + χi,jmj + χi,kmk)ςi − (χi,jmja+ χi,kmk(a− 1))f))

= jEα
i ∗((a− 1(χi,kmk))ςi · f).

We can conclude then that condition a.ii does not hold since by our hypothesis either

χi,j or χi,k are not 0 .

In the subcase B.ii, since Ck
t−→ Ci, then by Proposition 1.2.22 we have that

(eαi )
2 · eαk = jEα

i ∗(c1(NEα
i /Zα

|Eα
i ∩Eα

k
)ςi · f),

= jEα
i ∗(0ςi · f),

so in order to satisfy condition a.ii then (eαi )
2 · eαj = −1. Moreover, in order to satisfy

condition a.iii t(eαi )3 = 1 must be satisfied. It then follows, as a consequence of Proposi-

tion 6.2.4 there must exist some index γ, with γ ̸= j, such that Eα
i ∩ Eα

γ ̸= ∅, verifying

either Ci −→ Cγ or Ci
t−→ Cγ . In the former case, since Ci −→ Cj and Ci −→ Cγ , then

by Proposition 6.1.7 we have that eαi · (eαγ )2 = −1, so condition b fails to be true. In

the latter case, that is Ci
t−→ Cγ , in order to satisfy condition c, then Ck −→ Cγ , so by

Proposition 1.2.33

(ekγ)
2 · eki = (π∗

k(e
k−1
γ )− ekk)

2 · π∗
α(e

k−1
i ),

= (ekk)
2 · eki .

We can conclude then that (eαγ )
2 · eαi ̸= 0, so condition c does not hold.

In the subcase B.iii, since Ck −→ Ci, with dim(Ck) = 0, we have by Proposition 1.2.33

(eki )
2 · ekk = (π∗

k(e
k−1
i )− ekk)

2 · ekk,

= (ekk)
3;

eki · (ekk)2 = (π∗
k(e

k−1
i )− ekk) · (ekk)2,

= −(ekk)
3,

and

(eki )
3 = (π∗

k(e
k−1
i )− ekk)

3,

= (π∗
k(e

k−1
i ))3 − (ekk)

3;

so in order to satisfy condition a.ii (eαi )2 · eαj = 0. Moreover, in order to satisfy condition

a.iii then (eαi )
3 = −1 must hold, so (ek−1

i )3 = 0. Since [Ci,j ] = ςi + af ∈ A1(Eα
i ), as a
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consequence of Proposition 1.1.19 we have that

NEα
i /Zα

∼= π∗
α,i(NEi

i/Zi
)⊗ (O(χi,j(−Eα

i ∩ Eα
j )))

⊗mj ⊗ (O(−Eα
i ∩ Eα

k )),

where mj ∈ Z+, with mj ≥ 1, and χi,j ∈ {0, 1}, so by Proposition 1.2.22

(eαi )
2 · eαj = jEα

i ∗((ςi + af) · (−(1 + χi,jmj)ςi − (χi,jmja)f − [Ci,k])),

= jEα
i ∗((a− 1− χi,jmj)ςi · f),

and

(eαi )
3 = jEα

i ∗((−(1 + χi,jmj)ςi − (χi,jmja)f − [Ci,k])
2),

= jEα
i ∗((−2a(χi,jmj + 1) + (1 + χi,jmj)

2 − 1)ςi · f).

It then follows that either condition a.ii or condition a.iii does not hold.

In the subcase B.iv, since Ck −→ Ci, with Ck isomorphic to an exceptional curve, then as

a consequence of Proposition 1.1.19 we have that

NEα
i /Zα

∼= π∗
α,i(NEi

i/Zi
)⊗ (O(χi,j(−Eα

i ∩ Eα
j )))

⊗mj ⊗ (O(−Eα
i ∩ Eα

k ))
⊗mk ,

where where mj ,mk ∈ Z+, with mj ,mk ≥ 1, and χi,j ∈ {0, 1}, so by Propostion 1.2.22

(eαi )
2 · eαk = jEα

i ∗([Ci,k] · (−(1 + χi,jmj)ςi − (χi,jmja)f −mk [Ci,k])),

= jEα
i ∗(−mk [Ci,k]2 ςi · f);

(eαi )
2 · eαj = jEα

i ∗((ςi + af) · (−(1 + χi,jmj)ςi − (χi,jmja)f −mk [Ci,k])),

= jEα
i ∗((a− 1− χi,jmj)ςi · f),

and

(eαi )
3 = jEα

i ∗((−(1 + χi,jmj)ςi − (χi,jmja)f −mk [Ci,k])2),

= jEα
i ∗(((−2a(χi,jmj + 1) + (1 + χi,jmj)

2)− (mk)
2)ςi · f).

As a consequence, either condition a.ii or condition a.iii does not hold. Finally, let us

consider the case A. Since [Ci,j ] · [Ci,j ] = [Ci,k] · [Ci,k] = 0 in A0(Eα
i ), and conditions b and

a.iv are satisfied, then it follows from Proposition 5.3.5 and Theorem 5.3.3 that some of

the following characterizations holds:

A.i either Eα
i is a birational model of Fδ and [Ci,j ] , [Ci,k] are isomorphic to two

fibers of Ei
i , so

[Ci,j ] = f ∈ A1(Eα
i ), (6.30)
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and

[Ci,k] = f ∈ A1(Eα
i ), (6.31)

A.ii or Eα
i is a birational model of F0, in particular Eα

i
∼= P (O(a) ⊕ O(a)), and

Ci,j , Ci,k ⊂ Eα
i are isomorphic to two sections corresponding to the line sub-

bundle O(a) so

[Ci,j ] = ςi + af ∈ A1(Eα
i ),

and

[Ci,k] = ςi + af ∈ A1(Eα
i ).

In the subcase A.i, if NEα
i /Zα

≇ O(−1), then by Proposition 1.1.19 there must exist some

index γ, such that Cγ −→ Ci. In order to satisfy condition c, then δi = 0, in particular

Eα
i
∼= P (O(a)⊕O(a)), and Ci,γ must be isomorphic to the section corresponding to the

line subbundle O(a), so

[Ci,γ ] = ςi + af ∈ A1(Eα
i ), (6.32)

. Now, we should distingish between the two following cases:

A.i.i either Cγ
t−→ Cj and Cγ

t−→ Ck,

A.i.ii or Cj
t−→ Cγ and Ck

t−→ Cγ .

In the subcase A.i.i, as a consequence of Theorem 6.1.5 NEγ−1
i /Zγ−1

∼= OEγ−1
i /Zγ−1

(−1),

so it follows from Proposition 1.1.19 that

NEα
i /Zα

∼= π∗
α,γ−1(NEγ−1

i /Zγ−1
)⊗O(−Eα

i ∩ Eα
γ )

⊗mγ ,

where mγ ∈ Z+, with mγ ≥ 1. Thus, by Proposition 1.2.22 we have that

(eαi )
2 · eαγ = jEα

i ∗((ςi + af) · (−(1 +mγ)ςi − (mγa)f)),

= jEα
i ∗(aςi · f);

(eαi )
2 · eαj = jEα

i ∗(f · (−(1 +mγ)ςi − (mγa)f)),

= jEα
i ∗((−1−mγ)ςi · f);

(eαi )
2 · eαk = jEα

i ∗(f · (−(1 +mγ)ςi − (mγa)f)),

= jEα
i ∗((−1−mγ)ςi · f);
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and

(eαi )
3 = jEα

i ∗((−(1 +mγ)ςi − (mγa)f)
2),

= jEα
i ∗((−2a)(mγ + 1)ςi · f).

. Moreover, we know that

eαi · eαj · eαγ = jEα
i ∗((ςi + af) · f),

= jEα
i ∗(1ςi · f),

eαi · eαk · eαγ = jEα
i ∗((ςi + af) · f),

= jEα
i ∗(1ςi · f).

As a result, conditions a.i, a.ii, a.iii, a.iv and b hold if mγ = 1 and a = −1. However, as

Cγ is t−proximate to both Cj and Ck, then we have that

(eαγ )
2 · eαj = jEα

γ ∗(f · −ςγ),

= jEα
γ ∗((−1)ςγ · f),

eαγ · (eαj )2 = jEα
γ ∗(f · f),

= jEα
γ ∗(0ςγ · f),

(eαγ )
2 · eαk = jEα

γ ∗(f · −ςγ),

= jEα
γ ∗((−1)ςγ · f),

eαγ · (eαk )2 = jEα
γ ∗(f · f),

= jEα
γ ∗(0ςγ · f).

Thus, condition d does not hold since # {γ} = 1 <
∣∣(eαi )2 · eαj ∣∣.

In the subcase A.i.ii, since Cj , Ck and Cγ are all proximate to Ci, as a consequence of

Proposition 1.1.19 we have that

NEα
i /Zα

∼= π∗
α,i(NEi

i/Zi
)⊗O(−Eα

i ∩ Eα
j )⊗O(−Eα

i ∩ Eα
k )⊗O(−Eα

i ∩ Eα
γ ),
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so by Proposition 1.2.22

(eαi )
2 · eαj = jEα

i ∗(f · −(1 +mγ)ςi − (mγa+ 2)f),

= jEα
i ∗(−(1 +mγ)ςi · f),

(eαi )
2 · eαk = jEα

i ∗(f · −(1 +mγ)ςi − (mγa+ 2)f),

= jEα
i ∗(−(1 +mγ)ςi · f),

(eαi )
2 · eαγ = jEα

i ∗((ςi + af) · −(1 +mγ)ςi − (mγa+ 2)f),

= jEα
i ∗(aςi · f);

and

(eαi )
3 = jEα

i ∗((−(1 +mγ)ςi − (mγa+ 2)f)2),

= jEα
i ∗((−2a(1 +mγ) + 4(1 +mγ))ςi · f).

As a result, condition a.iii holds only if a = 1, but in this case condition c fails to be

true.

In the subcase A.ii, let us suppose that NEα
i /Zα

≇ OEα
i
(−1). Then, there must exist

an extrinsic elementary modification of Ei
i , that is, either Cj −→ Ci, or Ck −→ Ci, or

Cj , Ck −→ Ci. Now, it follows from Proposition 1.1.19 that

NEα
i /Zα

∼= π∗
α,i(NEi

i/Zi
)⊗ (O(χi,j(−Eα

i ∩ Eα
j )))

⊗mj ⊗ (O(χi,k(−Eα
i ∩ Eα

k )))
⊗mk ,

where mj ,mk ∈ Z+, with mj ,mk ≥ 1, and either χi,j = 1 or χi,k = 1 or χi,j = χi,k = 1.

Now, by Proposition 1.2.22

(eαi )
2 · eαj = jEα

i ∗((ςi + af) · (−(1 + χi,jmj + χi,kmk)ςi − (a(χi,jmj + χi,kmk)f)),

= jEα
i ∗(aςi · f);

(eαi )
2 · eαk = jEα

i ∗((ςi + (a− δ)f) · (−(1 + χi,jmj + χi,kmk)ςi − (a(χi,jmj + χi,kmk)f))

= jEα
i ∗(aςi · f);

and

(eαi )
3 = jEα

i ∗((−(1 + χi,jmj + χi,kmk)ςi − (a(χi,jmj + χi,kmk)f))
2),

= jEα
i ∗((−2a(1 + χi,jmj + χi,kmk))ςi · f),
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We can conclude then that condition a.iii does not hold since by our hypothesis either

χi,j or χi,k are not 0 .

As we will see later in this section, the conditions of Proposition 6.2.6 imply that Eα
i has

an admissible final configuration for the sequential morphism πα : Zα → Z0.

Proposition 6.2.7. Let Eα
i ⊂ Zα be the strict transform of the exceptional irreducible

component Ei
i . Let us suppose that the following conditions hold:

a there exists two indexes j, k, with Eα
i ∩ Eα

j ̸= ∅ and Eα
i ∩ Eα

k ̸= ∅, verifying

a.i (eαj )
2 · eαi = (eαk )

2 · eαi = 1,

a.ii eαj · (eαi )2 = eαk · (eαi )2 = −1,

a.iii ei · ej · ek = 1,

a.iv and (eαi + eαj )
2 · eαi = (eαi + eαk )

2 · eαi = 0.

b if there exists any other index γ, with γ ̸= j, k, such that Eα
i ∩Eα

γ ̸= ∅, the following

relations are satisfied:

(eαi )
2 · eαγ = −1, (6.33)

eαi · (eαγ )2 = 1, (6.34)

eαi · eαj · eαγ = eαi · eαk · eαγ = 1. (6.35)

Then Eα
i
∼= P2 and NEα

i /Zα
∼= OEα

i
(−1).

Proof. Firstly, by our hypothesis about the centers of the sequence of blow-ups, Eα
i must

be a birational model of either P2 or Fδ. As a consequence of Proposition 5.3.5 and Theo-

rem 5.3.3, conditions a.i and b imply that Eα
i
∼= P2 and

[
Eα
i ∩ Eα

j

]
, [Eα

i ∩ Eα
k ] ,

[
Eα
i ∩ Eα

γ

]
=

ςi in A1(Eα
i ). Let us suppose then that there exists at least one index λ ∈ {j, k, γ} such

that Cλ −→ Ci. Then, by Proposition 1.1.19 we have

NEα
i /Zα

∼= π∗
α,i|Ei

i
(NEi

i/Zi
)⊗O(χi,j(−Eα

i ∩Eα
j ))

⊗mj⊗O(χi,k(−Eα
i ∩Eα

k ))
⊗mk⊗O(χi,γ(−Eα

i ∩Eα
γ ))

⊗mγ ,
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where mj ,mk,mγ ∈ Z+, with mj ,mk,mγ ≥ 1, and either χi,j or χi,k or χi,γ are not

equal to 0. By applying Proposition 1.2.22 we have that

(eαi )
2 · eαj = jEα

i ∗(ςi · (−(1 + χi,jmj + χi,kmk + χi,γmγ)ςi)),

= jEα
i ∗(−(1 + χi,jmj + χi,kmk + χi,γmγ)(ςi)

2),

(eαi )
2 · eαk = jEα

i ∗(ςi · (−(1 + χi,jmj + χi,kmk + χi,γmγ)ςi)),

= jEα
i ∗(−(1 + χi,jmj + χi,kmk + χi,γmγ)(ςi)

2),

(eαi )
2 · eαγ = jEα

i ∗(ςi · (−(1 + χi,jmj + χi,kmk + χi,γmγ)ςi)),

= jEα
i ∗(−(1 + χi,jmj + χi,kmk + χi,γmγ)(ςi)

2),

so condition a.ii fails to be true since either χi,j or χi,k or χi,γ are not equal to 0 by our

hypothesis.

Definition 6.2.8. Given an irreducible exceptional component Eα
i , such that Eα

i ∩

Eα
j , E

α
i ∩ Eα

k ̸= ∅ then we will say that

a Eα
i has an admissible proximity configuration of type I with respect to Eα

j and Eα
k

if it satisfies the relations I in Proposition 6.1.7,

b Eα
i has an admissible proximity configuration of type II with respect to Eα

j and Eα
k

if it satisfies the relations II in Proposition 6.1.7.

c Eα
i has an admissible proximity configuration of type III with respect to Eα

j and

Eα
k if if it satisfies the relations III in Proposition 6.1.7,

d Eα
i has an admissible proximity configuration of type IV with respect to Eα

j and Eα
k

if it satisfies the relations IV in Proposition 6.1.7.

Proposition 6.2.9. Let π : Zs → Z0 be a sequential morphism, and Ei a final divisor

verifying that there exists just one index j such that Ei ∩ Ej ̸= ∅. Then the classes ei

and ej of Ei and Ej (respectively) do not satisfy any of the following relations:

a (ei)
3 = 3ei · (ej)2, (ei)2 · ej = −2ei · (ej)2, and (ej)

3 = 0,

b (ei)
3 = 2ei · (ej)2, (ei)2 · ej = − 3

2ei · (ej)
2, and (ej)

3 = − 1
2ei · (ej)

2.

Proof. Since Ei ∩ Ej ̸= ∅ and Ei is final then either Ci −→ Cj or Ci
t−→ Cj . In the

latter case, as ei · (ej)2 = 0, if condition a or condition b hold, it would imply that
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(ei)
3 = (ei)

2 · ej = 0. In the former case, that is Ci −→ Cj we have to distinguish between

the following cases:

A either dim(Cj) = 0,

B or Cj is a rational curve and

B.i either Cj is a “new” curve, so Ei−1
j = P (O(a)⊕O(a− δj)),

B.i.i and either [Ci] = ςj + (a− δj)f ∈ A1(Ei−1
j ),

B.i.ii or [Ci] = ςj + af ∈ A1(Ei−1
j );

B.ii or Cj is an unmodified “old” curve,

B.ii.i and either there exists an index k ̸= i such that Ek ∩ Ej ̸= ∅, so

B.ii.i.i either [Ci] = ςj + (a− δj)f ∈ A1(Ei−1
j ),

B.ii.i.ii or [Ci] = ςj + af ∈ A1(Ei−1
j );

B.ii.ii or there not exists an index k such that Ek ∩ Ej ̸= ∅ with k ̸= i so

B.ii.ii.i either [Ci] = ςj + (a− δj)f ∈ A1(Ei−1
j ),

B.ii.ii.ii or [Ci] = ςj + af ∈ A1(Ei−1
j ),

B.ii.ii.iii or [Ci] = ςj + (a+m)f ∈ A1(Ei−1
j ),

B.ii.ii.iv or [Ci] = f ,

B.ii.ii.v or [Ci] = 2ςj + 2af ∈ A1(Ei−1
j ), if δj = 1,

B.ii.ii.vi or [Ci] = bςj + (ba− bδj + 1)f ∈ A1(Ei−1
j ), with b > 0, if δj = 0.

To begin with, let us consider the case A. Since j is the only index verifying that Ei∩Ej ̸=

∅, then there can not exists any other index k such that Cj −→ Ck. Moreover, we have

that Ei−1
j

∼= P2, so [Ci] = γiςj ∈ A1(Ei−1
j ) and it follows that

(ei)
3 = −γ2

i + γi,

(ei)
2 · ej = γ2

i ,

ei · (ej)2 = −γ2
i − γi,

(ej)
3 = (1 + γi)

2.

As a result, if either condition a or condition b holds, this would imply that γi < 0.
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Now let us suppose that Cj is a rational curve. Then Ei−1
j = P (O(a) ⊕ O(a − δj)).

Furthermore, let us suppose that Civerifies that [Ci] = ςj + (a− δ)f ∈ A1(Ei−1
j ), Thus,

we have that:

(ei)
3 = −a+ δj ,

(ei)
2 · ej = −δj ,

ei · (ej)2 = a+ δj .

Moreover, in the subcases B.i.i and B.ii.iii it is verified that

(ej)
3 = −4a,

so if either condition a or condition b holds, this would imply that a = δj = 0.

On the other hand, that is in the subcase B.ii.ii, we have that

(ej)
3 = −6a+ 3δj ,

so if either condition a or condition b holds, this would imply that a = δj = 0.

Now, let us suppose that the class of Ci verifies that [Ci] = ςj + (a)f ∈ A1(Ei−1
j ), Thus,

we have that:

(ei)
3 = −a,

(ei)
2 · ej = δj ,

ei · (ej)2 = a− 2δj .

Moreover, in the subcases B.i.ii and B.ii.iiii it is verified that

(ej)
3 = −4a+ 4δj ,

so if either condition a or condition b holds, this would imply that a = δj = 0.

On the other hand, that is in the subcase B.ii.iii, we have that

(ej)
3 = −6a+ 3δj ,

so if either condition a or condition b holds, this would imply that a = δj = 0.

In the subcase B.ii.iiiv, we have that (ei)
2 · ej = 0, so if either condition a or condition

b holds, this would imply that a = δj = 0.
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In the subcase B.ii.iiv, we have that Ei−1
j

∼= P (O(a)⊕O(a− 1)), and

(ei)
3 = −2a− 2,

(ei)
2 · ej = 4,

ei · (ej)2 = 2a− 6,

(ej)
3 = −6a+ 9,

so neither condition a nor condition b is satisfied.

Finally, in the subcase B.ii.iivi, we have that Ei−1
j

∼= P (O(a)⊕O(a)), and the following

relations hold

(ei)
3 = −2b− ba+ 1,

(ei)
2 · ej = 2b,

ei · (ej)2 = −2b+ ba− 1,

(ej)
3 = −2ab− 2a+ 2b+ 2,

so if either condition a or condition b holds, then a = 0.

Definition 6.2.10. We will say that an irreducible exceptional component Ei has an

admissible final configuration whenever it satisfies:

a If there exists just one index j such that Ei ∩ Ej ̸= ∅, then

a.i either (ej + ei)
2 · ei = 0 with the following exceptions:

i. (ei)
3 = 3ei · (ej)2, (ei)2 · ej = −2ei · (ej)2, and (ej)

3 = 0,

ii. (ei)
3 = 2ei · (ej)2, (ei)2 · ej = − 3

2ei · (ej)
2, and (ej)

3 = − 1
2ei · (ej)

2,

a.ii or (ej)
2 · ei = 0 and ej · (ei)2 = −η.

b If the cardinal set of indexes {γ} such that Ei ∩ Eγ ̸= ∅ is greater or equal to 2,

# {γ} ≥ 2, then it verifies one of the conditions stated in Proposition 6.1.7 with re-

spect to any pair {j, k} ⊂ {γ}, that is, Ei has an admissible proximity configuration

with respect to Ej and Ek. Moreover, in case the irreducible exceptional component

Ei has an admissible proximity configuration of type III, then it is with respect to

at most two irreducible exceptional components, and if it has an admissible prox-

imity configuration of type IV then it is with respect to at most three irreducible

exceptional components.
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c There exists at most one index γ such that (eγ)2 · ei < 0.

d If there exists some index β such that (ei+eβ)
2·ei = 0, with (ei)

3 > 0 and ei·(eβ)2 =

0, then Ei verifies the conditions of Proposition 6.1.11 about the cardinality of the

set of index {γ} verifying Ei ∩Eγ ̸= ∅. Moreover, if it has an admissible proximity

configuration of type III with respect to Ej and Eβ then Ei verifies Proposition 6.2.1

and Corollary 6.2.2 (if the other hypothesis also hold), or if it has an admissible

proximity configuration of type I with respect to Eβ and Ej then it verifies Lemma

6.2.3 (if the other hypothesis are verified too).

e If there exists some index λ such that (ei)2 ·eλ = −1, ei · (eλ)2 = 0 that also verifies

the above conditions then

e.i if there exists some index µ such that Eλ has an admissible proximity con-

figuration of type III with respect to Ei and Eµ, then Ei already verifies the

above conditions and the same relations with respect to all the same indexes

but Eλ just by replacing ei by ēi = (ei + eλ) and eµ by ēµ = (eµ + eλ) in the

computations, and it also satisfies (ēi)
2 · ēµ = −1 and ēi · (ēµ)2 = 0,

e.ii otherwise, Ei already verifies the above conditions and the same relations with

respect to all the same indexes but Eλ just by replacing ei by ēi = (ei+ eλ) in

the computations.

Theorem 6.2.11. An irreducible exceptional component Ei ⊂ Zs is a final divisor for the

sequential morphism π : Zs → Z0 if and only if Ei has an admissible final configuration.

Proof. To begin with, let us suppose that Ei is final. Then, by Definition 2.3.1 Ei is

isomorphic to either Fδi or P2, and its normal bundle NEi/Zs
verifies NEi/Zs

∼= O(−1).

As a consequence of Propositions 6.1.7 and 6.2.9 and Theorem 6.1.5, Ei verifies either

condition a or b on Definition 6.2.10. Moreover, since (eγ)
2 · ei = jEi∗(([Ei ∩ Eγ ])

2),

where [Ei ∩ Eγ ] ∈ A1(Ei), then it follows from Theorem 5.3.3 that condition c is also

satisfied. Finally, if there exists some index β such that (ei+ eβ)
2 · ei = 0, with (ei)

3 > 0

and ei ·(eβ)2 = 0, then Ci −→ Cβ and Ei ∼= F0, so condition d is verified too, and condition

e follows directly from Theorem 6.1.5 and the Projection formula 1.6.

Let us now suppose that Ei is not final with respect to the sequential morphism π :

Zs → Z0, that is there not exists any sequence of point and rational curve blow-ups
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(Z0, ..., Zs, π) realizing it, for which Ei is final. Firstly, let j be an index such that either

Cj → Ci or Cj
t−→ Ci, but such that there not exists any other index γ with Cγ proximate

to both Ci and Cj , or proximate and t−proximate to Ci and Cj respectively (or vice

versa). Now, if we consider the blow-up corresponding to the (j− 1)−level of a sequence

realizing the sequential morphism π : Zs → Z0, that is πj : Zj → Zj−1, since Ej
j is

final for the sequential morphism πj,0 : Zj → Z0, then one of the following conditions is

verified:

A either Cj is proximate to Ci, and then it is satisfied that:

(eji + ejj)
2 · ejj = 0. (6.36)

B or Cj is t−proximate to Ci and then the following relations hold:

(ejj)
2 · eji = −ηj , (6.37)

ejj · (e
j
i )

2 = 0, (6.38)

with ηj ∈ Z+.

To begin with, let us consider the particular case A, that is Cj −→ Ci. Then, we need to

distinguish between the three following cases:

A.i either the following relation is satisfied:

(eji + ejj)
2 · eji = 0, (6.39)

A.ii or the following relations are verified:

(eji )
2 · ejj = −ηi, (6.40)

eji · (e
j
j)

2 = 0, (6.41)

A.iii otherwise.

Firstly let us consider the case A.i. By adding Equations (6.36) and (6.39) we get to the

following relation

(eji + ejj)
3 = 0, (6.42)
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and as a consequence of the Projection formula 1.6, we have that

(ej−1
i )3 = 0. (6.43)

Now, by Proposition 6.1.8, the set of indexes {γ} verifying Ej−1
i ∩Ej−1

γ ̸= ∅ is non empty.

In fact, one of the following characterizations is satisfied:

A.i.i either Ej−1
i is not final for the sequential morphism πj−1,0 : Zj−1 → Z0,

with dim(Ci) = 0, and there exists just one index k such that Ck −→ Ci,

with dim(Ck) = 0,

A.i.ii or Ej−1
i is not final for the sequential morphism πj−1,0 : Zj−1 → Z0,

where Ci is an unmodified “old” curve, that is, there exists at least one

index γ such that Cγ −→ Ci, with Cγ non isomorphic to a generic fiber Fi

of Ei
i ,

A.i.iii or Ej−1
i is final for the sequential morphism πj−1,0 : Zj−1 → Z0, where

Ci is a modified “old” curve, that is, there exists at least one index γ such

that

A.i.iii.i either Cγ −→ Ci, with Cγ isomorphic to a generic fiber Fi of Ei
i ,

A.i.iii.ii or Ci
t−→ Cγ ,

A.i.iv or Ej−1
i is final or not final for the sequential morphism πj−1,0 : Zj−1 →

Z0, where Ci is a “new” curve.

To begin with, let us suppose that the cardinal of the set of indexes γ such that Ej−1
i ∩

Ej−1
γ , # {γ}, is equal to 1, and Cj = Ej−1

i ∩ Ej−1
γ . Then either Ci −→ Cγ or Cγ −→ Ci.

In the former case, it follows from Proposition 6.1.8 that either relations

(ej−1
γ )2 · ej−1

i = −2a,

(ej−1
i )2 · ej−1

γ = a,

or relations

(ej−1
γ )2 · ej−1

i = 2a,

(ej−1
i )2 · ej−1

γ = −a,
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are satisfied. Thus, (ejj)
3 = ±a, and it follows from Proposition 1.2.33 that

(eji )
2 · ejj = (π∗

j (e
j−1
i )− ejj)

2 · ejj ,

= −2π∗
j (e

j−1
i ) · (ejj)

2 + (ejj)
3;

eji · (e
j
j)

2 = (π∗
j (e

j−1
i )− ejj) · (e

j
j)

2,

= (π∗
j (e

j−1
i )) · (ejj)

2 − (ejj)
3,

and

(eji )
3 = (π∗

j (e
j−1
i )− ejj)

3,

= 3(π∗
j (e

j−1
i ) · (ejj)

2 − (ejj)
3.

As a result, if (ejj)
3 = a then we have that:

(eji )
2 · ejj = 3a,

eji · (e
j
j)

2 = −2a,

(eji )
3 = −4a,

and if (ejj)
3 = −a the following relations are satisfied:

(eji )
2 · ejj = −3a,

eji · (e
j
j)

2 = 2a,

(eji )
3 = 4a.

In both cases, we can conclude that Ej
i does not have an admissible final configuration,

as the previous relations correspond to the exceptions to condition a in Definition 6.2.10.

In the latter case, that is Cγ −→ Ci, firstly, let us suppose that Eγ−1
i = P (O(a)⊕O(a−δi))

and Cγ is isomorphic to a section, that is, [Cγ ] = ςi + c1(
O(a)⊕O(a−δi)

L f ∈ A1(Eγ−1
i . It

follows from Proposition 1.1.19 that NEγ
i /Zγ

∼= π∗
γ(NEγ−1

i
)⊗O(−Eγ

i ∩Eγ
γ )

⊗mγ . Now, by

Proposition 1.2.22 and Lemma 2.2.1 we have that:

(eγi )
3 = jEγ

i ∗((c1(π
∗
γ(NEγ−1

i
)⊗O(−Eγ

i ∩ Eγ
γ )

⊗mγ ))2), (6.44)

= jEγ
i ∗((−ςi −mγ(ςi + (2a− δi − c1(L))f))

2), (6.45)

= jEγ
i ∗((1 +mγ)((−2a+ δi)(1−mγ)− 2mγc1(L))ςi · f), (6.46)
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and

(eγi )
2 · eγγ = jEγ

i ∗((c1(pi
∗
γ(NEγ−1

i /Zγ−1
)⊗O(−Eγ

i ∩ Eγ
γ )

⊗mγ )) ·
[
Eγ
i ∩ Eγ

γ

]
),

= jEγ
i ∗((c1(pi

∗
γ(NEγ−1

i /Zγ−1
))) ·

[
Eγ
i ∩ Eγ

γ

]
−mγ(

[
Eγ
i ∩ Eγ

γ

]
)2);

eγi · (e
γ
γ)

2 = jEγ
γ ∗(c1(NEγ

γ /Zγ
·
[
Eγ
i ∩ Eγ

γ

]
),

= jEγ
i ∗((

[
Eγ
i ∩ Eγ

γ

]
)2).

Since (eγi )
3 = 0, then it follows from Equation (6.46) that mγ = 1 and c1(L) = 0. As a

result, (c1(pi∗γ(NEγ−1
i

))) ·
[
Eγ
i ∩ Eγ

γ

]
= 0 and we can conclude that (eγi )

2 ·eγγ = −eγi ·(eγγ)2.

Now, let us suppose that eγi · (eγγ)2 = a. Then we have that (ejj)
3 = 0, and by applying

Proposition 1.2.33 we get that:

(eji )
2 · ejj = (π∗

j (e
j−1
i )− ejj)

2 · ejj ,

= −2(π∗
j (e

j−1
i )) · (ejj)

2 + (ejj)
3,

= −2a;

eji · (e
j
j)

2 = (π∗
j (e

j−1
i )− ejj) · (e

j
j)

2,

= (π∗
j (e

j−1
i )) · (ejj)

2 − (ejj)
3,

= a,

and

(eji )
3 = (π∗

j (e
j−1
i )− ejj)

3,

= (π∗
j (e

j−1
i ))3 + 3(π∗

j (e
j−1
i )) · (ejj)

2 − (ejj)
3,

= 3a.

As a result, we can conclude that Ej
i does not have an admissible final configuration, as

the previous relations correspond to the exceptions to condition a in Definition 6.2.10.

Now, if Eγ−1
i

∼= P2, then Cγ is a point and Eγ
i
∼= F1 by Proposition 1.1.17. Let us denote

by ς̃i to c1(OEγ
i
(1)). It follows from Proposition 1.1.19 that NEγ

i /Zγ
∼= π∗

γ(NEγ−1
i /Zγ−1

)⊗

O(−Eγ
i ∩ Eγ

γ ). By applying Proposition 1.2.22 and Lemma 2.2.1 we have that:

(eγi )
3 = jEγ

i ∗((c1(pi
∗
γ(NEγ−1

i
)⊗O(−Eγ

i ∩ Eγ
γ )))

2), (6.47)

= jEγ
i ∗((−π∗

γ(ςi)− (
[
Eγ
i ∩ Eγ

γ

]
)2), (6.48)

= jEγ
i ∗((−ς̃i − ς̃i + f)2), (6.49)
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and

(eγi )
2 · eγγ = jEγ

i ∗((c1(pi
∗
γ(NEγ−1

i
)⊗O(−Eγ

i ∩ Eγ
γ ))) ·

[
Eγ
i ∩ Eγ

γ

]
),

= jEγ
i ∗(−(

[
Eγ
i ∩ Eγ

γ

]
)2),

= jEγ
i ∗(−(ς̃i − f)2),

= jEγ
i ∗(ς̃i · f);

eγi · (e
γ
γ)

2 = jEγ
γ ∗(c1(NEγ

γ /Zγ
) ·

[
Eγ
i ∩ Eγ

γ

]
),

= jEγ
i ∗((

[
Eγ
i ∩ Eγ

γ

]
)2),

= jEγ
i ∗((ς̃i − f)2),

= jEγ
i ∗((−1)ς̃i · f).

As a result, (ejj)
3 = 0, and by applying Proposition 1.2.33 we get that:

(eji )
2 · ejj = (π∗

j (e
j−1
i )− ejj)

2 · ejj ,

= −2(π∗
j (e

j−1
i )) · (ejj)

2 + (ejj)
3,

= 2;

eji · (e
j
j)

2 = (π∗
j (e

j−1
i )− ejj) · (e

j
j)

2,

= (π∗
j (e

j−1
i )) · (ejj)

2 − (ejj)
3,

= −1,

and

(eji )
3 = (π∗

j (e
j−1
i )− ejj)

3,

= (π∗
j (e

j−1
i ))3 + 3(π∗

j (e
j−1
i )) · (ejj)

2 − (ejj)
3,

= −3.

Thus, we can conclude that Ej
i does not have an admissible final configuration, as the

previous relations correspond to the exceptions to condition a in Definition 6.2.10.

If there are more than one index γ verifying Ej−1
i ∩Ej−1

γ ̸= ∅ or Cj ̸= Eγ
i ∩Eγ

γ , then we

have to distinguish between the different subcases.

In the particular subcase A.i.i, since Ck and Cj are both proximate to Ci, then it follows

from Proposition 1.1.19 that NEj
i /Zj

≇ OEj
i
(−1). By applying Propositions 6.2.6 and

6.2.7 we can conclude that Ej
i does not have an admissible proximity configuration neither
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of type III nor of type IV with respect to Ej
k and Ej

j . Now, we study the only remaining

case corresponding to an admissible proximity configuration of type I. In this case either

Cj −→ Ci, Ck, with dim(Cj) = 0, or Cj
t−→ Ck. In the former case, by Proposition 1.2.33

we have that

eji · (e
j
k)

2 = (π∗
j (e

j−1
i )− ejj) · (π

∗
j (e

j−1
k )− ejj)

2,

= π∗
j (e

j−1
i ) · (π∗

j (e
j−1
k ))2 − (ejj)

3,

so eji · (e
j
k)

2 = −2 ̸= 0, and then Ej
i fails to have an admissible proximity configuration

of type I with respect to Ej
k and Ej

j . With respect to the latter case, that is Cj
t−→ Ck,

since the blow-up πj : Zj → Zj−1 gives rive to an extrinsic elementary modification with

respect to Ej−1
i , then we have that

eji · (e
j
k)

2 = (π∗
j (e

j−1
i )− ejj) · (π

∗
j (e

j−1
k ))2,

= π∗
j (e

j−1
i ) · (π∗

j (e
j−1
k ))2,

= π∗
j (e

j−1
i · (ej−1

k )2),

so eji · (e
j
k)

2 = −1 ̸= 0, and in this case Ej
i fails also to have an admissible proximity

configuration of type I with respect to Ej
k and Ej

j .

In the subcase A.i.ii, let k ∈ {γ} be an index such that Ck −→ Ci, but that there not

exists any index γ ̸= j such that Cγ is proximate to both Ci and Ck, or proximate and

t−proximate to Ci and Ck respectively (or vice versa). Since Ck and Cj are both proxi-

mate to Ci, then NEj
i /Zj

≇ OEj
i
(−1) by Proposition 1.1.19. By considering Propositions

6.2.6 and 6.2.7 we can conclude that Ej
i has not an admissible proximity configuration

neither of type III nor of type IV with respect to Ej
k and Ej

j . The only remaining case,

that is corresponding to have an admissible proximity configuration of type I, it implies

that either Cj −→ Ci, Ck, with dim(Cj) = 0, or Cj
t−→ Ck. In the former case, that is
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Cj −→ Ci, Ck, as a consequence of Proposition 1.2.33 we have that

eji · (e
j
k)

2 = (π∗
j (e

j−1
i )− ejj) · (π

∗
j (e

j−1
k )− ejj)

2,

= π∗
j (e

j−1
i ) · (π∗

j (e
j−1
k ))2 − (ejj)

3,

= π∗
j (e

j−1
i · (ej−1

k )2)− (ejj)
3;

(eji )
2 · (ejk) = (π∗

j (e
j−1
i )− ejj)

2 · (π∗
j (e

j−1
k )− ejj),

= (π∗
j (e

j−1
i ))2 · π∗

j (e
j−1
k )− (ejj)

3,

= (π∗
j ((e

j−1
i )2 · ej−1

k )− (ejj)
3,

and

eji · e
j
j · e

j
k = (π∗

j (e
j−1
i )− ejj) · e

j
j · (π

∗
j (e

j−1
k )− ejj),

= (ejj)
3.

In order to satisfy condition c, then the following relations must be satisfied:

π∗
j ((e

j−1
i )2 · ej−1

k ) = 0, (6.50)

π∗
j (e

j−1
i · (ej−1

k )2) = 1, (6.51)

From equation 6.51, it follows that Ej−1
i

∼= F1, in particular Ej−1
i

∼= P (O(a)⊕O(a−1)) .

Moreover, we know that Ek−1
i must be final for the sequential morphism πk−1,0 : Zk−1 →

Z0 (otherwise Ej
i could not have an admissible proximity configuration), so

[
Ek
i ∩ Ek

k

]
= ςi + af ∈ A1(Ek

i ).

Now, as a consequence of Proposition 1.1.19 we have that NEk
i /Zk

∼= π∗
k(NEk−1

i /Zk−1
) ⊗

O(−Ek
i ∩ Ek

k ), so by Proposition 1.2.22

(eki )
2 · ekk = jEk

i ∗((ςi + af) · (−(1 +mk)ς −mkaf),

= jEk
i ∗((a− 1−mk)ςi · f);

(eki )
3 = jEk

i ∗((−(1 +mk)ςi −mkaf)
2),

= jEk
i ∗((−2a(1 +mk) + (1 +mk)

2)ςi · f).

In order to satisfy Equation (6.50) then a = 1+mk, but since (eki )
3 = 0 then a = 1+mk

2 ,

so we get to a contradiction.

With respect to the latter case, that is Cj
t−→ Ck, since the blow-up π : Zj → Zj−1 defines
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an extrinsic elementary modification with respect to Ej−1
i , then by Proposition 1.2.33

we have

eji · (e
j
k)

2 = (π∗
j (e

j−1
i )− ejj) · π

∗
j (e

j−1
k )2,

= π∗
j (e

j−1
i · π∗

j (e
j−1
k )2,

= π∗
j (e

j−1
i · (ej−1

k )2);

(eji )
2 · ejk) = (π∗

j (e
j−1
i )− ejj)

2 · π∗
j (e

j−1
k ),

= (π∗
j (e

j−1
i ))2 · π∗

j (e
j−1
k ) + (ejj)

2 · π∗
j (e

j−1
k ),

= π∗
j ((e

j−1
i )2 · (ej−1

k )) + (ejj)
2 · π∗

j (e
j−1
k ).

Moreover, it is satisfied that

eji · e
j
j · e

j
k = (π∗

j (e
j−1
i )− ejj) · e

j
j · π

∗
j (e

j−1
k ),

= −(ejj)
2 · π∗

j (e
j−1
k ),

so (eji )
2 ·ejk) ̸= −eji ·e

j
j ·e

j
k unless π∗

j ((e
j−1
i )2 ·(ej−1

k )) = 0, but in order to get an admissible

proximity configuration of type IV the relation eji · (e
j
k)

2 = π∗
j (e

j−1
i · (ej−1

k )2) = 0 must be

satisfied too. Thus (ek−1
i )3 = 0, and by Proposition 1.1.19 this implies NCk/Zk−1

∼= O⊕O,

which is an absurd.

In the case A.i.iii.i, let k ∈ {γ} be an index such that Ck −→ Ci, with Ck isomorphic to a

fiber Fi of Ei
i , but there not exists any index γ ̸= j such that Cγ is proximate to both Ci

and Ck, or proximate and t−proximate to Ci and Ck respectively (or vice versa). Now,

since Cj and Ck are both proximate to Ci, with Cj non isomorphic to a fiber Fi of Ei
i ,

by applying Propositions 6.2.6 and 6.2.7 we can conclude that Ej
i has not an admissible

proximity configuration neither of type III nor of type IV with respect to Ej
k and Ej

j . It

may have an admissible proximity configuration of type I, but in this case we have that

either dim(Cj) = 0 and Cj is proximate to both Ci and Ck, or dim(Cj) = 1 and Cj is

t−proximate to Ck. In the former case, we have

eji · (e
j
k)

2 = (π∗
j (e

j−1
i )− ejj) · (π

∗
j (e

j−1
k )− ejj)

2,

= π∗
j (e

j−1
i ) · π∗

j (e
j−1
k )2 − (ejj)

3;

(eji )
2 · (ejk) = (π∗

j (e
j−1
i )− ejj)

2 · (π∗
j (e

j−1
k )− ejj),

= π∗
j (e

j−1
i )2 · π∗

j (e
j−1
k )− (ejj)

3,

166



and

eji · e
j
j · e

j
k = (π∗

j (e
j−1
i )− ejj) · e

j
j · (π

∗
j (e

j−1
k )− ejj),

= (ejj)
3,

so eji · (e
j
k)

2 = −1 ̸= 0 and Ej
i fails to have an admissible proximity configuration of type

I with respect to Ej
k and Ej

j .

With respect to the latter case, since the blow-up π : Zj → Zj−1 defines an extrinsic

elementary modification with respect to Ej−1
i we have that

(eji )
2 · ejk = (π∗

j (e
j−1
i )− ejj)

2 · π∗
j (e

j−1
k ),

= π∗
j ((e

j−1
i )2 · π∗

j (e
j−1
k ) + (ejj)

2 · π∗
j (e

j−1
k ),

and

eji · e
j
j · e

j
k = (π∗

j (e
j−1
i )− ejj) · e

j
j · π

∗
j (e

j−1
k ),

= −(ejj)
2 · π∗

j (e
j−1
k ),

so (eji )
2 · ejk ̸= −eji · e

j
j · e

j
k and Ej

i fails also to have an admissible proximity configuration

of type I with respect to Ej
j and Ej

k.

In the case A.i.iii.ii, let k ∈ {γ} be an index such that Ci
t−→ Ck but that there not

exists any index γ ̸= j such that Cγ is proximate to both Ci and Ck, or proximate and

t−proximate (or vice versa). Now, since Cj is proximate to Ci, as a consequence of

Propositions 6.2.6 and 6.2.7 we can conclude that Ej
i has not an admissible proximity

configuration neither of type III nor of type IV with respect to Ej
j and Ej

k. In order to

get an admissible proximity configuration of type I, then either dim(Cj) = 0 and Cj is

proximate to both Ci and Ck or dim(Cj) = 1 and it is t−proximate to Ck. In the former

case, we have

eji · (e
j
k)

2 = (π∗
j (e

j−1
i )− ejj) · (π

∗
j (e

j−1
k )− ejj)

2,

= π∗
j (e

j−1
i ) · π∗

j (e
j−1
k )2 − (ejj)

3,

so eji · (e
j
k)

2 = −1 ̸= 0 and Ej
i fails to have an admissible proximity configuration of type

I with respect to Ej
j and Ej

k. In the latter case, since the blow-up π : Zj → Zj−1 defines

an extrinsic elementary modification with respect to Ej−1
i , by Proposition 1.2.33 we have

that

(eji )
2 · ejk = (π∗

j (e
j−1
i )− ejj)

2 · π∗
j (e

j−1
k ),

= π∗
j ((e

j−1
i )2 · π∗

j (e
j−1
k ) + (ejj)

2 · π∗
j (e

j−1
k ),
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and

eji · e
j
j · e

j
k = (π∗

j (e
j−1
i )− ejj) · e

j
j · π

∗
j (e

j−1
k ),

= −(ejj)
2 · π∗

j (e
j−1
k ),

so (eji )
2 · ejk ̸= −eji · e

j
j · e

j
k and Ej

i also fails to have an admissible proximity configuration

of type I with respect to Ej
j and Ej

k.

In the subcase A.i.iv let us suppose that Ej−1
i is final, and let k the index such that

Ci −→ Ck, but that there not exists any index γ ̸= j such that Cγ is proximate to both

Ci and Ck, or proximate and t−proximate. Since Cj −→ Ci, then by Proposition 1.1.19

we have that NEj
i /Zj

≇ O(−1). It follows then from Propositions 6.2.6 and 6.2.7 that

Ej
i has not an admissible proximity configuration neither of type III nor of type IV with

respect to Ej
k and Ej

j . In order to get an admissible proximity configuration of type I,

then either dim(Cj) = 0 and Cj is proximate to both Ci and Ck or dim(Cj) = 1 and it

is t−proximate to Ck. In the former case, we have

eji · (e
j
k)

2 = (π∗
j (e

j−1
i )− ejj) · (π

∗
j (e

j−1
k )− ejj)

2,

= π∗
j (e

j−1
i ) · π∗

j (e
j−1
k )2 − (ejj)

3;

(eji )
2 · (ejk) = (π∗

j (e
j−1
i )− ejj)

2 · (π∗
j (e

j−1
k )− ejj),

= π∗
j (e

j−1
i )2 · π∗

j (e
j−1
k )− (ejj)

3,

and

eji · e
j
j · e

j
k = (π∗

j (e
j−1
i )− ejj) · e

j
j · (π

∗
j (e

j−1
k )− ejj),

= (ejj)
3,

so eji · (e
j
k)

2 = ±2a− 1 ̸= 0 and Ej
i fails to have an admissible proximity configuration of

type I with respect to Ej
j and Ej

k. In the latter case, since the blow-up π : Zj → Zj−1

defines an extrinsic elementary modification with respect to Ej−1
i we have that

(eji )
2 · ejk = (π∗

j (e
j−1
i )− ejj)

2 · π∗
j (e

j−1
k ),

= π∗
j ((e

j−1
i )2 · π∗

j (e
j−1
k ) + (ejj)

2 · π∗
j (e

j−1
k ),

and

eji · e
j
j · e

j
k = (π∗

j (e
j−1
i )− ejj) · e

j
j · π

∗
j (e

j−1
k ),

= −(ejj)
2 · π∗

j (e
j−1
k ),
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so Ei has not an admissible proximity configuration of type I with respect to Ej and

Ej−1 either.

Let us now consider the case A.ii, that is, we have that

(eji )
2 · ejj = −ηi,

eji · (e
j
j)

2 = 0.

We shall now distinguish between two different cases:

A.ii.i either ηi = 1,

A.ii.ii or ηi > 1.

In the subcase A.ii.i, we should distingish two cases. If the index i is the only one verifying

that Ej
j ∩Ej

i ̸= ∅, then since Ej
j is final for the sequential morphism πj,0 : Zj → Z0, then

by Corollary 6.1.6 Ej
j ∩Ej

i
∼= Cj must be isomorphic to a fiber Fi of Ei

i . We should then

consider the next index k < j satisfying that Ck −→ Ci or Ck
t−→ Ci but such that there

not exists any index γ such that Cγ is proximate to both Ci and Ck, or proximate and

t−proximate to Ci and Ck respectively (or vice versa).

Now, let us suppose that there exists other indexes {β}, with β ̸= i, such that Ej
j∩E

j
β ̸= ∅

and Ej
i ∩ Ej

β ̸= ∅. Let k ∈ {β} be an index such that Ck −→ Ci or Ck
t−→ Ci (or vice

versa), but that there not exists any index λ ̸= j such that Cλ is proximate to both

Ci and Ck, or proximate and t−proximate (or vice versa). Now, since Cj is proximate

to Ci, it follows from Proposition 1.1.19 that NEj
i /Zj

≇ O(−1). As a consequence of

Propositions 6.2.6 and 6.2.7 we can conclude that Ej
i has not an admissible proximity

configuration neither of type III nor of type IV with respect to Ej
j and Ej

k. In all possible

cases Cj must be t−proximate to Ck. Now, we should distinguish between the following

subcases:

A.ii.i.i either Ck is t−proximate to Ci,

A.ii.i.ii or Ck is proximate to Ci,

A.ii.i.iii or Ci is t−proximate to Ck,

A.ii.i.iv or Ci is proximate to Ck.

In the subcase A.ii.i.i, let us suppose that Ek−1
i

∼= P (O⊕O(a− δi)). Since Ej
j is final for

the sequential morphism πj,0 : Zj → Z0, in particular (eji + ejj)
2 · ejj = 0, so (ejj)

3 = 1. In
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order to get an admissible proximity configuration of type I for Ej
i , then eji ·e

j
j ·e

j
k = ηi = 1.

As Ej
j is final for πj,0 so it must be verified that (ejj)

2 · ejk = −ηi = −1. Now, since the

blow-up πk : Zk → Zk−1 defines an intrinsic elementary modification of Ek−1
i then by

Proposition 1.2.22 and Lemma 2.2.1 we have that

(ejj)
2 · eji = jEj

j∗
(c1(NEj

j/Zj
) ·

[
Sδi+2nj

]
−

[
Ej
i ∩ Ej

k

]
),

= jEj
i ∗
((
[
Sδi+2nj

]
−
[
Ej
i ∩ Ej

k

]
)2),

= jEj
i ∗
((
[
Sδi+2nj

]
)2) + jEj

i ∗
((
[
Ej
i ∩ Ej

k

]
)2),

so jEj
i ∗
((
[
Sdeltai+2nj

]
)2) = 1 as (ejj)

2 · eji = 0. It follows then that δi = 1 and nj = 0, so

in particular, [Cj ] =
[
Sj−1
1

]
∈ A1(Ej−1

i ), where [S1] = ςi + af ∈ A1(Ek−1
i ). In addition,

as a consequence of Proposition 1.1.19 we have that NEj
i /Zj

∼= π∗
j,k(NEj

i /Zj
)⊗O(−Ej

i ∩

Ej
j )

⊗mj , so by Proposition 1.2.22 we have that

(eji )
2 · ejj = jEj

i ∗
(c1(π

∗
j,k(NEj−1

i /Zj−1
)⊗O(−Ej

i ∩ Ej
j )

⊗mj ) ·
[
Ej
i ∩ Ej

j

]
),

= jEj
i ∗
(c1(π

∗
j,k(NEj

i /Zj
)) ·

[
S̃1

]
),

= jEj
i ∗
(−ςi · (ςi + af −

[
Ej
i ∩ Ej

k

]
)),

= jEj
i ∗
((a− 1)ςi · f).

As a result, since (eji )
2 · ejj = −1, then a = 0, that is, Ek−1

i
∼= P (O ⊕ O(−1)). Now,

as a consequence of Proposition 6.1.9 there exists at least one index γ such that either

Ci
t−→ Cγ or Ci −→ Cγ . In the former case Ej

j ∩Ej
i ∩Ej

γ ̸= ∅ so Ej
i fails to have an admissi-

ble proximity configuration. In the latter case, either Ej
k∩Ej

γ = ∅ so Ej
i fails also to have

an admissible proximity configuration, or there exists another index λ such that Ci −→ Cλ.

In the subcase A.ii.i.ii, we consider first dim(Ck) = 0. Let us suppose that Ek−1
i =

P (O ⊕ O(a − δi)). Since Ej
j is final for the sequential morphism πj,0 : Zj → Z0, then

(eji + ejj)
2 · ejj = 0, so in particular (ejj)

3 = 1. In order to get an admissible proximity

configuration of type I for Ej
i , then eji · e

j
j · e

j
k = ηi = 1, so since Ej

j is final it must be

verified that (ejj)
2 · ejk = −ηi = −1. Since the blow-up πk : Zk → Zk−1 defines a mixed
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elementary modification of Ek−1
i then by Proposition 1.2.22 and Lemma 2.2.1

(ejj)
2 · eji = jEj

j∗
(c1(NEj

j/Zj
) ·

[
Sδi+2nj

]
−
[
Ej
i ∩ Ej

k

]
),

= jEj
i ∗
((
[
Sδi+2nj

]
−

[
Ej
i ∩ Ej

k

]
)2),

= jEj
i ∗
((
[
Sδi+2nj

]
)2) + jEj

i ∗
((
[
Ej
i ∩ Ej

k

]
)2).

Since (ejj)
2 · eji = 0, so jEj

i ∗
((
[
Sdeltai+2nj

]
)2) = 1, and it follows that δi = 1 and nj = 0.

In particular, [Cj ] =
[
Sj−1
1

]
∈ A1(Ej−1

i ), where [S1] = ςi + af ∈ A1(Ek−1
i ). In addition,

as a consequence of Proposition 1.1.19 we have that NEj
i /Zj

∼= π∗
j,k(NEj

i /Zj
⊗ O(−Ek

i ∩

Ek
k )

⊗mk)⊗O(−Ej
i ∩ Ej

j ), so by Proposition 1.2.22 we have that

(eji )
2 · ejj = jEj

i ∗
(c1(π

∗
j,k(NEj

i /Zj
⊗O(−Ek

i ∩ Ek
k )

⊗mk)⊗O(−Ej
i ∩ Ej

j )) ·
[
Ej
i ∩ Ej

j

]
),

= jEj
i ∗
(c1(π

∗
j,k(NEj

i /Zj
⊗O(−Ek

i ∩ Ek
k )

⊗mk)) ·
[
Ej
i ∩ Ej

j

]
),

= jEj
i ∗
((−ςi −mk

[
Ej
i ∩ Ej

k

]
) · (ςi + af −

[
Ej
i ∩ Ej

k

]
)),

= jEj
i ∗
((a−mk − 1)ςi · f).

As a result, since (eji )
2 · ejj = −1, then a = mk, that is, Ek−1

i
∼= P (O(mk)⊕O(mk − 1)).

Now, by Proposition 1.2.33 we have that

(eji )
3 = (π∗

j,k−1e
k−1
i − ejk − ejj)

3,

= (π∗
j e
k−1
i )3 + 3(π∗

j e
j−1
i ) · (ejk + ejj)

2 − (ejj)
3,

so (eji )
3 = −(mk)

2 − 2mk + 3, but we have that

(eji )
2 · ejk = (π∗

j (e
j−1
i )− ejj)

2 · π∗
j (e

j−1
k ),

= (ejj)
2 · ejk.

As a result, (eji )
2 ·ejk = mk−1, and Ej

i fails to have an admissible proximity configuration

of type I with respect to Ej
j and Ej

k.

Let us now suppose that dim(Ck) = 1. Then, since both Cj and Ck are proximate

to Ci, its corresponding blow-ups πk : Zk → Zk−1 and πj : Zj → Zj−1 define an

extrinsic elementary modification of Ek−1
i and Ej−1

i , respectively. Now, it follows from

the relation (ejj)
2 · eji = 0 that Ek−1

i
∼= Ej−1

i
∼= Ej

i = P (O(a) ⊕ O(a)) ∼= F0. Moreover,

in order to get an admissible proximity configuration of type I then eji · e
j
j · e

j
k = ηi = 1.

If we denote by [Cj ] ,
[
Ej−1
i ∩ Ej−1

k

]
∈ A1(Ej−1

i ) to its classes, then [Cj ] = ςi + af and
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[
Ej−1
i ∩ Ej−1

k

]
= f . As a consequence of Proposition 1.1.19 we have that

NEj
i /Zj

∼= π∗
j (π

∗
j−1,k−1(NEk−1

i
)⊗O(−Ek

i ∩ Ek
k )

⊗mk)⊗O(−Ej
i ∩ Ej

j ),

where mk,mj ∈ Z+, so by Proposition 1.2.22

(eji )
2 · ejj = jEj

i ∗
(c1(NEj

i /Zj
) ·

[
Ej
i ∩ Ej

j

]
),

= jEj
i ∗
((a−mk)ςi · f);

(eji )
2 · ejk = jEj

i ∗
(c1(NEj

i /Zj
) ·

[
Ej
i ∩ Ej

k

]
),

= jEj
i ∗
((−1−mj)ςi · f).

Moreover, we have that

(eji )
3 == jEj

i ∗
((c1(NEj

i /Zj
))2),

== jEj
i ∗
((2a(−1−mj) + 2mk(1 +mj))ςi · f),

so in order to get an admissible proximity configuration of type I, mj ,mk satisfy:

a−mk = −1,

2a(−1−mj) + 2mk(1 +mj) + 2(−1−mj) = 0.

Moreover, since the following relations hold

(ejj)
3 = 1,

(ejj)
2 · eji = 0,

ejj · (e
j
i )

2 = −1,

(ejj)
2 · ejk = −1,

ejj · (e
j
k)

2 = 0,

then it follows from condition b than the following relation must be verified (eji + ejj +

ejk)
2 ·(eji+ejj+ejk) = 0, that is, (ej−1

i +ej−1
k )2 ·ej−1

i = 0, but this implies (ej−1
i )3 > 0 so by

Proposition 6.1.11 that there exists another index γ ̸= k, such that Ej−1
γ ∩Ej−1

i ∩E−1
k ̸= ∅,

and Ej
i fails to have an admissible final configuration.

In the subcase A.ii.i.iii, as πj : Zj → Zj−1 defines an extrinsic elementary modification

of Ej−1
i and we know that (ejj)

2 · eji = 0, then Ej−1
i

∼= P (O(a)⊕O(a)), and in particular

[Cj ] = ςi + af ∈ A1(Ej−1
i ). Moreover, since Ej

j is final for the sequential morphism
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πj,0 : Zj → Z0, then (eji + ejj)
2 · ejj = 0 so (ejj)

3 = 1. Now by Proposition 1.2.33 we have

that:

(eji )
2 · ejj = (π∗

j (e
j−1
i )− ejj)

2 · ejj ,

= −2π∗
j (e

j−1
i ) · (ejj)

2 + (ejj)
3,

= a,

so since (eji )
2 · ejj = −1, then a = −1, that is Ej−1

i
∼= P (O(−1) ⊕ O(−1)). As a con-

sequence of Proposition 6.1.11 there must exist at least another index γ ̸= k such that

Ej−1
i ∩ Ej−1

γ ̸= ∅, and it follows from Corollary 6.2.5 that if (ej−1
i )2 · ej−1

γ = −1 then

there must exist another index λ ̸= γ such that Ej−1
i ∩Ej−1

λ ̸= ∅. We can conclude then

that Ej
i fails to have an admissible final configuration.

In the subcase A.ii.i.iv, since the blow-up πj : Zj → Zj−1 defines an extrinsic ele-

mentary modification of Ej−1
i and (ejj)

2 · eji = 0, then Ej−1
i

∼= P (O(a) ⊕ O(a)). In

order to get an admissible proximity configuration of type I then eji · e
j
j · e

j
k = ηi = 1.

If we denote by [Cj ] ,
[
Ej−1
i ∩ Ej−1

k

]
∈ A1(Ej−1

i ) to its classes, then [Cj ] = f and[
Ej−1
i ∩ Ej−1

k

]
= ςi + (a + nk)f . As a consequence of Theorem 6.1.5 Ej

i is final, so we

get to a contradiction with our initial hypothesis (Ei not final).

In the subcase A.ii.ii, as a consequence of Proposition 6.1.13, Ej−1
i verifies one of the

following characterizations:

A.ii.ii.i either Ej−1
i

∼= F1 is not final, with dim(Ci) = 0, and Cj is isomorphic

to a fiber of Ej−1
i ;

A.ii.ii.ii or Ej−1
i

∼= F0 is final, with base a modified “old” curve Ci with a

modification of type I, that is, such that there exists at least one

index β, with Cβ −→ Ci and Cβ isomorphic to a fiber of Ei
i , and

Cj ∼= S0;

A.ii.ii.iii or Ej−1
i

∼= F0 is final, with base an “new” curve Ci, and Cj ∼= S0,

A.ii.ii.iv or Ej−1
i is not final, it is a birational model of F1 and there exists just

one index β such that either dim(Cβ) = 0, Cβ −→ Ci, with Cβ ∈ S1,

or dim(Cβ) = 1, Cβ
t−→ Ci, with Eβ−1

i ∩ Cβ ∈ S1, and Cj ∼= Sβ1 ,

A.ii.ii.v or Ej−1
i is not final, it is a birational model of Fδ,and there ex-

ists just one index β such that dim(Cβ) = 1, Cβ
t−→ Ci, verifying
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#
{
Cβ ∩ Eβ−1

i

}
= δ + 2n, Eβ−1

i ∩ Cβ ∈ Sδ+2n, and Cj ∼= Sβδ+2n,

A.ii.ii.vi or Ej−1
i

∼= Fδ is not final, there exists at least one index β such that

Cβ −→ Ci, and Cj is isomorphic to a fiber Fi of Ei
i .

In the subcase A.ii.ii.i, let k the index such that Ck −→ Ci, but that there not exists any

index γ ̸= j such that Cγ is proximate to both Ci and Ck, or proximate and t−proximate

(or vice versa). Now, since Cj and Ck are proximate to Ci, then NEj
i
≇ O(−1) by

Proposition 1.1.19, and as a consequence of Propositions 6.2.6 and 6.2.7 we can conclude

that Ej
i has not an admissible proximity configuration neither of type III nor of type IV

with respect to Ej
j and Ej

k. It may have an admissible proximity configuration of type I,

and then Cj must be t−proximate to Ck, so by Proposition 1.2.33 we have that

eji · (e
j
j)

2 = (π∗
j (e

j−1
i )− ejj) · (e

j
j)

2,

= (π∗
j (e

j−1
i ) · (ejj)

2 − (ejj)
3;

(eji )
2 · ejj = (π∗

j (e
j−1
i )− ejj)

2 · ejj ,

= −2(π∗
j (e

j−1
i ) · (ejj)

2 + (ejj)
3,

= −(ejj)
3;

and

eji · e
j
j · e

j
k = (π∗

j (e
j−1
i )− ejj) · e

j
j · π

∗
j (e

j−1
k ),

= −(π∗
j (e

j−1
k )) · (ejj)

2.

By our hypotheses eji · (e
j
j)

2 = 0, so since eji · e
j
j · e

j
k = 1 and (eji )

2 · ejj = −ηi, with ηi > 1,

then Eα
i fails to have an admissible proximity configuration of type I with respecto to

Ej
k and Ej

j .

In the subcase A.ii.ii.ii, let k the index such that Ck −→ Ci, with Ck isomorphic to a fiber

of Ei
i , but that there not exists any index γ ̸= j such that Cγ is proximate to both Ci

and Ck, or proximate and t−proximate (or vice versa). Now, since Cj is proximate to Ci

and it is not isomorphic to a fiber, then as a consequence of Propositions 6.2.6 and 6.2.7

we can conclude that Ej
i has not an admissible proximity configuration neither of type

III nor of type IV with respect to Ej
j and Ej

k. Since Cj is isomorphic to a section, then
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it is t−proximate to Ck, so by Proposition 1.2.22 and Proposition 1.2.33 we have that

(ejj)
2 · ejk = jEj

j∗
(f · −ςj),

= jEj
j∗
((−1)ςj · f),

and

eji · e
j
j · e

j
k = (πj∗(ej−1

i )− ejj) · e
j
j · πj

∗(ej−1
k ),

= −(ejj)
2 · πj∗(ej−1

k ),

= −(ejj)
2 · ejk,

As a result, eji · e
j
j · e

j
k = 1 ̸= −(eji )

2 · ejj = −η, and Eα
i fails to have an admissible

proximity configuration of type I with respecto to Ej
k and Ej

j .

In the subcase A.ii.ii.iii, let k be an index such that Ci −→ Ck. We have proved in

Proposition 6.1.11 that there exists at least one index γ, with γ ̸= k, such that

Ej−1
i ∩ Ej−1

γ ∩ Ej−1
k ̸= ∅. (6.52)

We should distinguish between two cases: either Cj ∼= Ej−1
i ∩Ej−1

k , or Cj is isomorphic

to a section of Ej−1
i and then Ej

j ∩ Ej
k = ∅. In both subcases, since Cj is proximate to

Ci and it is not isomorphic to a fiber of Ei
i , it follows from Propositions 6.2.6 and 6.2.7

that Ej
i has not an admissible proximity configuration neither of type III nor of type

IV with respect to Ej
j and Ej

k. Now, let us consider the subcase Cj ∼= Ej−1
i ∩ Ej−1

k .

Since Ej−1
i is final, then NEj−1

i /Zj−1

∼= OEj−1
i

(−1). Moreover, Ej−1
i

∼= F0, in particular

Ej−1
i = P (O(−ηi)⊕O(−ηi)), so by Proposition 1.2.33 we have that

(ej−1
i )3 = jEj−1

i ∗((−ςi)
2),

= jEj−1
i ∗(2ηiςi · f).

Firstly, let us suppose that Ci
t−→ Cγ . Then by Proposition 1.2.33 we have that

(ej−1
i )2 · ej−1

γ = jEj−1
i ∗(ηγf · (−ςi)),

= jEj−1
i ∗((−ηγ)ςi · f),

ej−1
i · (ej−1

γ )2 = jEj−1
i ∗((−ηγf)

2),

= jEj−1
i ∗(0ςi · f).
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Moreover, the class of Ej
j ∩Ej

i verifies
[
Ej
j ∩ Ej

i

]
= ςi−ηf ∈ A1(Ej

i ), so by Propositions

1.1.19 and 1.2.22

(eji )
3 = jEj

i ∗
((−(1 +mj)ςi +mjηjf)

2),

= jEj
i ∗
(2η(1 +mj)ςi · f);

(eji )
2 · ejγ = jEj

i ∗
(ηγf · (−(1 +mj)ςi +mjηjf)),

= jEj
i ∗
(−ηγ(1 +mj)ςi · f),

Now, since Ej
j is final for the sequential morphism πj,0 : Zj → Z0, and Cj

t−→ Cγ then

(ejj)
2 · ejγ = jEj

j∗
(ηγf · (−ςj)),

= jEj
j∗
((−ηγ)ςj · f),

and

eji · e
j
j · e

j
γ = (π∗

j (e
j−1
i )− ejj) · e

j
j · π

∗
j (e

j−1
γ ),

= −(ejj)
2 · π∗

j (e
j−1
γ ),

= −(ejj)
2 · ejγ .

In order to get an admissible proximity configuration of type I, with respect to Ej
j and

Ej
γ , then the following relations must hold:

(eji )
3 + 2(eji )

2 · ejγ = 0,

eji · e
j
j · e

j
γ = −(eji )

2 · ejj ,

so ηi = ηγ . It follows then by Lemma 6.2.3 that Ci is isomorphic to a fiber of Ek
k and

(ej−1
i )3 = 2, that is ηi = 1. According to this, we have then that

(eji )
3 = 2(1 +mj)

(eji )
2 · ejγ = −(1 +mj),

eji · (e
j
γ)

2 = 0,

(eji )
2 · ejj = −1,

eji · (e
j
j)

2 = 0,

where mj ≥ 1. Applying again Lemma 6.2.3, we can conclude that Eα
i does not have an

admissible proximity configuration of type I, with respect to Ej
j and Ej

γ .
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If we consider now the case where Ci −→ Cγ , then as a consequence of Proposition 6.2.1

there exists another index λ ̸= k, γ such that Ci
t−→ Cλ, so we can proceed as above.

In the subcase corresponding to Cj isomorphic to a section of Ej−1
i , since Cj is isomorphic

to a section, then πj : Zj → Zj−1 is an extrinsic elementary modification with respect to

Ej−1
i and by Proposition 1.2.33 we have that

eji · e
j
j · e

j
k = (π∗

j (e
j−1
i )− ejj) · e

j
j · π

∗
j (e

j−1
k ),

= −(ejj)
2 · π∗

j (e
j−1
k ),

= −(ejj)
2 · ejk,

but (ejj)
2 · ejk = 0, so Ej

i fails to have an admissible proximity configuration of type I

with respecto to Ej
k and Ej

j .

In the subcase A.ii.ii.iv, since Ej
j is final for the sequential morphism πj,0 : Zj → Z0 and

Cj
t−→ Cβ then

(ejj)
2 · ejβ = jEj

j∗
(f · (−ςj)),

= jEj
j∗
((−1)ςj · f).

Moreover,

eji · e
j
j · e

j
β = (π∗

j (e
j−1
i )− ejj) · e

j
j · π

∗
j (e

j−1
β ),

= −(ejj)
2 · π∗

j (e
j−1
β ),

= (ejj)
2 · ejβ ,

so in order to have an admissible proximity configuration of type I then (eji )
2 · ejj = −1.

Moreover, we know that Eβ−1
i

∼= F1, in particular Eβ−1
i

∼= P (O(a) ⊕ O(a − 1)), and[
Ej
j ∩ Ej

i

]
=

[
Sβ1

]
, where [S1] = ςi + af ∈ A1(Eβ−1

i ). Since πβ : Zβ → Zβ−1 is an

intrinsic modification for Eβ−1
i , then we have (eji )

2 ·ejj = (eβ−1
i )2 ·[S1], and by Proposition

1.2.22

(eβ−1
i )2 · [S1] = jEβ−1

i ∗((ςi + af) · (−ςi)),

= jEβ−1
i ∗((a− 1)ςi · f)),

so a = 0, and then Eβ−1
i

∼= P (O ⊕ O(−1)). It follows from Proposition 5.4.3 that Ci

can not be an unmodified “old” curve, so either Ci is an “old” curve with a modifications

of type I and II or it is a “new curve”. In both cases, there exists and index γ such
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that Eβ
γ ∩ Eβ

i ̸= ∅. In order to get an admissible proximity configuration of type I, then

Cβ −→ Cγ and

(eii)
2 · eiγ = −1,

eii · (eiγ)2 = 1.

Since (eii)
3 = 1, then as a consequence of Proposition 6.2.4, there must exist some other

index λ, with λ ̸= γ, such that Ei
i ∩ Ei

λ ̸= ∅.

In the subcase A.ii.ii.v, since Ej
j is final for the sequential morphism πj,0 : Zj → Z0,

Cj ∼= Sβδ+2n, and Cj
t−→ Cβ then

(ejj)
2 · ejβ = jEj

j∗
(δ + 2nf · (−ςj)),

= jEj
j∗
(−(δ + 2n)ςj · f).

Moreover,

eji · e
j
j · e

j
β = (π∗

j (e
j−1
i )− ejj) · e

j
j · π

∗
j (e

j−1
β ),

= −(ejj)
2 · π∗

j (e
j−1
β ),

= (ejj)
2 · ejβ ,

so in order to have an admissible proximity configuration of type I then (eji )
2 ·ejj = −(δ+

2n). Moreover, we know that Eβ−1
i

∼= Fδ, in particular Eβ−1
i = P (O(a)⊕O(a−δi)), and[

Ej
j ∩ Ej

i

]
=

[
Sβδi+2n

]
, where [Sδi+2n] = ςi+(a+n)f ∈ A1(Eβ−1

i ). Since πβ : Zβ → Zβ−1

is an intrinsic elementary modification of Eβ−1
i , then we have (eji )

2 ·ejj = (eβ−1
i )2 ·[Sδi+2n],

and by Proposition 1.2.22 we know

(eβ−1
i )2 · [S1] = jEβ−1

i ∗((ςi + (a+ n)f) · (−ςi)),

= jEβ−1
i ∗((a− δ − n)ςi · f)),

so a = −n, and Eβ−1
i = P (O(−n)⊕O(−n− δ)). Moreover, we have

(eji )
2 · ejβ = (π∗

j (e
j−1
i )− ejj)

2 · π∗
j (e

j−1
β ),

= (π∗
j (e

j−1
i ))2 · π∗

j (e
j−1
β ) + (ejj)

2 · π∗
j (e

j−1
β ),

= (ejj)
2 · ejβ ,

and

(eji )
3 = (π∗

j (e
j−1
i )− ejj)

3,

= (π∗
j (e

j−1
i ))3 − 3(π∗

j (e
j−1
i ))2 · ejj + 3π∗

j (e
j−1
i ) · (ejj)

2 − (ejj)
3
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It follows from Proposition 5.4.3 that Ci can not be an unmodified “old” curve, so either

Ci is an “old” curve with a modifications of type I and II or it is a “new curve”. In both

cases, there exists and index γ such that Eβ
γ ∩ Eβ

i ̸= ∅. In order to get an admissible

proximity configuration of type I, then Cβ −→ Cγ , Ci −→ Cγ , so n = 0 as a consequence

of Lemma 2.2.1, and

(eii)
2 · eiγ = −δi,

eii · (eiγ)2 = δi.

Since (eii)
3 = δi then, as a consequence of Proposition 6.2.4, there must exist some other

index λ, with λ ̸= γ, such that Ei
i ∩ Ei

λ ̸= ∅.

In the subcase A.ii.ii.vi, since Ck −→ Ci and Ck is non isomorphic to a fiber of Ei
i , then

it follows from Propositions 6.2.6 and Proposition 6.2.7 we can conclude that Ej
i has not

an admissible proximity configuration neither of type III nor of type IV with respect to

Ej
j and Ej

k. It may have an admissible configuration of type I. Since Cj is final for the

sequential morphism πj,0 : Zj → Z0, and Cj
t−→ Ck, then

(ejj)
2 · ejk = jEj

j∗
(−ηjf · (−ςj)),

= jEj
j∗
((−ηj)ςj · f).

Moreover, it follows from Proposition 1.2.33 that

eji · e
j
j · e

j
k = (π∗

j (e
j−1
i )− ejj) · e

j
j · π

∗
j (e

j−1
k ),

= −(ejj)
2 · π∗

j (e
j−1
k ),

= −(ejj)
2 · ejk,

so in order to have an admissible proximity configuration of type I, then (eji )
2 · ejj = −ηj .

Now, as a consequence of Proposition 1.1.19, the normal bundle NEj
i /Zj

verifies

NEj
i /Zj

∼= π∗
j,k−1(NEk−1

i /Zk−1
)⊗O(−Ej

i ∩ Ej
k)⊗O(−Ej

i ∩ Ej
j ),

so by Proposition 1.2.22

(eji )
2 · ejj = jEj

i ∗
(f · c1(NEj

i /Zj
)),

= jEj
i ∗
(f · g∗j,k−1c1(NEk−1

i /Zk−1
)−

[
Ej
i ∩ Ej

k

]
− f),

= jEj
i ∗
(f · g∗j,k−1c1(NEk−1

i /Zk−1
)− (ηj)ςi · f).
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Since f · g∗j,k−1c1(NEk−1
i /Zk−1

) ̸= 0, then Ej
i fails to have an admissible proximity config-

uration of type I with respect to Ej
j and Ej

k.

Let us now consider the case B, that is, the case where the following conditions hold:

(ejj)
2 · eji = −ηj ,

ejj · (e
j
i )

2 = 0.

We shall distinguish between the following two cases:

B.i the case where the following relation is satisfied:

(eji + ejj)
2 · eji = 0, (6.53)

B.ii otherwise.

In the case B.i, we shall distinguish between the following subcases:

B.i.i ηj = 1,

B.i.ii ηj > 1.

In the subcase B.i.i, as a consequence of Proposition 6.1.9, Ej−1
i must satisfy one of the

following characterizations:

B.i.i.i either Ej−1
i

∼= P2 is final, with dim(Ci) = 0,

B.i.i.ii or Ej−1
i is not final, with dim(Ci) = 0, and there exists at least an

index β such that Cβ
t−→ Ci, with the cardinal ηk = #

{
Ck ∩ Ek−1

i

}
>

1,

B.i.i.iii or Ej−1
i is final, Ci is a modified “old” curve with a modification of type

II, that is, there exists at least one index β such that dim(Cβ) = 1,

and Ci
t−→ Cβ ,

B.i.i.iv or Ej−1
i is not final, with Ci a modified “old” curve, that is there exists

at least one index β such that Cβ −→ Ci, with Cβ non isomorphic to

a fiber of Ei
i ,

B.i.i.v or Ej−1
i is final or not final, and Ci is a “new” curve.

In the subcase B.i.i.i, it follows from Theorem 6.1.5 that Ej
i is final, so our hypothesis,

Ei non final, fails to be true.
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In the subcase B.i.i.ii, let k ∈ {β} be an index such that Ck −→ Ci, but that there not

exists any index γ ̸= j such that Cγ is proximate to both Ci and Ck, or proximate

and t−proximate to Ci and Ck respectively (or vice versa) Since Ck
t−→ Ci, with ηk =

#
{
Ck ∩ Ek−1

i

}
> 1, and Cj

t−→ Ci, it follows from Propositions 6.2.6 and 6.2.7 that Ej
i

can not have an admissible proximity configuration, neither o type III nor of type IV

with respect to Ej
j and Ej

k. It may have an admissible configuration of type I, and in

this case Cj −→ Ck. However, by Proposition 1.2.33 have that

eji · (e
j
k)

2 = π∗
j (e

j−1
i ) · (π∗

j (e
j−1
k )− ejj)

2,

= π∗
j (e

j−1
i ) · (π∗

j (e
j−1
k ))2 + π∗

j (e
j−1
i ) · (ejj)

2,

= π∗
j (e

j−1
i ) · (π∗

j (e
j−1
k ))2 + eji · (e

j
j)

2; (eji )
2 · ejk = (π∗

j (e
j−1
i ))2 · (π∗

j (e
j−1
k )− ejj),

= π∗
j ((e

j−1
i )2 · ej−1

k );

so (eji )
2 · ejk = 0 and eji · (e

j
k)

2 < 0. Thus, Ej
i fails to have an admissible proximity

configuration of type I with respect to Ej
j and Ej

k.

In the subcase B.i.i.iii, let k ∈ {β} be an index such that Ck −→ Ci, but that there

not exists any index γ ̸= j such that Cγ is proximate to both Ci and Ck, or proximate

and t−proximate to Ci and Ck respectively (or vice versa). Since Cj
t−→ Ci, then it

follows from Propositions 6.2.6 and 6.2.7 that Ej
i can not have an admissible proximity

configuration, neither o type III nor of type IV with respect to Ej
j and Ej

k. In order to

have an admissible proximity configuration of type I, then Cj −→ Ck, that is πj : Zj →

Zj−1 is an extrinsic elementary modification of Ej−1
k , so by Proposition 1.2.33 we have

that

(ejk)
2 · eji = (π∗

j (e
j−1
k )− ejj)

2 · π∗
j (e

j−1
i ),

= π∗
j ((e

j−1
k )2 · ej−1

i ) + (ejj)
2 · eki ,

so (ejk)
2 · eji = −1 ̸= 0 and Ej

i fails to have an admissible proximity configuration of type

I with respect to Ej
j and Ej

k. In the remaining subcases, let k ∈ {β} be an index such

that Ck −→ Ci, but that there not exists any index γ ̸= j such that Cγ is proximate to

both Ci and Ck, or proximate and t−proximate to Ci and Ck respectively (or vice versa).

Since Cj
t−→ Ci, then it follows from Propositions 6.2.6 and 6.2.7 that Ej

i can not have

an admissible proximity configuration, neither o type III nor of type IV with respect to

Ej
j and Ej

k. It may have an admissible configuration of type I, and in this case Cj −→ Ck.

Since πj : Zj → Zj−1 is an intrinsic elementary modification with respect to Ej−1
i then
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by Proposition 1.2.33 we have that

(eji )
2 · ejk = (πj(e

j−1
i ))2 · (πj(ej−1

k )− ejj),

= (πj(e
j−1
i ))2 · πj(ej−1

k );

eji · (e
j
k)

2 = πj(e
j−1
i ) · (πj(ej−1

k )− ejj)
2,

= πj(e
j−1
i ) · (πj(ej−1

k ))2 + πj(e
j−1
i ) · (ejj)

2,

= πj(e
j−1
i ) · (πj(ej−1

k ))2 + eji · (e
j
j)

2,

and

eji · e
j
j · e

j
k = πj(e

j−1
i ) · ejj · (πj(e

j−1
k )− ejj),

= −eji · (e
j
j)

2,

so in order to get an admissible proximity configuration of type IV with respect to Ej
j

and Ej
k, the following conditions must hold:

(ej−1
i )2 · ej−1

k = −1,

ej−1
i · (ej−1

k )2 = 1.
(6.54)

Since (ejj)
2 · eji < 0, there can not exist any other indexes β such that (ejβ)

2 · eji < 0, so

Ej−1
i

∼= F1. In particular, it follows from relation 6.54 that Ek−1
i

∼= P (O(a)⊕O(a− 1)),

so
[
Ej−1
i ∩ Ej−1

k

]
= ςi + af ∈ A1(Ej−1

i ). Let us suppose that Ck −→ Ci. Then it follows

from Proposition 1.1.19 that NEj−1
i /Zj−1

∼= π∗
j−1,k−1(NEk−1

i /Zk−1
) ⊗ O(−Ek

i ∩ Ek
k )

⊗mk ,

with mk ∈ Z+, so by Proposition 1.2.22 and Lemma 2.2.1

(ej−1
i )2 · ej−1

k = jEj−1
i ∗((ςi + af) · (−(1 +mk)ςi − amkf)),

= jEj−1
i ∗((a− (1 +mk))ςi · f);

ej−1
i · (ej−1

k )2 = jEj−1
k ∗(c1(NEj−1

k
) ·

[
Ej−1
i ∩ Ej−1

k

]
),

= jEj−1
i ∗((

[
Ej−1
i ∩ Ej−1

k

]
)2),

= jEj−1
i ∗(1ςi · f);

and

(ej−1
i )3 = jEj−1

i ∗((−(1 +mk)ςi − amkf)
2),

= jEj−1
i ∗((−2a(1 +mk) + (1 +mk)

2)ςi · f),
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The system defined by the previous relations, that is,

a− (1 +mk) = −1,

−2a(1 +mk) + (1 +mk)
2 = 1,

has only the trivial solution a = 0, mk = 0, so Ck can not be the only center proximate

to Ci. Then, the only possibilities are either there exists another index γ ̸= k, such that

Cγ −→ Ci or Ej−1
i is final, with base a “new” curve Ci. In the latter case, it follows from

Proposition 6.2.4 that there exists another index λ such that Ej−1
i ∩ Ej−1

k ∩ Ej−1
λ ̸= ∅,

and Ej
i fails to have an admissible final configuration.

In the case B.i.ii, as a consequence of Proposition 6.1.10, one of the following character-

izations is satisfied:

B.i.ii.i either Ej−1
i

∼= P2 is not final, and there exists at least one index β

verifying Cβ −→ Ci, with dim(Cβ) = 1,

B.i.ii.ii or Ej−1
i is final, with base a modified “old” curve, with modifications

of type I, that is there exists at least one index β such that Cβ −→ Ci,

with Cβ isomorphic to a fiber of Ei
i ,

B.i.ii.iii or Ej−1
i is final, with base a modified “old” curve with a modification

of type II, that is, such that there exists at least one index β verifying

Ci
t−→ Cβ ,

B.i.ii.iv or Ej−1
i is not final, with base an “old” curve, that is, there exists at

least one index β verifying Cβ −→ Ci, with Cβ non isomorphic to a

fiber of Ei
i ,

B.i.ii.v or Ej−1
i is final or not final, with base a “new” curve.

In the case B.i.ii.i, let k ∈ {β} be an index such that Ck −→ Ci, but that there not

exists any index γ ̸= j such that Cγ is proximate to both Ci and Ck, or proximate and

t−proximate to Ci and Ck respectively (or vice versa). Now, since Cj
t−→ Ci and Ck −→ Ci,

it follows from Proposition 6.2.6 and Proposition 6.2.7 we can conclude that Ej
i has not

an admissible proximity configuration neither of type III nor of type IV with respect to

Ej
j and Ej

k. Moreover, since Cj is t− proximate to Ci, then in order to get an admissible

proximity configuration of type I, it must be proximate to Ck, that is Cj −→ Ck. Now,
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by Proposition 1.2.33 we have that

−eji · e
j
k · e

j
j = −π∗

j (e
j−1
i ) · (π∗

j (e
j−1
k )− ejj) · e

j
j ,

= (ejj)
2 · eji ,

but (eji )
2 · ejk ̸= −eji · e

j
k · e

j
j , so Ej

i fails to have an admissible proximity configuration of

type I with respect to Ej
k and Ej

j .

In the case B.i.ii.iv, let k ∈ {β} be an index such that Ck −→ Ci, but that there not

exists any index γ ̸= j such that Cγ is proximate to both Ci and Ck, or proximate

and t−proximate to Ci and Ck respectively (or vice versa). Now, as a consequence of

Proposition 6.2.6 and Proposition 6.2.7 we can conclude that Ei has not an admissible

proximity configuration neither of type III nor of type IV with respect to Ej
j and Ej

k.

Moreover, since Cj is t−proximate to Ci, then it must be proximate to Ck in order to

get an admissible proximity configuration of type I, and by Proposition 1.2.33 we have

that

eji · (e
j
k)

2 = π∗
j (e

j−1
i ) · (π∗

j (e
j−1
k )− ejj)

2,

= −ηj ̸= 0.

We can conclude then that Ej
i has not an admissible proximity configuration of type I

with respect to Ej
k and Ej

j either.

In the subcase B.i.ii.iii, let k ∈ {β} be an index such that Ck −→ Ci, but that there

not exists any index γ ̸= j such that Cγ is proximate to both Ci and Ck, or proximate

and t−proximate to Ci and Ck respectively (or vice versa). Since C − j
t−→ Ci, it

follows from Proposition 6.2.6 and Proposition 6.2.7 we can conclude that Ei has not an

admissible proximity configuration neither of type III nor of type IV with respect to Ej
j

and Ej
k. Moreover, in order to get an admissible configuration of type I, then, since Cj is

t−proximate to Ci, it must be proximate to Ck, and by Proposition 1.2.33 we have that

eji · (e
j
k)

2 = π∗
j (e

j−1
i ) · (π∗

j (e
j−1
k )− ejj)

2,

= −ηj ̸= 0.

We can conclude then that Ei has not an admissible proximity configuration of type I

with respect to Ej
k and Ej

j .

In the remaining subcases, let k ∈ {β} be an index such that Ck −→ Ci, but that there not

exists any index γ ̸= j such that Cγ is proximate to both Ci and Ck, or proximate and
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t−proximate to Ci and Ck respectively (or vice versa). As Cj
t−→ Ci, by Propositions 6.2.6

and 6.2.7 we can conclude that Ej
i can not have an admissible proximity configuration,

neither o type III nor of type IV with respect to Ej
j and Ej

k. It may have an admissible

configuration of type I, and in this case Cj −→ Ck. Since πj : Zj → Zj−1 is an intrinsic

elementary modification with respect to Ej−1
i , then by Proposition 1.2.33 we have that

(eji )
2 · ejk = (πj(e

j−1
i ))2 · (πj(ej−1

k )− ejj),

= (πj(e
j−1
i ))2 · πj(ej−1

k );

eji · (e
j
k)

2 = πj(e
j−1
i ) · (πj(ej−1

k )− ejj)
2,

= πj(e
j−1
i ) · (πj(ej−1

k ))2 + πj(e
j−1
i ) · (ejj)

2,

= πj(e
j−1
i ) · (πj(ej−1

k ))2 + eji · (e
j
j)

2;

and

eji · e
j
j · e

j
k = πj(e

j−1
i ) · ejj · (πj(e

j−1
k )− ejj),

= −eji · (e
j
j)

2,

so in order to have an admissible proximity configuration of type I with respect to Ej
j

and Ej
k the following conditions must hold:

(ej−1
i )2 · ej−1

k = −ηj , (6.55)

ej−1
i · (ej−1

k )2 = ηj . (6.56)

Since (ejj)
2 · eji < 0, there can not exists any other indexes β such that (ejβ)

2 · eji < 0, so

Ej−1
i

∼= Fδ. Moreover, as Ej−1
i = P (O(a)⊕O(a− δi)), it follows that

[
Ej−1
i ∩ Ej−1

k

]
=

ςi+ (a+nk)f ∈ A1(Ej−1
i ), with ηj = δi+2nk. Firstly, let us suppose that Ck −→ Ci and

that there not exists anyother index γ ̸= k such that Cγ −→ Ci. Then, it follows from

Proposition 1.1.19 that NEj−1
i /Zj−1

∼= π∗
j−1,k−1(NEk−1

i /Zk−1
) ⊗ O(−Ek

i ∩ Ek
k )

⊗mk , with

mk ∈ Z+, so by Proposition 1.2.22 and Lemma 2.2.1 we have that

(ej−1
i )2 · ej−1

k = jEj
i ∗
((ςi + (a+ nk)f) · (−(1 +mk)ςi −mk(a+ nk)f)),

= jEj
i ∗
((a− δi(1 +mk)− nk(1 + 2mk))ςi · f);

ej−1
i · (ej−1

k )2 = jEj−1
k ∗(c1(NEj−1

k
) ·

[
Ej−1
i ∩ Ej−1

k

]
),

= jEj−1
i ∗((

[
Ej−1
i ∩ Ej−1

k

]
)2),

= jEj−1
i ∗((δi + 2nk)ςi · f);
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and

(ej−1
i )3 = jEj−1

i ∗((−(1 +mk)ςi −mk(a+ nk)f)
2),

= jEj−1
i ∗((−2a(1 +mk) + δi(1 +mk)

2 + 2nkmk(1 +mk))ςi · f).

The system defined by the previous relations, that is,

a− δi(1 +mk)− nk(1 + 2mk) = −δi − 2nk,

−2a(1 +mk) + δi(1 +mk)
2 + 2nkmk(1 +mk) = δi + 2nk,

has no non-trivial solutions verifying δi, nk ≥ 0, so Ck can not be the only center proxi-

mate to Ci. Then, the only possibilities are either there exists another index γ ̸= k such

that Cγ −→ Ci, or Ej−1
i is final for the sequential morphism πj−1,0 : Zj−1 → Z0, with

base a “new” curve Ci, that is, there exists an index γ such that Ci −→ Cγ . However, in

the latter case, it follows from Proposition 6.2.4 that there exists another index λ such

that Ej−1
i ∩ Ej−1

γ ∩ Ej−1
λ ̸= ∅, and Ej

i fails to have an admissible final configuration.

6.3 The Chow ring of the sky Zs

As for the whole of this chapter, we will restrict ourselves to the case of sequences of

point and rational curve blow-ups, that is, either Cα = P or Cα = C, with the ground

variety Z0
∼= P3.

As a consequence of Theorem 1.2.24, we have that the Chow ring of the ground variety

A•(Z0) is isomorphic to

A•(Z0) ∼= Z [u] /(u4), (6.57)

by sending u to h, where h ∈ A1(Z0) is the rational equivalence class of any hyperplane

[H] in P3. Moreover, since ∀α it is satisfied that either Eα
α

∼= P2 or Eα
α

∼= Fδ, then it

follows from Theorems 1.2.24 and 1.2.25 that:

A•(Eα
α)

∼=


Z [s] /(s3) by sending s to ςα if Cα = Pα, (6.58)

Z [t, u] /(t2 + c1(NCα/Zα−1
)t · u, u2) by sending t, u to ςα, f respectively (6.59)

if Cα = Cα, (6.60)
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where ςα ∈ A1(Eα
α) is the rational class of any hyperplane and f ∈ A1(Eα

α) is the rational

class of a fiber.

In these sequences, we are able to give generators of the Chow ring of the sky A•(Zs) as

a Z−algebra. To begin with, let us consider the following partition of the centers of the

sequence of blow-ups:

{Ci}si=1 = {Ci}i∈I1
⊔ {Ci}i∈I2

, (6.61)

where i ∈ I1 if dim(Ci) = 0 and i ∈ I2 otherwise.

Lemma 6.3.1. The Chow ring of the sky of the sequence A•(Zs) is generated by{
hs∗, {es∗α }α∈I1

, {es∗α , ws∗α }α∈I2

}
as a Z−algebra.

Proof. The result follows by induction on α. It is clear that A•(Z0) is generated by {h}.

Let us suppose that A•(Zα) is generated by{
hα∗, {eα∗i }i∈I1

i≤α
,
{
eα∗i , wβ∗i

}
i∈I2
i≤α

}
. (6.62)

Now we have to consider the two following settings: either dim(Cα+1) = 0 or dim(Cα+1) =

1. In the former case, since Eα+1
α+1

∼= P2, that is A•(Eα+1
α+1)

∼= Z [s] /(s3), and eα+1∗
α+1 ·

eα+1∗
α+1 = −jα+1∗(ςα+1) by Proposition 1.2.33, then by Proposition 1.2.29 and Theorem

1.2.24 we have that A•(Zα+1) is generated by{
hα+1∗,

{
eα+1∗
i

}
i∈I1
i≤α+1

,
{
eα+1∗
i , wα+1∗

i

}
i∈I2
i≤α

}
(6.63)

as a Z−algebra. In the latter case, that is dim(Cα+1) = 1, we have that Eα+1
α+1

∼= Fδ, that

is A•(Eα+1
α+1)

∼= Z [t, u] /(t2 + c1(NCα/Zα−1
)t · u, u2), and eα+1∗

α+1 · eα+1∗
α+1 = −jα+1∗(ςα+1) by

Proposition 1.2.33. Then as a consequence of Proposition 1.2.29 and Theorem 1.2.25 we

have that A•(Zα+1) is generated by{
hα+1∗,

{
eα+1∗
i

}
i∈I1
i≤α

,
{
eα+1∗
i , wα+1∗

i

}
i∈I2
i≤α+1

}
. (6.64)

Now, in order to compute the relations between the generators, let us restrict firstly to

the blow-up at the α + 1−level, that is πα+1 : Zα+1 → Zα, where Cα+1 is a rational
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curve, and Zα is the sky of a sequence of #Iα1 point blow-ups and #Iα2 rational curve

blow-ups.

From Proposition 1.2.29 we know that A•(Zα+1) is generated by π∗
α+1A

•(Zα) and jα+1∗A
•Eα+1

α+1 .

We can thus define a ring homomorphism

fα+1 : A•(Zα)
[
eα+1
α+1, w

α+1
α+1

]
→ A•(Zα+1),

such that,

fα+1(x) =


π∗
α+1(x) if x ∈ A•(Zα), (6.65)

jα+1∗(1) if x = eα+1
α+1, (6.66)

jα+1∗(g
∗
α+1(P )) if x = wα+1

α+1, (6.67)

where the class of P , [P ] ∈ A1(Cα+1) is a generator of A1(Cα+1). Consequently, we have

that

A•(Zα+1) ∼= A•(Zα)
[
eα+1
α+1, w

α+1
α+1

]
/kerfα+1. (6.68)

Theorem 6.3.2. The Chow ring of Zα+1, A•(Zα+1), is isomorphic to

A•(Zα+1) ∼=
A•(Zα)

[
eα+1
α+1, w

α+1
α+1

]
Jα+1

, (6.69)

where

Jα+1 = (keri∗α+1·eα+1
α+1, h

α+1∗·eα+1
α+1−µ0w

α+1
α+1,

{
eα∗β · eα+1

α+1 − µβw
α+1
α+1

}
, (wα+1

α+1)
2, hα+1∗·wα+1

α+1,{
eα∗β · wα+1

α+1

}α
β=1

, (eα+1
α+1)

2 − c1(NCα+1/Zα
)wα+1

α+1 + [Cα+1] , e
α+1
α+1 · w

α+1
α+1 + (hα+1∗)3)

(6.70)

with µβ = eα∗β · [Cα+1].

Proof. In order to compute the relations between the generators of A•(Zα+1), let us now

consider the ring homomorphism induced by the inclusion iα+1 : Cα+1 → Zα, that is

i∗α+1 : A•(Zα) → A•(Cα+1),

and let us denote by Iα+1 to

Iα+1 := (

a0h
α∗ +

α∑
β=1

aβe
α∗
β

 , (hα∗)2,
{
hα∗ · eα∗β

}α
β=1

,

{
eα∗β · eα∗δ

}
β,δ<α+1
β ̸=δ

,
{
wα∗β

}
β∈I2
β<α+1

), (6.71)
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where
{
a0µ0 +

∑α
β=1 aβµβ

}
denotes the minimum set of relations of the finitely gener-

ated free abelian group Sα+1 generated by{
µ0 = deg(i∗α+1h

α∗),
{
µi = deg(i∗α+1e

α∗
β )

}α
β=1

}
. (6.72)

Then, it can be proved that Ker(i∗α+1) = Iα+1. Firstly, we will prove that Iα+1 ⊂

Ker(i∗α+1). Since Cα+1 is a rational curve, then A1(Cα+1) is generated by the class [P ] ∈

A1(Cα+1) so we can conclude that
{
a0m0 +

∑α
β=1 aβmβ

}
⊂ Ker(i∗α+1). Moreover, we

know that the pull-back morphism i∗α+1 : A•(Zα) → A•(Cα+1) is graded on codimension,

so it follows that

((hα∗)2,
{
hα∗ · eα∗β

}α
β=1

,
{
eα∗β · eα∗δ

}
β,δ<α+1
β ̸=δ

,
{
wα∗β

}
β∈I2
β<α+1

) ⊂ Ker(i∗α+1). (6.73)

Now, we will prove that Ker(i∗α+1) ⊂ Iα+1. Note that i∗α+1 : A•(Zα) → A•(Cα+1) is

homogenous, so ker(i∗α+1) is an homogenous ideal, and Iα+1 is an homogenous ideal too

by construction. Let us suppose that

Q [hα∗, eα∗1 , ..., eα∗α , wα∗1 , ..., wα∗α ] ∈ Ker(i∗α+1)/Iα+1, (6.74)

with deg(Q) = η. Then η ≤ 1, since all polynomials of weighted degree 2 are all in Iα+1,

and Q [hα∗, eα∗1 , ..., eα∗α , wα∗1 , ..., wα∗α ] must be of the form Q [hα∗, eα∗1 , ..., eα∗α , wα∗1 , ..., wα∗α ] =

b0h
α∗+

∑α
i=1 bie

α∗
i mod(Iα+1). But then bi = 0 for i = 0, ..., α since

{
a0µ0 +

∑α
β=1 aβµβ

}
is the minimum set of relations of the finitely generated free abelian group Sα+1.

Before going on, we should distinguish between two possible cases, that is:

A either i∗α+1 is surjective,

B or i∗α+1 is not surjective.

In case A we have that A•(Cα+1) ∼= A•(Zα)/keri
∗
α+1. Moreover, there must exist a

relation of the form

a0i
∗
α+1h

α∗ +
∑

aβi
∗
α+1e

α∗
β = [P ] , (6.75)

where [P ] ∈ A1(Cα+1) is a generator of A1(Cα+1), so in this case we can conclude that:

A•(Cα+1) ∼= A•(Zα) [P ] /(keri∗α+1, a0h
α∗ +

∑
aβe

α∗
β − [P ]). (6.76)

However, the case B is a bit more tricky. In particular, we have that A•(Cα+1) is

isomorphic to

A•(Cα+1) ∼= A•(Zα) [P ] /(keri∗α+1, h
α∗ − µ0 [P ] ,

{
eα∗β − µβ [P ]

}α
β=1

, ([P ])2). (6.77)
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Now, since Eα+1
α+1 is isomorphic to the projective bundle P (NCα+1/Zα

) over Cα+1, then

by Theorem 1.2.25 it follows that:

A•(Eα+1
α+1)

∼= A•(Cα+1) [ςα+1] /(ς
2
α+1 + c1(NCα+1/Zα

)ςα+1 · p). (6.78)

It can be proved that in both cases A and B it is satisfied the following inclusion Jα+1 ⊂

Kerfα+1. Recall that

Jα+1 = (keri∗α+1·eα+1
α+1, h

α+1∗·eα+1
α+1−µ0w

α+1
α+1,

{
eα∗β · eα+1

α+1 − µβw
α+1
α+1

}
, (wα+1

α+1)
2, hα+1∗·wα+1

α+1,{
eα∗β · wα+1

α+1

}α
β=1

, (eα+1
α+1)

2 − c1(NCα+1/Zα
)wα+1

α+1 + [Cα+1] , e
α+1
α+1 · w

α+1
α+1 + (hα+1∗)3)

(6.79)

Firstly, since fα+1 is a ring homomorphism then we have that fα+1(x · y) = fα+1(x) ·

fα+1(y), so the inclusion

(keri∗α+1 · eα+1
α+1, h

α+1∗ · eα+1
α+1−µ0w

α+1
α+1,

{
eα∗β · eα+1

α+1 − µβw
α+1
α+1

}
, (wα+1

α+1)
2, hα+1∗ ·wα+1

α+1,{
eα∗β · wα+1

α+1

}α
β=1

) ⊂ kerfα+1, (6.80)

follows directly from Proposition 1.2.33. Moreover, the inclusion

((eα+1
α+1)

2 − c1(NCα+1/Zα
)wα+1

α+1 + [Cα+1]) ⊂ kerfα+1, (6.81)

is a direct consequence of the key formula (see Proposition 1.2.29). Finally, the inclusion

(eα+1
α+1 · wα+1

α+1 + (hα+1∗)3) ⊂ kerfα+1 follows from the key formula and the birational

invariance of A0(Zi) (see [17, Example 16.1.11]).

In order to continue with the proof, let us recall that by Proposition 1.2.29 we have the

following exact sequence:

0 −→ A•(Cα+1)
l−→ A•(Eα+1

α+1)⊕A•(Zα)
m−→ A•(Zα+1) −→ 0 (6.82)

where l(x) = ((g∗α+1c1(NCα+1/Zα
)+ςα+1)∩g∗α+1(x), iα+1∗(x)) and m(y) = (−jα+1∗(y), π

∗
α+1(y)).

Let us now define

Rα+1 := A•(Zα)
[
eα+1
α+1, w

α+1
α+1

]
/Jα+1, (6.83)

and a group homorphism γ : A•(Eα+1
α+1)⊕A(Zα) → Rα+1 such that γ(x, y) = −hα+1(x)+
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π∗
α+1(y), where

hα+1(x) =



(eα+1
α+1)

η+1 if x = (−1)η(ςα+1)
η for η ≥ 1

wα+1
α+1 if x = p

(d0h
α∗ +

∑α
β=1 dβe

α∗
β )λ−1 · wα+1

α+1 if x = (p)λ for λ ≥ 2

hα+1((p)
λ) · (eα+1

α+1)
η if x = (p)λ · (ςα+1)

η for λ ≥ 2 and η ≥ 1

, giving factorization of m : A•(Eα+1
α+1)⊕A•(Zα) → A•(Zα+1), that is,

A•(Eα+1
α+1)⊕A•(Zα)

m //

γ

��

A•(Zα+1)

��
Rα+1

φα+1// A•(Zα)
[
eα+1
α+1, w

α+1
α+1

]
/kerfα+1

OO
(6.84)

In order to prove that Rα+1
∼= A•(Zα+1), that is φα+1 is an isomorphism, it suf-

fices to verify that γ ◦ l = 0. Choose [Cα+1] ∈ A0(Cα+1). Then l([Cα+1]) = (ςα +

c1(NCα/Zα−1
)p, [Cα+1]), and

γ(l([Cα+1])) = (eα+1
α+1)

2 − c1(NCα+1/Zα
)wα + [Cα+1] = 0. (6.85)

Choose now [Pα+1] ∈ A1(Cα+1). Then l([Pα]) = (ςα+1 · p, (hα∗)3) and

γ(l([Pα+1])) = eα+1
α+1 · w

α+1
α+1 + (hα∗)3 = 0. (6.86)

Corollary 6.3.3. The Chow ring of the sky A•(Zs) is isomorphic to

A•(Zs) ∼=
Z
[
hs∗, {es∗α }α∈I1

,
{
es∗β , ws∗β

}
β∈I2

]
A

, (6.87)

where

A = ((hs∗)4,
{
{hs∗ · es∗α } ,

{
es∗α · es∗β

}
α ̸=β ,

{
−(es∗α )3 + (hs∗)n

}}
α,β∈I1

,{
keris∗α · es∗α , hs∗ · es∗α − µ0w

s∗
α ,

{
es∗β · es∗α − µβw

s∗
α

}
β<α

, (ws∗α )2, hs∗ ·ws∗α ,
{
es∗β · ws∗α

}
β<α

,

(es∗α )2 − c1(NCα/Zα−1
)ws∗α + [Cα]

s∗
, es∗α · ws∗α + (hs∗)3

}
α,β∈I2

). (6.88)

Proof. By Theorems 3.5.3 and 6.3.2 we know that
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A if dim(Cα+1) = 0, that is Cα+1 = Pα+1, then

A•(Zα+1) ∼=
A•(Zα)

[
eα+1∗
α+1

]
(hα+1∗ · eα+1∗

α+1 ,
{
eα+1∗
i · eα+1∗

α+1

}α
i=1

,−(eα+1∗
α+1 )3 + (hα+1∗)3)

,

B and if dim(Cα+1) = 1, that is Cα+1 = Cα+1, then

A•(Zα+1) ∼=
A•(Zα)

[
eα+1
α+1, w

α+1
α+1

]
Jα+1

.

So, since A•(Z0) ∼= Z[h]
(h)4 by Theorem 1.2.24, the result follows directly by induction.

Corollary 6.3.4. Given two sequences of blow-ups (Zs, ..., Z0, π), (Z
′

s, ..., Z
′

0, π
′
), such

that Z0
∼= Z

′

0, with the same length and proximity relations, then A•(Zs) and A•(Z
′

s)

may be non-isomorphic.

Proof. Let π1 : Z1 → Z0 be the blow-up with center C1 a rational curve of degree γ1,

with γ1 ≥ 4, let π2 : Z2 → Z1 be the blow-up with center C2 the section corresponding

to the line subbundle OC1
(2γ1 − 1 − a − n), and let π

′

2 : Z
′

2 → Z1 be the blow-up with

center C
′

2 the section corresponding to the line subbundle OC1
(2γ1 − 1 − a − m) with

m ̸= n. Then, it follows from Corollary 6.3.3 that the Chow ring A•(Z2) is isomorphic

to

A•(Z2) ∼=
Z
[
h2∗, e2∗1 , w2∗

1 , e2∗2 , w2∗
2

]
A

, (6.89)

with

A = ((h2∗)4, (h2∗)2·e2∗1 , h2∗·e2∗1 −γ1w
2∗
1 , h2∗·w2∗

1 , (w2∗
1 )2, (e2∗1 )2−(4γ1−2)w2∗

1 +γ1(h
2∗)2,

e2∗1 · w2∗
1 + (h2∗)3, (h2∗)2 · e2∗2 , (e2∗1 )2 · e2∗2 , h2∗ · e2∗1 · e2∗2 , w2∗

1 · e2∗2 , h2∗ · e2∗2 − γ1w
2∗
2 ,

e2∗1 · e2∗2 − (2γ1 − 1− a− n)w2∗
2 , h2∗ · w2∗

2 , e2∗1 · w2
2, w

2∗
1 · w2∗

2 , (w2∗
2 )2,

(e2∗2 )2 − (2γ1 − 1 + a+ n)w2∗
2 + (−(e2∗1 )2 + (2γ1 − 1 + a+ n)w2∗

1 ), e2∗2 · w2∗
2 + (h2∗)3),

(6.90)

and the Chow ring A•(Z
′

2) is isomorphic to

A•(Z2) ∼=
Z
[
h

′2∗, e2
′∗

1 , w2′∗
1 , e2

′∗
2 , w2′∗

2

]
A′ , (6.91)
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with

A
′
= ((h2′∗)4, (h

′2∗)2·e2
′∗

1 , h2′∗·e2∗1′ −γ1w
2′∗
1 , h2′∗·w2′∗

1 , (w2′∗
1 )2, (e2

′∗
1 )2−(4γ1−2)w2′∗

1 +γ1(h
2′∗)2,

e2
′∗

1 ·w2′∗
1 +(h2′∗)3, (h2′∗)2 · e2

′∗
2 , (e2

′∗
1 )2 · e2

′∗
2 , h2′∗ · e2

′∗
1 · e2

′∗
2 , w2′∗

1 · e2
′∗

2 , h2′∗ · e2
′∗

2 −γ1w
2′∗
2 ,

e2∗1 · e2∗2 − (2γ1 − 1− a−m)w2′∗
2 , h2′∗ · w2′∗

2 , e2
′∗

1 · w2′∗
2 , w2′∗

1 · w2′∗
2 , (w2′∗

2 )2,

(e2
′∗

2 )2− (2γ1−1+a+m)w2′∗
2 +(−(e2

′∗
1 )2+(2γ1−1+a+m)w2′∗

1 ), e2
′∗

2 ·w2′∗
2 +(h2′∗)3).

(6.92)

Now we will prove that A•(Z2) and A•(Z
′

2) are not isomorphic. To begin with, we know

that A•(Z2) is generated by
{
h2∗, e2∗1 , e2∗2

}
in codimension 1,{

(h2∗)2, w2∗
1 , w2∗

2

}
in codimension 2,{

(h2∗)3
}

in codimension 3,

and A•(Z
′

2) is generated by

{
h2′∗, e2

′∗
1 , e2

′∗
2

}
in codimension 1,{

(h2′∗)2, w2′∗
1 , w2′∗

2

}
in codimension 2,{

(h2′∗)3
}

in codimension 3.

Let us define a graded ring homomorphism ϕ : A•(Z2) → A•(Z
′

2), so

ϕ(h2∗) = a0h
2′∗ + a1e

2′∗
1 + a2e

2′∗
2 ,

ϕ(e2∗1 ) = b0h
2′∗ + b1e

2′∗
1 + b2e

2′∗
2 ,

ϕ(e2∗2 ) = c0h
2′∗ + c1e

2′∗
1 + c2e

2′∗
2 ,

ϕ(w2∗
1 ) = d0(h

2′∗)2 + d1w
2′∗
1 + d2w

2′∗
2 ,

ϕ(w2∗
2 ) = f0(h

2′∗)2 + f1w
2′∗
1 + f2w

2′∗
2 .

Since A•(Z
′

2) is generated by
{
(h2′∗)3

}
in codimension 3, then we have that

ϕ((h2∗)3) = (ϕ(h2∗))3 = (h2′∗)3, (6.93)

so we can conclude that ϕ(h2∗) = h2′∗, that is, a0 = 1, a1 = a2 = 0. If ϕ would be a
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graded isomorphism, then the following relations will hold

ϕ((h2∗)2 · e2∗1 ) = ϕ(h2∗)2 · ϕ(e2∗1 ) = 0, (6.94)

ϕ((h2∗)2 · e2∗2 ) = ϕ(h2∗)2 · ϕ(e2∗2 ) = 0, (6.95)

ϕ(h2∗ · e2∗1 − γ1w
2∗
1 ) = ϕ(h2∗) · ϕ(e2∗1 )− γ1ϕ(w

2∗
1 ) = 0, (6.96)

ϕ(h2∗ · e2∗2 − γ1w
2∗
2 ) = ϕ(h2∗) · ϕ(e2∗2 )− γ1ϕ(w

2∗
2 ) = 0, (6.97)

ϕ(e2∗1 · w2∗
2 ) = ϕ(e2∗1 ) · ϕ(w2∗

2 ) = 0,

(6.98)

ϕ(e2∗2 · w2∗
1 ) = ϕ(e2∗2 ) · ϕ(w2∗

1 ) = 0,

(6.99)

ϕ(e2∗1 · w2∗
1 + (h2∗)3) = ϕ(e2∗1 ) · ϕ(w2∗

1 ) + ϕ(h2∗)3 = 0,

(6.100)

ϕ(e2∗2 · w2∗
2 + (h2∗)3) = ϕ(e2∗2 ) · ϕ(w2∗

2 ) + ϕ(h2∗)3 = 0,

(6.101)

ϕ(e2∗2 · e2∗2 − (2γ1 − 1− a− n)w2∗
2 ) = ϕ(e2∗2 ) · ϕ(e2∗2 )− (2γ1 − 1− a− n)ϕ(w2∗

2 ) = 0.

(6.102)

From equations 6.94 and 6.94, we have that b0 = c0 = 0. Moreover, equations 6.96 and

6.97 implies that b1 = d1, b2 = d2, c1 = f1 and c2 = f2. Now, as a consequence of

equations 6.98 an6.99 the following relations hold −b1f1 − b2f2 = −c1d1 − c2d2 = 0.

Finally, it follows from equations 6.100 and 6.101 that −(b1)
2 − (b2)

2 = −(c1)
2 − (c2)

2 =

−1, so we can conclude that if ϕ would be a graded isomorphism, then

A either b1 = d1 = c2 = f2 = 1 and b2 = d2 = c1 = f1 = 0, that is, ϕ(e2∗1 ) =

e2
′∗

1 , ϕ(w2∗
1 ) = w2′∗

1 , ϕ(e2∗2 ) = e2
′∗

2 , ϕ(w2∗
2 ) = w2′∗

2 ,

B or b1 = d1 = c2 = f2 = 0 and b2 = d2 = c1 = f1 = 1, that is, ϕ(e2∗1 ) =

e2
′∗

2 , ϕ(w2∗
1 ) = w2′∗

2 , ϕ(e2∗2 ) = e2
′∗

1 , ϕ(w2∗
2 ) = w2′∗

1 .

Let us now consider the ideal I = (e2∗1 ) ≤ A•(Z2). If ϕ would be a graded isomorphism,

then I ≤ A•(Z2) and ϕ(I) ≤ A•(Z
′

2) would have the same Hilbert-Poincaré series, but
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in the particular case B this equality is not true

P(e2∗1 )(t0, t1) = 1− t0 − t20 − 5t30 − 5t20t1 + 9t40 + 15t30t1 + t20t
2
1 + 9t50 − 5t40t1 − 3t30t

2
1

− 19t60 − 25t50t1 + t40t
2
1 + t70 + 25t60t1 + 5t50t

2
1 + 10t80 + 5t70t1 − 5t60t

2
1 − 4t90 − 15t80t1

− t70t
2
1 + 5t90t1 + 3t80t

2
1 − t90t

2
1, (6.103)

P(e2
′∗

2 )(t0, t1) = 1− t0 − 2t20 − 2t30 − 3t20t1 + 8t40 + 9t30t1 + t20t
2
1 + 4t50 − 3t40t1 − 3t30t

2
1

− 14t60 − 15t50t1 + t40t
2
1 + 2t70 + 15t60t1 + 5t50t

2
1 + 7t80 + 3t70t1 − 5t60t

2
1 − 3t80 − 9t80t1

− t70t
2
1 + 3t90t1 + 3t80t

2
1 − t90t

2
1, (6.104)

so we have that ϕ(e2∗1 ) = e2
′∗

1 , ϕ(w2∗
1 ) = w2′∗

1 , ϕ(e2∗2 ) = e2
′∗

2 , ϕ(w2∗
2 ) = w2′∗

2 in order to

have a graded isomorphism. However, even in the case A, the relation of equation 6.102

is not satisfied since

ϕ(e2∗2 · e2∗2 − (2γ1 − 1− a− n)w2∗
2 ) = (−m+ n)w2′∗

2 ̸= 0, (6.105)

so we can conclude that the graded homomorphism ϕ : A•(Z2) → A•(Z
′

2) is not a graded

isomorphism.

We finish this section by giving some interesting and non-trivial examples of sequences

of point and rational curve blow-ups, where we explicitly compute the Chow ring of their

corresponding skies.

Example 6.3.5. Let P ∈ P3 be a point, and let π1 : Z1 → Z0 = P3 be the blow-up of

Z0 with center C1 = P . Consider now a rational curve of degree one C ∈ E1
1 , and let

π2 : Z2 → Z1 be the blow-up of Z1 with center C2 = C. Finally, If we denote by D to

E2
1 ∩ E2

2 , let π3 : Z3 → Z2 be the blow-up of Z2 with center C3 = D.

Z3
π3−→ Z2

π2−→ Z1
π1−→ Z0

The Chow ring of Z3, A•(Z3), is isomorphic to

A•(Z3) ∼=
Z [y0, y1, w1, y2, y3, w3]

J3
,
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where

J3 = (y0 · y1, (y1)3 + (y0)
3, y0 · y2, (y1 + y2 + 2y3)

2 · (y2 + y3), (y1 + y2 + 2y3) · y2 +w2,

(y1 + y2 + 2y3) · w2, (y2 + y3)
2 − (y1 + y2 + 2y3)

2, (y2 + y3) · (w2 + w3) + (y0)
3,

y0 · y3, (y1 + y2 + 2y3)
2 · y3, (y2 + y3)

2 · y3, (y1 + y3) · w3, (y2 + y3) · w3,

(y1 + y2 + 2y3) · (y2 + y3) · y3, (y1 + y3) · y3 + 2w3, (y2 + y3) · y3 − w3,

(y3)
2 + w3 + (y1 + y3) · (y2 + y3), y3 · w3 + (y0)

3),

by sending y0, y1, y2, w2, y3 and w3 to h∗, e31, e32, r32, e33 and r33 respectively.

We are going to verify that only E3 is a final divisor, even if for E2 the relation (e2 +

e3)
2 · e2 = 0 also holds. Let us start with E3. To begin with, we already know that

relation (e2 + e3)
2 · e3 = 0 is satisfied. Moreover, from relations (e1 + e2 +2e3)

2 · e3 = 0,

(e2+e3)·e3−r3 = 0 and (e1+e3)·r3 = 0 it follows that (e1+e3)
2·e3 = 0 also holds. Finally,

we can conclude from relations (e1 + e3) · e3 + 2r3, (e2 + e3) · e3 − r3, (e1 + e3) · r3 = 0,

(e2 + e3) · r3 = 0 and e3 · r3 + (h∗)3 = 0 that the following e3 · (e2)2 = −e3 · (e1)2,

(e3)
2 · e2 = (e3)

2 · e1 + e3 · (e1)2 and e1 · e2 · e3 = 0 are satisfied too.

Now, we will see that E2 has a non-admissible final configuration. To begin with, it

follows from (e2 + e3)
2 − (e1 + e2 + 2e3)

2 = 0 and (e1 + e2 + 2e3)
2 · (e2 + e3) = 0 that

relation (e2+e3)
3 = 0 holds and consequently (e3+e3)

2 ·e2 = 0 is satisfied too. Moreover,

it follows from relations (e2+e3) ·e3−r3, e3 ·r3+(h∗)3 and (e3)
2+r3+(e1+e3) ·(e2+e3)

that (e3)
3 + 1

2 (e3)
2 · e2 = 0 also holds. Finally, from relations (e2 + e3) · e3 − r3 = 0,

(e2 + e3) · r3 = 0 and e3 · r3 + (h∗)3 = 0, we can conclude that (e2)2 · e3 + 3
2e2 · (e3)

2 = 0

is verified.

Example 6.3.6. Let P ∈ P3 be a point, and let π1 : Z1 → Z0 = P3 be the blow-up of Z0

with center C1 = P . Consider now a point Q ∈ E1
1 , and let π2 : Z2 → Z1 be the blow-up

of Z1 with center C2 = Q. Finally, If we denote by C to E2
1 ∩ E2

2 , let π3 : Z3 → Z2 be

the blow-up of Z2 with center C3 = C.

Z3
π3−→ Z2

π2−→ Z1
π1−→ Z0

The Chow ring of Z3, A•(Z3), is isomorphic to

A•(Z3) ∼=
Z [y0, y1, y2, y3, w3]

J3
,
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where

J3 = (y0 · y1, (y1 + y2 + 2y3)
2 · y1 + (y0)

3, y0 · y2, (y1 + y2 + 2y3) · (y2 + y3),

(y2 + y3)
3 + (y0)

3, y0 · y3, (y1 + y2 + 2y3)
2 · y3, (y2 + y3)

2 · y3, (y1 + y3) · w3,

(y2 + y3) · w3, (y1 + y2 + 2y3) · (y2 + y3) · y3, (y1 + y3) · y3 − w3, (y2 + y3) · y3 + w3,

(y3)
2 + (y1 + y3) · (y2 + y3), y3 · w3 + (y0)

3),

by sending y0, y1, y2, y3 and w3 to h∗, e31, e32, e33 and r33 respectively.

We are going to verify that only E3 is a final divisor, even if for E1 the relation (e1 +

e3)
2 ·e1 = 0 also holds. Let us start with E3. To begin with, we already know that relation

(e2 + e3)
2 · e3 = 0 is satisfied. Moreover, it follows from relations (e1 + e2 + 2e3)

2 · e3,

(e2+e3) ·e3+r3 = 0 and (e1+e3) ·r3 = 0 that (e1+e3)
2 ·e3 = 0 is satisfied too. Now, we

can conclude that relations e3 · (e2)2 + e3 · (e1)2 = 0 and (e3)
2 · e2 = (e3)

2 · e1 + e3 · (e1)2

are deduced from relations (e1+ e3) · e3− r3 = 0, (e2+ e3) · e3+ r3 = 0, e3 · r3+(h∗)3 = 0

and (e3)
2 + (e1 + e3) · (e2 + e3) = 0.

Now, we will see that E1 has a non-admissible final configuration. To begin with, it follows

from relations (e1+e2+2e3)
3+(h∗)3 = 0, (e2+e3)

3+(h∗)3 = 0, (e1+e2+2e3)·(e2+e3) = 0,

so in particular (e1 + e3)
2 · e1 = 0 that (e1 + e3)

2 · e1 = 0 i also satisfied.Now, we get

(e3)
3 = 0 by considering the relations (e3)

2 + (e1 + e3) · (e2 + e3) = 0, (e2 + e3) · e3 + r3

and (e1 + e3) · r3 = 0. Moreover, it follows from relation (e1 + e3) · e3 − r3 = 0 that

(e1)
2 · e3 +2e1 · (e3)2 = 0 holds. Now, we can verify from (e1 + e3)

2 · e1 = 0 that relation

(e1)
3 − 3e1 · (e3)2 = 0 holds too.

Example 6.3.7. Let C ∈ P3 be a rational curve of degree γ > 4, and let π1 : Z1 → Z0 =

P3 be the blow-up of Z0 with center C1 = C, so E1
1 = P (O(2γ − 1 + a)⊕O(2γ − 1− a)).

Consider now a section S ∈ E1
1 such that [S] = ς1 + (2γ − 1 + a + m)f in A1(E1

1). If

P ∈ S is a closed point, let π2 : Z2 → Z1 be the blow-up of Z1 with center C2 = P .

Finally, If we denote by S̃ the strict transform of S, let π3 : Z3 → Z2 be the blow-up of

Z2 with center C3 = S̃.

Z3
π3−→ Z2

π2−→ Z1
π1−→ Z0

The Chow ring of Z3, A•(Z3) is isomorphic to

A•(Z3) ∼=
Z [y0, y1, w1, y2, y3, w3]

J3
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where

J3 = ((y0)
2 · y1, y0 · w1, y0 · (y1 + y2 + y3)− γ(w1 + w3), (w1 + w3)

2,

(y1 + y2 + y3)
2 + (−4γ + 2)(w1 +w3) + γ(y0)

2, (y1 + y2 + y3) · (w1 +w3) + (y0)
3, y0 · y2,

(y1 + y2 + y3) · y2, w1 · y2, (y2)3 − (y0)
3, (y0)

2 · y3, (y1 + y2 + y3)
2 · y3, (w1 + w3) · y3,

y2 · y3, y0 ·w3, (y1 + y2 + y3) ·w3, y2 ·w3, y0 · y3 − γw3, (y1 + y3) · y3 − (2γ − a−m− 2)w3,

y2 · y3 −w3, (y3)
2 − (2γ − 3 + a+m)w3 − (y1 + y2 + y3)

2 + (2γ − 1 + a+m)(w1 +w3)−

− y2, y3 · w3 + (y0)
3),

by sending y0, y1, w1, y2, y3 and w3 to h∗, e31, r31, e32, e33 and r33 respectively.

We are going to verify that both E2 and E3 are final divisors. Let us start with E3. We

already know that relation e3 · (e2)2 = 0 is satisfied. Now, from relations e2 · e3 −w3 = 0

and e3 · r3 + (h∗)3 = 0, we get (e3)
2 · e2 = −(h∗)3. Moreover, by combaning relations

e2 · e3 − r3 = 0, (e1 + e2 + e3) · r3, e2 · r3 and e3 · r3 + (h∗)3 = 0 we can conclude that

e1 ·e2 ·e3− (h∗)3 = 0. Finally, it follows from relation (e1+e2+e3)
2 ·e3 = 0 that relation

(e1 + e3)
2 · e3 = 0.

In the following, we verify that E2 is final too. From relations (e1 + e2 + e3) · e2 = 0,

(e2)
2 · e3 = 0, (e2)3 − (h∗)3 = 0, we obtain (e2)

2 · e1 + (h∗)3 = 0. Now, it follows from

relation (e1 + e2 + e3) · e2 = 0 that e2 · (e1)2 = 0 also holds. Finally, we obtain from

relations (e2)
3 − (h∗)3 = 0 and e3 · (e2)2 = 0 that relation (e2 + e3)

2 · e2 = 0 is satisfied

too.
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Conclusions

Let Zs
πs−→ Zs−1

πs−1−−−→ · · · π2−→ Z1
π1−→ Z0 be a sequence of blow-ups at smooth centers

(see Definition 2.1.1), with Z0
∼= Pn. As higher dimensional centers are allowed, not

just 0 dimensional ones, we introduce the concept of t−proximity. We say that Cj is

t−proximate to Ci, and write Cj
t−→ Ci if Cj ∩ Ej−1

i ̸= ∅ but Cj ̸⊂ Ej−1
i . Moreover, we

define sequential morphisms as those which can be expressed, in at least one way, as a

composition of blow-ups verifying the conditions of Definition 2.1.1. In order to study

both sequences of blow-ups and its associated sequential morphisms, we introduce the key

concept of final divisor. Roughly speaking, an irreducible exceptional component Ei is

final with respect to a sequence of blow-ups (Zs, ..., Z0, π) if there exists an open set Ui on

Zi, with Ei
i ⊂ Ui, such that the restriction of the composition πi+1◦πi+2◦ ...◦πs−1◦πs|Ui

is an isomorphism (Ei is final with respect to a sequential morphism if it is final for one

of the sequences of blow-ups that realize it). Some quite natural question arises when

dealing with final divisors: Given a sequential morphism π : Z → Z0 is it possible for

two irreducible exceptional components Ei and Ej to be final with Ei ∩Ej ̸= ∅? And in

this case, which type of proximity relation could exist between them? Moreover, what

is the geometric structure of Ei ∩ Ej when Ei is final?, and is it possible to exploit this

structure and give a characterization of final divisor in terms of some relations defined

over the Chow group of zero-cycles of its sky A0(Zs)?

We answer the first three ones in the general setting, that is considering general smooth

centers Ci, with dim(Ci) ≥ 0. In Theorem 2.3.10 we prove that it can exists two final

divisors Ei and Ej , with Ei ∩ Ej ̸= ∅, but in this case proximity relations are quite

restrictive, that is either Ei −→ Ej and Ej
t−→ Ei or vice versa. Moreover, regarding the

geometric structure of Ei ∩ Ej when Ei is final, we prove in Proposition 2.3.12 that if

199



dim(Ci) ≥ 1 then either (ej + ei) · ei or ej · ei equals the pull-back of a Weil divisor in

A1(Ci), and ej · ei is equivalent to the hyperplane class ςi ∈ A1(Ei) otherwise.

In the case of sequences of point blow-ups defined over both algebraically closed fields

and perfect fields, we introduce two equivalence relations with classification purposes:

the algebraic equivalence and the combinatorial one, for both sequences of blow-ups and

its associated sequential morphisms. Previous to this, in the particular case where the

base field k is perfect, then in order to consider different fields K , with k ⊂ K ⊂ k , we

define combinatorially and algebraically compatible partitions of the exceptional divisors

(see Definitions 4.1.4, 4.1.5, 4.1.7 and 4.1.8). Whereas the algebraic equivalence has to

deal with the existence of certain isomorphism, the combinatorial one is related to the

existences of certain permutations preserving the proximity relations an the intersection

numbers.

Moreover, we give a positive answer to the fourth question proposed above, that is

in Propositions 3.2.4 and 4.3.1 we characterize final divisor in terms of some relations

defined over the Chow group of zero-cycles of its sky A0(Zs). By using these results, we

are able to recover the sequence of point blow-ups, modulo algrebaic equivalence, from

the associated sequential morphism, and prove Theorems 3.4.7, 3.4.5, 4.5.8, 4.5.5 which

relate the algebraic and combinatorial equivalence classes of sequences of blow-ups with

the corresponding ones of sequential morphisms.

Finally, we give two explicit presentations of the Chow ring of the sky of a sequence of

point blow-ups using the strict and the total transforms of the irreducible exceptional

components in Theorems 3.5.3 and 3.5.6, and come to a surprising result, that is two

sequences of point blow-ups of the same length have isomorphic Chow rings (see Corollary

3.5.5).

In the case of sequences of point and rational curve blow-ups with dim(Zi) = 3, we

also give a positive answer to the question related to characterize final divisors in terms

of some relations defined over the Chow group of zero-cycles of its sky in Theorem

6.2.11. Moreover, we give an explicit presentation of the Chow ring of its sky A•(Zs) by

considering the total transform of the irreducible components of the exceptional divisor

as generators, and to which we have to add the total transforms of a generic fiber of the

associated projective bundles (see Corollary 6.3.3). As a result, we prove in Corollary

6.3.4 that there exists an important difference with respect to the sequences of point
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blow-ups, that is, two sequences of point and rational curve blow-ups of the same length

and even with the same proximity relations may not have isomorphic Chow rings.

As a general conclusion, the surprising result of independency on the geometry of the

point centers of a sequential morphism, seems to be not easy to extend for cases of centers

of higher dimensions. Even for blow-ups of few rational curves or points in dimension 3,

the geometry of the centers is influent for the Chow ring as shown in Chapter 6. The

basic example in Chapter 5 shows how, in fact, the geometry of the exceptional divisor of

the blow-up of a smooth rational curve in P3 of degree γ ≥ 4 depends on its embedding

in P3 and not only on the numerical value of γ. Thus, the surprising result looks as a

special result of its kind.
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