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Abstract

We study sequences of blow-ups at smooth centers Z, RN/ SERS NN N 7 7,
and the associated sequential morphism 7 : Z;, — Z3. To this end, we introduce
the key concept of a final divisor, that is, an irreducible exceptional component F; of
the exceptional divisor of 7, strict transform of the exceptional divisor E! of 7;, such
that there exists an open set U; on Z;, with E! C U;, such that the restriction of the
composition ;1 0 mi49 0 ... 0 Ts_1 0 T, above U; defines an isomorphism. Furthermore,
we study the admissible proximity relations between two final divisors with non empty
intersection.

In the case of sequences of point blow-ups in arbitrary dimension and the correspond-
ing sequential morphisms, we define two equivalence relations on the set of sequential
morphisms: the algebraic equivalence and the combinatorial equivalence, which allow us
to classify them. By proving a result that characterizes final divisors in terms of some
relations defined over the Chow group of zero-cycles of its sky, we are able to recover
the sequence of blow-ups, modulo algebraic equivalence, from the associated sequential
morphism. As a result, we establish a connection between the corresponding algebraic
and combinatorial equivalence classes of these two objects. Moreover, when the ground
Zy is a projective space, we give an explicit presentation of the Chow ring A®(Z;) of the
sky Z, of a sequential morphism obtained from point blow-ups and we obtain a surprising
result: this Chow ring depends only on the number of blow-ups.

In the case of sequences of point and rational curve blow-ups with ground P3, we also
characterize final divisors by explicitly giving their defining relations over Ay(Zs), and
we introduce an explicit presentation of the Chow ring of its sky A®(Z,). By contrast

to the case of sequences of point blow-ups, we prove that two sequences of point and

v



rational curve blow-ups may have non-isomorphic Chow rings even if they have the same

length and proximity relations.
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Introduction

Sequences of blow-ups in the literature

Sequences of blow-ups play an essential role in Algebraic Geometry research. Let us
mention some works where sequences of blow-ups appear as a key tool for resolution of
singularities. In the foundational work [25] Hironaka proved the resolution of singularities
in the category of algebraic schemes over a field of characteristic zero. In [40] Villamayor
takes those results as starting point and exhibits a constructive resolution of singularities,
and in [I6] Encinas and Villamayor study a constructive proof of desingularization, as
the outcome of a process obtained by successively blowing up the maximum stratum of
a function. See [23],[24],[6] for more details and references.

Two questions, concerning factorization of birational morphisms and maps by blow-ups
along smooth varieties, are of fundamental importance in birational algebraic geometry.
Let X and X be complete smooth algebraic varieties which are birationally equivalent.
Does there exist a third variety X and birational morphisms X — X ", X = X", which
are compositions of blow-ups along closed smooth irreducible subvarieties? Does there
exist a sequence of varieties X;, for i = 0,...,n, such that Xy = X/, X, = X', and
Xi+1, is obtained from X; by a blow-up or blow-down along a closed smooth irreducible
subvariety?

In [II] Danilov managed to generalize the Zariski theorem [42] proving that every pro-
jective and birational morphism between smooth algebraic varieties whose fibres are of
dimension < 1 is a composition of blowing ups at smooth centers of codimension 2. In
[36] Sancho proved that a proper and birational morphism 7 : X' — X between regular

schemes whose fibres are of dimension < 1 factors, locally, through a blowing-up at a



regular center of codimension 2. Furthermore if 7 is projective then m is a composition of
blowing-ups at regular centers. In [41] Wlodarczyk proved that if ¢ : X7 — X» is a toric
birational map between two complete smooth toric varieties of the same dimension, then
¢ can be decomposed in a sequence of equivariant blow-ups and blow-downs along smooth
centers. More recently, in [I] Abramovich, Karu, Matsuki and Wlodarczyk proved that
if ¢ : X7 — X5 is a birational map between complete nonsingular algebraic varieties X3
and Xs over an algebraically closed field K of characteristic zero, and U C X7 is an open
set where ¢ is an isomorphism, then ¢ can be factored into a sequence of blow-ups and
blow-downs with nonsingular irreducible centers disjoint from U.

On the blow-up counterpart, that is blow-downs, in [30] Lascu formulates the equiva-
lent of Castelnuovo-Enriques conditions for the existence of regular contractions in higher
dimensional varieties, and Ishii in [27] gives a necessary and sufficient condition for a sub-
variety of a projective non-singular variety to be contracted in an algebraic variety which

is again nonsingular projective, and study some geometric properties of the contraction.

Given a sequence of blow-ups, there is a simple combinatorial object associated to it, the
dual complex, that generalizes to higher dimension the well known dual graph associated
to a sequence of point blow-ups in two dimensional varieties (see e.g. [8, Sect 4.4]). The
dual complex of an simple normal crossing divisor E, denoted D(E), is a CW-complex
whose vertices correspond to the irreducible components E; of E, and whose cells of
dimension d are in correspondence with strata of codimension d in F, i.e. the connected
components of the intersection E;; N--- N E;,. Over the complex numbers, one can
think of D(E) as the combinatorial part of the topology of E. In [9] Castellanos proved
that the dual complex with appropriate weights determines the complete geometry of
all infinitely near points associated with a given curve singularity. In [7] Campillo and
Reguera studied morphisms given by composition of a sequence of point blow-ups of
smooth d—dimensional varieties in terms of combinatorial information coming from the
d—ary intersection form on divisors with exceptional support. In [39] Tsuchihashi proves
that an arbitrary weighted graph on a compact topological surface is a weighted dual
graph of a toric divisor arising as the exceptional set of a resolution of a 3—dimensional
cusp singularity, if and only if it satisfies the monodromy condition and the convexity

condition.



Given an embedding of a variety X in a complete variety V as an open and dense
part, and the polyhedron II(D) of the “infinite part” D = V \ X, Danilov proved in
[I0] that when D is a divisor with transversally crossing components the homotopy
type of the polyhedron II(D) does not change under a monoidal transformation of V
with center in D. With some standard assumptions on resolution of singularities, this
assertion shows that the homotopy type of TI(D) depends only on X (and is called the
polyhedron of X at infinity). In [37] Stepanov proved that if 7 : (Y, E') — (X, 0) and
7w (Y",E") = (X,0) are two log-resolutions of an isolated singularity (X, o), then the
topological spaces D(E') and D(E") have the same homotopy type. Moreover, in [38] he
showed that the highest cohomologies of the dual complex associated to a resolution of
an isolated rational singularity vanish, and he proved that the dual complex associated
to a resolution of an isolated hypersurface singularity is simply connected. In [12], de
Fernex, Kollar and Xu prove that the dual complex of a singularity is well defined, up
to homotopy, and in many cases, for instance for isolated singularities, they identify
and study a “minimal” representative of the homotopy class that is well defined up to
piecewise linear homeomorphism.

In [29] Kollar proves that every simplicial complex is the dual complex of some simple
normal crossing divisor in a smooth variety and he extends earlier results on the existence
of singularities with prescribed dual complex. In [4] Arapura, Bakhtary and Wlodarczyk
prove that the homotopy type of the dual complex of F depends only the the complement
X \ E, and in fact only on its proper birational class.

Given X a connected, smooth, and proper K-variety of dimension n, where K is the
quotient field of a complete discrete valuation ring R with residue field k,in the survey
[35] Nicaise studies the connections between X", the Berkovich analytification of K, and
a sncd-model of X over R, that is, a regular scheme X of finite type over R, endowed
with an isomorphism of K —schemes Xx — X, such that the special fiber X}, is a divisor
with strict normal crossings. In particular, one can attach a subspace Sk(X) of X",
to any proper sncd—model X of X over R, called the Berkovich skeleton of X, which is
canonically homeomorphic to the dual intersection complex of the strict normal crossings
divisor Xj. This skeleton, that can be viewed as the space of real valuations on the
function field of X that extend the discrete valuation on K and that are monomial with
respect to Xy, controls the homotopy type of X" (it is a strong deformation retract

of X%"), providing an interesting link between the geometry of X" and the birational



geometry of models of X.

Intersection theory has played a key roll in the development of some important results in
birational geometry. In the foundational work [33] Mori realized that given an smooth
projective variety X, then the part of the cone of curves lying in the open half-space
where the intersection number with the canonical class is negative is locally finitely
generated, its generators being called the extremal rays of X. Moreover, he showed that
every extremal ray is spanned by the homology class of a rational curve [C], and that in
dimension 3, for every extremal ray R of X there is a unique morphism g : X — Z,
called the contraction of R, such that an irreducible curve C' C X is mapped to a point
by gr iff [C] € R. As a consequence, new completely different way of thinking about
morphisms of varieties arose, and since then everyone imagines an extremal ray or face
of a cone.

Regarding the computation of birational invariants, in [2] Aluffi proves that given a
birational map between smooth algebraic varieties ¢ : V' --+ W which does not change
the canonical class, then the total homology Chern classes of V' and W are push-forwards
of the same class from a resolution of indeterminacies of ¢. As an example, Aluffi proves
that the push-forward of the total Chern class of a crepant resolution of a singular
variety is independent of the resolution. Furthermore, Aluffi in 3] introduces a notion of
integration on the category of proper birational maps to a given variety X, with value
in an associated Chow group, whose applications include new birational invariants and

comparison results for Chern classes and numbers of nonsingular birational varieties.

Overview of the thesis

This thesis is devoted to the study of sequences of blow-ups with regular centers (see

Definition [2.1.1)):

s Ts—
Ze 5 Zo g —5 20 IS 7.

In particular, we consider the final exceptional divisor E in Zg and study how the in-
tersection of the irreducible components F; can give invariants on the total morphism
w: Zs — Zy. As a consequence, different sequences of blow-ups realizing the same mor-

phism will have the same invariants.



We focus in conditions characterizing when an irreducible component can correspond to
the last blow-up of the sequence (final components).
First we restrict to the special case of point blow-ups (Chapters |3 and [4) and we have
obtained surprising results on the Chow ring A*(Z;).
Then, we restrict to the case Z, = P2 and consider sequences of blow-ups with centers

that are either points or rational curves.

The thesis is divided into six chapters whose main results are summed up in the rest of

the introduction.

The content of Chapter

In Chapter [2] we introduce the basic objects of this research, that is, sequences of blow-
ups, sequential morphisms and final divisors. In Section [2.I] we define the key concepts
of sequences of blow-ups at smooth centers (Definition and sequential morphism
(Definition . Given a sequence of blow-ups Z, —» Z,_1 IEEL N E 7 =5 Z,,
we will say that Z, and Z; are the sky and the ground of the sequence, respectively.
Moreover, we generalize the usual proximity relations for higher dimensional centers
(Definitions and which lead us to introduce a new proximity relation, the
t—proximity.

In Section we give a short result (Lemma about the normal bundle of the
complete intersection of two irreducible components of the exceptional divisor. Section
[2:3]is devoted to the definition of the key concept of final divisor for both sequences of

blow-ups and sequential morphisms.

Definition. Let (Zs, ..., Zo,m) be a sequence of blow-ups as in Definition |2.1.1]
The components of the exceptional divisor E in Zs are {E1, ..., Es}. Assume that E; is

an irreducible component. Set E! to be the image of E; in Z;. We say that E; is final
with respect to (Zs, ..., Zo,m) if there exists an open set U; on Z; such that E! C Uj,
Vi = ’/T;;(UZ) C Zs, and s iy, : Vi = U; is an isomorphism (see Remarkfor Ts,i)-

Definition. [2.3.3 Let 7 : Zs — Zy be a sequential morphism. We say that an irreducible
component E; of E is final if there exists a sequence of blow-ups (Zs, ..., Zy, ) associated

tom: Zs — Zy such that E; is final with respect to this sequence.



Moreover, we recall the concept of regular projective contraction (Definition [2.3.4)), and
characterize the only admissible proximity relations between two final divisors with non

empty intersection within the next result.

Theorem. Let E;,E; C Z be both final divisors for the sequential morphism
w: Zs — Zy. Then E; N E; # 0 if and only if E; is prozimate to E; and E; is

t—proxzimate to E;, or vice versa.

Figure 1: Example of two blow up processes which lead to a same sequential morphism

with two intersecting final divisors

flaltre
T =

Finally, in Section [2:4] in order to obtain a combinatorial object associated to the in-
tersections of the exceptional divisor, we have the n—ary multilinear intersection form
on the abelian group of divisors with exceptional support (Definition , that will be
intensively used in Chapters [3] [4 and [6] in order to give a numerical characterization of

final divisors.

The content of Chapter

In Chapter [3we focus on the study of sequences of blow-ups as in Definition [2.1.1] over al-
gebraically closed fields, where all the centers C; 41 are points. In sectionwe define the



notions of algebraic and combinatorial equivalence for both sequences of points blow-ups

and sequential morphisms (Definitions [3.1.1} [3.1.2} [3.1.5[ and [3.1.7)). Roughly speaking,

algebraic equivalence is determined by the existence of an isomorphism between the skies,
that is between the varieties obtained after the last blow-up of the sequences, whereas
combinatorial equivalence is determined by the existence of a permutation relating the
n—ary intersection forms.

Section [3:2] is devoted to give a numerical characterization of final divisors in terms of
values of the n—ary intersection form on the abelian groups of divisors with exceptional

support.
Proposition. [3.2]] E; is final if and only if

(e = (<1

In Section [3:3] we use the previous result in order to recover the sequences of point

blow-ups from the associated sequential morphism modulo algebraic equivalence.

Theorem. Letw: Zs — Zg be a sequential morphism. Given the n—ary multilinear
intersection form we can recover all the sequences of point blow-ups that are associated

to sequential morphisms in the same algebraic equivalence class of w: Zs — Zy.

Section [3.4]is devoted to prove some relations between algebraic and combinatorial equiv-

alence classes of sequences of point blow-ups and sequential morphisms.

Proposition. Any of the sequences obtained as in[3.5.]), that is, by decomposing
a reqular projective contraction from a fived sky Zs and a fized simple normal crossing

divisor E, are associated to sequential morphisms in the same algebraic equivalence class

(see Definition .

Theorem. Two sequences of point blow-ups (Zs, ..., Zo, ) and (Z;7 ey Z(,), 7r/), with
s = s/, are combinatorially equivalent as in Deﬁnitz’on if and only if their associated
sequential morphisms w : Zs — Zy and T Z; — Z(l) are combinatorially equivalent as
in Definition[3.1.9, and both statements are true if and only if the associated multilinear
maps ®z p and @, g are equivalent too as in Deﬁnition@

Theorem. m Given two sequential morphisms m: Zs — Zy and T Z;, — Z(l), then
they are algebraically equivalent as in Definition if and only if there are sequences



of point blow-ups (Zs, ..., Zo,m) and (Z;/, cey Z[/),TF/) associated to w : Zy — Zo and T
Z , — Z, respectively such that they are algebraically equivalent as in Definition .

Finally, in Section [3.5 we give two explicit presentations of the Chow ring of the sky of a
sequence of point blow-ups A®(Z,) when Zy = P™. The first one using the classes of the
total transforms of the exceptional components as generators and the second one using

the classes of the strict transforms ones.

Theorem. The Chow ring of the sky A*(Zs), when Zy = P", is isomorphic to

AN(Zs) = Lwo, @y, as] [ ({w -y j=o  {(=1)" ()" + (20)" }iy)s

i#]

by sending o to the class h®* and z; to the class ef* fori=1,...,s.

Theorem. [3.5.00 A presentation of A*(Zs), when Zy = P™, using {ES,{ef}le} as

generators is the following one:

A.(ZS) o~ Z[QanJZ“w’ys]’ (1)

where

S

A= ({yo-vitimy Wi+ Y braye) - (i + D bijw) ;

k=i+1 I=j+1 i,vg;l
{@m + (0" + # U@} ),

by sending yo to h°* and y; to e} fori=1,...,s.

Furthermore, we prove the surprising fact that when Zy = P™ the skies of two sequences

of point blow-ups of the same length have isomorphic Chow rings (Corollary |3.5.5)).

The content of Chapter

In Chapter ] we extend the results of the previous one in order to consider sequences of
point blow-ups over perfect fields. This more general setting lead us to define in Section

[1] algebraically and combinatorially compatible partitions of the exceptional divisor.



Definition. Given a sequential morphism 7 : Zs — Zy as in Definition [2.1.9 and
a partition B = uﬁlei, we will say that the partition is combinatorially compatible with

m if for each i =1,..,1, and Hj,, H;, € F; there exists o € Sy, such that

a U(jl) = J2,
b IZS7E(H1‘1’ i29 aHln) :IZsaE(HO'(il)7HU(i2)7 "'7H0'(id)) Vil,"ain

Definition. Given a sequence of point blow-ups (Zo, ..., Zs,7) and a partition of
the exceptional divisor E = UL_,F;, we will say that the partition is combinatorially
compatible with the sequence (Zy, ..., Zs, ) if for each i =1,..,1 and H;,, H}, € F; there

exrists o € S,, such that

a o(j1) = Jo,
b deg(Hh) = [K(PJ ) : K] = [K(Po(jl)) : K] = deg(HU(j1)>7
¢ if Hj, € F;,, Hj, € Fy, and Hj, — Hj,, then H,(j,) — Hy(jy)

Definition. [/.1.7 Given a sequential morphism m : Zs — Zy as in Definition [2.1.2
and a partition of the exceptional divisor E = I_Iﬁlei, we will say that the partition is
algebraically compatible with the morphism 7 if there exist a smaller field K C K with

k C IN(, there are K —varieties 26 and Z and a I?fmorphz'sm AN 28

2= Z Xgp0n(R) Spec(K) —"= Zy = Z, X Spec(R) Spec(K)

d i

Z

Zy

2

such that the exceptional divisor of T, E, has irreducible components IAJ/l, - ffl and for

eachi=1,...1 thenVH € F; B(H) = E

Definition. Given a sequence of point blow-ups (Zo, ..., Zs, m) and a partition of the

exceptional divisor E = LL_| F;, we sill say that the partition is algebraically compatible

with the sequence (Zy, ..., Zs,m) if there exist a smaller field K C K withk C K and
Tit1

there are K —varieties Z and I?—morphisms Z—H — Z

Tg Ts—1 T

Zs Zs_1 Zy Zo
I |
= Ts Ts—1 > I =
Zs Zs—l : Zl ZO




where Z; = Z X spec(K) Spec(K) Vi = 1,...,s ,such that the exceptional divisor of
(267 s Zl, 7) has irreducible components Efl, e E and for eachi=1,....1 then VH € F;
B(H) = H,.

The following section runs in parallel with the ones of Chapter [3] that is, Section [4.2]deals
with the natural extension of the definitions of algebraic and combinatorial equivalences
of sequences of point blow-ups and sequential morphisms, when considering algebraically

and combinatorially compatible partitions of the exceptional divisor.

Definition. We say that two algebraically marked sequential morphisms (7 : Z —

Zo, Uk F)arg and (7' 2 Z' — Zy,U_ F) )1y over K are algebraically equivalent, and we
denote it by (7 : Z — ZO,I_Iélei)alg awng (77/ 7 Z[),uélei/)alg , if and only if there

exist smaller fields f(, K' C K with K = K satisfying the conditions of Deﬁm'tion

Zs = Zs X gpoo(ity SpEC(K) =7y = 7, X spec( ) SPEC(K)

N
2
N

Definition. Given two combinatorially marked sequential morphisms (7 : Zs —
Zo, Uk F)comp and (7' = Z, — Zy, Ut F))eomp we say that the associated multilin-
ear forms (pz,uglei and (I)Z’,ugle{ are equivalent, and we denote it by (I)Z,uglei ~

(I)Z’,ugle,f’ if there exists T € §; such that

T(‘bz,uglei) = q’z’,u% -

i=1"1

Moreover, the combinatorially marked sequential morphisms (7w : Zs — Zy, uﬁlei)Comb

and (77/ : Z; — Z(l), I_Iﬁ»lei/)wml7 are said to be combinatorially equivalent, and we denote

10



comb

it by (m: Zs — Zo, L1 FY) comp  ~ (7r, : Z; — Z(l),l_lélei/)comb, when their associated

multilinear maps @ ;1 p, and (I)Z’,Ui:lF,-/ are equivalent.

Definition. [[.2.5 We say that two algebraically marked sequences of point blow ups,
(Zsy ..y Zoym, I_Iélei)alg ,and (Zy, ..., Z(/), T, I_Iélei/)alg, are algebmically equivalent over
K, and we denote it by (Zs, ..., Zo, m,UL_ 1 Fi)alg W (Zys oo Zgy e I_Jl VF)atg, if and

only if | = I' and there exist smaller fields IN(j(v/ C K with K =, K’

Ts Ts—1 T2 1

Z, Zo_1 Zy Zy
S A B D
e
AP
Z, -~ 7

with Z; = Z; X Spec( ) Spec(K) (resp. Z, = Z, X pec(R') Spec(K)) and algebraic iso-
morphisms a,b = by, by_1,...,b1, with t < s, such that there are indexes ri,....,r; = § €
{1,.,1} and r},...,r;, = s € {1,...73/}, where Zyp, = Zyp.—1 — . = Zpn,_, (resp.
Z — Z e Z ), withrg > ri_y (resp ry > 7T, ), is a brick blow-up Vi = 1...t
as in Deﬁmtzon and the diagram

Z Z Lr, Ly Zo

l btll btzl l ai

7, 7, 7 7
Tf 1 Ti—2 1

1s commutative.

Definition. [[.2.6 We say that two combinatorially marked sequences of point blow ups,
(Zsy s Zo, UL Fy ) comp and (Z ZO, L 1F T )Comb as before with respective parti-
tions E = UL_F; and E' = UL_| F, and irreducible components of the exceptional divisor
Hy,....Hy; Hi, ...,H,/n, with | = l' are combinatorially equivalent, and we denote it by
(Zs,...,Z(),I_Iéleiﬂr)wmb c%an (Z57 . ZO, 1Fi/,7rl)wmb, if and only there is a per-

mutation T in S; such that for every two different indexes i,j one has

a F; is prozimate to F; if and only sz ) is proximate to F )
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b deg(Fi) = Ypep, deg(H) = Y deg(H') = deg(F, ;)

Section .3 is devoted to the numerical characterization of final divisors and its natural

extension to final elements of a partition.
Proposition. [[.51 H; is final if and only if
(hi)" = (=1)"(hs)* - (hy)" and (h;) - (hj)" " >0

for every j such that H; N\ H; # () (see Lemma for a numerical characterization)

and for all natural numbers r and s with r + s =n.

Proposition. Given an algebraically marked sequence (Zs, ..., Zo, Lt _| F, )alg then
F; is final if and only if

(F)" = (-1)"(F)" - (F;)" and (F)-(F;)"™ >0

for every j such that F; N F; # 0 and for all natural numbers r and s with r + s = d.

Within the next two sections, that is Section[4.4]and Section[4.5] we recover the sequences
of point blow-ups from the associated sequential morphism modulo algebraic equivalence,
and prove some relations between algebraic and combinatorial equivalence classes of

sequences of point blow-ups and sequential morphisms.

Theorem. Let (v : Zs — ZO,I_Iélei)alg be an algebraically marked sequential
morphism. Given the n—ary multilinear intersection form associated to the partition
IZ,Uﬁlei (see Deﬁnitz’on we can recover all the algebraically marked sequences of
point blow-ups that are associated to algebraically marked sequential morphisms in the

same algebraic equivalence class of (7 : Zs — Zy, I_Iﬁ,lFi)alg.

Proposition. Any of the sequences obtained as in[{-4.3, that is, by decomposing
a regqular projective contraction from a fixed sky Zs and a fixed simple normal crossing

divisor E, are associated to sequential morphisms in the same algebraic equivalence class

(see Definition .

Theorem. [[.5.5 Two combinatorially marked sequences of point blow-ups
(Zss oy Zoy Lk Fy ) comp and (2,

ER

’

’ ’ ’ . ’ .
s Zoy W F T Yeomp, with 1 = 1, are combi-

natorially equivalent over K as in Definition [{.2.0| if and only if their associated

12



combinatorially marked sequential morphisms (v : Zs — ZO7I_|§:1F1-)Comb and
(n': Z. — Z, I_Ilz-/le;)wmb are combinatorially equivalent over K as in Deﬁm’tion
and both statements are true if and only if the associated multilinear maps Py R,
and éz’,ug;lF,{ are equivalent too as in Deﬁm’tionl@

Theorem. Given two algebraically marked sequential morphisms (w : Zs —
Zo, U1 F))ay and (TI'/ : Z; — Z(/),I_Iéllei,)alg , then they are algebraically equivalent
over K as in Definition [[.2.1] if and only if there exist algebraically marked sequences
of point blow-ups (Zs, ..., Zo,Ut_ 1 Fi, m)ay and (Z;,...,Z(I)7L|€»,=1F;,7T/)alg associated to

(r: Zs = Zo, L _ F)ay and (7r, : Z; — Zé,l_lélel)alg respectively such that they

are algebraically equivalent over K as in Definition [.2.5

The content of Chapter

In Chapter [5] we recall some technical results about rational ruled surfaces, which we
will use in Chapter [} Section [5.1] is devoted to the study of some general properties
of vector bundles of rank 2 over curves. In Section [£.2] we review some definitions and
results about ruled surfaces, and in section we focus on the study of rational ruled
surfaces over a smooth rational curve, that is Hirzebruch surfaces Fs, and specify the
classes of the irreducible non-singular rational curves in its Chow ring.

Let us recall that Sy and F' generate the Chow ring of Hirzebruch surface Fs. By an

abuse of notation we will denote in the same way these curves and their images in A®(F;.

Proposition. Given a Hirzebruch surface Fs, then any irreducible non-singular

rational curve C C Fy is of one of the following types

A. either a section of class Sy + bF withb=0 or b >4,
B. or a fiber F,
C. or a curve of class 25y 4+ 2F if 6 =1,

D. or a curve of class aSy + F with a > 0 if § = 0.

Finally, in Section [5.4] we give a basic example of a Hirzebruch surface arising as the

exceptional divisor of the blow-up of P? with center a rational curve, and sum up the

13



previous known results about admissible splitting of the normal bundle of a rational

curve in P3.

Proposition. Let C C P? be an irreducible rational smooth curve of degree . Then

its normal bundle N ps satisfies

O(1) e 0(1) if v=1,

O4)®0(2) if v=2,
Nc/]psg

O(5) @ O(5) if v=3,

O2y—1-a)®O02y—14a) if v>4,

where |a| <y —4.

The content of Chapter [6]

In Chapter [6] we focus on the study of sequences of blow-ups at either points or rational
curves, with Zy = P3. Section is devoted to establish some numerical properties of
rational curves when considered as centers of blow-ups. First of all we define the concepts
of “old” and “new” curves. Before giving these definitions, let us recall that whereas we
denote by C., to the center of the blow-up 7, : Z, — Z,_1, we use the notation C7 to

refer to the strict transform of a curve C.

Definition. We will say that a curve C* C Z, is an “old” curve if there exists
a curve C C Zy such that C% is the strict transform of C by the sequential morphism
Ta,0 i Za — 2.

We will say that an “old” curve C* C Z, is unmodified with respect to the sequential

morphism 7o 0 1 Zo — Zy if the following condition holds:
Cg n C’B = @, (2)

for=1,...,a.
On the other hand, we will say that an “old” curve C* C Z, is modified by the blow-up

Ta+1 - Za+1 — Zq Zf

a. either dim(Cqy41) = 0 and Cyq1 € C*, and in this case we will say that mo41 is a

modification of type I,

14



b. or dim(Cuy1) =1 and Cay1 NC* # 0, and in this case we will refer to ma11 as a

modification of type I1.

Moreover, we state the particular case of Theorem [2.3.10| where dim(Z) = 3, and we
give necessary conditions for all possible configurations of final divisors in terms of the

intersection numbers given by the n—ary multilinear intersection form

Theorem. Let E;,E; C Zs be both final divisors for the sequential morphism
T Zs — Zy. Then E;NE; # 0 if and only if E; is prozimate to E; and E; is

t—proximate to E;, or vice versa.

Proposition. [6.1.7 Let E; C Zs be a final divisor for the sequential morphism 7 : Zs —
Zy, and let j, k be two indices such that E; N E; # (0 and E; N Ey, # 0. Then one of the

following conditions must be verified, where n;,n, € Zy.:

L either dim(C;) = 1 and C; is prozimate to C; and t—proximate to Cy, or vice
versa, and in this case we have that
(e;+¢€)%e; =0
(e:)” - ex = =k
e (ex)?=0

ei-ej~ek:17k

II. or dim(C;) =1 and C; is t—prozimate to both C; and Cy, and in this case we have

ei(ej)> =0
(ei)?-ej = —n;
ei(ex)> =0
(€i)” ej =~k

e -ej-ep =0

III. or dim(C;) =1 and C; is prozimate to both C; and Cy, and the following relations

15



are satisfied

(Ei + 6j)2 e = 0
(e;+ex)?-e;=0
ei - (er)® = —e;i - (e5)?,

(€)% e = (e5)?- ej+e€;- (ej)27

IV. or dim(C;) =0 and C; is prozimate to both C; and Cy, and the following relations

are satisfied

In section [6.2] we establish a numerical criterion that characterizes final divisors in terms
of some relations defined over the Chow group Ag(Zs) of zero-cycles of its sky Zs. Firstly,

we prove that the relations defining an admissible configuration of type [[II| hold if and
only if F; is final.

Proposition. Given a sequence of point and rational curve blow-ups (Zq, ..., Zo, ),
let B C Zy be an irreducible exceptional component . Furthermore, let us suppose that

the following conditions are satisfied:

a. there exists just two indeves j,k, with E N ES # 0 and E N EY # 0, that verify

the following conditions:

a.i. (ef)®-ef = —(e$)*-ep

17
it eff - () = e - () + ()2 - et

a.iii. and (e + ) - ef = (ef +ef)*-ef =0,

Y « a [0
a.w. e -ef -ep =0.

b. there exists at most one index B, with E¥ N Ef # 0, such that e - (e%‘)2 <0, if

(6]0-‘)2 e #£0, (e2)? - e # 0, otherwise such an index does not exist,
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c. if there exists any other index v, with v # j, k, such that EY* N ES # 0, then the

following relations are satisfied, where n € Z.:

a fe a __ o a a
ei-ej-e,y—ei €L e,y—n.

d. and in the particular case (e2)? - e = (6?)2 ce® =0, with e - (e¢)? = e - (e2)? =

—A <0, if the following relations hold:

(63)2 ! 6? = _]-a
e (6?‘)2 =0,
(63)2 ' eg = _17

thus #{v} > A+ 1.

Then E® = Fs, with § = |(e2)? - e2| = [(ef)? - e

B and NES‘/ZQ = OEla(—l)

Secondly, we give a proof of the fact that relations defining an admissible configuration

of type[[V] hold if and only if E; is final.

Proposition. [6.2.7 Let EY* C Z, be the strict transform of the exceptional irreducible

component E}. Let us suppose that the following conditions hold:

a. there exists two indexes j, k, with E¥ N ES # 0 and Ef N ER # 0, verifying
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b. if there exists any other index v, with v # j, k, such that EX NES # (0, the following

relations are satisfied:

(e§)? e = 1
e (eﬁ)zzl
ef‘~e§‘ eg‘:ef‘ ez“ef‘y‘zl

Then EY = P? and Nga,z, = Ogas(-1).

Before proving the main result of this section, that is Theorem [6.2.11] we introduce
the key concept of an admissible final configuration for an irreducible component FE; of
the exceptional divisor, whose definition is fully explained in terms of the intersection

numbers of the irreducible components {E1, Es, ..., Es}.

Definition. [6.2.100 We will say that an irreducible exceptional component E; has an

admissible final configuration whenever it satisfies:

a. If there exists just one index j such that E; N E; # 0, then

a.i. either (e; + ;) - e; = 0 with the following exceptions:

a.ii. (e;)® = 3e; - (€))%, (e)? - ej = —2¢; - (¢j)*, and (e;)* =0,
a.idi. (e:)* =2ei- (), (e:)? ¢ = —3ei- (¢;)°, and (¢j)* = —3€; - (¢5)°,
a.ii. or (e;)* - e; =0 and e; - (¢;)* = —1.

b. If the cardinal set of indexes {v} such that E; N E, # 0 is greater or equal to 2,
#{v} > 2, then it verifies one of the conditions stated in Proposz'tion with re-
spect to any pair {j,k} C {7}, that is, E; has an admissible proximity configuration
with respect to E; and Ey,. Moreover, in case the irreducible exceptional component
E; has an admissible prozimity configuration of type [ITl, then it is with respect to
at most two irreducible exceptional components, and if it has an admissible proz-
imity configuration of type [IV] then it is with respect to at most three irreducible

exceptional components.

c. There exists at most one index v such that (e,)? - e; < 0.
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d. If there exists some index (3 such that (e;+eg)*-e; = 0, with (e;)® > 0 and e;-(eg)? =
0, then E; verifies the conditions of Proposition about the cardinality of the
set of index {v} verifying E; N E, # (. Moreover, if it has an admissible prozimity
configuration of type@ with respect to E; and Eg then E; verifies Propositionl@
and Corollary (if the other hypothesis also hold), or if it has an admissible
prozimity configuration of type |Z| with respect to Eg and Ej; then it verifies Lemma

(if the other hypothesis are verified too).

e. If there exists some index \ such that (e;)*-ex = —1, e;-(ex)? = 0 that also verifies

the above conditions then

e.i. if there exists some index p such that Eyx has an admissible proximity con-
figuration of type |7l7| with respect to E; and E,,, then E; already verifies the
above conditions and the same relations with respect to all the same indexes
but Ey just by replacing e; by & = (e; +ex) and e, by €, = (e, +en) in the

computations, and it also satisfies (€;)% - €, = —1 and & - (€,)> =0,

e.ii. otherwise, E; already verifies the above conditions and the same relations with
respect to all the same indexes but Ey just by replacing e; by &; = (e; +ey) in

the computations.

Finally, we prove the main theorem of this section, where we characterize final divisors of
sequences of point and rational curves blow-ups in terms of some relations defined over

the Chow group of zero-cycles of its sky Ag(Zs).

Theorem. [0.2.11] An irreducible exceptional component E; C Zs is a final final divisor
for the sequential morphism © : Zs — Zy if and only if E; has an admissible final

configuration.

Finally, in section we give a presentation of the Chow ring A®(Zs) of the sky of a
sequence of point and rational curve blow-ups considering the total transforms of the
exceptional components as generators, and as a corollary we prove that whereas the
Chow ring of a sequence of point blow-ups depends only on the length of the sequence
(see Corollary , this is not the case for sequences of point and rational curve blow-

ups.
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Theorem. The Chow ring of Zot1, A*(Zat1), is isomorphic to

A*(Za) [eati, wati]

A*(Zoy1) = ;
ja+1
where
_ - o¢+1 a—+1x% a+1 a+1 Quk a+1 a+1 a+1\2
\7(1+1 - (kerza—i-l ' a+1’ h ' ea+1 p’owcﬁ»l’ {6 : ea+1 :u‘f’waJrl (waJrl) 9
a+1x a+1 a+1 a+1 a+1 a+1 a+1x\3
h Wrt1s {6 T Waa }g 1 a+1) _Cl(NCa+1/Za)wa+1+[Ca+l] ) a+1 wa+1+(h ) )7

with pg = eg* - [Cot].

Corollary. (6 The Chow ring of the sky A*(Z) is isomorphic to

7, hs*7 ez* , {68*,1118*}
[ {ed Yaez, » (€57 W5 5612]
A b

A*(Z,) =

where
_ s*\4 5% | oS S ([ ,5%\3 S*\M
A= () I e fest o5}y =) + (0 >}}am,
{kerii*‘ei*7hs*'ei*—Howi*y{e%*'ez*_ﬂﬁwz* B<a’ ( hé*' {e Weq B<a’

(e = e1(Ne o Jwls + [Cal™ i3 + (0} s

Corollary. Given two sequences of blow-ups (Zs, ..., Zy, ), (Z;, ey Z(l),ﬂ',), where
Zy = ZO, of the same length and with indentical proximity relations, then A®*(Zs) and

A*(Z.) may be non-isomorphic.

This result follows from the fact that, when considering the blow-up 7441 @ Zoy1 —
Zq of a rational curve C,, there are some relations in the Chow ring A®(Z,41) that

highly depend on the geometry of C,, through the first Chern class of its normal bundle
c1(Ne¢, /z.,), as it is showed in Theorem
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Chapter 1

Preliminaries

In this chapter, we recall some basic definitions and results which will be used to prove
the main results.

In the first section of this chapter, we review some basics of Algebraic Geometry such as
divisors, vector bundles and projective bundles and blow-ups. Most of the results in this
section can be found in [22] as well as in Appendix B of [I7]. In the second section we recall
definitions and basic result of Intersection Theory, in particular, rational equivalence,
Chern and Segre classes, the Chow ring of a projective bundle, excess intersections and

intersection theory of blow-ups. The main references for this are [I7] and [I5].

1.1 Divisors and Blow-ups

1.1.1 Vector bundles and projective bundles

Definition 1.1.1. A vector bundle V' of rank r on a scheme X is a scheme V' equipped
with a morphism w: V — X, satisfying the following condition. There must be an open
covering {U;} of X and isomorphisms p; of n=1(U;) with U; x A" over U;, such that over

U; NU; the composites p; o <p;1 are linear, i.e., given by a morphism
Gij U, N Uj — GL(T, K)
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These transitions functions satisfy: gik = GijGjk, gigl = gji and g; = 1. Conwversely,
any such transition functions determine a vector bundle. Data (U;,go;) determine an

isomorphic bundle if all composites <p; o ; are linear on Ul-/ NnU;.

Definition 1.1.2. A section of V is a morphism s : X — V such that mos =idx. If V
is determined by transition functions g;j, a section of V' is determined by a collection of

morphisms s; : U; — A", such that
Si = GijSj

on U; NU;. The sheaf of sections of V is a locally free sheaf V of Ox—modules of rank
r. Conversely, a locally free sheaf V (of constant rank) comes from a vector bundle V,
unique up to isomorphism. This may be seen by using transition functions. For an
affine open set U C X with coordinate ring A, 7=1(U) is an affine open set in V, with

coordinate ring the symmetric algebra
SymAr(Uv Vv)7

where V¥ = Home, (V,Ox), and T(U,VV) = H(U,VV) is the space of sections.

Before continue with the definition of the Proj of a sheaf of graded algebras, we now

recall the construction of the Proj of a graded ring.

Let S = ®4>05q be a graded ring. If we denote by Sy the ideal ©450S54, then we define
the set ProjS to be the set of all homogeneous prime ideals p, which do not contain all
of Sy.

If a is a homogeneous ideal of S, we define the subset V(a) = {p € ProjS| p D a}. It
can be proved that if a and b are homogeneous ideals in S, then V(ab) = V(a) U V(b).
Moreover, if {a;} is any family of homogeneous ideals of S, then V(3_ a;) = NV (a;) (see
[22] Lemma 2.4.]), so we can define a topology on ProjS by taking the closed subsets to
be the subsets of the form V' (a).

Next we will define a sheaf of rings O on ProjS. For each p € ProjS, we consider the ring
S(py of elements of degree zero in the localized ring T—1S, where T is the multiplicative
system consisting of all homogeneous elements of S which are not in p. For any open
subset U C ProjS, we define O(U) to be the set of functions s : U — [[ S(p) such that

for each p € U, s(p) € S(p), and such that s is locally a quotient of elements of S: for
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each p € U, there exists a neighborhood V of p in U, and homogeneous elements a, f in
S, of the same degree, such that for all g € V', f ¢ q, and s(q) = a/f in S(q). Now it is
clear that O is a presheaf of rings, with the natural restrictions, and it is also clear from

the local nature of the definition that O is a sheaf.

Definition 1.1.3. If S is any graded ring, we define (ProjS,O) to be the topological

space together with the sheaf of rings constructed above.

In fact ProjS is a scheme as it is proved in the following result.

Proposition 1.1.4. [22, Proposition 2.5.] Let S be a graded ring.

a For any p € ProjS, the stalk Oy is isomorphic to the local ring Sy,

b For any homogeneous f € Sy, let Dy (f) = {p € ProjS| f & p}.Then Dy(f) is
open in ProjS. Furthermore, these open sets cover ProjS, and for each such open

set, we have an isomorphism of locally ringed spaces

(D4(f), Olp, (1)) = SpecS(y)
where Sy is the subring of elements of degree 0 in the localized ring Sy
¢ ProjS is a scheme.

Claim 1.1.5. Let X be a noetherian scheme and let S be a quasi-coherent sheaf of
Ox —modules, which has a structure of a sheaf of graded Ox—algebras. Thus & =
@a>084, where Sq is the homogeneous part of degree d. We assume furthermore that
So = Ox, that 81 is a coherent Ox —module, and that S is locally generated by S1 as an

Ox —algebra.

Let X be a scheme and S a sheaf of graded Ox —algebras satisfying the conditions
above. For each open affine subset U = SpecA of X, let S(U) be the graded A—algebra
I'(U,S|v). Then we consider ProjS(U) and its natural morphism py : ProjS(U) — U.
If fe A, and Uy = SpecA; , then since S is quasi-coherent, we see that ProjS(Uy) =
p[}l(Uf). It follows that if U,V are two open affine subsets of X, then pgl(U NV)is
naturally isomorphic to p(,l(U N V). These isomorphisms allow us to glue the schemes

ProjS(U) together. Thus we obtain a scheme ProjS together with a morphism p :

23



ProjS — X such that for each open affine U C X, p~1(U) = ProjS(U). Furthermore
the invertible sheaves O(1) on each ProjS(U) are compatible under this construction,
so they glue together to give an invertible sheaf O(1) on ProjS, canonically determined
by this construction.

The cone of § over X is defined by C' = Spec(S) together with the natural morphism
m:C — X. If X is affine, with coordinate ring A, then S is determined by a graded
A—algebra, which we denote also by S. If xg,...,x, are generators for S;, then S =
Az, ...,xy] /I for a homogeneous ideal Z. In this case C is the affine sub scheme of
X x A" defined by the ideal .

The zero section embedding of X in C'is determined by the augmentation homomorphism
from S to Ox, which vanishes on §; for ¢ > 0, and is the canonical isomorphism of Sy
with Ox. If C' = Spec(S) is a cone on X, and f: Z — X is a morphism, the pull-back
f*C = C xx Z is the cone on Z defined by the sheaf of Oz —algebras f*S. If Z C X we
write C|z.

Let z be a variable, S*® [2] the graded algebra whose n" graded piece is
St Stlre e Sl 50,

The corresponding cone is denoted C' @ 1. The projective cone P(C @ 1) is called the
projective completion of C. The element z in (S®[z])! determines a regular section
of Ocg1(1l) on P(C @ 1) whose zero-scheme is canonically isomorphic to P(C). The
complement to P(C) in P(C' @ 1) is canonically isomorphic to C'. With this embedding
in P(C @ 1), P(C) is called the hyperplane at infinity.

Definition 1.1.6. Let X be a noetherian scheme, and let € be a locally free coher-
ent sheaf on X. We define the associated projective space bundle P(E) as follows. Let
S = Sym(E) be the symmetric algebra of £, S = Bg>0Syma(E). Then S is a sheaf of
graded Ox —algebras satisfying the conditions above and we define P(€) = ProjS.
Consequently, it comes with a projection morphism p : P(£) — X, and an invertible sheaf
Ope)(1). Note that if € is free of rank n+ 1 over an open set U, then p H(U) 2Py, so

P(€) is a “relative projective space” over X.

Proposition 1.1.7. [2Z, Proposition 7.11.] Let X, £ and P(E) be as in the above
definition. Then:

a if rank € > 2, there is a canonical isomorphism of graded Ox—algebras & =
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Brezm (O(1)), with the grading on the right hand side given by l. In particular,for
1 <0, p.(O()) =0; for 1 =0, p.(Opgy) = Ox, and for l =1, p.(Ope (1)) = &;

b there is a natural surjective morphism p*& — Opgy(1).

Now, since a vector bundle V on X is the cone associated to the graded sheaf Sym(VV),

where V is the sheaf of sections of V', then we have the following definition

Definition 1.1.8. The projective bundle associated toV is defined by P(V) = Proj(Sym(VV)).

There is a canonical surjection p*VY — Op(y)(1) on P(V), which gives an embedding
Opw)(=1) = p*V.

Thus P(V) is the projective bundle of lines in V', and Op(y(—1) is the universal, or

tautological line sub-bundle.

Proposition 1.1.9. [I5, Proposition 9.2.] Given a vector bundle V on a scheme X,

commutative diagrams of maps of schemes

are in natural one-to-one correspondence with line subbundles L C q*V .

Corollary 1.1.10. [13, Corollary 9.5.] Let X be a scheme. Tuwo projective bundles
p:P(V)—= X andp : P(V') = X are isomorphic as X—schemes if and only if there
is a line bundle L on X such that L® V' = V. In this case the line bundle Opy(—1)
corresponds under the isomorphism to p*(L) ® Opry(=1).

Proposition 1.1.11. [I7, Appendisz B, B.5.6] If W is a sub-bundle of a vector bundle
V', with quotient bundle G = V/W , there is a canonical embedding of P(W) in P(V'). If
p: P(V) — X is the projection, the composite of the canonical maps Op(yy(—1) = p*V
and p*V — p*G corresponds to a section of p*G @ Op(yy(1). This section is reqular, and

its zero-scheme is P(W).
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1.1.2 Divisors

Let (X,0x) be a scheme (see [22], I1.2]). For each affine open set U of X, let K(U)
be the total quotient ring of the coordinate ring A(U), i.e. the localization of A(U) at
the multiplicative system of elements which are not zero divisors. The map U — K(U)
determines a presheaf on X, whose associated sheaf of rings is denoted K. Let K* denote
the (multiplicative) subsheaf of invertible elements in K, and O% the sheaf of invertible

elements Ox. Note that if X is a variety, then K is the constant sheaf equal to K (X).

Definition 1.1.12. A Cartier divisor D on X is a global section of the sheaf K*/O%.

A Cartier divisor is determined by a collection of affine open sets U; which cover X, and
elements f; in K (U;), such that f;/f; € O%(U;NU;) for each 4, j. Such f; are called local
equations for D. The Cartier divisors on X form a group Div(X). The group operation

of Div(X) is denoted additively.

If D € Div(X), the support of D, denoted Supp(D), or sometimes |D|, is the subset
of X consisting of points x such that if f; € K(U;) a local equation with = € U; then
fi ¢ O% ;- The support of a Cartier divisors D, like the support of the section of any

sheaf, is a closed subset of X.

Definition 1.1.13. A Cartier divisor is principal if the corresponding section of KC*/O%
is the image of a global section of K*. If X is a variety, the principal divisor of r € K(X)*
is denoted div(r).

Since the support of div(r) is a proper closed subset of X, there are only a finite number

of subvarieties V' of codimension one in X such that r ¢ O% y,.

A Cartier divisor D on a scheme X determines a line bundle on X, denoted Ox (D). The
sheaf of sections of Ox (D) can be defined to be the O x —subsheaf of K generated on every
U; as above by ffl. Equivalently, transition functions for Ox (D), with respect to the
covering U;, are g;; = fi/f;. The canonical divisor K x on a non-singular n—dimensional

variety X is the divisor whose line bundle Ox (Kx) is Q% = A" (T¥).

Definition 1.1.14. A Cartier divisor D is effective if the local equations f; are sections

of Ox on U;. In this case there is a canonical section of Ox (D), which we denote by
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sp. Regarding Ox (D) as a subsheaf of IC, sp corresponds to the section 1; with respect
to the covering U;, sp is given by the collection of functions f;, which clearly satisfies

fi =gijf; onUyNU;. The section sp vanishes only on the support of D.

1.1.3 Blow-ups

Let X be a closed subscheme of a scheme Y, defined by an ideal sheaf Z. The normal
cone Cy,y to X in Y is the cone over X defined by the graded sheaf of Ox algebras
®I" /I

Cx/y = Spec(@p>oI"/T"H).
If the embedding of X in Y is a regular embedding of codimension d, then Cx,y is a

vector bundle of rank d on X, and is denoted also Nx,y; the sheaf of sections of Nx,y

is (Z/72)V.

Definition 1.1.15. The blow-up of Y along X, denoted BlxY , is the projective cone
over'Y of the sheaf of Oy —algebras &IL™:

BlxY = P?"Oj(@nzozn).

Let Y = BI xY, and let 7w denote the projection from Y to Y. The canonical invertible
sheaf (line bundle) O(1) on the projective cone Y is the ideal sheaf of 7~ (X)), which is
therefore a Cartier divisor on Y, called the exceptional divisor. Let E = 7—1(X). By

construction E is the projective cone of (") ®p, Ox = ®I"/I", so
E=P(Cx/y)

is the projective normal cone to X in Y. Moreover, the following result describes how F

is embedded in Y.

Proposition 1.1.16. [15, Proposition 13.11.] The normal bundle of E in Y is

gy = Oy(E)lp = 0p(-1). (1.1)

Let n be the projection from F = P(C) to X. If the embedding of X in Y is regular,

then the canonical embedding of normal cones N,y C n*Nx/y is the embedding of the
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universal line bundle Og(—1) in n*Nx/y.
An interesting example of a blow-up preserving the projective bundle structure of Y is

described in the following proposition.

Proposition 1.1.17. [15, Proposition 9.11.] Let V' C V be an r—dimensional subspace

of an n + 1—dimensional vector space V , and let
W = Opnr(=1) & (V & Opn—r), (1.2)

so that W is a vector bundle of rank v+ 1 on P*" = P(V/V'). The blow-up Z of
P(V) along the r — 1—dimensional subspace P(V/), together with its projection to P"~",
is isomorphic to the projective bundle p : P(W) — P"~". Under this isomorphism, the

blow-up map Z — P™ corresponds to the complete linear series |OP(W)(1)|.

In general, 7 induces an isomorphism from Y—EontoY — X , and is fully characterized

by the following universal property.

Proposition 1.1.18. [2Z, Proposition 7.14 (Universal Property of Blowing Up)] Let X
be a noetherian scheme, T a coherent sheaf of ideals, and m : X — X the blow-up with
respect to Z. If f : Z — X 1is any morphism such that f 1T - Ozis an invertible sheaf of

ideals on Z, then there exists a unique morphism g : Z — X factoring f

z—2 X

X

If X C Y is a closed imbedding, and f : Y -5 Yisa morphism, set X = 7YX,
g:X " - X the induced morphism. Then there is a closed imbedding

BlY CBIxY xyY'

It fis the induced morphism from Bly/Y to BlxY, then f_l(E) = E', where E and E’
are the exceptional divisors.

In particular, if X C Y C Z are closed imbeddings, there is a canonical imbedding
of BlxY in BlxZ, with the exceptional divisor of Blx Z restricting to the exceptional
divisor of BlxY .
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Next result, that will be a key tool for the rest of the work, allow us to explicitly compute
the normal bundle of the strict transform of a given subvariety ¥ C Z under some

regularity assumptions.

Proposition 1.1.19. [17, Appendiz B.6.10.] If X CY and Y C Z are reqular embed-
dings, let 7 = Blx Z, E the exceptional divisor in Z, p the projection from Z to Z. Let
Y = BIxY. ThenY C p='(Y), E C p*(Y), and Y is the residual scheme to E in
p~ YY), i.e., the ideal sheaves of Y, E and p YY) in Z are related by

I(Y) - Z(E) = (o~ (V).

In addition, the canonical embedding of Y in Z is a regular imbedding, with normal
bundle

Ny 7 =7 Ny;z @ O(=F)
where 7 is the projection from Y to Y, and F is the exceptional divisor on Y of such

projection.

1.2 Intersection theory

1.2.1 Rational equivalence

Let X be an algebraic scheme over a field k.

Definition 1.2.1. A k—cycle on X is a finite formal sum 3 n;[V;] where the V; are
k—dimensional subvarieties of X, and the n; are integers. The group of k—cycles on
X, denoted Z, X, is the free abelian group on the k— dimensional subvarieties of X ; to a
subvariety V. of X corresponds [V] in Z;,X.
For any (k + 1)—dimensional subvariety W of X, and any r € R(W)*, define a k—cycle
[div(r)] on X by

[div(r)] = Z ordy (r) [V], (1.3)
the sum over all codimension one subvarieties V' of W ; here ordy is the order function
on R(W)* defined by the local ring Oy w .

A k—-cycle « is rationally equivalent to zero, written o ~ 0, if there are a finite number
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of (k+ 1)—dimensional subvarieties W; of X, and r; € R(W)*, such that

a=Y"[div(r;)].

Since [div(r~')] = — [div(r)], the cycles rationally equivalent to zero form a subgroup
Ratp X of Z, X. The group of k—cycles modulo rational equivalence on X is the factor
group

ApX = Z, X/Rati X.

Definition 1.2.2. Define Z. X (resp. A.X) to be the direct sum of the ZpX (resp.
ApX) for k =0,1,...,dim(X). A cycle (resp. cycle class) on X is an element of Z, X
(resp. A X ).

If o is a class in A, X, and k is an integer, we denote by {a}, the component o in A, X.

Thus o = ;50 {a}y
A cycle is positive if it is not zero, and each of its coefficients is a positive integer. A

cycle class is positive if it can be represented by a positive cycle.

1.2.1.1 Push-forward and pull-back of cycles

Let f: X — Y be a proper morphism. For any subvariety V of X, the image W = f(V)
is then a (closed) subvariety of Y. There is an induced imbedding of R(W) in R(V),

which is a finite field extension if W has the same dimension as V. Set

R(V): R(W)] if dim(W)=dim(V
deg (VW) = [R(V) : R(W)] if dim(W)=dim(V)

0 if dim(W)<dim(V)

where [R(V) : R(W)] denotes the degree of the field extension. Define f.[V] = deg(V/W) [W].

This extends linearly to a homomorphism
f* X = ZLY.

These homomorphisms are functorial: if g is a proper morphism from Y to Z, then

(g0 f)« = g« 0 [, as follows from the multiplicativity of degrees of field extensions.
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Proposition 1.2.3. [I7, Proposition 1.4.] Let f : X — Y be a proper, surjective
morphism of varieties, and let r € R(X)*. Then
[ [div(r)] =0 if dim(Y) < dim(X) (1.4)
{ fu[div(r)] = [div(N(r))] if dim(Y) = dim(X) (1.5)
In[L5], R(X) is a finite extension of R(Y), and N(r) is the norm of r, i.e., the determi-
nant of the R(Y)—linear endomorphism of R(X) given by multiplication by r.

Theorem 1.2.4. [I7, Theorem 1.4.] If f : X — Y is a proper morphism, and « is a
k—-cycle on X which is rationally equivalent to zero, then f.(a) is rationally equivalent

to zero on'Y.

Definition 1.2.5. [I7, Definition 1.4.] If X is a complete scheme, i.e., X is proper over
S = Spec(K), K the ground field, and o =), np [P] is a zero-cycle on X, the degree
of v, denoted deg(c), or [y a, is defined by

deg(a) = /X a= an [R(P) : K].
P

Equivalently, deg(a) = p«(a), where p is the structure morphism from X to S, and
ApS = Z[S5] is identified with Z. By the theorem, rationally equivalent cycles have the

same degree. We extend the degree homomorphism to all of A, X,

/ cAX =7
X

by defining fX a=0if a € Ay X, k > 0. For any morphism f : X — Y of complete

/Xaz/yma),

a special case of functoriality. We often write | instead of [,.

schemes, and any o € A, X,

Let f : X — Y be a flat morphism of relative dimension n. The examples of primary

importance for us will be:

A an open imbedding (n = 0),

B the projection of a vector bundle or A”—bundle, or a projective bundle, to its base,

C the projection from a Cartesian product X =Y x Z to the first factor, where Z is

a purely n—dimensional scheme,
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D any dominant morphism from an (n + 1)—dimensional variety to a nonsingular

curve.

Remark 1.2.6. In this thesis, a flat morphism is always assumed to have relative di-

mension n for some integer n € 7.

For such f: X — Y, and any subvariety V of Y, set

Here f~1(V) is the inverse image scheme, a subscheme of X of pure dimension dim(V)+n,

and [ f *1(V)] is its cycle. This extends by linearity to pull-back homomorphisms
f* Y — Zk+nX-

Lemma 1.2.7. [17, Lemma 1.7.1.] If f : X =Y is flat, then for any subscheme Z of
Y

7

It follows from this lemma that flat pull-backs are functorial: if f : X - Y andg:Y — Z
are flat, then go f is flat, and (g o f)* = f* o g*. For if V is a subvariety of Z, then

(gof)*WVI=[lgo ) "WV =[flog ' V)] =f g7 (V)] = frog"[V].

Theorem 1.2.8. [I7, Theorem 1.7.] Let f : X — Y be a flat morphism of relative
dimension n, and a a k—cycle on' Y which is rationally equivalent to zero. Then f*«
is rationally equivalent to zero in Zy4nX. There are therefore induced homomorphisms,
the flat pull-backs,

ALY = A X,

so that A, becomes a contravariant functor for flat morphisms.

Proposition 1.2.9. [I7, Proposition 1.8.] LetY be a closed subscheme of a scheme X,
andletU =X =Y. Letiw: Y — X, j: U — X be the inclusions. Then the sequence

ALY S A X 2 AU = 0

is exact for all k.
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Corollary 1.2.10. [I7, Ezample 1.8.1.] Let

J
—_—

Y’ X'
y —s X
be a fibre square, with i a closed imbedding, p proper, such that p induces an isomorphism

of X' =Y onto X —Y. Then the sequence
AY' S ALY e 4 X B A4X =0

is exact, where a(a) = (g«(), —jx(a)), b(a, B) = ix(a) + p«(B).

1.2.1.2 An alternative definition of rational equivalence

Now that the push-forward of cycles i well defined, a more classical definition of A,X
will be given. Let X be a scheme, and let X x P! be the Cartesian product of X with P!,
Let p be the projection from X x P! to X. Let V be a (k + 1)—dimensional subvariety
of X x P! such that the projection to the second factor induces a dominant morphism
f from V to P!. For any point P € P! which is rational over the ground field, the
scheme-theoretic fiber f~!(P) is a subscheme of X x {P}, which p maps isomorphically
onto a subscheme of X; we denote this subscheme by V(P). Note in particular that
p« [f71(P)] = [V(P)] in Z;X. The morphismf : V — P! determines a rational function
f € R(V)*. Tt follows that

[F7H0)] = [f 7 (00)] = [div ()],
where 0 = (1:0) and oo = (0 : 1) are the usual zero and infinity points of P!. Therefore
[V(0)] = [V(e0)] = p [div(f)],
which is rationally equivalent to zero on X.

Proposition 1.2.11. [I7, Proposition 1.6.] A cycle a in ZiX is rationally equivalent
to zero if and only if there are (k+1)—dimensional subvarieties Vi, ..., V; of X x PY, such
that the projections from V; to P! are dominant, with

[Vi(0)] = [Vi(o0)]

t
o =

i
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1.2.2 Divisors

Let X be an n—dimensional variety. A Weil divisor on X is an (n—1)—cycle on X. The
WEeil divisors form the group Z,_1X. Given a Cartier divisor D, define the associated

Weil divisor [D] of D by setting

[D] = ordyD[V]

the sum over all codimension one subvarieties V' of X; note that there are only finitely
many V with ordy D # 0. The Cartier divisors form an abelian group Div(X): if D and
E are given by data (U, fo) and (U,, ga), the sum D + E is given by (Uq, fa - 9a). By

the additivity of the order functions, the mapping D — [D] is a homomorphism
Div(X) = Zp,_1(X)

Any f in R(X)* determines a principal Cartier divisor div(f), by taking all local equa-
tions equal to f. Note that the Weil divisor associated to div(f) is the cycle [div(f)]
defined in equation Two divisors D, D" are linearly equivalent if they differ by a
principal divisor: D'D + div(f). From the definition of rational equivalence, it follows
that [D] and [D/} are rationally equivalent cycles. If Pic(X) denotes the group of linear

equivalence classes of Cartier divisors, there is an induced homomorphism
Pic(X) = A,—1(X)
This homomorphism is in general neither injective nor surjective.
If D is a Cartier divisor on X, and « a k—cycle on X we define an intersection class
D-«a€ Ap_1(|D]| Nal).
By linearity it suffices to define D - [V] if V is a subvariety of X. Let ¢ be the inclusion

of V in X. There are two cases:

A If V is not contained in the support of D, then by restricting local equations, D

determines a Cartier divisor, denoted i*(D), on V. In this case, set

the associated Weil divisor of i*(D) on V. In this case D - [V] is a well-defined

cycle.
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B If V C |D|, then the line bundle Ox (D) restricts to a line bundle i*Ox (D) on
V. Choose a Carrier divisor C' on V whose line bundle is isomorphic to this line

bundle: Oy (C) = i*Ox (D), and set

the associated Weil divisor of C. Since C' is well defined up to a principal divisor

on V, [C] is well defined in Ay, V.

This intersection product satisfies the formal properties one would expect for a “cap

product”. For example:

alfa~a then D-a=D- o in A,(D]).
b If D — D’ is principal, then D-a =D -« in A (|a)).

¢ (Projection formula) If f: Y — X is a proper surjective morphism of varieties, D

a Carrier divisor on X, and a a k—cycle on Y, then

f(f*(D)-a) =D fu() (1.6)

in A_1(Z), with Z = |D| N f(Ja|), and f* : f~2(Z) — Z the morphism induced
by f. There is a similar compatibility with flat pull-backs.

From 4) and #4) it follows that the operation product D - « determines products
P’LC(X) QA X — Ak_l(X).
The following proposition is obtained as a particular case of the one above.

Proposition 1.2.12. [13, Proposition 1.10] Let f : Z — X be a proper surjective
morphism. Let D1, Ds, ..., D, be Cartier divisors on X with r = d = dim(X). Then, one
has

f*D1~f*D2-~-f*Dr=d€g(f)D1~D2~-~Dr

where deg(f) = [K(Z) : K(X)], if deg(f) 1is finite.
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1.2.2.1 Chern class of a line bundle

Let L be a line bundle on a scheme X. For any k—dimensional subvariety V of X,
the restriction L|y of L to V is isomorphic to Oy (C) for some Cartier divisor C' on
V, determined up to linear equivalence. The Weil divisor [C] determines a well-defined

element in Ay_1(X), which we denote by ¢ (L) N [V]:
a(L)nV]=1C]. (1.7)

This is extended by linearity to define a homomorphism o — ¢;(L) N« from Z,(X) to
Ap_1(X). If L = Ox (D) for a pseudo-divisor D on X (see [I7, Definition 2.2.1.]), it

follows from the definition of the intersection class that
a(Ox(D))Na=D -«
in Ak—l (X) .

Proposition 1.2.13. [I7, Proposition 2.5.]

a If « is rationally equivalent to zero on X, then ¢1(L) N« = 0. There is therefore

an induced homomorphism

Cl(L) N AX = A1 X.

b (Commutativity). If L, L' are line bundles on X, a a k—cycle on X, then
ci(L)N (ei(L)Na) = el (L) N (er(L)a)
mn Ak_g(X).

¢ (Projection formula). If f : X' 5 Xisa proper morphism, L a line bundle on X,

o a k—cycle on X', then
felea(fF L) Na) = (L) N fi(e) (1.8)
mn Akfl(X).

d (Flat pull-back). If f : X' = X is flat of relative dimension n, L a line bundle on
X, a a k—cycle on X, then

a(f*L)n ffa=f(a(l)Na)

m Ak+n71 (X )
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e (Additivity). If L, L' are line bundles on X, a a k—cycle on X, then
aLoL)Na=c(L)Na+ca(l)Na

and

ci(LY)Na=—c (L) Na

m Akle.

1.2.2.2 Gysin map for divisors

If D is an effective Cartier divisor on a variety X, the restriction of Ox (D) to D is the

normal bundle Np,x, and
[D] = ¢1(0.(D)) N [X].

Definition 1.2.14. [I7, Section 2.6] Let D be an effective Cartier divisor on a variety

X, and leti: D — X be the inclusion. There are Gysin homorphisms
i Zp X = A D
fork=1,....dim(X) defined by the formula
i"(a) =D«

Proposition 1.2.15. [I7, Proposition 2.6.] There are therefore induced homomor-

phisms:
. AkX — Ak_lD

fork=1,...,dim(X) such that one has

a If a is a k-cycle on X, then

ixi*(a) = c1(Ox (D)) N«

b If a is a k-cycle on D, then

’L*Z*(O[) :cl(ND/X)ﬂa (19)
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¢ If X is purely n-dimensional, then

m An—1D~
d If L is a line bundle on X, then
i"(aa(L)Na)=c1 (L) Ni* ()

in Ag_2(D) for any k—cycle o on X.

1.2.3 Segre classes and Chern classes of vector bundles

Let V be a vector bundle of rank e 4+ 1 on an algebraic scheme X. Let P(V) be the
projective bundle of lines in V', p the projection from P(V) to X, and let O(1) = Op(v(1)
denote the canonical line bundle on P(V), i.e., its dual Op(y(—1) is the tautological
subbundle of p*V. Define homomorphisms o — $;(V) N« from ApX to Ax_; X by the
formula

si(V)Na = p.(ci(0(1)F Np*(a)).
Here p* is the flat pull-back from A, X to Ao P(V), c1(O(1))¢ti N is the iterated first

Chern class homomorphism from Ay .P(V) to Ar—;P(V), and p. is the push-forward
from Ak_ZP(V) to Ak_ZX

Now we define Chern class operator
Cl(E) Nt AgX — A X
by formally inverting the Segre classes

1+ (E)+ca(BE)+...=(1+51(E)+s(E) +..)7"

Explicitly
s1(E) 1 0 e 0
cp(E) = (—1)Pdet
0
Sl(E) 1
so(E)  s,-1(E) 51(E)




Theorem 1.2.16. [17, Theorem 3.2.] The Chern classes satisfy the following properties:

a (Vanishing) For all vector bundles E on X, all i > rank(E),

b (Commutativity) For all vector bundles E, F on X, integers i,j, and cycles o on

X

7

G(E)N(¢;(F)Na)=c;j(F)N(c(E)Na)

¢ (Projection formula) Let E be a vector bundle on X, f : X' = X a proper mor-
phism. Then

fila(fFE)Na) = ci(E) N fi(a)

for all cycles o on X', alli.
d (Pull-back) Let E be a vector bundle on X, f : X' = X a flat morphism. Then
a(f*E)N ffa=f"(c:(E)Na)
for all cycles o on X, all i.

e (Whitney sum) For any exact sequence
0+E -E—E —0

of vector bundles on X, then

cr(B) = Y ci(E)e;(E");

i+j=k

f (Normalization) If E is a line bundle on a variety X, D a Cartier divisor on X

with O(D) & E, then

Note that from[d and[] it follows that the first Chern class for a line bundle defined here
agrees with the definition given in[1.7
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1.2.4 Segre class of a subscheme and excess intersections

The Segre class of a cone C, denoted s(C), is the class in A*(X) defined by the formula
s(0) = ¢.(d_((c(0()) N [P(C @ 1))
>0

Proposition 1.2.17. [17, Proposition 4.1.] If E is a vector bundle on X, then

s(E) = c¢(B)"' n[X] € A*(X)

Let X be a closed subscheme of a scheme Y.The Segre class of X in Y, denoted s(X,Y),

is defined to be the Segre class of the normal cone Cx y:
S(X, Y) = S(Cx/y) S A.(X)

In case X is regularly imbedded in Y, so the normal cone is a vector bundle, it follows
from Proposition [1.2.17| that s(X,Y") is the cap product of the total inverse Chern class
of the normal bundle with [X].

Proposition 1.2.18. [17, Proposition 4.2.] Let f : Y' = Y be a morphism of pure-
dimensional schemes, X C Y a closed subscheme, X = fYX) the inverse image

scheme, g : X' = X the induced morphism.

a If f is proper, Y irreducible, and f maps each irreducible component of Y’ onto Y,
then
g:(s(XY")) = deg(Y'/Y)s(X,Y).

b If f is flat, then
g (s(X,Y)) = s(X,Y).

Corollary 1.2.19. [17, Corollary 4.2.2.] Let X be a proper closed subscheme of a variety
Y. LetY be the blow-up of Y along X, X = P(Cx/y) the exceptional divisor, 1) : X=X
the projection. Then

s(X,Y) =Y (~)F (XY

E>1

=3 0. (0(1)) N [P(Cx/v)))-

i>0
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For an irreducible subvariety X of a variety Y, the coeflicient of [X] in the class s(X,Y)
is called the multiplicity of Y along X, or the algebraic multiplicity of X on Y, and is
denoted exY. If codim(X,Y) =n > 0, then

exY [X] = (1 (O(1))" N [P(C & 1))
= p.((c (O N [PO)])
— (~1)"pu (X7,

Here C' = Cx/y, p and q are the projections from P(C) and P(C @ 1) to X, Y is the
blow-up of Y along X, with exceptional divisor X = P(C). This definition is equivalent
to the definition of the multiplicity of the local ring Ox y given by Samuel (I).
If X = P is a point, C'= Cp/y is the tangent cone to P in Y, and
epY = " (e (O))" " N[P(C)] = deg [P(C)].
P

In this case epY is called the multiplicity of Y at P.

The excess intersection problems arise in situations in which we wish to describe some-
thing about improper intersections, where the intersection has components of dimension

greater than expected.

Suppose that X is a smooth projective variety, D C X is a Cartier divisor and i : C — X
the inclusion morphism of a subvariety C'in X. If C intersects D generically transversely,
then the intersection class [C] - [D] of D and C is [C'N DJ; but what if C' is contained in
D?

Proposition 1.2.20. [15, Proposition 13.1.] Suppose that X is a smooth projective
variety. Let ic : C — X be the inclusion morphism of a subvariety of codimension k in

X, and let D C X be an effective Cartier divisor containing C. We have
[C1[D] = ic.(ve) € A H(X),

where v¢ = c1(Np/x|c)

The previous proposition is in fact a special case of a much more general result.

Theorem 1.2.21. [15, Theorem 13.3. (Excess intersection formula)] If S C X is a

subvariety of a smooth variety X and T is a locally complete intersection subvariety of
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X, then
[S]-[T] =) ic:(vo),
c

where:

a The sum is taken over the connected components C of SNT.
b ic : C — X denotes the inclusion morphism.

¢ ve = {s(C, S)C(NT/X|C)}d € Ay(C), where d = dimX — codimS — codimT is

the“expected dimension” of the intersection.

If the subvariety S is locally a complete intersection as well, then we have a symmetric

form

ve = {s(C, X)e(Nsyx|c)e(Nryxle)}, -

One frequently occurring situation in which excess intersection arises is the case of cycles
[A] and [8] on a smooth variety X that happen to both lie on a proper subvariety Z C X.
Although as cycles on X their intersection cannot even be dimensionally transverse, we
can relate their intersection class [A]-[B] € A*(Z) in Z to the intersection of their classes

on X.

Proposition 1.2.22. [{J, Proposition 13.6. (Key formula)] Let i : Z — X be an
inclusion of smooth projective varieties of codimension m, and let Nz,x be the normal

bundle of Z in X. If a € A%(Z) and B € A(Z), then

iv(@) - in(B) = is(a- B em(Ng x)) € A0 (X).

This proposition follows from the following theorem , that generalizes for arbitrary

smooth projective subvarieties

Theorem 1.2.23. [I, Theorem 13.7.] Let iz : Z — X be an inclusion of smooth
projective varieties of codimension m, and let Nz;x be the normal bundle of Z in X.

For any class o € A*(Z) we have

i5(i2:() = a- en(Ng/x) € A*T7(2)
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1.2.5 Chow ring of projective bundles

We start this section by a well known result about the Chow ring of the most basic

projective bundle, that is, the one defined over a point.

Theorem 1.2.24. [13, Theorem 2.1.] The Chow ring of P™ is
A*(P") = Z[d] /(") (1.10)

where ¢ € AY(P™) is the rational equivalence class of a hyperplane; more generally, the

class of a variety of codimension k and degree d is ds”.

Next theorem extends the previous one to projective bundles defined over higher dimen-

sional projective varieties.

Theorem 1.2.25. [I5, Theorem 9.6.] Let V be a vector bundle of rank r + 1 on a
smooth projective variety X, and let ¢ = c1(Opv)(1)) € AY(P(V)), andp: P(V) — X
the projection of the induced projective bundle. The map p* : A(X) — A(P(V)) is
an injective ring homomorphism, and via this map one has the isomorphism of A(X)-

algebras given by
AP(V) = AX) [/ + eV + -+ e (V)

In particular, the group homomorphism A(X)®™1 — A(P(V)) / given by (ag, ..., o) +

S ¢ip* () is an isomorphism, so that

AP(V) =@ AX)

1=0

as groups.

Continuing with the example appearing in Proposition[T.1.17] next result gives an explicit

description of the Chow ring of the blow-up of P™ at a linear subspace.

Corollary 1.2.26. [15, Corollary 9.12.] Let Z C P"™ x P"™" be the blow-up of an
r — 1—plane A in P*. Writing a,c € AL(Z) for the pullbacks of the hyperplane classes

on P" 7 and P™ respectively, we have
A(Z) = Zlayo] [(a™H, 6 — ag”). (1.11)
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With this notation the class of the exceptional divisor E C Z, the preimage of A in Z, is

[E]=¢—a (1.12)

Finally, given a projective bundle, the following proposition gives a presentation of the

class of projective subbundle in terms of the generators its Chow ring.

Proposition 1.2.27. [15, Proposition 9.13] If X is a smooth projective variety and

W C V are vector bundles on X of ranks s and r respectively, then
[PW)] =<+ "+ . 4y € A75(P(V)),

where ¢ = ¢1(Opvy(1)) and v = cx(V/W). Moreover, the normal bundle of P(W) in
P(V) is Opaw)(1) @ p*(V/W).

Proposition 1.2.28. [15, Proposition 9.14.] If L C V is a line subbundle of a vector
bundle V' on a variety X, then P(L) C P(V) is the image of a section X — P(V) of the

projection P(V) — X, and every section has this form.

1.2.6 Intersection theory of blow-ups

Let X be a regularly imbedded subscheme of a scheme Y, of codimension d, with normal
bundle Nx/y. Let Y be the blow-up of Y along X, and let X = P(Nx/y) be the

exceptional divisor. We have a fiber square
X—1.vy
L b
X sy
Since Ng = O5(—1), the excess normal bundle @ is the universal quotient bundle on

P(Nx/y)Z
Q@=9"Nx;v/Ng,y =9"Nx;y/Og(-1).

Proposition 1.2.29. [I7, Proposition 6.7.]

a (Key Formula). For all x € A X,
[ris(x) = ja(ca(Q) N g™x)

m AkY.
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b For ally € ALY, fof*y =1y in A Y.
c IfT e ALX, and g« = j*jux =0, then z = 0.
d Ifj € ALY, and f.§ = j*§ =0, then y = 0.
e There are split exact sequences
0 AX S AX ALY 5 A4Y =0 (1.13)

with a(z) = (cg-1(Q) Ng*x, —i.x), and B(Z,y) = j.T + f*y. A left inverse for «
is given by (Z,y) L. (z).

Moreover, we can generalize the pull-back formula for flat morphisms (see Lemma |1.2.7))

to the case of blow-ups.

Theorem 1.2.30. [I7, Theorem 6.7] (Blow-up Formula). Let V' be a k—dimensional
subvariety of Y, and let V CY be the proper transform of V, i.e. the blow-up of V along
VNnX. Then

F V= V] +5Ad@ ng's(V N X, 1)}, (1.14)
m Ak?.
Corollary 1.2.31. [I7, Corollary 6.7.1.] If X = P is a point in'Y, then

frVI=VI+epVi L],

where L is a k—dimensional linear subspace of E = ]P’;l(_l, K the residue field of Oy, p,
and epV is the multiplicity of P on V.

Corollary 1.2.32. [17, Corollary 6.7.2.] If dimV N X <k —d, then

The following result gives the multiplication rules in the Chow ring A*® (}7)7 but it does

not provide an explicit presentation of the ring.
Proposition 1.2.33. [I7, Ezample 8.3.9.] Let
X—1-v
l ;
X —>Y
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be a blow-up diagram, with Y, X, and therefore 37, X non singular. The ring structure

on A'(f/) 1s determined by the following rules:

a fry-fry =1y

b (@) 5u(T) = ju(er(703(X)) - T-T).

¢ f*(y) - 5«(T) = ju((g"i"y) - 7).
Finally, the following theorem provides an explicit presentation of A® (}N/) under some
restrictive assumptions.
Theorem 1.2.34. [28, Appendiz Theorem 1.] Suppose the map of bivariant rings

L ANY) = AY(X)
is surjective, then A® (}7) is 1somorphic to
A*(YV)[T]/(P(T), (T - Ker(i%))),

where P(T) € A*(Y)[T] is any polynomial whose constant term is [X]| and whose re-

striction to A*(X)is the Chern polynomial of the normal bundle Nx y i.e.
*(P(T)) = t* + e (Nx/y)T " + -+ ca1(Nxyy)T + ca(Nx/v),
(where d = codim(X,Y")). This isomorphism is induced by
freAN(Y) = A%(Y)

and by sending —T to the class of the exceptional divisor.
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Chapter 2

Sequences of blow-ups at smooth

centers.

In this chapter, we define the basic objects of this research, that is, sequences of blow-ups,
sequential morphisms and final divisors.

In the first section of this chapter, apart from defining the key concepts of sequences
of blow-ups at smooth centers and sequential morphisms, we also generalize the usual
proximity relations for higher dimensional centers. In the second section we give a short
result about the normal bundle of the irreducible components of the exceptional divi-
sor.The third section is devoted to the definition of final divisors for both sequences of
blow-ups and sequential morphisms, as well as regular projective contractions, and study
some properties of the former. Finally, in the last section of this chapter we define the
n—ary multilinear intersection form on the abelian group of divisors with exceptional
support and its associated multilinear form.

The main references for this chapter are [27] and [30].

Remark 2.0.1. Given a variety Z and a subvariety V C Z of codimension d, from now

on we will denote by v to the class [V] € A4(Z).
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2.1 Sequences of blow-ups and sequential morphisms.

Fix an algebraic closed field k. From now on, unless otherwise stated, a variety will mean

a reduced projective scheme over k.

Definition 2.1.1. A sequence of blow-ups over K is defined as a sequence of blow-ups

at smooth closed subvarieties C; of smooth d— dimensional varieties Z;
s Ts—
Ze = 7y =5 270 IS 7,

such that fori e {0,1,...,5 — 1}:

a if we denote by C;11 to the center of miy1, then Ciy1 is a smooth subvariety of Z;,
b codim(Cit1) > 2,

¢ if we denote by EJJ the exceptional divisor of m;, and for k > j we denote by Ejk the
strict transform of Ej in Z, then Ciy1 has normal crossings with {Ei, E, ..., E'}.

K2

We denote by 7 the composition 7 o 3 0 ... 0 T5_1 0 7s.

Definition 2.1.2. A morphism © : Zs — Zy which can be expressed, in at least one
way, as a composition of blow-ups with the conditions in Definition will be called a

sequential morphism .

Remark 2.1.3. Given a sequence of blow-ups (Zs, ..., Zy, ), we denote by s ; : Zs — Z;

where Tg j = Mj41 O W42 0 ...0 Me_1 O .

Remark 2.1.4. We will refer to Zy and Zs as the ground and the sky of the sequential
morphism m : Zs — Zgy respectively. Moreover we will denote by Eg the irreducible

components over k of the exceptional divisor E of 7, that is we have E = UB Eg.

The centers Cj, in general, can have any dimension. We extend the well-known notion

of proximity for point blow-ups.

Definition 2.1.5. Given a sequence of blow-ups (Zs, ..., Zg, ™) as in Definition
we say that C; is proximate (resp. t—proximate) to C;, and write C; — C; (resp.

C; 5 C)ifC; BTN (resp. C;NEIT £ 0 but C; ¢ BITY).

48



Note that, if C; is either proximate or t—proximate to C; then j > i.

Remark 2.1.6. For j > i we denote by Ef* the total transform of E! by the morphism
mi: Zj = Z;i. By an abuse of notation E* = E!. Note that by definition of the total
transform and Theorem[1.2.30, we have

i>i

where pi; =1 if i < j < k and Cj is prozimate to C; and p;; = 0 in any other case.

Definition 2.1.7. Given a sequential morphism 7 : Z — Zy and two irreducible excep-
tional components E;, E; C E, then we will say that E; is proximate (resp. t—proximate)
to E; if there exists a sequence of blow-ups (Zs, ..., Zo, ™) realizing the sequential mor-

phism w : Z — Zy, such that C; is prozimate (resp. t—prozimate) to C;.

2.2 A brief note on the normal bundle of the intersec-

tion of two exceptional components

Within this short section, we introduce a technical lemma about the splitting of the nor-
mal bundle of the complete intersection of two irreducible components of the exceptional

divisor, that will be widely used in the rest of this work.

Lemma 2.2.1. Let D and F be two irreducible components of a simple normal crossing

divisor E that is regularly embedded in X. If we denote by G = DN F then
Nr/xla = Na/p
Proof. Letig,p:G — D andip x : D = X be regular embeddings. Then the composite

ip,x ©ig,p is a regular embedding, and there is an exact sequence of vector bundles on

G (see |20, Proposition 19.1.5])
0— Ng/p = Na/x = Np/x|la = 0
Since D and F meet regularly in X, then (see [I8, IV Proposition 3.6.]):
Ng/x = Np/xla ® Np/xla
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So, we have the following exact sequences of vector bundles on G
0 — Ng/p = Np/x|la ® Np/xla = Np/x|la — 0

Then it follows that Ng/p = Np/x|a- O

2.3 Final divisors. Regular projective contractions.

We start this section by defining one of the key objects of this thesis, that is, final divisors

for both sequences of blow-ups and sequential morphisms.

Definition 2.3.1. Let (Zs, ..., Zg,m) be a sequence of blow-ups as in Definition .
The components of the exceptional diwisor E in Zs are {Ey,...,Es}. Assume that E;
is an irreducible component. Set E! to be the image of E; in Z;. We say that E; is
finalfinal with respect to (Zs, ..., Zy, ) if there exists an open set U; on Z; such that
EicU,V,= w:}(UZ) C Zs, and 7 ;ly, - Vi = U; is an isomorphism (see Remark

for ms ;).

Remark 2.3.2. Note that E; = E} is a necessary condition for E; to be final but it is

not a sufficient one, since even if C; SN C;, Ef* = Ef although E; may not be final.

Definition 2.3.3. Let w: Zs; — Zy be a sequential morphism. We say that an irreducible
component E; of E is finalfinal if there exists a sequence of blow-ups (Zs, ..., Zg, ™)

associated to w: Zs — Zy such that E; is final with respect to this sequence.

Now we will define a key tool for our study of final divisors, that of a regular projective

contraction.

Definition 2.3.4. Let Z and C be two varieties, and let D be a proper closed subvariety
of Z. Then we say that D is contractable to C' within Z, if there exist a variety W, and

a proper birational morphism f : Z — W such that

a f(D)=C, and

b D is the closed subset of Z which consists of the points where f is not an isomor-

phism.
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We call this triple (Z, f,W) a contraction of D to C, or simply a contraction. We shall
say that D is normally (resp. regularly, projectively) contractable to C' within Z when

moreover
¢ W is a normal (resp. non-singular, projective) variety.

In this case we call this triple (Z, f,W) a normal (resp. regular, projective) contraction

of D to C.

The following results give some necessary and sufficient conditions for such a regular

projective contraction to exists as well as prove its uniqueness.

Theorem 2.3.5. [27, Theorem 3., Corollary 2.] Let Z be an n—dimensional non-
singular projective variety, D a divisor on Z, and C' be an r—dimensional non-singular
projective variety with v < n— 1. Then there exists a regular projective contraction of D

to C within Z if and only if they satisfy the conditions

a D is isomorphic to a projective bundle P(N) for a vector bundle N on C. We
denote by p the canonical projection of E to C' and by Ip the ideal of D in Oy,

b the normal bundle Np,; = %)v >~ Op(-1) and
D

¢ there is a line bundle £ on Z generated by its global sections, whose restriction to

D is isomorphic to the inverse image by p of an ample line bundle on C.

Moreover, f: Z — W is the blow-up of W with center C'.

Proposition 2.3.6. [30, Corollaire 2.] Let f : Z — W a surjective birational morphism,
S(f) C Z the closed subset of point where f is not biregular, and D an irreducible
component of S(f), such that X is factorial over each point of C = f(D). Let iz
W' a birational morphism, such that S(f) = D and each fiber of f'|p is contained in a
fiber of f|p. We suppose furthermore that W' is normal over each point of C' = f (D).

Then, it exists a canonical isomorphism h: W' — W satisfying ho f = f.

Now, we give some necessary algebraic conditions that an irreducible component E; of

the exceptional divisor F have to satisfy in order to be final.
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Proposition 2.3.7. Let E; be an irreducible component of E. If E; is final then it
satisfies the three conditions of Theorem[2.5.5, that is

a E; is isomorphic to a projective bundle P(N) for a vector bundle N on C;. We
denote by p the canonical projection of E; to C; and by Iy, the ideal of E; in O,

v
= % = Og,(—1) and

i

b the normal bundle Ng, /7,

¢ there is a line bundle £ on Z generated by its global sections, whose restriction to

E; is isomorphic to the inverse image by p of an ample line bundle on Cj.

Proof. 1If E; is final then E; is isomorphic to a projective bundle P(N¢,,z,_,) over C;.
Moreover Ng, /7 = Op,(—1) by Proposition [1.1.16, and condition |c| is satisfied by con-

sidering £’ = 75 ;-1 £, where £ is an ample line bundle over Z;_;. O

A natural question arises when dealing with final divisors: Given a sequential morphism
m: Z — Zy is it possible for two irreducible exceptional components E; and E; to be
final with E; N E; # (07 And in this case, which type of proximity relation could exist

between them? Moreover, what is the geometric structure of £; N E; when FE; is final?

Lemma 2.3.8. Let (Zs, ..., Zo,7) be a sequence of blow-ups such and let E; be a final
component with respect to this sequence. If E; N E; # 0 and E; is prozimate to E;, then
E;NE; C E; is isomorphic to a projective subbundle of E;.

Proof. We have that E! N E; = P(Nci/E;—l), where Nci/E;,—l C N¢,/z,_, is a vector
subbundle as C; has normal crossing with Eji-fl. Now, the results follows since E; is

final. O

Theorem 2.3.9. Let (Zs,...,Zy,m) be a sequence of blow-ups satisfying the following

conditions:

a m;: Zy — Zi_1 1s the blow-up at the smooth subvariety C;,

b D C C; is a Cartier divisor and w11 : Ziv1 — Z; is the blow-up at W;1<D>,
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¢ and there exists an open subset U;—1 C Z;—1 such that C; C U;—q. IfUj1 = (mip10

— i+1 i+1 —1
7Ti) 1Ui,1, then E;Jr UEZil C Uiy, Vig1 = 7TS’1-+1(UZ‘+1) C Z, and Ts,it+1

Vig1 *

Vit1 — Ui1 is an isomorphism.

Then, the irreducible components E;, E;11 are both finals with respect to the sequential
morphism w1 Zs — Zy satisfying E; BN FEit1 and Eiy1 — F;.
Proof. Let us consider the two following sequences of blow-ups:

Zit1 Zi1

Tit1 ,
\ /ﬂ

where ; denotes the blow-up of Z;_; with center D and 7, 41 denotes the blow-up of Z,
with center the strict transform of C;, that is 5,-. By the universal property of blow-ups

there exists a unique morphism p; : Z;11 — Z; such that the following diagram commutes

Zit1

‘ﬂ'& pi
Z; Z,
Zi 1

Note that as a consequence, p; |Wi+1\ EHUEH is an isomorphism. Moreover, if we denote
by Ig, to the ideal defining Cj, since C; = C;, p; 1(1@) is an invertible sheaf. So by the

universal property of blow-up there must exist a unique morphism p; 1 : Z;y1 — Z; 11

’
Dit1 Zi+1
\ , Tit1
Zi

, where pi+1|Wi+1\Ef+1uE,?jf} is an isomorphism.

such that

Ziy1

Now, since BT = E! then ET! is isomorphic to a projective bundle over C;, and
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consequently over 51-7 p: Ef“ — 51 Moreover, by Proposition |1.1.19

N, = 0pi (1) ® O(-E;" nEf)),

:+1/Zi+1

= OP(Nci/zifl)(_l) ® 7T;<+1 o W:O(_D)v

and considering the vector bundle N = Ne¢,/z,,) ® O(=D), then E/"' = P(N') and
NE;_L-H/ZHl ™~ OP(N’)(_1)~ Finally, let £ an ample line bundle on Z;_;, then 7}, o 7/ L
will be generated by its global sections and its restriction to EEH will be isomorphic to
the inverse image by m; o m;41 of an ample line bundle on 52 Therefore, by Theorem
2.3.5|there exists a regular projective contraction of Ef“ to CN'i within Z; 11, (Ziy1, f, W),
such that f: Z; 1 — W is the blow-up of W with center C;. The restriction f| Zi\EH

will be an isomorphism and we have the following diagram

Zit1
AN
X Z,

Both, f and p; are birational morphisms, with S(f) = S(p;) = Ef“. Moreover, and
due to the commutativity of diagram a fiber of p;
flgi+1 so by Proposition there exists a canonical isomorphism A : W — Z; such

pi+1 is contained in a fiber of
k2

that ho f = p;. As a result, Z; ;1 must be isomorphic to Z;+1'
Note that Eﬁ% is proximate to Ef“ with respect to the sequence (Z;11, Z;, Z;—1,7) and
1111 with respect to the sequence (Z;11, Z;, Zii1,7T ).

E*! is t—proximate to E]

O

Theorem 2.3.10. Let E;, E; C Zg be both final divisors for the sequential morphism
m: Zs — Zy. Then E;NE; # 0 if and only if E; is prozimate to E; and E; is

t—proximate to E;, or vice versa.

Proof. Let us suppose that E; N E; # (. Then one of the following conditions must be
satisfied:

A either E; - E; and E; — E;,

B or E; 5 E, and E; 5 E;,
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Cor E;— Ej and Ej 4 B (or vice versa).

In the case [A] let us consider a sequence of blow-ups, associated to the sequential mor-
phism 7 : Z, — Zy, realizing E; as a final divisor. If we focus on the blow-up corre-
sponding at the j—level, that is 7; : Z; — Z;_1, and we restrict it to qu, then we have

the following diagram:

Bl<————— ENE!

NS

, (2.1)

™ 95 E]mE]

where E/ N EJJ C EJ must be a projective subbundle of E?, since Fj is final too. Before

going on we should distinguish between the two following cases:

A.i either codim(C}, Ef_l) =1, that is, C; is a divisor of Eg_l,

Alii or codim(Cj, EI7') > 1.

In the case by Proposition we have that
Ngijz, =75 (Ngi-1/5, ) ® O(=E] N E)), (2.2)

so the necessary condition to be final Ngi g, = Opi(—1) (see Proposition D fails to

be true.

In the case the morphism ;| : Ef — Eg ~1 defines a divisorial contraction, and
as a consequence of [2I, Theorem 1.1.], mj| . : B} — E/~" is a Sarkisov link of type I,
so there must exists a morphism h; : B; — C;, giving B; a projective bundle structure

over C;. Now, if we denote by F; to gi_l(P), where P € C; is a point, then we have the
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following diagram, obtained just by restriction of the previous one:

i i (F3) 9; (CiNFy) (2.3)

Pijl -1
il (Fi) ijl —1
j Bl i qz]|gj

J (CjNFy)

Fi Cj n Fi

9il Py

P
Since F; = P™, where r = codim(C;, Z;—1), then by [3I, Lemma 2.] the dimension
dim(h; ' (P)) is at least m — dim(C;j N F;) — 1. Now we will prove that in fact this must

be an equality, that is,
dim(h; *(P)) = m — dim(C; N F;) — 1. (2.4)

Since g;l(Cj N F;) has a projective bundle structure over h; *(P) then from Theorem

[[225] we know that
A% (g; H(C N F)) = AR (P) /(T + e (V) + -+ + e (V)), (2.5)

where V' is a vector bundle such that r 4+ 1 = rank(V') < dim(C; N F;) + 1. Moreover, if
Q € C; N F,; is a point, then we have that codz’m(gj_l(Q),gj_l(Cj NE;)) = codim(Q,C; N

F;) = dim(C; N F;), so the class [gj_l(Q)] € Al(gj_l(C’j N F;)) is expressed as

[QJ_I(Q)] — aOCdim(ijFi) +a1<dim(cjﬁFi)*1 o .. '+adim(ijFL')—1<.adim(ijFL)_1+
+ Qgim(c;nF) Qaim(c,nr,) 0 A*(g; 1 (C5NE)),  (2.6)

where o; € Ai(h;'(P)) for i = 1,..,dim(C; N F;). Now, let us consider a point
(ONS qij\gj_l(cjﬂm)(gfl(Q)L where qijlgj_l(CjﬂFi) : g;l(Cj N F;) — h;'(P) defines the

projective bundle structure. Then the following relation must hold:
sl ey (6012 20,y (O)] - 7@ = (0] € A7 (P, (2.1
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. . x -1
but in order to satisfy qi‘j*|g]‘l(ciji)([q’ij|gjI(CjﬁFi)(O):| . [gj (Q)]) # 0 then ag # 0
in equation and now it follows from [I5, Lemma 9.7.] that r» + 1 = rank(V) =
dim(Cj N F;) + 1. We can conclude then that dim(h; ' (P)) = m — dim(C; N F;) — 1.

As a consequence, by [31, Theorem 4.|, we have that C; N F; is a linear subspace in F;.

Moreover, by Proposition |1.1.17| the pull back by pij|ﬂj|71( ) of the hyperplane class
o
& € AY(F) satisfies (see Corollary [1.2.26)):

where f € Al(ﬂj|;;(Fi)) denotes the class of a fiber F' C ﬂ]\;}(FZ) Now, by Proposition
[LT19 we have that:

Ngijg, 25 (Ngi-1yz, ) ®O(=E/NE - j7),
so in particular, if we restrict to Fj:

~ * —1
NE{/Zjlfrj\;;(Fi) = 7Tj|ﬂj|;;(pi)(NEg—1/zj_1) ® Ow,-|;;(m)(—gj (C; N F)),

Bl
i

2 pijl 11 () (OF (=1) © O 11y (=5 1 (C5 NV ),
5

=0 1(my (295 (CINE) @ LO O -1y (=95 (O3 N E)),

where £ denotes a line bundle in hi_1 (P), so the necessary condition to be final N, =

1/2; =
O(—1) (see Proposition [2.3.7) fails to be true.

Now, let us consider the case Since E; LN E; and Ej 4 E;, then E; N E; must be
isomorphic to a fiber of both F; and E;. Let us suppose that both are finals and let
(Zo, ..., Zs,m) be a sequence realizing F; as a final divisor. Then there must exists a
regular projective contraction f : Z; — X1 such that f(E;) = C;. However, if we
consider the restriction f|g; then it can not be a regular projective contraction any more

since it contracts F; N Ej whereas Ng,ng, /5, % Op,nE; (—1)-

Finally, in the case [C] that is F; — E; and E; L E (or vice versa), if C; N El7 s a
projective subbundle of rank one or equivalently C; = 71']|I;J1 (D), where D € Al(C;-) is a

Cartier divisor, then it follows from Theorem [2.3.9] that both are finals.
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Figure 2.1: Example of two blow up processes which lead to a same sequential morphism

with two intersecting final divisors

10
4

Corollary 2.3.11. Let w1y : Zo — Zn_1 be the blow-up of Z,_1 with center C, and
Toatl  Lat1 — Lo the blow-up of Z, with center the image of a section Cq — ES of
the projection E& — C,. Then ET! is isomorphic to a projective bundle P(N) over
P(Nc¢, /z., /L), where L is the line bundle corresponding to Coy1, and if we denote by p :
P(N¢,z, /L) = Ci, then N = p* L & OP(Nca/zn
Opny(—2) ® M, where M is the pull-back a line bundle defined over P(N¢, z.,_,/L).

_,/6)(=1). Moreover, Npat1,, =

Proposition 2.3.12. Let (Zs, ..., Zy, 7) be a sequence of blow-ups such and let E; be a
final component with respect to this sequence. We denote by e;,ej € AY(Z to the classes

of E; and E; respectively. If E; N E; # 0 then one of the following relations holds:

A ej-e; =g if dim(C;) =0,
B (Gj + 61') e = Zd] chz — C’j,with dzm(CZ) Z 1,

C@j'eiZZd]‘ Zf CiACj,
with dj = ji (g7 (f;)), where f; € AY(C;) denotes a Weil divisor of C;.

Proof. The case [A] follow directly from Lemma [2.3.8
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For the other cases, let us consider the blow-up m; : Z; — Z;_1. Then eéfl S Al(ZZ-,l),
and by Proposition [1.2.33| we have
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|
=
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~

x

s 1—1\ __ i 7 . . *
Moreover, 77 (ej ) = € + e} if C; — C; and 7 (e

i—1

i') = ¢} otherwise. Finally, since E;

is final, there must exist an open U; on Z; such that E! C U;, V; = W;l(Ui) C Zg, and

N

7s,i|lv; © Vi = U; is an isomorphism, and the result follows. O

2.4 The n—ary intersection form

This section is devoted to the definition of the n—ary multilinear intersection form on the
abelian groups of divisors with exceptional support and its associated multilinear form, as
we will make an intensive use of them in order to establish the numerical characterization
of final divisors and the combinatorial equivalence of sequences of blow-ups and sequential

morphisms.

Definition 2.4.1. Given a sequential morphism w : Zy — Zy, we consider the n—ary

multilinear intersection form
n

——
Iz, g :ExXxEx---xE—=Z,
defined by intersecting cycles in the sky Zs and taking degrees, that is
1257E(Ei17Ei27 ceey Eln) = deg(eil T €yt gttt ein)a

where €;, - €5, - €54+ -

- €, 1S an intersection class of 0—cycles in the abelian group Ao(Zs),

n

and deg stands for the degree.

Remark 2.4.2. For the sake of simplicity we will denote e; - e, - - - €, =

12,87, (B, By, .., Ey).

Definition 2.4.3. Given a sequential morphism 7 : Zs — Zy as in Definition [2.1.
it induces a natural isomorphism E = Z°, where the standard basis of Z° is the image
of the Z-basis {E;};_,. In this way, the multilinear form of intersection give rise to a

multilinear form
n

—fN—
Oy p:Z°x--- XL =171
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We say that @z, g is the multilinear form associated to m. The permutation group Ss

acts on the set of multilinear forms Z° x - - - X Z° — 7Z by interchanging the elements

of the standard basis of Z°. It is clear that if we denote by Wz g to the orbit of Pz, g,
then ¥z, g does not depend on the labeling of the elements of the basis {E;}.
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Chapter 3

Sequences of point blow-ups over

an algebraically closed field.

In this chapter we focus on the study of sequences of blow-ups as in Definition that
is
AN SN N AN/

where all the centers C;;1 are points. In the first section we define the notion of alge-
braic and combinatorial equivalence for both sequences of points blow-ups and sequential
morphisms. The second section is devoted to give a numerical characterization of final
divisors in terms of the values of the n—ary intersection form of the abelian groups of
divisors with exceptional support. In the next sections, we make use of this previous
result in order to recover the sequences of point blow-ups from the associated sequen-
tial morphism modulo algebraic equivalence, and prove some relations between algebraic
and combinatorial equivalence classes of sequences of point blow-ups and sequential mor-
phisms. Finally, in the last section of this chapter, we give two explicit presentation of
the Chow ring of the sky of a sequence of point blow-ups. The first one using the classes
of the total transforms of the exceptional components as generators and the second one
using the classes of the strict transforms ones. Furthermore, we prove that the skies of

two sequences of point blow-ups of the same length have isomorphic Chow rings.
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3.1 Algebraic and combinatorial equivalence of sequences
of point blow-ups and the associated sequential

morphisms

First of all we define our notions of equivalence (algebraic and combinatorial) for sequen-
tial morphisms (Definitions and [3.1.2)).

Definition 3.1.1. We say that two sequential morphisms w : Z, — Zy and T Z;, —
Z(;, with s = sl, are algebraically equivalent, and we denote it by 7 & , if and only

if there exist isomorphisms a and b such that the following diagram is commutative
b ’
ZS < ZS/
Zy <> 7,
Definition 3.1.2. Given two sequential morphisms w : Zs — Zgy and T Z;, — Z(/), with

’ . 7. .
s = s, we say that the associated multilinear forms ®z g and ®, . are equivalent,
/1

and we denote it by ®z g~ @, o, if there exists T € S; such that

T((I)ZS,E) = (I)Z/,,E'"

Moreover, the sequential morphisms © : Z;, — Zy and T Z; — Z(') are said to
be combinatorially equivalent, and we denote it by w comb 7r/, when their associated

multilinear maps ®z_ g and (I)Z', B are equivalent.

Remark 3.1.3. If 7 : Z, — Zy and T Z;, — Z(; are algebraically equivalent, then
b(E;) = E{;(i) for some permutation o € Sg, so the multilinear intersection forms are
equivalent as in Definition . However, the converse is not true. For instance, for
n = 2 we consider sequences of five point blow-ups, the first on a rational point of a smooth
surface and the other at four different rational points of the exceptional divisor created by
the blow-up of the original point. Then the 5—multilinear form, up to a permutation of
S5, is independent on the choice of the four exceptional points; however, two choices with

a different cross-ratio provide sequential morphism which are not algebraically equivalent.

Definition 3.1.4. Given a variety X we will call a brick blow-up with ground X to
a sequential morphism obtained as a composition of point blow-ups with disjoint centers

W CiCcX, X =X =+ X1 = o> X1 = X,
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Definition 3.1.5. We say that two sequences of point blow-ups, (Zs, ..., Zy,7) , and
(Z;,,...,Z(I),w/), are algebraically equivalent, and we denote it by (Zs,..., Zo, ) oy
(ZS/,...,Zé,ﬂ'/), if and only if s = s and there exist algebraic isomorphisms a,b =
be,bi—1,...,b1, with t < s, such that there are indexes ri,...,m. = s € {1,...,1} and
FlyoTy = 8 € {1,...,5/}, where Zp, — Zp._1 — ... = Zp,_, (resp. Z;i — Z;,ﬁl —
T Z;iil), with r; > 151 (respr; > 75 1), is a brick blow-up ¥i = 1...t as in Definition

and the diagram
g

Ls —>=Lr,_, Ly, : Ly, Zo

bl btll th\L l al

Zy —7, ', - z, Zy
Ti—1 Ti—2 1

1s commutative.

Remark 3.1.6. If two sequences of point blow-ups (Zs, ..., Zy, ™) and (Z;7 ey Z(;, 77/) are
algebraically equivalent, then their associated sequential morphisms are also algebraically
equivalent. Therefore, in particular, one has b(E;) = E;(i) where o € S is a permutation.
Moreover, for two different indexes i, j, one has that E; is prozimate to E; if and only

if E;(i) is prorimate to E;(j).

Definition 3.1.7. We say that two sequences of point blow ups, (Zs, ..., Zy,7) and
(Z;,...,Zé,wl), with s = sl, are combinatorially equivalent, and we denote it by
(Zsy ooy Zo, ) comt (Z,, ...,Z(/),ﬂ'l), if and only there is a permutation T in Sy such that
for every two different indexes i,j one has

/ /

a E; is proximate to E; if and only if E_ .\ is prozimate to ET(J.),

()

3.2 Final divisors: Numerical characterization

Lemma 3.2.1. In the case of sequences of point blow-ups, if two irreducible components

E; and E; are both final, then E; N E; = 0.

Proof. Set Pi € Z;_1, P; € Zj_1, to be the points such that E; maps to P; and E;
maps to P;. If Eg is final, with 8 € {i,j}, then Eg = P"~! and Ng,/z, = Og,(—1) by
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Proposition 2.3.7]

Let us suppose that E; N E; # (). Then either P; is proximate to P; or P; is proximate
to P;. In the first case E; 2 P"~! and Ng, 7, # Op,(—1) so E; is not final, whereas in
the second case E; % P"~! and Ng, /7, ¥ Og,(—1) so E; is not final. Through any of

them we get to a contradiction. O

The result above makes a huge difference with respect to the more general case of blow-
ups at higher dimensional centers, where two final divisors may not have an empty

intersection (see Theorem [2.3.9).

Remark 3.2.2. Assume that we have a sequential morphism associated to a sequence
of point blow-ups. If an irreducible component E, of E is final with respect to one
representative of the sequences associated to this sequential morphism then it is final with

respect to all. This fact drastically changes when more general centers are allowed (see

Theorem .

Before characterizing numerically final divisors, we need a numerical characterization of

empty intersections E; N E; = (.

Lemma 3.2.3. In case of sequences of point blow-ups E; N E; = 0 if and only if (e;)*® -
(e;)" =0 for all v #0 and s # 0 withr + s =n.

Proof. If E; N E; = () then (e;)® - (¢;)" = 0 follows directly.

In order to prove the necessary condition, we will prove that E; N E; # () implies that
Ir # 0, s # 0 such that (e;)®(e;)” # 0; it is enough to prove it in the case of a sequence
of point blow-ups of length s = 3 since the general result follows by induction.

First let my : Z1 — Zy be the blow-up with center P;. Now we blow-up Z; with center
P, such that Py € Ell, that is such that P, is proximate to P;. If we denote by Dj »

to B2 N E2, thus we have the following diagram where all the morphisms are regular
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embeddings

E?
1
; ,
Dl,zy \&E%,ZQ
iD1,2,Z2

Dyg——— 25

ZDLQ& /Eg,z2
2
E2

Then it follows by Proposition [I.2.20] that
2. .2 _
€1 €3 €y = ZD1,27Z2*(01(NE%/Z2 |D1,2))
6% : 63 . 6? = iD1,27Z2*(cl(NE§/ZQ |D1,2))
Moreover, we have the following diagram

i 2
Dy 2,E7 2
Dy ————E7

T2 E%

% 1
Py, Bl
2 N .

so by proposition [I.1.19]
Ngz/z, 2 75| g1 (Np1yz,) ® O(—=D12)
Since O(D1,2)|p, » & Np, ,/p2, then we have
Nig2/z,|p1. 2 LONp,  p2,

where L denotes a trivial line bundle. Moreover, as a consequence of Lemma we

have NDLQ/E% = NE%/Z2|D1,2 SO

C1 (NE%/ZQ |D1,2) = -0 (NES/ZQ ‘D1,2)
By induction on r and s respectively it follows

6% ' (e%)r = Z'D1,2,ZQ*((61(]\[Eg/Zg|D1,2))T—1)
(e%)s : e% = (_1)3_1iD1,27Z2*((61 (NES/Z2|D1,2))S_1)
Finally, as Npz/7, & Opz(—1) and D15 C E32 is a projective sub-bundle, it follows that

()" (€3)" = (=1)""tip, 5.z (c1(Op, o (=1))7%)
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Note that (e3)® - (e3)” # 0 and furthermore if we denote by Ajs to
Dy 2,254 (€1(Op, 5 (—1))"T*72)) then (e7)* - (€3)" = (—1)* Ay if r + s =n.

Let 73 : Z3 — Z3 be the blow-up of Zy with center P3, such that P; € E? N E2, that is
P; is proximate to Py and to P,. Then it follows that by theorem [I.2.30]

(€1)" - (e3)" = (m3(ef) — €3)° - (m5(e3) — €3)"
and due to the Projection formula then
(€1)*(e3)" = (m3(e1))” - (m5(€3))" + (=1)"* (g 2y (1 (O (=1))"71) (3.1)
= (e1) - (€3)" + (1) (jEg 2,0 (c1(Opg (—1)) "7 ) (32)

Since (€2)® - (e3)" # 0 and furthermore that it is of the form (€2)® - (e2)" = (—1)*"1A; o,
then it must exist 7, s with r # 0 and s # 0 such that (e$)*(e3)” # 0.
For the more general case, let us suppose that {P,,, Pa,, ..., Pa, } are proximate to both

P, and P,. Then by iterating equation

k
(e7%)+ (e5")" = (e1)" - ( 1" (g 5 2,10z (1)),
j=1
so it must exist 7, s with r # 0 and s # 0 such that (eJ*)® - (e5*)" # 0. O

Now we are ready to characterize numerically when an irreducible component F; of the

exceptional divisor FE is final.

Proposition 3.2.4. E; s final if and only if

Proof. Firstly, let us suppose that E; is final. Then by Proposition [1.2:22] we have

(€)" = jp. 2.+ ((c1(Np,2,))" ")
but Ng,/z, = Og,(—1), so if we denote by ¢ to ¢;(Og,(—1)), it follows that
nfl)

(€)™ = jEg,,z,((—<)

so we can conclude the result (e;)" = (—1)""1.
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Now, let us suppose that E; is not final. Then by Proposition [[.1.19] its normal bundle

satisfies

Ng, )z, = W:L,i|E;' (NE‘Z/Zi) ® ® TnalBe (O(=E7 N EY)),

a—1

and by the Projection formula [I.6] we have

()" = jEzs((=)" ) + Y jmoz(“EF NE™ )

a—1

Since Y, ., iz« ((—EX N E$)™ 1) # 0, we can conclude that (e;)™ # (—=1)""1. O

3.3 Recovering of the sequence of point blow-ups

Before continuing, we need to prove the following technical lemma that is crucial for the

uniqueness of the regular projective contractions.

Lemma 3.3.1. Let X and Y be two affine normal varieties such that X = Spec(A) and
Y = Spec(B). Letw: Z — X and w7 =Y be proper morphisms. If Z is isomorphic
to Z' then A= B.

Proof. By [19, Theorem 3.2.1|, since = and 7 are proper morphisms then 7, (Oz) and
7'('; (O,) are a coherent sheaves on X and Y respectively. Since X and Y are both normal,
then Ox = 7,(0y) and Oy = 7, (O,), so

A= HY(X,0x) = H(Z 0y),

B= H(Y,0y) = H"(Z',0,).
Since H*(Z,0z) = H%(Z',0,), then it follows that A = B. O
Proposition 3.3.2. Let (Zs, ..., Zy,7) be a sequence of point blow-ups (as in Definition
of length s and let E; be an irreducible component of the exceptional divisor E of
. If E; is final, then there exists a regular projective contraction (Zs, fs, Xs—1) of E;

to a point such that fs(E) is a simple normal crossing divisor and Xs_1 is the sky of a

sequence of point blow-ups with ground Zy.

Proof. Since E; is final there must exist an isomorphism between the two opens sets

U; C Z; and V; C Zs via m,;. After shrinking U; if necessary, we may assume that
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U; \ E! is isomorphic via m; to an open set of Z;_;1 \ {P;} where P; = m;(E}).

Note that W; = m;(U;) is an open set in Z;_;. In fact m;|y, is the blow-up of W; at P;.

Ts,ilv;
V, <—=U;

MUi\L

Wi

Set ¢ = (m; o ms;)|v; the composition morphism from V; to W;

Ts,ilv;

N

Wi

where ¢ :=m; o7, ;.

Set W; = Z\ E;. We construct X, ; by gluing W; and W; along the open isomorphic
sets W; \ {P;} C W; and V; \ E; C W;. Note that W \ {P;} = U; \ E! ﬂg Vi \ H;.

Now we define fs : Z — X1, fslip, = Idw,, fs|lv, = ¢, which is well defined by the
isomorphisms.

Finally, it is clear from the construction that if we denote by Dx,__, to the image f;(F),
then Dy

._, is a simple normal crossing divisor.

An alternative construction of the contraction.

Since F; is final, then E; = P"~ !, where P, = 7s,;(E;), and moreover by Proposition
its normal bundle Ng, /7 = Og,(—1). Let F be a very ample line bundle on Z,.
Then F ® O, = Ly ® O, (u). If we consider the line bundle L := F @ O(E;)®*, then

by [27, Corollary 2.| there exists a regular projective contraction (Zs, ¢, X; 1) of E; to
B, = P, such that ¢ is defined by the

a closed point, that we will denote by Pi/7 with ¢
complete linear system |L|. To see that D X = p(F) is still a simple normal crossing
divisor we prove that the contraction is unique up to isomorphism. By [27, Theorem
3] ¢ : Zy — X,_, is the blowing up of X. ; at a point P;. Let Y; be an affine open
neighborhood of P; in X,_1. If we denote by Y; := o(f7'(Y;)), then is Y; is an affine
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neighborhood of Pi/ in X ;71 and there exist two proper morphisms

By Lemma this implies that Y; & YZ-,7 so its then clear that D X, is a simple normal

crossing divisor.

So we have proved that there exists a regular projective contraction (Zs, fs, Xs—1) of E;

to a point P; € X,_1.

|
Z
d
Zy
Following the notations of Definition let W; = m;(U;). Then by Definition m
fs|Zs\V,i : Z\Vi = Xs—1\ fs(V;) is an isomorphism. Now we define g : Xs_1 — Z;_;
as follows: 9|W,v, = Ws,i*1|Wi and g|lw, = Idw,. By our construction of X;_ 1 g is well
defined, and by the definition g : X;_1 — Z;_1 is a sequence of point blow-ups.

Hence the composition X, 1 — Z;_1 — Zj is a sequence of point blow-ups.
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O

Theorem 3.3.3. Let m: Zs — Zy be a sequential morphism. Given the n—ary multilin-
ear intersection form we can recover all the sequences of point blow-ups that are associated

to sequential morphisms in the same algebraic equivalence class of w: Zs — Zy.

Proof. We will prove this result first by contracting one irreducible component of the
exceptional divisor E each time.

Since the set formed by final divisors is not empty, let us suppose that F; is final, then
by Proposition there exists a regular projective contraction (Zs, fs, Xs—1) of E; to
a point such that X, 1 is the sky of a sequence of point blow-ups with ground Zj .

70



The next step in our proof refers to how to obtain the intersection form in X_; associated
to the simple normal crossing divisor Dx,_,.

If we denote by Dx, o to fs(Es), then by the Projection formula

dXs—lyil : dXs—17i2 o dXs—lyin = f;(dXs—lyil) : fl:(dxs—lﬂé) e f:(dXs—17in,)7

Applying the result of Theorem [1.2.30] then
dX, i dXovia t AXo oy, = (€0 T 00y i€i) - (€3, + 0igi€i) - - - (€3, + 04, 0€0),  (3.3)

where 0;, ; = 1if E; N E;, # () (see numerical characterization in lemma 3.2.3) and

di;,i = 0 otherwise.

Remark 3.3.4. It follows then that by iterating the above process, that is by contracting
a final divisor at each step, we will obtain a sequence of point blow-ups of length s.
The obtained sequence depends on the choice of final components. Below we will prove
that all the sequential morphisms associated to the sequences constructed in this way are

algebraically equivalent.
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3.4 Relations between algebraic and combinatorial equiv-
alence classes of sequences of point blow-ups and

sequential morphisms

Proposition 3.4.1. Any of the sequences obtained as in[3.3.4 that is, by decomposing
a regular projective contraction from a fixed sky Zs and a fived simple normal crossing

divisor E, are associated to sequential morphisms in the same algebraic equivalence class

(see Definition .

Before proving this, we need the following lemma

Lemma 3.4.2. Given a fized sky Zs and a fized simple normal crossing divisor E, let
us suppose that E; and E; are both finals. Then there is an isomorphism X,_o = X;z

making the following diagram commutative

Z,
Xsfl

’
Xsfl

fsli f; 1

= ’
XS—2 -~ Xs—2

where fs is the contraction of E; and fs_1 is the contraction of Dx,_, ;, whereas f; 15

the contraction of E; and f;_l is the contraction of Dy

s—10t

Proof. To begin with, if we denote by O; s_2 = fs—1 0 fs(E;i), Ojs—2 = fs—1(Dx, 1,5,

Oj—z = forr 0 fu(Ey) and O,y = fu_1(Dys ), then it follows that

X2\ {02, 0552} 2 ZN\ B U E; = X5\ {0;, 5,05, 5)

Let W; be an open affine open neighborhood of Oj,_2. If we denote by V; to the
inverse image f; ' o f.',(W;), then the image W]/ = fi o fi_1(V;) will be an affine
open neighborhood of O;-’sz. Then since fs—1 o fs|y, and f;_l o f:|vJ are both proper
morphisms, it follows by lemma W; = WJI .

If we denote by W; to an open affine neighborhood of O; s_2 and W; = fi_,ofs(V;), where
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V; is the inverse image f; 1o ;11(Wi), then in a similar way we can prove that W; = Wi/,

so it follows X o =2 X ;72 since all isomorphisms are given by global sections. O

Consequently, we have the following corollary, which means that proposition holds
for length 2.

Corollary 3.4.3. If Z, is the sky of a sequence of point blow-ups of length 2, then
any of the two sequences of point blow-ups obtained following the procedure in[3.3.7 are

associated to sequential morphisms in the same algebraic equivalence class .

In order to prove proposition we need the following definition.

Definition 3.4.4. We say that two sequences of point blow-ups obtained as in remark
that is through the composition of reqular projective contractions from a fized sky

Zs and a fized simple normal crossing divisor E,

zo—Lox, Pl x P . . X, ox, e x,
[ 7 I fiii . fa . . I
Z, X, X, . . X, —> X, —> X,

have the same end if at least the first contraction is common to both. i.e. one has fs = f;

Proof of Proposition[3.4.1l Let us suppose then that Z,; is the sky of a sequence of
n + 1 point blow ups and that proposition [3.4.1] is true for sequences of length lower
or equal than n. If two sequences obtained as above p := f; o fao...0 f, o f11 and
p i=fiofs0..0f 0 f,/LJr1 have the same end, then it is clear that both are associated
to algebraically marked sequential morphism in the same algebraic equivalence class. It

is a direct consequence of the fact that by hypothesis the assertion is true for sequences
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of length lower or equal than n.

i1
fn+1lf;+1
Xn
y fn
Xn-1 XT,’L—I
o Foa

f2 fa

X, X
f f

Xo = X,

If two sequences p := fio foo...o f,0 fry1 and 0 : =gy 0g20...0 g, © g1 have not the
same end, then let us suppose that f,;+1 and g,1 correspond to the contraction of E;
and E; respectively. Consider all the sequences that belong to the tree contracting E;
first, there must exist a sequence p, = f{ o f2, 0..0 f,; o f;L 41 contracting Ex, ; secondly.
Analogously, if we consider all sequences contracting F; first, there must exist a sequence
o = g/l o g; 0..0 g;l o g;lﬂ contracting Fy, ; secondly.

By corollary the sequences fT/L ) fT/L 41 and g;l o g;L 41 of length 2 are associated to

sequential morphism in the same algebraic equivalence class, so it just remain to proof

that f{ Oféo“.o ;720]”7;71 belong to the same equivalence class that g/1 og;O...og;%Qog;%l.
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But this equivalence follows directly from the hypothesis, so p/ ~ao.

Zn+1
Fnt1 In+1
leL+1 9;4—1
Xn Y,
fn f7/1 g’:], X
Xn1 X, — Y, Y1
fn-1 f:kl g;71 gn—1
f2 fa an 92
X, X, vy Y
f1 f{ g; g1
X = X, = Y, = Yo
. 1 ’ 1 ’ 1
Nowsmcepamigp anda%a,thenp%o. O
With this we conclude also the proof of Theorem [3.3.3 O

Theorem 3.4.5. Two sequences of point blow-ups (Zs, ..., Zy, ) and (Z;, - Z(;, 7r/), with
s=s, are combinatorially equivalent as in Deﬁnition if and only if their associated
sequential morphisms w : Zs — Zy and T Z; — Z('J are combinatorially equivalent as
in Definition[3.1.9, and both statements are true if and only if the associated multilinear
maps ®z p and @, - are equivalent too as in Deﬁm’tion

First we will prove that if two sequential morphisms 7 : Z;, — Zy and o Z‘; —
Z(l) are combinatorially equivalent then the associated sequences of points blow-ups are
combinatorially equivalent too. To begin with, we need a numerical characterization of

proximity.

Lemma 3.4.6. Let (Zs, ..., Zy, T)comb be a sequence of point blow-ups. Then P; — P; if
and only if
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a Jo€{2,3,...,s — 1,5} such that Dx_, ;N Dx, ; # 0 (see numerical characterization

of lemma .

b (dx,q)" = (-1)"!

where Zg =— X431 — -+ = Xo = -+ = Xo = Zy is any sequence of contractions

obtained as in remark[3.3.4)

Proof. If P; is proximate to P; then E! N EJ’ # ), con condition 4. holds. Moreover, if
P; € Z,, then E! is final for the sequence 7,1 o7, o+ - oy, for some r > i and we have
condition ii.

Conversely, if Dx, ; is final for the sequence 7, 4; o . o --om for some r > i then by
proposition there exist a regular projective contraction f, : Xo — Xq—1 of Ep,_ ;
such that fo(Dx, ) = Oia—1 C Dx, . j- O

Proof of Theorem [3.7-5. Assume that the sequential morphisms 7 : Z, — Zo and 7 :
Z;/ — Z(l) are combinatorially equivalent. If E; is final, then there exists 7 € Ss such

that

a E;'(z) iS ﬁnala
b E;NEg # 0 if and only if E/T(z') N Elr(ﬂ) #0,

C €61 €By " CBn = Cr(8y) " Cr(B2) " Er(Bn)

Furthermore, by Theorem [1.2.30

dx, 1,60 dx, 1. dx, 1,5, = (€s +0p,€:) - (€s, +0p,€:) -+ (€g, + 0p,,i€i),

so it follows then that there exists 7 € S;_; such that

X1y AXoa o X g0 =y g s gy e

m—1T

Consequently we have that ®x_ , p, ~®. 5 . Furthermore, by iterating
s— ’ x!

5 — ’

o =
the above process, then ®x  p, ~ <I>X;7DX, for « = 1,..,5 — 2. So as a consequence
@

1

of Lemma [3.4.6] any two sequential morphisms combinatorially equivalent preserve the
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proximity relations.

Conversely assume now that two sequences of point blow-ups with s = s are com-

binatorially equivalent. We want to prove that their associated sequential morphisms

T2y — Zoand T : Z;, — Z('J are combinatorially equivalent. First, there exists o € S,

such that by applying iteratively Theorem [1.2.30| we get

e, =ef — Z s
B—i
Coiy =€)~ D Cols)
o(B)—ali)

Moreover, as a consequence of the Projection formula
e, " €p, e #0 ifand only if By = B2 = ... = 3,

and if E; is final then E; = E7, so it follows that there exists 7 € S such that

’

(e)" = ()" Vi=1,..s

7 (3

Finally, by the Theorem [1.2.30
e g ep, = (eh, — Y e5) - (eh,— D €s) - (eh, — D )
=P d—PB2 6—fn
so we have

651 . eﬁ2 e eﬂn = 67_(51) . 67_(52) e 6,’_(6”)

O

Theorem 3.4.7. Given two sequential morphisms w : Zs — Zy and T Z;, — Z(,)

, then they are algebraically equivalent as in Definition [3.1.1) if and only if there are

sequences of point blow-ups (Zs, ..., Zog, ) and (Z;,7...7Zé,7rl) associated to 7 : Zs — Zg

and 7 : Z;, — Z(; respectively such that they are algebraically equivalent as in Definition

3. 1.0l

Proof. If two sequences of point blow-ups are algebraically equivalent, then it follows

directly by Definition that the associated sequential morphisms are algebraically

equivalent too.

Now we will prove that if two sequential morphism « : Z, — Zy and T Z;, — Z(/) are

algebraically equivalent, then there exist sequences of point blow-ups associated to them
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that are algebraically equivalent too. By theorem [3.3.3] given a certain sky Z, associated
to a sequential morphism 7w : Z, — Zy , all the sequences of point blow-ups obtained
by regular projective contractions are associated to sequential morphisms in the same
algebraic equivalence class. Since 7 : Zy — Zy and o Z; — Z(') are algebraically
equivalent, then there exist an isomorphism b : 7, — Z;,. By applying proposition
and proposition we conclude the result. O

3.5 The Chow ring of the sky Z;

Note that Proposition|1.2.33|does not give a presentation of A*(Z,1) as a A*(Z,)—algebra,
but only states the rules of multiplication.

If we could find generators of A*(EST]) as a Z—algebra, {1, ...,%.} € A*(ES{]), then

A*(Zoy1) = A%(Za) [at1+ ()5 -5 Jat 1+ (7r)]

would be a A*(Z,)—algebra of finite type. One would like to have a presentation
AN (Zatr) = A% (Za) [wr, oy wr] /T

by sending w; t0 jo+1x(7:), with an explicit description of the ideal 7. The ideal Jwill
be computed in Theorems [3.5.3] and 3.5.6] We will restrict ourselves to the case of
sequences of point blow-ups, that is C, = P,, with the ground variety Z, = P". By
[15, Theorem 2.1.], A*(Zo) = Z [u] /(u™T1), by sending u to h, where h € A'(Zy) is the
rational equivalence class of any hyperplane [H]| in P", and Va A*(ES) = Z [w] /(w™) by

sending w to <., with ¢, € A'(E2) is the rational class of any hyperplane.

Lemma 3.5.1. The Chow ring of the sky A*(Zs) is generated by {hs*, {ef*}le} as a

Z—algebra.

Proof. This follows by induction on «. It is clear that A®(Zy) is generated by {h}. Let
us suppose that A®*(Z,) is generated by {h”‘*, {ef‘*}?zl}. Now by Proposition [1.2.33|and

due to the fact that EST} = P"—1 that is A*(EST]) 2 Z[t] /(t"), by sending ¢ to a1,

with ¢a1 the rational equivalence class of any hyperplane in P"~1, and e2T1* - 211" =

—Ja+1+(Sa+1) by equation (4) then A®*(Z,+1) is generated by {h““*, {ef‘“*}?;l} as a

Z—algebra. O

78



Remark 3.5.2. It makes sense then to define the augmented free Z—modules with basis

{Hk'*, {Ef*}le} and {H’“*, {Ef}le} and the augmented change of basis matriz Bj;

10 0 0
0 1 0
B = 0 —pz | (3.4)
—p13  —P23
1
0 —pix —pax -+ —DPr-1k 1

and its inverse Bzfl.

Theorem 3.5.3. The Chow ring of the sky A®(Zs), when Zy = P", is isomorphic to

A.(ZS) =Z [l‘o, L1y -5 xs} /({xl : l‘j}i‘j:'o ’ {(_1)n(xl)n + (xo)n}?:l)’ (3'5)

i#]

by sending o to the class h** and z; to the class ef* fori=1,...,s.
Proof. By lemma there exist a exists a surjective morphism
¢:Llxg, w1, ..., xs5] = A% (Zs),
such that ¢(zg) = h** and ¢(z;) = ef* for i = 1,...s. Firstly we will prove that

J = <{xZ cxi}i =0, {(=1)"(z)" + (:Eo)”}f=1> C Ker(¢). To begin with, let us express
i#]

. 1. . 1
the classes of the basis {E?H*}j:l in terms of the classes of the basis {Efﬂ}j:l , that
is, since
(03
et =ef + Z bjies,
j=i+1
then

« (a4
a+1x _ a+1 a+1 a+1
et =™+ N biet ™ 4+ (O pjasabai)ent]
j=i+1 Jj=1

where b;; denotes the coefficients of the augmented change of basis matrix B~
If we denote by ¢,41 € Al(Egi%) the class of any hyperplane in Eg‘ill then we have the

following intersection products

egii : egii = _ja+1*(§a+1) (36)
(ZJO-H_I . egi% = ja+1*(§a+l) if Pa+1 — Pj (37)
e?“ et =0 otherwise (3.8)
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where Equation [3.6] follows from Proposition [I.2.33] and Equation 3.7] is a direct conse-
quence of [I7, Corollary 6.7.1], that is 7 (e§) = e?“ + €211, and Proposition [1.2.33
and Equation [3.6] So the following intersection product is 0

(e8! + pjasrenty) - eati =0, (3.9)

and we can conclude that
TG =T D ™ (a1 e =0
j=it+1
On the other hand h*+1*. eaﬂ = 0 is a consequence of the moving lemma (see [17], 11.4
Moving lemmal). If we make the pull back through 77 ., for all a, then it follows that
<{xl : "L'j}f)‘j—‘()> C ker(¢). By [I7, Example 16.1.11], Ag(Zp) is a birational invariant,

that is AO(ZZ) =~ Z(h*)" for i = 1,...,s, so since (e27])" = (=1)""Lj,41.(sh ) then
(eati)™ = (=1)"~}(h***)", and by making the pull back through T4 a41 We conclude
that ({(~1)"(z0)" + (@0)" YLy} © Ker(@).

Now we will prove that Ker(¢) C J. Note that ¢ : Z[zxg,x1,...,x5] — A*(Zs) is
homogenous, so ker(¢) is an homogenous ideal, and J is an homogenous ideal too by
construction. Let us suppose that P [z] € Ker(¢)/J with deg(P) =n. Then 2 < 5 <
_o € J, and P[z] must be of the form P[z] = Y77 a;x]mod(J),

since {z; - x;};j—0 € J. Now if n < n, then x] "P[z] will be also in Ker(¢), then
i)

d(x; "Plz]) = a;(ef*)™ = 0, since (ef*)" # 0 then a; = 0 for i = 0,1,...,s. If n = n,

since {(—1)"(z;)™ + (wo)"};_, € Ker(¢) then it follows that ag + (—1)" T >°7_ a; =0,
so P [z] = 0mod(J). O

n, since {x”“}

Remark 3.5.4. Note that (xg,x1,...,zs) Ker(p) = <{xzajjxk}”k 0,{x"+1} > 50
£

J#k
we have that

Ker(¢)/ (xo, 1, ..., xs) Ker(d) is a free Z—module of finite rank (";1) +n. Any set of
generators of the ideal Ker(¢) is a set of generators of Ker(¢)/ {(xo,x1,...,xs) Ker(¢) as

Z—module, so

{{xi @i} g=0, {(=1)"(x:)" + (xo)”}f_l} is a minimal set of generators for Ker(¢).

i#]
Corollary 3.5.5. Given two sequences of point blow-ups (Zy, ..., Zs,7) and (Z(/)7 vy Z;, , 7r/),
if s=s5 then A*(Z,) = A'(Z;,).

Proof. Tt follows directly from Equation (3.5) in Theorem m O
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We can use {h°*,{e;};_,} as generators of the Chow ring A®*(Z,) as Z—algebra instead.

Theorem 3.5.6. A presentation of A*(Zs), when Zy = P", using {h”,{ef};l} as
generators is the following one:

Z [y07 Y1, "'7ys]

A (Z,) = 1
( S) ./4 ) (3 O)
where
(({yO yz i=1" y1+ Z bkzyk yj+ Z bl,gyl )
k=it+1 l=j+1 i,j=1
i#
{0 + (0" + #4600 0" ) ),

by sending yo to h°* and y; to e} fori=1,...,s

Proof. In this case there exists a surjective morphism

¢ LYo Y1y o ys] = A*(Zy)

with ¢ (yo) = h** and ¢ (y;) = e for i = 1,...,s. Moreover we have the following

commutative diagram

Y/ [yOu [RE) ys] —— A.(Zs)
where p : Z[yo,...,ys] = Z][xo,...,xs] is the isomorphism induced by the augmentated
change of basis matrix B¥, that is p(yo) = xo and p(y;) = x; — Zj’:i+1pijxj' Now, by

considering the following images through p:

p((ya)" + (D)™ + # {5}, (wo)") = Z pirer)" + ((=1)" + # {7}, (@0)"
k=i+1
= (@)" + (=1)" > pulen)" + ()" + # {5}, (@) "+
k=i+1

> (—1)"_"1'(_ _n ns) ﬁ(pwfﬂﬁ)"ﬁ

ni+nit1+...+ns=n GRACGEA B=1i
NiyerrsNsFEN

= (=D"((=1)" ()" + Z pir((=1)" (zx)" + (20)")+

k=i+1

> (—1)"_"1(4 ‘n m) ﬁ(Pzﬁxﬁ)

ni+nit1+...+ns=n Gy Thi41eeey Bi
Niyerrs N FEN
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p(Yo - yi) = o - (x; — Z PikTr)
k=i+1

S
=20 T; — E PikTo - Tk;

k=i+1

p((yi+ D bragk) - (yy+ > bigm)) = @i - 255

k=i+1 1=j+1
we can conclude that A C Ker(¢'). The inclusion Ker(¢') C A is straightforward by
Remark [3.5.41 O

The next examples illustrate some interesting consequences of Corollary In partic-
ular, the first one shows how the presentation of the Chow ring of the sky of a sequence
of point blow-ups in terms of the total transforms of the exceptional components fails to

detect the proximity configuration of the sequence.

Example 3.5.7. Let us consider all possible proximity configurations for a sequence of

point blow-ups of length 4 verifying that at least P11 — P;, that is

a P, P, - P, P; — P, and Py — Pj,
b Py, P, —» P, Ps— {P, P} and P, — Ps,
¢ P, P, — P, Py — {P,P,} and Py — {P,, Ps},
d P, P, — P, Py — {Py, P2} and Py — {P1, P},
e Py, P, —» P, Ps— {P1, P} and Py — {Py, P», P5},
f P, Po— P, Ps— Py and Py — {P2, P3}
We can compute a presentation of the Chow ring of the skies of these 6 proximity con-

figurations using both the total transforms of the exceptional components and the strict

ones as generators. Firstly, we give the presentations in terms of the strict transforms:

a A*(Zy) 2 Z[h*, e1,ea,e3,e4] /A1 where

(a) Ay = ({h*- ei}?zl (e1+ez)-(e2+e3),er-e3,(ea+e3)-(e3+eq) e1-eq,€2-
eq, (e3 +esq) - eq,(e1)", (e2)™, (e3)™, (—=1)(eq)™ + (K*)") if n is odd,
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(b) Ar = ({h* e}t (e1 +e2) - (e2 +e3),e1 - €3, (e2 +e3) - (€3 + ea),e1 - eq, ez -
eq, (e3+eq) - eq, (e1)™ +2(h*)™, (e2)™ +2(h)™, (e3)™ + 2(R*)™, (e4)™ + (K*)™) if

n s even,
b A.(Z4) =7 [h*, €1,€2,€3, 64] /./42 where

(a) Ay = ({h* - ei}i_y (e +e2) - (e2 +e3), (e1 + e3) - (e3 + ea), (e2 +e3) - (e3 +
es), €1 eq,€2 - ey, (€3 +eq) - eq, (e1)” + (h*)", (e2)", (e3)™, (—1)(es)"
+(h*)™) if n is odd,

(b) Az = ({h* -e;}i_, . (er+ea)-(eates), (e1tes) (es+ea), (e2+e3) (e3+eq) er-
€4, €2-€4, (63-‘1-64)-64, (el)n-‘r?)(h*)n, (62)n+2(h*)n, (63)n+2(h*)", (€4>n+(h*)")

if n is even,
c A*(Zy) 2 Z1h*, e1,ea,e3,e4] | Az where

(a) Az = ({h* - e}y, (e1+ea)- (ea+ea+2es), (e1+es)- (e3+ea), (ex+e3)- (e3+
ea)seven, (extes)en (esten)er, e1) ()", (e2) +(h )", (ea)", (~1)(ea)"+
(h*)™) if n is odd,

(b) As = ({n* 'ei};’;l ,(e1+e2)-(e2+e3+2eq), (e1+e3) (e3+eq), (e2tes) (e3+
€4),€e1 - eq,(ea+ eq) - eq,(e3 + eq) - €4, (e1)™ + 3(R*)™, (e2)™ + 3(h*)™, (e3)™ +
2(h*)™, (eg)™ + (h*)™) if n is even,

d A*(Zy) 2 Z[h*,e1,ea,e3,e4] /Ay where
(a) Ay = ({h* 'ez‘}?zl ,(e1+ez2)-(ea+ez+eq), (e1+es) (es+eq), (e2+es)-(e3+

eq), (€1 +eq) - eq, e eq, (€3 +eq) - e, (e1)" +2(h")", (e2)", (e3)",
(=1)(eq)™ + (h*)™) if n is odd,

(b) Ay = ({h* - e;}i,, (e1+e2) (e2+es+es), (e1+es)- (e3+eq), (e2+es)-(e3+
64)7 (61 + 64) - e4,€9 - €4, (63 + 64) - eq, (61)" + 4(h*)n7 (62)” + 2(h*)n, (63)” +
2(h*)™, (eq)™ + (h*)™) if n is even,

e A*(Zy) 2 Z1h*, e1,ea,e3,e4] | As where

(a) As = ({h"- ei}?:l ,(e1 4+ e2) - (ea + ez + 2eq),(e1 + e3) - (e3 + eq), (€2 + €3) -
(e3 + ea),(e1 + ea) - eq, (€2 + eq) - eq, (€3 + eq) - eq, (e1)™ + 2(h*)", (e2)™ +
(h*)™, (e3)™, (=1)(eq)™ + (R*)™) if n is odd,
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(b) As = ({h* - e;}i_,, (e1+ea)- (ea+es+2eq), (€1 +e3)- (e3+eq), (e2+e3)- (e3+
64), (e1 +€4) -eq, (€2+€4) -eq, (63+€4)~€4, (61)n+4(h*)n, (62)”4‘3(}1*)”, (63)”“1‘
2(h*)™, (eq)™ + (R*)™) if n is even,

f A.(Z4) =7 [h*,€1,62,€3,64] /.AG where

(a) -/46 = ({h* . ei}?zl y (61 + 62) . (62 + €3 + 264),61 - €3, (62 + 63) . (63 + 64),61 .
es, (€2 +e1) - eq,(e3 + €4) - eq,(e1)", (e2)" + (R)", (e3)", (—1)(ea)"
+(h*)™) if n is odd,

(b) As = ({h* 'ei}?:l ,(e1+ez)-(ea+e3+2eq),e1-e3, (eate3z)-(e3+eq),e1-e4, (€2+
64) -y, (€3+64) -4, (61)n+2(h*)n, (62)n+3(h*)n, (63)n+2(h*)n, (64)n+(h*)n)

if n is even.

However, the presentations of the Chow ring of the skies of these 6 different prozimity

configurations coincide when considering the total transforms as generators:
A.(Z4) gZ[h*aeLe;ve;an] /Av (311)
* x4 * * 4 * * 4
where A= ({h*-e;},_;, {ei . €j}i,lj7£:'1 AEDME) + (R })-
7]
Now, if we restrict ourselves to the study of sequences of point blow-ups with a fixed
proximity configuration, the following example exhibits that even although the skies of

two sequences may not be isomorphic, there will exist an isomorphism between their

Chow rings.

Example 3.5.8. Let us consider all sequences of point blow-ups of length 5 with Zy = P2
and the following proximity configuration: Py, P, — Py, P3 — P, Py — P, and Ps —
Py. Then a presentation of the Chow ring of any of the skies of these sequences using

the strict transforms of the exceptional components as generators is
A®(Zs) = Z[h",e1,e2,e3,€4,¢€5) /B, (3.12)

where

B=({h" e}y {ler+¢)) - e}y {e; - ek}?,};:kz (e1)? +5(h")?,
J

{(e,)> + (1)°}_,).

J
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Nonetheless, since Ef = P!, it is clear that if we choose two sequences of point blow-ups
as above such that the centers {Ps, Py, Py, Ps} and {PQI, P?l“ Pzi, Pé} have different cross
ratios, then the skies of the associated sequences will not be isomorphic but their Chow

rings will do.

In Example [3.5.7] we can foresee that the proximity relations of a sequence of point
blow-ups are encoded in some way in the presentation of the Chow ring of the sky when
using the strict transforms of the exceptional components as generators. Now we can use

Theorem ir order to refine the numerical characterization of Proposition [3.2.4}

Corollary 3.5.9. E; is final if and only if its class in A'(Zs), that is €3, satisfies the

following two conditions

{ (€7)" = (=1)"(ef)" " (e5)" (3.13)
()" tes = (h*)" (3.14)

K2

for every j such that € - €5 # 0.

Proof. If E; is final then 3k such that P is proximate to P;. By Equation 1} (eé +

i = 0 otherwise. Since F; is final then it

e}) - ej = 0 if P; is proximate to P; and e - €

follows that

(ef+ej)-ei=0 if P — P (3.15)
e;-e;=0 otherwise (3.16)

From Equation (3.15) we can deduce that (ef)" = (—1)"(ef)" " (e3)". Moreover (h**)" =
(e so ()" = (-1)rere

: §)n—1 _

= e

J
Now we will prove that if F; is not final, then some of the above conditions fails. Among

all the index {5} satisfying Pz — P; there must exist an index j such that P; — P, but
that there not exists k£ with P, — P; and P, — P;. Since Eg is final for the sequence
(Zo, ... Z;,50), then (e]) - ()"~ = (h7*)" and (e)"~17F(e])1HF = (=1)7(el) el

2 K2

Moreover, since AP, with P, proximate to both P; and Pj, then we can conclude that

(e5) - (e3)"~1 = (h**)" and (ef)”*lfﬂ(ej)uﬂ = (—1)ﬁ(ef)”*le§. If n is even, although

(e5)" tef = (h**)" since n—2 is even too, (ef)" # (—1)""'(ef)(e5)™ " since by Theorem
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3.5.0 (e5)" = —(1 + #{B})(h**)™ with # {8} > 1 so condition (3.13) fails.
If n is odd, (e5)" e = —(h/*)", since n — 2 is odd too, so condition fails. O
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Chapter 4

Sequences of point blow-ups over

a perfect field.

In this chapter we extend the results of the previous one in order to consider sequences
of point blow-ups over perfect fields. This more general setting, lead us to define in the
first section algebraically and combinatorially compatible partitions of the exceptional
divisor. The following sections run in parallel with the ones of chapter 3, that is, the
second section deals with the definition of algebraic and combinatorial equivalences of
sequences of point blow-ups and sequential morphisms, the third section is devoted to
the numerical characterization of final divisors and the next two sections we recover the
sequences of point blow-ups from the associated sequential morphism modulo algebraic
equivalence, and prove some relations between algebraic and combinatorial equivalence

classes of sequences of point blow-ups and sequential morphisms.
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4.1 Algebraically and combinatorially compatible par-

titions of the exceptional divisor

Fix a perfect field k and chose an algebraic closure k. Throughout this chapter, a
variety will mean a reduced projective scheme over a perfect field K, with K an algebraic
extension of k, so it is also perfect, such that K C k, and a point will mean a closed

point.

In contrast to the case of sequences of point blow-ups over an algebraically closed field,
now we consider sequences of point blow-ups where the centers C; 1 (see Definition[2.1.1)
could be reducible, that is C; 1 = UC;11,; with Cj41 ; irreducible over K. This difference

leads us to define the concept of the length of a sequence of point blow-ups.

Definition 4.1.1. The length m over K of a sequence of blow-ups is defined as Y ;_, #C;,
where #C; denotes the number of irreducible components of C; over K. Notice that it
coincides with the number of irreducible components of the exceptional divisor E (over K
too). Therefore, the length depends on the sequential morphism w : Zs — Zy and it can
be also called the length of m over K, and it will be denoted by m = lenghtk (7). Notice

that s < m, and s = m exactly when all the blow up centers are irreducible over K.

Remark 4.1.2. Note that in the case of sequences of point blow-ups if K = k, with k
the algebraic closure of k, then m = lenghty (m) =Y.;_, [K(C;) : K|.

Remark 4.1.3. Moreover we will denote by Hg the irreducible components over K

of the exceptional divisor E of 7, that is we have E = Uﬁ Hg.

In order to consider different fields K, with ¥ C K C k, we define the notion of compatible
partition of the exceptional divisor E.

Combinatorial compatibility with a sequential morphism will mean compatibility
of the d—ary multilinear intersection form. Compatibility with a sequence of point blow-
ups will mean compatibility of proximity relations and degrees of the residue field
extensions.

Also we will define the notion of algebraic compatibility, stronger than combinatorial,
where the partition comes, by fiber product, from a sequential morphism m (resp. a
sequence of blow-ups defined over a smaller field K , with k C KCK.
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Definition 4.1.4. Given a sequential morphism  : Zs — Zy as in Definition[2.1.3 and
a partition E = UL_, F;, we will say that the partition is combinatorially compatible

with w if for each i =1,..,1, and H;,, H;, € F; there exists o € Sy, such that

a o(j1) = Jo,

b IZS7E(Hi13Hi2a aHln) :IZsaE(HO'(il)7HO'(i2)7 "'7H0'(id)) v’ilw'vin

Let (Zs, ..., Zy, ) be a sequence of blow ups of length m, and Hy, ..., H,, the irreducible
components of the exceptional divisor over K of the associated sequential morphism. For
each 7, with i = 1,2,..,m, let r(i) be the integer such that the image of H; at Z,; is
a component of the center (codimension at least 2) whose blow-up creates H;. If j is
different from ¢, and the image of H; at Z,(;) has codimension 1 and contains the image
of H; at Z,(;), then H; is said to be proximate to j and we denote it by H; — H;. It is
clear that one has r(¢) > r(j) when H; is proximate to H;.

For sequences of point blow-ups we denote deg(H;) = [K(F;) : K], where P; is the point
in the center of m,.(;) such that the image of H; in Z, ;) is ;.

Definition 4.1.5. Given a sequence of point blow-ups (Zy, ..., Zs, ) and a partition of
the exceptional divisor E = UL_, F;, we will say that the partition is combinatorially
compatible with the sequence (Zy, ..., Zs, ) if for each i =1, .., and H;,, H;, € F; there

erists o € S,, such that

a U(jl) = J2,
b deg(Hj,) = [K(P),) : K] = [K(Py(jy)) : K| = deg(Hy(jy)),

c iijl er;, H; €I, and H; — H; then Ha(jk) — HU(j1)

17 17

Remark 4.1.6. Note that it makes sense to define F; — F; if 3H; € F;, H; € F; with

H;, — Hj.

Definition 4.1.7. Given a sequential morphism 7 : Zs — Zy as in Definition
and a partition of the exceptional divisor E = U._, F;, we will say that the partition is

algebraically compatible with the morphism m if there exists a smaller field KCK
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with k C I~{, there are K —varieties % and Z and a I?fmorphism AN %

2= Z X gy SPEC(K) —> 7y = 7, X spec( ity SPEC(K)

d i

7 il Zo

such that the exceptional divisor of T, E, has irreducible components 1?1, . E and for

cachi=1,...1 then VH € F; 3(H) = H;

Definition 4.1.8. Given a sequence of point blow-ups (Zy, ..., Zs, ™) and a partition of
the exceptional divisor E = U._|F;, we sill say that the partition is algebraically
compatible with the sequence (Zy, ..., Zs,m) if there exist a smaller field K C K with

k C K and there are K —varieties Z and I?—morphz’sms Z—H RAEN Z

Zs Zs—l Zl ZO
| |
Zs i 2571 i 21 UL ZO

where Z; = Z; X spec(R) Spec(K) Vi = 1,...,s ,such that the exceptional divisor of
(’ZVO7 s Z, 7) has irreducible components fz, ey Hvl and for eachi=1,...,1 then VH € F;
B(H) = H;.

Remark 4.1.9. Note that since k is perfect then KCcKisa separable algebraic exten-
sion, $o K and K are both perfect fields.

A combinatorially (resp. algebraically) marked sequential morphism is denoted
(m: Zs — Zo, W\ F}) comp (vesp. (m: Zg — Zo,uélei)alg) where L_, F; is a partition
combinatorially (resp. algebraically) compatible with 7. The same notation holds for
sequences.

Note also that if a partition is algebraically compatible with a sequential morphism
(resp. a sequence) then the partition is combinatorially compatible with the sequential

morphism (resp. the sequence).
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4.2 Algebraic and combinatorial equivalence of sequences
of point blow-ups and the associated sequential

morphisms

Now we define our notions of equivalence (algebraic and combinatorial) for marked se-
quential morphisms (Definitions and [4.1.4).

Definition 4.2.1. We say that two algebraically marked sequential morphisms (7 :
Z = Zo, Uk F) g and (7' = Z' — Zy,UL_ F}) a1y over K are algebraically equivalent,
and we denote it by (7 : Z — Zo,Lt_ 1 F})ag W (7' 2 Z' = Zy, UL FVaig , if there

exist smaller fields IN(, K' C K with K > K satisfying the conditions of Deﬁnition

Zs = Zs X gpee( i) SPEC(K) — =7y = 7, X Spec(R) Spec(K)

<7
2

N
aN|

Za LA Z(/)
Definition 4.2.2. Given a combinatorially marked sequential morphism (& : Zs —

Zy, I_I,ll»:lFZ-)comb, we can also consider the n-ary multilinear intersection form associated

to the partition
n

——
Iz,u?_:lp,;iFXFX"'XFHZ,

where F is the free abelian group generated by {F;} and by an abuse of notation F; =
ZHeFi H. The intersection form is defined by intersecting cycles in the sky Zs and
taking degrees, that is

Ty k(Fiy Figy o Fi ) =deg(( ) h) - () h)- (D) h)--- (> h),

HeF;, HEF;, HeF;, HeF;,
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where (ZHeFil h) - (ZHGFQ h) - (ZHeFiS h) -« (X ger, h) is a intersection class of
0—cycles in the abelian group Ao(Zs), and deg stands for the degree.

Definition 4.2.3. Given two combinatorially marked sequential morphisms (7 :
Zy — Zo, Lt _ | F) comp and (7r, : Z; — Z(I),I_Iéle;)comb we say that the associated mul-
tilinear forms ‘I’z,uglei and (I)Z/,u§=1F{ are equivalent, and we denote it by @Z,uglei ~
<I>Z/’uli:1F; , if there exists T € §; such that

T((I)Z,uglei) = q)z’,ué F

i=1"14

Moreover, the combinatorially marked sequential morphisms (w : Zs — Zy, uﬁlei)comb
and (v : Z, — Zy, Uk _ ) )eomp are said to be combinatorially equivalent, and we
comb ’

denote it by (7 : Zs = Zo, U F)eomp "~ (7 : Zo = Zg,Ut_F)eomp, when, their

associated multilinear maps ®, F and @,/ o are equivalent.
TTi= . Y Ti=1" 1

Definition 4.2.4. Given a variety X we will call a brick blow-up with ground X to a
sequential morphism obtained as a composition of point blow-ups with disjoint centers
uélej c X, X' = X, = X1 —> .. = Xy = X. Note that Z; — Z;_1 is the brick

blow-up at C;, where C; need not to be irreducible.

Definition 4.2.5. We say that two algebraically marked sequences of point blow ups,
(Zsy ooy Zoym, L F})atg » and (Zs/,...,Z(,),ﬂ',l_lé:IFi,)alg, are algebraically equivalent
over K, and we denote it by (Zs, ..., Zy, T, uélei)alg %gK (Zs/,...,Z(/)ﬂr/,I_Ié:lFi/)alg, if

1 =1 and there exist smaller fields I?, K’ C K with K = K’

Ty Ts—1 T2 T

Z, Zs_1 . Al Zo
(R
e
oo

with Z; = Z; X spec( &) SPEC(K) (resp. Z > Z X spec(i') SPec(K)) and algebraic iso-
morphisms a,b = by, by_1,...,b1, with t < s, such that there are indexes ri,....,r; = § €

{1,..,0} and v}, ...7; = s € {1,...,5/}, where Zy, — Zyp,_1 — ... = Zp,_, (resp.
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Z;i — Z;Fl — .. Z;i_l), with r; > ;1 (resp r; > r;_l), is a brick blow-up Vi = 1.t
as in Definition[.2.]] and the diagram

Zs —_— Zrt,l Zrt,g Zrl ZO

bl btlJ/ bt2l l ai

Z’/HZII 2// Z// Z(l)
Ti—1 Ti—2 1

1s commutative.

Definition 4.2.6. We say that two combinatorially marked sequences of point
blow ups, (Zs, ..., Zo, U _ Fi, T) comp and (Z;, ...,Z(l),l_lélei/,wl)comb as before with re-
spective partitions E = U._|F; and E = UL_|F, and irreducible components of the
exceptional divisor Hy, ..., Hp,; Hi, ...,H,/n, with | = l/, are combinatorially equiva-
lent, and we denote it by (Zs, ..., Zo, Ut F;, T) comb c%an (Z;7 ...,Z(/), I_Iﬁlei/,w/)wmb, if
there exits a permutation T in S such that for every two different indexes i,j one has

a F; is prozimate to Fj if and only if F;_(i) s proximate to F;_(j),

b deg(F}) = Y yep, deg(H) = 3 oy deg(H') = deg(F, ;)

4.3 Final divisors: Numerical characterization

Proposition 4.3.1. H; is final if and only if
(hi)" = (=1)"(hi)* - (hy)" and (h;) - (h;)" " >0

for every j such that H; N H; # (0 (see Lemma for a numerical characterization)

and for all natural numbers r and s with r + s = n.

Proof. We have the following commutative diagram where we denote by D;; to the
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scheme theoretic intersection H; N H; and all the morphism are regular embeddings

H;

iDMV \\jpz.,zs

iDq‘,,j s

D;j ——————Z

iDiJk\ /HJ"ZS
Hj

First let us suppose that H; is final .Then H; & IP”IL(_(}D_) and by Proposition [1.1.16
Ny, /z, = On,(—1), so it follows by Proposition [1.2.22| that

(hi)" = (=1)" "', z,+ ("),

where ¢ = ¢1(Op, (1)).

It follows by Proposition that

hi-hj-hj=ip,; z.«(c1(Nu,;z|D, ;)

hi-hj-h;=1ip,; z.«(c1(Nu,z,|D,; ;)

By Proposition the normal bundle of H; satisfies

Niyz. = ol (Nujs z,) © Q) T olue (O(=HE M HY)),

a—j

so since H; is final

pi; £ L®O(=D; ;)

NHJ' /Zs D; ;>
~ v
= L®NDi,j/Hj’
where L denotes a trivial line bundle. As E is a simple normal crossing divisor, then by

Lemma NDi,j/Hj = NHi/Zs

hi-hj-hj=ip,; z,«(=c1(Ng,z.|D, ;)

D, ;> o it follows that

By induction on r and s respectively it follows

hi- (hy)" = (=1)""Vip, .z ((1(NE, 2. |p, ;)" )

(hi)s : hj = iDi,j7Zs*((Cl(NEi/Zs Di,j))571)
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So we can conclude that

(hi)* - (hj)" = (=1)"""ip, ; z.+((c1(Np, 2z,

Di,j))r+s_2)’

Moreover, as a consequence of Proposition [1.2.15

Di,j))T—i_s_Z) = jHi7Zs*iDi,j7Hi*((cl(NHi/Zs Di,j))T+S_2)

= ju,z.+(1(Npg,y2,) 572 di ),

ip, ;. z.+((c1(Ng, )z,

so since d; ; = ¢
h)s - (h:) = (=1 2r+s—3d . r+s—1\) _ -1 s—1,. r+s—1
(hi)® - (hj)" = (=1) e9(im, z+(s )= (=1)"""jE, z:(s )

Then (h;)™ = (—1)"(h;)* - (h;)". Moreover (h;) - (h;)" ™! = jg, z..(s""1) > 0.

Now let us suppose that H; is not final. If P, is proximate to P;, then we have the

following commutative diagram

ZHQﬁHg,HiO‘

HYNHY ——" > g

(2

T —
aHial

% —
Po, HO 1

Py— gt
Among all the index satisfying o — ¢ there must exist an index j such that j — 4 but
that there not exists k with k — 7 and k — j. Let j be such index. Since H; is not final
then by Proposition [1.1.19|its normal bundle satisfies

Nu,jz, =il (Npiyz,) © Q) m olus (O(—H N HE))

a—i

Now, by the Projection formula

gz (T il mi (et (Npiyz,)™)) | G

a—i

e (1) im,nmg, mas(HE N HZ)" 1)) =0

with n; + > o =T, SO

a—i T

(ha)" = jrs 2.+ (W il i (s (N gy z)" ) + D G, 200 (W ol e (1) (dia)™ )

a—1

Furthermore, by an analogous reasoning to the case when H; is final we have

hi-hj-hj=ip, ; z.+(c1(Nu,/z,|p: ;)
Di,j))

h; - hj -h; = iDiwj,Zs*(Cl(NHz'/Zs
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Now Ny, z.|p,, = L® N]}/)”/Ei and by Lemma, Ng,/z,

By induction on r and s respectively it follows
- (

D; = NDq,,j/Ei‘

h; hj)r = iDi,j,Zs*((cl(NDi,j/Hi)ril)
hy

(_1)5_1iDi,j7Zs*<(Cl (NDi,j/Hi)s_l)

so it follows that
(hi)® - (hy)" = (=1)*"Yip, , z.«((ct(Np, , /1,) T572)
Moreover, by Proposition [1.2.15

r+s—2) 7“+S—2))

ip, ;.z.((c1(Np, ;/m,)) = jB. z.+iD, ; 1+((c1(Np, , /1,)

= jgiz.((dig) )
If n is even then

(=1)"(ha)* - (hy)" = (=1 jim, 7 ((di )™ # (ha)"

since

(e (Npgiyz)" ) + D Gz (75 oo (1) (dia)" ™)) < 0

a—1i

o

JH:,Z+ (T

If n is odd then
(h) - (hy)" 1 = jm, 2, ((di )71,

SO (hz) . (hj)n71 < 0 and H1

Proposition 4.3.2. Given an algebraically marked sequence (Zs,...,ZO,I_Iélei,ﬁ)alg

with H,H' € F;, then H is final if and only if H is final too.

Proof. If H, H € F; then there exist a sequence (28,...,20,177,%) over K such that
B(H) = B(H'), where 8 : Z, = Zy Xg,. (i) Spec(K) — Zs, so it follows that if H
satisfies the numerical condition of proposition H' will satisfy it too.

Proposition 4.3.3. Given an algebraically marked sequence (ZS,...,ZO,LIé:lFi,W)alg

then F; is final if and only if
(F)" = (=1)"(F)* - (Fy)" and (F;) - (F;)" ™' >0

for every j such that F; N Fj # 0 and for all natural numbers r and s with r + s = d.
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Proof. This is a consequence of proposition [4.3.1} since if H, H € F;and H #* H' then
HNH =0. O

Corollary 4.3.4. Let (7 : Zy — Zo,U_F)ay and (7 : Z, — Z(/),I_Ilillei/)alg alge-
braically marked sequential morphisms that are algebraically equivalent. If we denote by
b to be the isomorphism b : Zy = Z, X Spec(R) Spec(K) — Z, = Z, X Spec(R') Spec(K),
that is the extension of that in Definition then F; is final if and only if b/(Fi) is
final.

4.4 Recovering of the sequence

Proposition 4.4.1. Let (Zs, ..., Zy, ™) be a sequence of point blow-ups (as in Definition
of length m and let H; € E; be an irreducible component of the exceptional divisor
of m. If H; is final, then there exists a regular projective contraction (Z, fm, Xm—1) of
H; to a point such that fn,(E) is a simple normal crossing divisor and X,,—1 is the sky

of a sequence of point blow-ups with ground Zj.

Proof. The proof is analogous to that of Proposition [3.3.2] with the exception that the

alternative proof is no longer valid it makes use of the algebraic closure of the field. [

Theorem 4.4.2. Let (v : Z; — ZO,I_Iﬁ»leZ-)alg be an algebraically marked sequential
morphism. Given the n—ary multilinear intersection form associated to the partition
IZ,uﬁlei (see Deﬁm'tz'on we can recover all the algebraically marked sequences of
point blow-ups that are associated to algebraically marked sequential morphisms in the

same algebraic equivalence class of (7 : Zs — Zy, I_Iﬁlei)alg.

Proof. Since LI!_, F; is a partition algebraically compatible with 7 then JK C K as in
Deﬁnition If H € F is final then H = B(H) is final for 7 : Z, — Zo. We will prove
this result first by contracting one irreducible component of the exceptional divisor E
each time.

Since the set formed by final divisors is not empty, let us suppose that IAL is final, then
by proposition there exists a regular projective contraction (ZS, ﬁ, )Z'l,l) of I;] to
a point such that )N(l,l is the sky of a sequence of point blow-ups with ground ZO .
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The next step in our proof refers to how to obtain the intersection form in X 1—1 associated
to the simple normal crossing divisor D O

If we denote by E[)N(l—l ; to ﬁ(ﬁl), then by the Projection formula

h)?l—hil ’ hﬁl—lﬂé Y h)?thin, = fl*(h)?thh) ’ fl*(h)?thiz) e fl*(h)?thin)’

Applying the result of Theorem [1.2.30] then

Pz, i Px i b, = (i + 60y iha) - (Riy + Giy ihi) -+ - (hay, + 6i,,ih6),  (41)
where 6;, ; = 1 if IAL N IA{QJ # () (see numerical characterization in lemma i and
0i;,: = 0 otherwise.

Remark 4.4.3. It follows then that by iterating the above process, that is by contracting
a final divisor at each step, we will obtain a sequence of point blow-ups of length l. The

algebraically marked sequence obtained depends on the choice of final components. Below
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we will prove that all the algebraically marked sequential morphisms associated to the

sequences constructed in this way are algebraically equivalent.

4.5 Relations between algebraic and combinatorial equiv-
alence classes of sequences of point blow-ups and

sequential morphisms

Proposition 4.5.1. Any of the algebraically marked sequences obtained as in[{.4.3, that
s as composition of reqular projective contractions from a fized sky Zs and a fived simple

normal crossing divisor E, are associated to algebraically marked sequential morphisms

in the same algebraic equivalence class (see Definition .

Before proving this, we need the following lemma

Lemma 4.5.2. Given a fized sky Zs and a fized simple normal crossing divisor E, let
us suppose that H; and H; are both finals. Then there is an isomorphism X,,_o = X

m—2

making the following diagram commutative

7
y I
Xm—l m—1
fmll J/f;nl
Xm—2 = X;n 2

where f., is the contraction of H; and f,—1 is the contraction of Hx whereas f;n

m—1,77

is the contraction of H; and f;n_l is the contraction of H

n—l’i'

Proof. The proof is completely analogous to that of Lemma [3.4.2]

Consequently, we have the following corollary, which means that Proposition [£.5.1] holds
for length 2.
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Corollary 4.5.3. If Z is the sky of a sequence of point blow-ups of length 2, then
any of the two sequences of point blow-ups obtained following the procedure in[].].3 are
associated to algebraically marked sequential morphisms in the same algebraic equivalence

class .

In order to prove proposition we need the following definition.

Definition 4.5.4. We say that two sequences of point blow-ups obtained as in Remark
[4.4.3, that is through the composition of regular projective contractions from a fized sky

Zs and a fized simple normal crossing divisor E,

AL SN O S X, P x, I x,
] i [ AR . . 1
ZS mel > Xm72 ’ X2 & Xl : XO

have the same end if at least the first contraction is common to both. i.e. one has

fm = f;n

Proof of Proposition[{.5.1 The proof is completely analogous to that of Proposition
B.41

We can apply proposition to the sequential morphism ZS — Zo and by scalar exten-

sion x Spec( ;()Spec(K ) the algebraically marked sequences of point blow-ups constructed

as above
ZS Xl,1 . Xl XO
Z, X1 : X Xo
where X; & X; X spec(i) Spec(K), so Theorem is proved. O

Theorem 4.5.5. Two combinatorially marked sequences of point blow-ups (Zs, ..., Zo, Ut_1 F;, ™) comb
and (Z;7 s Z(l), UéleiI77T/)comb; with | = l/, are combinatorially equivalent over K as in
Definition if and only if their associated combinatorially marked sequential mor-

’

phisms (7 : Zs — Zo,Lt_ | F})ecomp and (77/ : Z; — Zé, Lt F))eomp are combinatorially
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equivalent over K as in Definition[{.2.3, and both statements are true if and only if the

associated multilinear maps Py g oand @,

[-2-3

o are equivalent too as in Definition

1mi=1" 1

First we will prove that if two combinatorially marked sequential morphisms (7 : Z5 —
Z(),I_Iﬁ»:lFZ-)comg7 and (77/ : Z; — Z(/NI_Ié:lFi/)wml7 are combinatorially equivalent then
the associated combinatorially marked sequences of points blow-ups are combinatorially

equivalent too. To begin with, we need a numerical characterization of proximity.

Lemma 4.5.6. Let (Zs,...,Zo,t_ | F;, )comp be a combinatorially marked sequence.

Then P; — Pj if and only if

a Ja€{2,3,...,m—1,m} such that Hx

tion of Lemma .

b (hx,)" = (=1)"(hx,.:)* - (hx, )" and (hx,:) - (hx,&)""" > 0 Vk,Hx, ;N
Hx, r # 0.

NHx,;#0 (see numerical characteriza-

Ut7Z

where Zg = Xp, = Xpp1 — -+ = Xo — -+ = Xo = Zy is any sequence of contractions

obtained as in remark[{.].9

Proof. The proof is completely analogous to that of Lemma [3.4.6] O

Remark 4.5.7. The result of the previous lemma also holds for characterizing numeri-

cally the prozimity between elements of the combinatorially compatible partition F; — Fj.

Proof of Theorem[].5.5 Assume that the combinatorially marked sequential morphisms

(7 : Zy = Zo,t_Fy)comp and (7 : Z, — Z(I),I_Iﬁllez)comb are combinatorially equiva-
lent. If F; is final, then there exists 7 € S; such that

a F;(i) is final,

b F;NFs # 0 if and only if F_, NF, 4 #0,

c IT'ﬁ1 . }7'[32 . Fﬂn = FT(ﬁl) . F‘r(ﬁz) s FT(,Bn)
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Furthermore, by Theorem [T.2.30]

hx “hx,, 1.8y hx, 1.8, = (hgy +0p,i0i) - (hgy +0p,.ihi) - - - (hg, + dp,.ihi),

Tn—lvBl

so it follows then that there exists 7 € S;_1 such that

Fxi - i Fxioas, = Fy X7 Txme X 60
Consequently we have that ® Xl iEy ™ Sy g . Furthermore, by iter-
—1i=1 1—1% -1z x! ;

1—1"
ating the above process, then ®x_ o py , ~ Py e Fy fora=1,..,1—2. Soasa

consequence of Lemma[£.5.6] any two combinatorially marked sequential morphisms com-
binatorially equivalent preserve the proximity relations. Moreover, deg(F;) = deg(FT,(i))
so combinatorially equivalent sequential morphism also preserve degrees.

Conversely assume now that the two combinatorially marked sequences of point blow-
ups with [ = I are combinatorially equivalent. We want to prove that their asso-
ciated combinatorially marked sequential morphisms (7 : Z;, — Z(),I_Iﬁ»:lFZ-)comb and
(n' : Z, — Zy, U{:lFi/ )comb are combinatorially equivalent. First, there exists o € S,
such that by applying iteratively Theorem we get

H;=H; - > Hj

B—i

Ha(z‘):Ha*(w* Z Hg)

B)—o (i)

Moreover, as a consequence of the Projection formula
hi, - hj, -+~ hg #0 ifand only if 81 = B2 = ... = B,
and if H; is final then H; = H/, so it follows that there exists 7 € S; such that
deg(F}) = deg(Fi;)) Vi=1,..1

Finally, and as a consequence of Theorem
he, hg, - hg, = (b = D7 hg) (A, = D7 hg) - (b, = > hy)
0P 5= B2 5—Ba
so we have

Fﬁl 'Fﬂz o an = 7(B81) 'FT(/B?,) o FT(ﬁn)
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Theorem 4.5.8. Given two algebraically marked sequential morphisms (v : Zs —
ZO,I_Ii-ZlFZ-)alg and (71'/ : Z; — Z(/),I_Iéllei,)alg , then they are algebraically equivalent
over K as in Definition if and only if there exist algebraically marked sequences
of point blow-ups (Zs, ..., Zo,Ut_1 F;, )iy and (Z;,...,Z(l),l_lé/:lFi/,wl)alg associated to
(m: Zs — Zo,U_1F))ayg and (' : Z, — Z(/),I_Iﬁ»,lei/)alg respectively such that they

are algebraically equivalent over K as in Definition [[.2.5

Proof. If two algebraically marked sequences of point blow-ups are algebraically equiva-
lent, then it follows directly by Definition [£.2.5 that the associated algebraically marked
sequential morphisms are algebraically equivalent too.

Now we will prove that if two algebraically marked sequential morphism (7 : Z; —
Zo, Ut F)arg and (7 : Z, — Z(/),I_Ié/:IFi')alg are algebraically equivalent, then there
exist algebraically marked sequences of point blow-ups associated to them that are al-
gebraically equivalent too. By Theorem given a certain sky Z, associated to an
algebraically marked sequential morphism (7 : Zs — Zo, L _; F})aly , all the algebraically
marked sequences of point blow-ups obtained by regular projective contractions are as-
sociated to algebraically marked sequential morphisms in the same algebraic equivalence
class. Since (7 : Zy — Zo,Ut_ 1 Fi)aiy and (7' : Z, — Zé,l_lﬁlle;)alg are algebraically
equivalent, then JK C K such that there exist an isomorphism b: ZS — Z; By apply-
ing Proposition and Proposition we conclude the result by scalar extension

x Spec(f()Spec(K)'
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Chapter 5

Hirzebruch surfaces. A basic

example.

In this chapter we recall some technical results about rational ruled surfaces. The first
section is devoted to the study of some general properties of vector bundles of rank 2
over curves. In the second section we review some definitions and results about ruled
surfaces, and in the third section we focus on the study of rational ruled surfaces, that is
Hirzebruch surfaces. Finally, in the last section we give a basic example of a Hirzebruch
surface arising as the exceptional divisor of the blow-up of P3 with center a rational

curve. The main references for this chapter are [32], [22] and [14].

5.1 Vector bundles of rank 2 over curves

Let C be an algebraic curve of genus g and let V' be a vector bundle of rank 2 over C'.
Lemma 5.1.1. [32, Lemma 1.1.] Degrees of subbundles of V' are bounded above.

Definition 5.1.2. [32, Definition 1.1.] A subbundle L of V is called a maximal
subbundlef?] of V if and only if deg(L) is mazimal. M (V) denotes the mazimal degree.

104



We know that V' has at least one subbundle (see [5]). Hence there always exists a
maximal subbundle by Lemma [5.1.1] The following lemma and Corollary show

that a maximal subbundle of V is uniquely determined under some conditions.

Lemma 5.1.3. [32, Lemma 1.2.] If deg(V) —2M (V) < 0, where deg(V) = [e1(V),
then there is only one maximal subbundle of V.

Lemma 5.1.4. [32, Lemma 1.4.] If L1 and Lo are distinct subbundles of V' such that
deg(V) = deg(L1) + deg(Ls), then we have that V = Ly & Lo.

Maximal subbundles of V' cannot be isomorphic each other except for some special cases.

In fact, we have the following result fully characterized these cases.
Lemma 5.1.5. [32, Lemma 1.5.] If L1 and Lo are distinct mazimal subbundles of V
and L1 = Ly then V =L, & L;.

Corollary 5.1.6. [32, Corollary 1.6.]

a If deg(V) —2M (V) = 0 and if V is indecomposable, then the mazximal subbundle

of V' is unique.

b If deg(V) —2M (V) =0, V is decomposable and if V.2 L @® L for any subbundle L

of V, then there are only two mazximal subbundles of V.

Remark 5.1.7. [32, Remark 1.7.] It is clear that it holds that if V. = L ® L, then V
has infinitely many maximal subbundles. But all mazimal subbundles are isomorphic to

L in the case.

Lemma 5.1.8. [32, Lemma 1.8.] The integer deg(V') — 2M (V') is bounded above when

V' ranges over all vector bundles of rank 2 over X. In fact, we have

29—1 ifg>1
deg(V) — 2M (V) <

0 if g=0

Now, if we denote by ec to the set of the isomorphism classes of vector bundles of rank

2 over C', we define the following equivalence relation in ec.

Definition 5.1.9. [32, Definition 1.2.] Vi,Va € ec are called equivalent if and only if
there exists a line bundle L such that Vi = Vo ® L. Then we denote this relation by
Vi~ Vs
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Remark 5.1.10. [t is obvious that the relation ~ is an equivalence relation. Let Po
the quotient set e/ ~. Then Pe can be identified with the set of isomorphism classes of
Pt —bundles over C (see Proposition . The class of V in Pc is denoted by P(V)
and P(V') is regarded as a P*—bundle too.

Definition 5.1.11. We define N(V) = deg(V) —2M (V) and D(V) = {det(V) @ L~2},
where L ranges over all mazimal subbundles of V', and if L1_2 = L2_2 =~ . =L72 forr
maximal subbundles Ly, Lo, ..., L, then det(V) ® LIZ is counted r times. The degrees of
elements of D(V') are N(V).

We have that N(V) and D(V') verify the following statements.

Proposition 5.1.12. [32, Proposition 1.9.]

a N(V) is an integer and is not greater than g.

b Both N(V)) and D(V) depend only on P(V) (see Remark[5.1.10).

¢ D(V) contains only one element if one of the following conditions is satisfied:
(a) N(V) <0
(b) N(V)=0 and V is indecomposable.

d D(V) contains only two elements and they are dual each other if N(V) =0, V is
decomposable and P(V') # P(I & I), where I denotes a trivial line bundle.

Definition 5.1.13. [32, Definition 1.3.] A vector bundle V' of rank 2 is called of canon-

ical type if I is a mazximal subbundle of V.

Remark 5.1.14. It is clear that the class P(V) contains at least one vector bundle of
canonical type. Thus, if P(V) has only one vector bundle of canonical type, the classi-
fication of Px is reduced to that of vector bundles of canonical type. In fact, under a
certain condition P(V') determines uniquely a vector bundle of canonical type. But the

determination is not always true (see [5, Sect 5.]).

Lemma 5.1.15. [32, Lemma 1.10.]

a Under one of the conditions of Proposition iii., the class P(V) contains

only one vector bundle of canonical type.
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bIfV =L &Ly, N(V) =0, (hence deg(L1) = deg(Lz2)) and Ly % Lo, then the
vector bundles of canonical type in P(V) are I © (La ® LT') and (L1 ® Ly') @ 1.

Put ¢& = {(D,£)| D = divisor class onX with deg(D) <0, £ € P(H*(X,L(-D)))U{0}},
where P(H'(X, L(—D))) is the projective space H'(X, L(—D)) — {0} /k*. Let (¢ be the
quotient set of (2 by the relation such that (D, ¢) and (D/7 fl) are equivalent if and only
ifi. D=D and ¢ 2 ¢, orii. D' = —D and € = £ = 0. Then we get the following

theorem.

Theorem 5.1.16. [32, Theorem 1 .11.] Py ={P(V)| P(V) € Pc and N(P(V)) <0}

bijectively corresponds to (o .

5.2 Ruled surfaces

In this section, the words “vector bundle” and “locally free sheaf of finite rank” are used

interchangeably (see Definition for the correspondence).

Definition 5.2.1. [22, Definition 2.0] A geometrically ruled surface, or simply ruled
surface, is a surface X, together with a surjective morphism p: X — C to a (nonsingu-
lar) curve C, such that the fiber X,, is isomorphic to P* for every point y € C, and such

that p admits a section (i.e., a morphism o : C' — X such that poo =idc).

Proposition 5.2.2. [22, Proposition 2.2.] If p: X — C is a ruled surface, then there
exists a locally free sheaf V of rank 2 on C such that X = P(V) over C (see Definition
for the definition of P(V).) Conversely, every such P(V) is a ruled surface over
C. IfV and V' are two locally free sheaves of rank 2 on C, then P(V) and P(V') are
isomorphic as ruled surfaces over C if and only if there is an invertible sheaf L on C

such that V' =V ® L.

Note that if V' = V @ £ and we denote by V' and V to the associated vector bundles,
respectively, then V' ~ V for the equivalence relation of Definition

Proposition 5.2.3. [22, Proposition 2.6.] Let V be a locally free sheaf of rank 2 on
the curve C, and let X be the ruled surface P(V). Let Ox(1) be the invertible sheaf

Opw)(1). Then there is a one-to-one correspondence between sections o : C — X and
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surjections V — L — 0, where L is an invertible sheaf on C, given by L = c*Ox(1).
Under this correspondence, if N' = ker(V — L), then N is an invertible sheaf on C, and
N =2 p, (Ox(1) ® L(=D)), where D = o(C), and p*(N) = Ox(1) @ L(—D).

Then we have the corresponding result in terms of the associated vector bundle V.

Lemma 5.2.4. [32, Lemma 1.14.] To give a section of P(V) is equivalent to give a
subbundle of V.

Now, we can give the geometric meaning of the invariant N (P (V")) defined in the previous

section (see Definition [5.1.11)).

Lemma 5.2.5. [32, Lemma 1.15] N(P(V)) is the minimum of self-intersection numbers

of sections of P(V).

Definition 5.2.6. [32, Definition 1.4.] A section s of P(V') is called a minimal section
of P(V) if scot s = N(P(V)).

Theorem 5.2.7. [32, Theorem 1.16.] The set of minimal sections of P(V) is bijective
with the set of mazimal subbundles of V.. Moreover, if S is a minimal section of P(V),
then L(m(s - s)) is an element of D(P(V)) and the map: s — L(w(s - s)) of the set of
minimal sections of P(V') into D(P(V)) is bijective.

Corollary 5.2.8. [32, Corollary 1.17.] If N(P(V)) < 0 or if N(P(V)) = 0 and V
is indecomposable, then P(V') has only one minimal section. On the other hand, if
N(P(V)) =0, V is decomposable and if P(V') is not the trivial bundle, then P(V') has

only two minimal sections.

For the self-intersection number of an arbitrary section, we have the following result.

Proposition 5.2.9. [32, Proposition 1.18.] Let s be a section of P(V) which is not a

minimal section.

a If N(P(V)) <0, then s-s > —N(P(V)).

b If N(P(V)) >0, then s-s > 2+ N(P(V)).

Moreover, if N(P(V)) is even, then s- s is even and if N(P(V)) is odd, then s- s is odd.
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Remark 5.2.10. [32, Remark 1.19.] Let S and S be distinct sections of P(V') and let
L(S) and L(S"), be subbundles of V corresponding to S and S respectively. Then we have
that p(s-s') € |(detV) @ L(S)~ @ L(S" )| , where p is the projection morphism of P(V)
and |L| is the complete linear system of a divisor defined by L. Thus, p(s-s) +p(5/ ~s/) =

2p(s-s), if one regards p(s - s),p(s - s') and p(s-s') as the divisor classes on X.

Proposition 5.2.11. [22, Proposition 2.8.] If p: X — C is a ruled surface, it is possible
to write X =2 P(V) where V is a locally free sheaf on C with the property that H°(V) # 0
but for all invertible sheaves L on C with deg(L) < 0, we have H'(V @ L) = 0. In this
case the integer 6 = —deg(V) is an invariant of X. Furthermore in this case there is a

section oo : C — X with image Sy, such that L(Sy) =2 Ox(1).

The translation of Proposition in terms of the associated vector bundle V' cor-
responds to Remark [5.1.14] that is, every class P(V') contains at least one element of

canonical type.

We write X = P(V), where V satisfies the conditions of Proposition in which
case we say V is normalized. This does not necessarily determine V uniquely, but it does
determine deg(V). We let D be the divisor on C' corresponding to the invertible sheaf
A2V, so that § = —deg(D). We fix a section Sy of X with £(Sp) = Op(1). If B is
any divisor on C, then we denote the divisor p*(B) on X by BF, by abuse of notation.
Thus any element of Pic(X) can be written aSy+ BF with a € Z and B € Pic(C). Any
element of Num(X) can be written aSy + bF with a,b € Z.

Proposition 5.2.12. [22, Proposition 2.9.] If S is any section of X, corresponding to a
surjection V — L — 0, and if L = L(B) for some divisor B on C, then deg(B) = s - s,
and

SZSo+(B—D)F

In particular, we have (s9)? = deg(D) = —§.

We can rewrite Proposition [5.2.12]in terms of the associated vector bundle V. Since any
section S is isomorphic to P(L), where L is a line subbundle of V', then by Proposition
s:§+c1(%)f. (5.1)

109



In particular, if V' is of canonical type, then V = I @ Lo, with deg(Ls) < 0. Moreover,

by Theorem [5.2.7, minimal sections correspond to maximal subbundles, so
50 =<+01(¥)f, (5:2)
=c+a(la)f, (5.3)
and sg - so = —c1(La) + 2¢1(La) = ¢1(La).

Theorem 5.2.13. [2Z, Theorem 2.12.] Let X be a ruled surface over the curve C of

genus g, determined by a normalized locally free sheaf V.

a IfV is decomposable (i.e., a direct sum of two invertible sheaves) then V = Oc @ L

for some L with deg(L) < 0. Therefore 6 > 0. All values of § > 0 are possible.
b If V is indecomposable, then —2g < § < 2g — 2.
Lemma 5.2.14. [22, Lemma 2.10.] The canonical divisor K on X is given by
K =—2S,+ (R+ D)F,
where K is the canonical divisor on C.
Corollary 5.2.15. [22, Corollary 2.11.] For numerical equivalence, we have
K=-25+(29—2—-0)F,
and therefore (k)? = 8(1 — g).

Proposition 5.2.16. [22, Proposition 2.20.] Let X be a ruled surface over a curve C,

with invariant § > 0.

a If Y = aSy + bF is an irreducible curve, with Y # Sy, F', then a > 0, b > ad.
b A divisor D = aSy + bF is ample if and only if a > 0,b > afd.

Proposition 5.2.17. [22, Proposition 2.21.] Let X be a ruled surface over a curve C

of genus g, with invariant § < 0, and assume furthermore either char k=0 or g <1.

a If Y = aS0+ bF is an irreducible curve with Y # Sy, F', then either a =1, b > 0

oraZQ,bZ%aé.

b A divisor D = aSy + bF is ample if and only if a >0, b > %aé.
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5.3 Rational ruled surfaces

In this section we study the particular case when C' is an algebraic curve of genus 0.

Lemma 5.3.1. [22, Corollary 2.14.] Every locally free sheaf V of rank 2 on P! is

decomposable.

So in particular, there exists just one element of canonical type in P(V).

Corollary 5.3.2. [22, Corollary 2.13.] If g =0, then § > 0, and for each § > 0 there
is exactly one rational ruled surface with invariant §, Fys, given by ¥V = O & O(—§) over

C =Pl

Moreover, we can particularize Proposition [5.2.12) and Proposition [5.2.16] to the case of

rational ruled surfaces.

Theorem 5.3.3. [22, Theorem 2.17.] Let Fs, for any § > 0, be the rational ruled surface
defined by V = O & O(—6) on C 2P, Then:

a there is a section S = Sy +nF if and only if n =0 orn > §. In particular, there

is a section S1 = Sg + 8 f with SoNS; =0 and sy - s1 = §;
b the linear system |So + nF| is base-point-free if and only if n > §;
¢ the linear system |So + nF| is very ample if and only if n > 4.

Corollary 5.3.4. [22, Corollary 2.18.] Let D be the divisor aSy + bF on the rational
ruled surface Fg, with § > 0. Then:

a D is very ample < D is ample < a > 0 and b > ad;

b the linear system |D| contains an irreducible nonsingular curve < it contains an
irreducible curve < a = 0,b = 1 (namely F); or a = 1,b = 0 (namely Sy); or

a>0,b>ad; ore>0,a>0,b=ad.

A natural question that arises is: Given a rational ruled surface Fs, with § > 0, can we

characterize the classes of the irreducible non-singular rational curves on it?
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Proposition 5.3.5. Given a Hirzebruch surface Fs, then any irreducible non-singular

rational curve C C Fy is of one of the following types

A. either a section of class Sy + bF withb=0 orb >,
B. or a fiber F,
C. or a curve of class 250+ 2F if 6 =1,

D. or a curve of class aSy + F with a > 0 if § = 0.

Proof. By the Adjunction formula (see |22, Proposition 1.5.]) and Corollary [5.2.15| we

have
C-C+ Ky, -C
g(C0) = ==
f(080+bf)2+(*230+(*2*5)f)'(080+bf)Jrl
— 5 ,
—a?6 + 2ab + 2ad — 2b — 2a — ad
= 5 +1,

so if g(C) = 0, then the coefficients a and b must be integer solutions of the equation
—a? + 2ab + 2ad — 2b — 2a — ad = —2. (5.4)

Moreover, since C is irreducible and non-singular, then by Corollary [5.3.4 C' must be of
one of the following types

F if a=00b=1 (5.5)

So ifa=1b=0 (5.6)
C =

aSo+bF ifa>00b>ad (5.7)

aSo+adF if a>0 and 6 >0 (5.8)

In the cases [5.5] and [5.6] the equation [5.4] is satisfied for any 6.

In the case [5.6] the equation [5.4] has two types of integer solutions: a =1, b > § for any
d,and a > 0,b=1 for § =0.

In the case the equation has as integer solutions: a =1, b = ¢ for any § > 0, and
a=2,b=2ford=1. O

Proposition 5.3.6. [7], Proposition 5.] If X is a rational ruled surface, then X is an
Fs with a 8. If, furthermore, X has another structure as a ruled surface, then 6 =0 and

has no more such structure.
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5.4 A basic example

Let C' C P? be a smooth rational curve of degree v , and let 7 : Z; — Zy = P? be the

blow-up of P? with center C, so that we have the diagram

B 127

| b

C— Zo
Thus E1 = P(N¢/ps), that is E is a rational ruled surface. Some natural question that
arise are: the value of § such that Fy = Fy, is it uniquely determined? Otherwise, which
values of § are admissible?
In this basic example the image of the n—ary intersection form Z_ g (see Definition|2.4.1])

consists of just one value, that of (e1)3.

233

Since Ng,/z, = O(—1), then by Proposition

er-er-er=Jji(1) - ju(1) - jo (1)
= jiul(s?)
As a consequence of Theorem [1.2.25| j, (¢?) = j.(—< - ¢1(N¢yps)), so we have
e1-e1-ep = —deg(c (NC/]P’S)‘ (5.9)

Finally, deg(ci(N¢ps) = 4y — 2, so the value (e1)?® just give us information about the
degree v of the curve C.

We can then reformulate the questions above. Given a smooth rational curve C' C P3
of a certain degree 7, let 7 : Z; — P3 be the blow-up with center C' and let E; be
the exceptional divisor. the value of § such that F; = Fy, is it uniquely determined?
Otherwise, which values of § are admissible? The answer to these questions can be found

in the following results

Theorem 5.4.1. [T], Theorem 4.] Given any integer v > 4, there exist smooth rational
curves C of degree n in P3 with normal bundle isomorphic to Oc(2y —1—a) ® Oc(2y —
1+a) if and only if |a] < v —4.

It is a well know result that any smooth rational space curve C of degree 1 < n < 3 is

contained in a smooth quadric.
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Theorem 5.4.2. [20, Theorem 1.] If C is a smooth curve on a smooth quadric Q then
one of the following possibilities holds:

a C has bidegree (a,a). Then it is the complete intersection with a surface of degree

a. Its normal bundle splits as Nojps = Oc(2) @ Oc/(a).

b C is rational but not a hyperplane section. Then C' has bidegree (1,a) or (a,1) with
a # 1. Its normal bundle is N¢yps = O(2a + 1) © O(2a + 1).

Finally, any smooth rational space curve C' of degree n = 1 is contained in the intersec-

tion of two hyperplane sections of P2, so in this particular case Neyps = 0(1) © O(1).

We sum up the previous results in the following proposition.

Proposition 5.4.3. Let C C P? be an irreducible rational smooth curve of degree .

Then its normal bundle N¢ ps satisfies

o) & O(1) if v =1, (5.10)

O4)®0(2) if y=2, (5.11)
NC/IP’3 =

O0(5) @ O(5) if v=3, (5.12)

O2y—1-a)® 02y —14a) if v>4, (5.13)

where |a] <y —4.

So even in this basic example, if deg(C) > 5, then the value of § such that E; = Fy is

not uniquely determined, and it depends on the embedding ic : C — P3.
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Chapter 6

Sequences of point and rational

curve blow-ups in dimension 3.

In this chapter we will focus on the study of sequences of blow-ups at either points or
rational curves, with Zy = P3. The first section is devoted to establish some numerical
properties of rational curves when considered as centers of blow-ups. In the second
section we establish a numerical criterion that characterizes final divisors in terms of
some relations defined over the Chow group of zero-cycles of its sky Ag(Zs). Finally, in
the last section of this chapter we give a presentation of the Chow ring of the sky of a
sequence of point and rational curve blow-ups A®(Z;) considering the total transforms

of the exceptional components as generators.

6.1 Some algebraic and numerical properties when ra-

tional curves are allowed as centers of blow-ups

Let Z, =2 Z,_1 ——1 ... 2 7, ™% 70 be a sequence of blow-ups as in Deﬁnitionm

with Z, = P? and such that the centers C; are either points o rational curves.

Definition 6.1.1. We will say that a curve C* C Z, is an “old” curve if there exists
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a curve C C Zy such that C% is the strict transform of C by the sequential morphism

Ta,0 : Za —+ Zy. Otherwise, we say that C* is a “new” curve.

We will say that an “old” curve C* C Z, 1is unmodified with respect to the sequential

morphism mo o 1 Zo — Zy if the following condition holds:

CsncP =0, (6.1)
forB=1,...,a.
On the other hand, we will say that an “old” curve C* C Z, is modified by the blow-up

Ta+1 * Za+]_ — Za Zf

a either Coqq € C¥, with dim(Cay1) =0, and in this case we will say that 741 is @

modification of type I,

b or Cor1 NC* # 0, with dim(Cav1) = 1, and in this case we will refer to mo11 as

a modification of type I1.
Lemma 6.1.2. Let C* C Z, be an “old” curve and let o i1 1 Zat1 — Za be a blow-up
verifying Coa1 NC* # 0. Then one of the following conditions is satisfied:
A either dim(Cuq1) =0, Cqy1 € C%, and in this case we have

Neot1)z,,, = 7oy (Neayz,) © O(—ESf nCoth, (6.2)

B or dim(Cut1) = 1, Cyq1 intersects C* improperly, and in this case
NC&+1/ZQ+1 = 7TZ+1(NCO¢/T) @W:;—‘,-l(NT/Za ‘CO‘) ® O(—E;XI} ﬁ Ta+1 ﬂca+1), (63)
where T C Z, denotes a smooth surface such that Co11,C* C T and booth are

reqularly embedded.

Proof. In the first case [A] the expression for the normal bundle of the strict transform
C*tlin Z,, follows directly from Proposition [1.1.19

Let us now consider the case arising when C, 1 and C intersect improperly. First of all,
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let T' C Z, be a smooth surface such that C,y1,C% C T are both regularly embedded.
As a consequence of Proposition [20, Proposition 19.1.5]), we have the following exact
sequence

0— Nca/T — NCD‘/ZQ — NT/Za

co =0, (6.4)

and the splitting
NCO‘/Z(,L = Nca/T @NT/ZJC“- (65)

Moreover, it follows from proposition[I.1.19)that the normal bundle of the strict transform
of T, that we denote by T2, satisfies

Nrati)z,., 271 (Nryz,,) @ O(=T N EYT), (6.6)
and, again, it follows from Proposition |20, Proposition 19.1.5]) that

NCQ+1/ZQ+1 = NCQ+1/T(1+1 ©® NT&+1/Z{V+1 |Cu+1. (67)

so, since Ngo+t1/pa+1 = ), (Nea 7)) we can conclude that
Newst/7urs 2 gy (Newyr) @ ma iy (Npyz leo) © O(— ESHE ATOFE 0ot (6.8)
O

Definition 6.1.3. We will say that the blow-up 7, : Zo — Zo—1 corresponding at the

a—level of a sequence of blow-ups is

a an extrinsic elementary modification with respect to an irreducible exceptional
component EX~1 if

dim(Cy) =1 and Cy, — C;,

b or an intrinsic elementary modification with respect to an irreducible excep-

tional component Ef‘fl if
dim(Cy) =1 and Coq 5 C;,
¢ or a mized elementary modification with respect to an irreducible exceptional

component Ef“l if

dim(Cq) =0 and C, — C;.
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Remark 6.1.4. Note that an extrinsic elementary modification just varies the normal
bundle NE_afl/Z of the irreducible exceptional component E?fl, whereas an intrinsic
elementary modification varies only the normal bundle N, W/Be of the subvarieties W C
Eio‘_1 satisfying W N Cq # 0. A mized elementary modification produces a variation on

both, NE;x—l/Za71 and NW/E?_L

Theorem 6.1.5. Let E;,E; C Zg be both final divisors for the sequential morphism
T Zs — Zyg. Then E;NE; # 0 if and only if E; is prozimate to E; and E

t—proximate to E;, or vice versa.

Proof. Let us suppose that E; N E; # (. Then one of the following conditions must be

satisfied:

A either E;, — Ej and EJ’ — Ei,
B or E; & E; and E; 5 E;,

CorE;— Ej and Ej 4 B (or vice versa).

In the case[A] let us consider a sequence of blow-ups associated to the sequential mor-
phism 7 : Z, — Zj realizing F; as a final divisor. If we focus on the blow-up correspond-
ing at the j—level, that is 7; : Z; — Z;_1, and we restrict it to £/ ™', then we have the

following diagram:

E/ N EJ , (6.9)

EIT!
Cj

i g;| EJ mEJ

Cj

where Ef N Eg must be a projective subbundle of Ef , since FE; is final too. In order to

continue with the proof, we need to distinguish between the two following cases:

A dim(C;) =0,
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Ali dim(C;) = 1.

In the particular case let us suppose that the morphism 7TJ|E{ : Ef — Eg_l is a
divisorial contraction, that is dim(C;) = 0. Then, as a consequence of [2I, Theorem
1.1, 7TJ'|E{ : Ef — Ef;l is a Sarkisov link of type I, so there must exists a morphism
h; : B; — C}, giving B; a projective bundle structure over C;. Moreover, by Proposition

1.1.17 EZ is isomorphic to a projective bundle over P!, and the pull back of the hyperplane
class ¢; € AY(E}) satisfies (see Corollary [1.2.26)):

ml(s) = [BI NE| + f, (6.10)

where f denotes the class of a fiber F' C Ef . Finally, as a consequence of Proposition

we have that
NE{/Zj gﬂjﬁEﬁ(NEij—l/Zj_l)@O(_Eg ﬁE;)7 (6.11)

so the necessary condition to be final Ngi g, = Opi(—1) (see Proposition D fails to
be true.
Now, if dim(C;) is 1, then the class [C}] € A'(E!™") must be an integer multiple of the

hyperplane section ;, so applying Proposition [[.I.19 we have

Npiyz, 2 il Ngi-1/z,_) ® O(-E! N EY), (6.12)

and the necessary condition to be final Ny, ,, = Op, (—1) does not hold.

i

In the particular case let us suppose that the morphism 7Tj|E{ : Ef — Ef‘71 is a
divisorial contraction. Then, as a consequence of |21, Theorem 1.1.], ﬂ-lef : Ef — Ef_l
should be a Sarkisov link of type I, so there must exists a morphism h; : B; — C; giving
B; a projective bundle structure over C;. Now, if we denote by F; to g; 1(P)7 where

P € C; is a point, then we have the following diagram, obtained just by restriction of
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the previous one:

wj\— 9; (C;NEF), (6.13)

\/

F; Cj N F;
h I 71
gi\Fi

Note that it must be verified dim(C; N F;) = 0, so dim(C;) = 1 and 7TJ|EJ El - EIT!
is not a divisorial contraction any more. Moreover, since we are supposing that FE; is
final too, then C; must be isomorphic to a projective line subbundle of EZJ ~1 that is
[Cj] = i + c1(Ne,/z,_,/Liy1)f, where Liy1 C N¢,/z,_, denotes a line subbundle. As a
consequence of Proposition it holds

Ngiz, = il (Ngi-1/5, ) © O(=E] N EJ), (6.14)

so the necessary condition to be final N, )z, = Opi(—1) is not satisfied in this case too.

Now, let us consider the case Since both FE; £ E; and E; BN E;, then E; N E; must
be isomorphic to a fiber of both F; and E;. Let us suppose that both are finals and
let (Zo, ..., Zs,7) be a sequence realizing F; as a final divisor. Then there must exists
a regular projective contraction f : Z; — X1 such that f(F;) = C;. However, if we
consider the restriction f|g; then it can not be a regular projective contraction any more

since it defines a contraction of E; N E; whereas Ng,ng, /g, Z OF;nEg, (-1).

Finally, in the case [C} that is F; — F; and L} L E (or vice versa), it follows from
Theorem [2.3.9] that both are finals. O

Corollary 6.1.6. Let E; C Zg be a final divisor that is not a minimal surface, that is
such that there exists a rational curve C € E; verifying [C]-[C] = —1. Let us suppose that
there exist just one index (3 such that E; N Eg # 0, verifying e; - (eg)? = —1. Then the

following conditions are satisfied:
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a Eig]Fl;

b there exists a sequence of blow-ups associated to the sequential morphism m : Zs —
Zo such that:
b.i E! =2 P2 that is dim(C;) = 0,

b.it there exists a center Cg, with dim(Cg) =1, such that Cg L i and EfNEZ

is an irreducible curve,

b.iit and E; =2 EY.

Proof. Firstly, since E; is final and e; - (eg)? = —1, then by our hypothesis about the
centers of the sequence of blow-ups we have FE; = 1. Moreover, it follows directly from
Theorem that if E; is final and there exists an index 8 verifying e; - (eg)? = —1,

then there must exist a sequence of blow-ups associated to the sequential morphism

71 Zs — Zy that satisfies conditions and O

Proposition 6.1.7. Let E; C Zg be a final divisor for the sequential morphism 7 : Zg —
Zy, and let j, k be two indices such that E; N E; # (0 and E; N Ey, # 0. Then one of the

following characterizations is satisfied, where n;,n, € Z4-:
I either dim(C;) = 1, with C; prozimate to C; and t—prozimate to Cy, (or vice versa),
and in this case we have that:

(ei + 6j)2 -e; =0
(e) - ex = —mp;
e (er)?=0

61'~6j'6k:77k

II or dim(C;) = 1, with C; t—prozimate to both C; and Cy, and then the following
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relations are verified:
ei(e;)?=0
(ei)?-ej = —nj
ei-(ex)?=0
(ei)? - ej = —m

ei-ej-ep=0

IIT or dim(C;) = 1, with C; prozimate to both C; and Cy, and in this case we have
that:

(ei —+ 6j)2 ce; = 0
(e;+ex)® e =0
ei - (er)® = —e;i - (e5)?,

(€)% e = (e5)? - ej+e;- (ej)27

IV or dim(C;) = 0, with C; prozimate to both C; and Ck, and tehn the following

relations are verified:
(e;+e5) e =(e;+ex) e =0
() ej = (&) ex = —1
ei-(ej)? =ei-(er)’ =1

e-ejrep=1

Proof. Let E; be a final divisor, with dim(C;) = 1, and let « be an index such that
Ci — C,, that is B!, = 7} (E."1) — E!. Then, as a consequence of Proposition we
have that
mi(eq ) € = jpi(malf),

S0

(mi (e 1) - ei = jpi(0si - f),
and the relation (e; + e4)? - €; = 0 is satisfied.
Let us consider now an index A such that C; — C), that is B{ = 7} (Eﬁfl) . Then, as a

consequence of Proposition [1.2.33| we have
*( 1—1

mi (X ) - ei = Jpi(maf),
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SO

(m; (e )2 - € = jpia(0si - ),
mr (e ) - (eD)? = dpi(=msi - f)
and the relations (ey)? - e; = 0 and ey, - (€2) = —n, are verified.
In the case since C; — C};, and C; AN C}. we have that
(e —ep) - miley ),
DT mie ) — () mile ),
= Jpi (msi - ),
so the relation e; - e; - e, = n; also holds.
In the case since C} AN C; and C; SN C, then it follows that
= e e e,
= je:(mymef - f),
= Jje: (0si - f),
so the relation e; - e; - e = 0 is also satisfied.

In the case [T} since C; — C; and C; — Cj, then as a consequence of Lemma [2.2.1] we
have that the normal bundle N¢, /z,_, has the following splitting:

Moreover, as a consequence of Lemma [2.3.8] the classes of F; N E; and E; N E}, in A'(E;)

satisfy
N i-1 DN i1
C,/E" C,/E
[Ei N Ej] =g + e /;V B )
Ci/E;71
NC i-1 DN i—1
[Ei N Ey] =6+ ci( : —)f.

NCi/E;;l
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S0
ei - (¢j)* = jp((si + e1(Ng, pi-1)£)?),
= Jes((c(Ng, i) — Cl(Nci/E;i—l))Ci )
(€)? e = jpis(—6i - (G + e1(Ne, gi-1) ),
= Jpa((e1 (N, ypi-1))si - )
ei - (ex)? = jm((si + 01(Nci/E;i—l)f)2),
= Jeax((=e1(Ng, ygi-1) + e1(Ng, ypi-1))si - f);
(e:)?er = jme(—i - (si + C1(NCZ,/E;%1)f))’
= jEi*((Cl(NCi/E;jl)Q - f).
We can conclude then that the following relations are verified:
(e;+€j)%e; =0
(e; +er)? e, =0

ei(ex)? = —e;i - (e5)%

(e)? - ex = () €5 +ei- ()7

In the case since C; — C; and C; — Cy, with dim(C;) = 0, then the classes of
E;NE;and E; N E in AY(E;) satisfy

[E; NEj] =g,
[E: N Ey) =g,

so we have that

€€ = JE;x (<i)?),

€; - 6% = ]E7* (Ci)2)7



and

€ €j-er=7mx(S- i)

= jp(1()%)-

It follows then that the following relations are satisfied:

In order to motivate the following results, let us suppose that E; is an irreducible excep-
tional component that is not final with respect to the sequential morphism 7 : Z; — Zg,
and let j be an index such that either E; — E; or E; t E;. Now, if we consider the
blow-up corresponding to the (j — 1)—level of a sequence realizing the sequential mor-
phism 7 : Zy — Zy, that is m; : Z; — Z;_1, since Ej is final for the sequential morphism

0t 4 — Zy, then one of the following characterizations is verified:
a either EJJ is proximate to E7, and then it is satisfied
. o
(e +ej)”-ej=0. (6.15)

b or EJJ is t—proximate to EZJ and then the following relations hold

(e)) - el = —nj, (6.16)

el (el)? =0, (6.17)

We are interested in studying the very special configurations where

a either the following relation is verified:
(el +el)?-el =0, (6.18)
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b or the following relations hold:

(e])? el = —n;, (6.19)

el (eh)? =0. (6.20)

By adding Equations [6.15] and [6.18] we have that

(el +€l) =0, (6.21)
and as a consequence of the Projection formula it follows that
(2713 =0, (6.22)

so we will be interested in characterizing configurations leading to (eg _1)3 = 0 (Proposi-

tion [6.1.8)).
On the other hand, if relations (6.16)) and (6.18]) are both satisfied, then this implies that

(ez _1)3 =17 > 0, so we will be also interested in characterizing configurations leading to

(e/71)3 =5 > 0 (Propositions and .

Finally we will focus our attention to configurations where the relations (e)? - e
and ef : (eg)2 = 0 hold (Proposition [6.1.13)).

Proposition 6.1.8. Let E* be an irreducible exceptional component of a sequence of

Sl

point and rational curve blow-ups (Zy, ..., Zo, ™), such that:

b and there exits at most one index 3, with Ef N Ef # 0, such that e - (eg)2 <0.
Then one of the following charaterizations holds:
A either EY is not final, dim(C;) = 0 and there exists just an index 8 such that

Cp — C;, with dzm(C@) =0,

B or Ef is not final, and C; is an unmodified “old” curve, that is there exists at least
one index v such that C, — C;, with Cy, non isomorphic to a generic fiber F' of

E!,
C or EY is final, C; is an “old” curve, and there exists at least one index B such that
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C.i either Cs — C;, with Cg isomorphic to a generic fiber of EY,

C.ii or dim(Cg) =1, and C; 5 Cp,
that is, C; is a modified “old” curve,

D or Ef is final or not final, and C; is a “new” curve.

Moreover, in the case@ if E¢ is final, that is E® = B!, and there exists just one index

B such that C; — Cg, then one of the following set of relations is satisfied: either

(eg)Q -ef = —2a,
6.23
(ea>2 .ed = ( )
i B — a,
or
(e%)? - e = 2a,
g (6.24)

Proof. Firstly, we consider the case where dim(C;) = 1. Let us suppose that C; is an
unmodified “old curve” and E{* is a final divisor. Since C; is unmodified then, as a
consequence of Theorem it does not exist any index 3, with Cg — C;, with Cj
isomorphic to a generic fiber of F' C Ef. Now, by Proposition Npeoyz, = (’)qu(—l),

so we have that:

(€f)? = ma s (ix (6%)),
=—a(Neyyz,,);
but according to Proposition [5.4.3] since C; is an unmodified “old” curve, it follows that
(e2) < 0, so condition [a] does not hold.
Now, we study the case where dim(C;) = 0. Let us suppose that there exists an index A
such that C) — C;, with dim(Cy) = 1. Then C) must a rational curve and [C)] = s

in A(E}), where ¢; denotes the hyperplane class and 7 the degree of C. By Proposition
we have that

Npajz, 27\ (Npijz,) ® O(=E} N EY),

= O(_l - 7>\)a
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Now, as a consequence of Proposition [[.2:22] it follows that
(e}%)? = (=1 —yx)% #0.

Finally, let us suppose that Ef* is final and there exists just one index [ such that
C; — Cp. Firstly, since (e$)® = 0, then we know that E®* = P(O(a) & O(—a)), with

a € Z. Now, as a consequence of [20, Proposition 19.1.5] we have the following splitting

of the normal bundle N¢, /7, ,:

NCi/Zi—l = Ci/E;_l & ]\'ng_l/Zi,1 C;-

Moreover, since E{* is final, then we know that the class [Ef‘ N E‘é‘] e AY(E¢) corre-
sponds to the section associated to the line subbundle N, /Bt SO by Proposition |1.2.22
and Lemma 2.2.1]

(625)2 e = .jE'g*(Cl(NEg/ZQ) : [Efé N E,?]@),

Ci)f)z)v

= qua*((Q + Cl(NE;_l/Zi,1

= ng*((—Cl(NCi/Eg—l) + Cl(NEZ;_l/Zi—l Ci))%‘ : f),
and
(e)? - ef = jmow((si + c1(Ngi-1/z,le)f) - (=),
= Jegx(c1(Ng, ygi-)si - f)-
Thus, we can conclude that either relations or relations hold. O

Proposition 6.1.9. Let E* be an irreducible exceptional component of the sequence of

point and rational curve blow-ups (Zs, ..., Zg, ), such that:

b and there exists at most one index B, with E{ N E§ # 0, such that e - (e‘é‘)2 < 0.
Then one of the following characterizations is verified:

A either E is final, with dim(C;) =0,

B or E¢ is not final, with dim(C;) =0, and there exists at least an index 3 such that
Cs 5N C;, where the number of connected components # {Eg N Ef“} > 1,
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C or Ef is final, C; is a modified “old” curve with a modification of type 11, that is,
there exists at least one index 8 such that dim(Cg) =1, and C; 4 Cg,

D or Ef is not final, with C; a modified “old” curve,

E or E¢ is final or not final, and C; is a “new” curve.
Proof. Firstly, let us suppose that E! = P2 that is dim(C;) = 0, and there exists an

index A, such that C\ — C;, with dim(Cy) = 1. Then, since E! = P2, we have that
[C)] = s in AY(EY), where v € Z. Tt follows now from Proposition [1.1.19] that

I

m3,:i(Ngi/z,) ® O(-E}NEy),

Opa(=1—=m)

NE?/Z/\

R

so by Proposition [1.2:22]
(63)3 = jE?*((cl(NE?/ZA))Q) # 1.

Now, let us suppose that EY is final, with dim(C;) = 1, and C; is either an unmodi-
fied “old” curve or a modified “old” curve with modifications just of type I. Then, by

Proposition we have that Nge /7, = Ope(—1), so it follows that

(€)? = jme«((c1(Nge/z,))?),
= jmes((—i)?),
= jeex((—c1(Ne,z,_,)si - f)-
In the former case, that is C; is unmodified, it follows from Proposition that (e&)? is
even, so condition [a]is not satisfied. In the latter case, that is C; has been modified with

modification of type I, as a consequence of Proposition [1.1.19|we have that ¢;(N¢,/z,_,)

is even to0o, so condition [a] is not satisfied either. O

Proposition 6.1.10. Let E{* be an irreducible exceptional component of a sequence of

point and rational curve blow-ups (Z, ..., Zo, ), such that:

a (e¢) =mn, withn > 1,

i

b and there exits at most one index B, with Ef N Ef # 0, such that e - (eg)2 <0.
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Then one of the following charaterizations holds:

A either Ef* is not final, where dim(C;) = 0, and there exists at least one index [,

with dim(Cg) = 1, such that Cg — Cj,

B or E¥ is final, with dim(C;) = 1, where C; is a modified “old” curve, and there

exists at least one index B such that
B.i either Cg — C;, with Cg isomorphic to a generic fiber of E! if ) is even,
B.ii or dim(Cg) =1, and C; 5N Cg,

C or E is not final, where C; is an“old” curve, that is there exists at least one index

v such that C, — Cj,

D or Ef* is final or not final, where C; is a “new” curve.

Proof. Firstly, we consider the case where dim/(C;) = 0, that is E! = P2, Let us suppose
that there exists just one index 8 such that Cg — C;, with dim(Cg) = 0 . Then, as

a consequence of Proposition and Corollary [1.2.26 Ef = [F;. Moreover, if we

denote by ¢; to ¢1(Oge(1)), it is verified that ¢;(Nygs,, ) = —2¢ + f in AYE?), so by
Proposition

s

(65)3 = JEf*((_ng + f)2)’

= ]E?*(O»{z : f)

Thus, we can conclude that condition@does not hold. Now let us suppose that dim(C;) =
1. If B¢ is final, then it follows from Proposition m that Ngo/z, = Ope(—1), so we
have that

(e8)® = jpes((—a)?),
= jeg«(—c1(Neyyz,_,)si f)

However, as a consequence of Proposition [5.4.3] if C; is an unmodified “old curve”’ then

c1(Neyyz,, > 0,50 (e)® < 0 and condition @ is not satisfied. O

Proposition 6.1.11. Let E{* be an irreducible exceptional component of a sequence of

point and rational curve blow-ups (Zy, ..., Za, ), verifying the following conditions:

130



a Ef is final, with base a “new” curve Cj,
(6™
b B =2 T,

¢ and (e®)® >0

Then, the cardinal of the set of indexes v such that such that Ef* N ES # 0 must be at
least two. Moreover, if #{y} = 2, that is, this set just contains two indexes n and K,

and C; — C,, then C,, can not be a point P, that is dim(C,) = 1.

Proof. Firstly, since Ef* is final, then by Proposition 2.3.7] we have that

(€8)? = Jpes (<)), (6.25)

= jee«(=c1(Neyyz,,)si - f)- (6.26)

Moreover, as Ef = [y by our hypothesis, then there exists an integer a € Z such that

Ne,/z,_, = O(a) @ O(a). Now, it follows from that

so condition [d implies that a < 0. Let us suppose that the cardinal set of indexes # {7}
such that B N ES # () is 1. Since C; is a “new” curve, then there must exist a curve C)
such that C; — Cy. Moreover, since N¢,/z,_, = O(a) ® O(a), with a <0, it follows that
C; must be isomorphic to the unique section of Ei_l with negative self-intersection. Since
we are just considering as centers of blow-ups rational curves, we have that E§ = TFs,, so
in particular there is and integer b € Z such that N¢, /7, , = O(b) © O(b — 65). Then,

C; is associated with the line subbundle of maximal degree and its class [C;] in AY(EY)

satisfies:
[Ci] =ox+ (b=,
SO
Cl(NEi_l/Zi,l c; = b
[Ci] - [Ci] = —6x

This lead us to conclude that b < 0. As a consequence of Proposition .43} C) must
be a “new curve”, that is there must exists a curve C}, such that Cy — C,, . As we are

supposing that the set of indexes {7} such that £ N ES # () just contains A, then Cy
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must be isomorphic to the section of Elf with negative self-intersection, and reasoning
in an analogous manner as above, we conclude that N¢, /7, , = O(c) ® O(c - d,,), with
¢ < 0. The hypothesis considering 7 as the only index such that E N ES # () led us to a
sequence of centers {C, } verifying N¢, /27, , = O(n,) ® O(n, — 6,), with n, <0, which

is an absurd as a consequence of Proposition [5.4.3] O

Remark 6.1.12. Sometimes, given a rational curve C contained in an irreducible ex-
ceptional component EY, for some technical reasons our interest is focus on the self-
intersection number [C]-[C], where by [C] we denote its equivalence class in AL(E®). As
a consequence, when applying Proposition to compute NE?-Pm. in the sequence

Ta+m Tat+m—1 Ta+2 Ta+1

Zotm — Lotm-1 Zog1 —— Zyo, where Coy1 = C and

Cosj = E?H_l N Egij:ll for g =2,...,m, with a slight abuse of notation, we write:
Ngotm 210 m o(Npo/z,) ® oO(-0)®™.

Proposition 6.1.13. Let E be an irreducible exceptional component of a sequence of

point and rational curve blow-ups (Zy, ..., Zy, ™), verifying the following conditions:

a Ca—>C’i,

b the following relations are satisfied

(e) - eq = —n, (6.27)
e - (e2)? =0, (6.28)
where n € Zy, with n > 1,

¢ and there exists at most one index 3, with Ef N E§ # 0, such that e - (eg‘)2 < 0.

Then there must exist at least one index v # a such that E* N ES # 0. In fact, one of

the following characterizations is verified:

A.i either Ef‘_l = Fy is final, with base a modified “old” curve C; with a mod-
ification of type I, that is, such that there exists at least one index [, with
Cs — C;, where Cg is isomorphic to a generic fiber of E!, and C,, = Sy,

A.ii or Eio‘_1 =Ty is final, with base an “new” curve C;, and Cy = Sy,
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B.i or Eio‘f1 > Fy is not final, with dim(C;) = 0, and C,, is isomorphic to a
generic fiber F of E?fl,

B.ii or Ef“l 18 not final, it is a birational model of F1, and there exists just one

index B such that
i. either dim(Cg) =0, Cg — C;, with Cz € Sy,
. or dim(Cg) =1,Cp SN C;, with Eiﬁil NCs € S,
and Cy =2 57,
C.i or E;kl is not final, it is a birational model of Fs,and there exists just one

index B, with dim(Cg) =1, Cg AN C;, verifying # {C’g N Ef_l} =0 + 2n,
E) 7' NCs € Ssion, and Co 2 S5,

C.ii or Ef‘_l = Fs is not final, there exists at least one index 8 such that Cg — Cj,

and C,, is isomorphic to a fiber F of E!.

Proof. By our hypothesis E® is a birational model of either P? or F;, with § € Z,.
Moreover, if we denote by C;, = E® N EY, and [Ci o] € AY(E? to its corresponding
class, then condition [6.28] implies that:

[Ci,a] ' [Oi,a] =0.

By considering condition |d], it follows from Proposition that one of the following

characterizations holds:

A either Ef‘_l is a birational model of Fy and C,, = Sy,
B or Ef“_l is a birational model of F1, and there exists just one index 3 such that

B. either dim(Cs) =0, Cs — C; and Cj € Si,
B.ii or dim(Cs) =1, Cs % C; and EP~' N Cy € Sy,
with Cy = 57,
C or Ef‘_1 is a birational model of Fs, with § € Z,, and
C.i either there exists just one index §, with dim(Cg) = 1, Cp SN C;, verifying

#{Co N B} =5+ 2n, Bl N Cp € Syi20, and Co 2 S,
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C.i or C, is isomorphic to a fiber F of E,

Now, let us suppose that the set of indexes {7}, such that Ef* N ES # (), just contains

the index «. Then, one of the following characterizations is verified:

A.iii either Ef‘*l =~ |y is final, with base C; an unmodified “old” curve, and C,, =
SO7

A.iv or Ef“1 = [y is not final, with base C; an unmodified “old” curve, there exists

just one index 3 such that Cz =2 Sy and C,, = E;’_l N Eg_l.

C.iii or Ef* = Fs is final, with base C; an unmodified “old” curve, and C, is iso-
morphic to a fiber of E?,
C.iv or E = F; is final, with base C; a modified curve, with a simply modification

of type I, that is there exists just one index 3 such that C'z is isomorphic to
a fiber of E}, and C, = E} "' NE; ™,

Note that we are not considering the case where E* = [y is not final, with base a “new
curve” C}, since as a consequence of Proposition [6.1.11] the cardinal of the set of indexes
# {p} verifying B~ N ES~ 0 is at least two.

In the case since Eio‘_1 is final, then by Proposition we have that NE_afl/Zail &

OE?_l (=1). Moreover, as C; is an unmodified “old” curve, and Ef“l >~ Ty, then
Ne,jz,_, = O(a) ® O(a), for some a € Z. Now, by Proposition [1.1.19, we know that
Ngeyz, = WZ(NE?—I/ZQ_1)®O(—E,L-OLOES), and since Cy, 2 S, then [EX N ES] =g, +af
in AY(E®), then by Proposition we have that

(e8)? e = jues((si +af) - (=25 — af)),
= jea«(asi - f).

As a result, (e2)?-e2 =a > 0, so condition fails to be true.
In the Case we know from the previous case that cl(NE;kl/Zail) =—-2¢;—af. If we
apply again Proposition [1.1.19|we have that Ngo 7, = 7, (Nga-1 ;)@ O(—=Ef NEY),

and since C, = Sy too, then reasoning in an analogous manner we have that

(€9)? - e = jpe«((si +af) - (=36 — 2af)),

= jee«(asi - f).
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It follows that (e2)? - e2 = a > 0, so in this case condition does not hold either.
In the case since EY is final, then from Proposition we know that Npgo /7, =
OEg(—l), and since C,, = F;, by Proposirion [1.2.22| we have that

(€0)? - e = jpas(f - (<)) (6.29)

As a result, (€2)?-e2 = —1 > —n, so condition does not hold. Finally, in the case

(o3

since B is final too, then we can proceed in an analogous manner to the previous

case. we can conclude then that in this case (e2)?-e® = —1 > —n too, so condition

(03

is not satisfied either. O

6.2 Final divisors: Numerical characterization

This section is devoted to give a numerical characterization of final divisors for sequential
morphisms associated to sequences of point and rational curve blow-ups. Before proving
the main results, that is Propositions and Theorem [6.2.11] we introduce some

auxiliary technical results that will be used on their corresponding proofs.

Proposition 6.2.1. Let E be an irreducible exceptional component of a sequence of
point and rational curve blow-ups (Zy, ..., Z, ), verifying the following conditions:

a EY is final, with base a “new” curve Cj,

b there exists two indexes j and k, such that C; — C; and C; — Cy,

c B =T,

d and (e2)3 > 0.
Then there exists another index vy, verifying B N ES, ES N ES, Ef N ES # 0.
Proof. To begin with, let us suppose that C; = E;‘fl N E,’:l and there not exists any
other index v such that E; "' N E-L B N ESLET N BT N ESY # (. Since

E;_l N E,i_l # (), then some of the following characterizations holds:

A either C; — C (or vice versa), and
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In all cases, it follow from Lemma that the normal bundle of Cj, N¢, /7

A.i either dim(C;) =0 (dim(Cy) = 0),
Aii or C; (Cy) is an exceptional curve,
Aiii or dim(C;) =1 (dim(Cy) = 1) but it is not an exceptional curve, that is (see
Proposition [5.3.5)

Aiii if 0 # 0,1, then C; (Cy) is isomorphic to either a section or a generic fiber
of Ef = P(O(a) ® O(a — 9)),

Aiiiii if 6 = 1, then C; (Cy) is isomorphic to either a section, or a generic fiber
of E¥ = P(O(a)®O(a—1)) or to the pull-back of a conic by the morphism
m:Fy — P2

Aiiiii if 6 = 0, then C; (Cy) is isomorphic to either a section, or a generic
fiber of EF = P(O(a) ® O(a)) or to a rational curve C whose class [C] =
ne, + (na +1)f € AY(EY).

¢ .
B or C; = Cy (or viceversa).

verifies

i—17

the following splitting:

Nci/Zi—l = Ci/E;.’_l @NCI_/E;;—l.

In the subcase it follows directly that

NCi/Zifl - O(l) D 0(71)7

so condition [d does not hold.

In the subcase as a consequence of Proposition [T.1.19] we have

N

w2, = T (Nep2,) © O(=Ce) =™,

J
k

where m; € Z,, with m; > 1, so

C; = O(m] + 1)

Nci/Ej.—1 = NEg/zj

Since NCi/Eifl =~ O(—1), we can conclude that E! 2 Fy, so condition [ is not satisfied

either.

In the subcase as a consequence of Proposition [[.1.19] we have that

Nz, & 75 u(Npez,) © O(=EL 0 EJ)*™,
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where m; € Z,, with m; > 1.
The case where C} is isomorphic to a generic fiber is equivalent to the case where C}, LN C;
by Theorem [6.1.5] so we will focus on the remaining cases. Firstly, let us suppose that

C; is isomorphic to a section of Eiil. Since E,j;l = P(O(a) ® O(a — d1)), then either
[Ci] =k + (a— k) f € ANEL_,),

or
[Cs] =k + (a+mny)f € Al(Ejkq)v

where n; € Z,. As a consequence, by Proposition [1.2.22| and Lemma we have that

either
() €] = iy (s + (@ = 0) ) - (=(1+my)ae — my(a— b)),
= Jgi.((a+m;op)s - [);
el (€ = e (/N ) - [BLNE]) ),
= Jz. (S +mj(a = 6) f)?),
= I« ((=0k)Sk - f);
or

() €] = dipg (i + (a+ny) f) - (—(1+ my)a —my(a+ny)f)),
= Jgi((a = (L 4m;)ox — (1+2m;)n;)sk - f);
ei : (62)2 = jE§*<Cl(NE§/Zj) : [Ei N Eﬂj)’
= iy (S + mj(a+n;)f)%),
= I3 (0 +2n5)ck - f).
Thus, it follows that either N¢, 7z, , = O(a +m;0) ® O(=0) or N¢,/z, , = O((a — (1 +
m;)6 — (14 2m;)n) & (6 + 2n). In the former case E! = F only if a = —(m; + 1)4, but
by an analogous reasoning to that of Proposition [6.1.11] this would lead to a sequence of
centers {C},} with negative normal bundle, which is an absurd. In the latter case, even

if there exists values of a > 0 such that E! = Fy, condition @ fails to be true.

Now, if C; is isomorphic to the pull-back of a conic by the morphism 7 : F; — P2, so

El7' = P(O(a) ® O(a — 1)), then

[Cj] = 2k + 2af € AN(E}_)),
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and as a consequence of Proposition [[.1.19] we have

where m; € Zy, with m; > 1. Now, by Proposition and Lemma [2.2.T] we have
that
(e])? el = g1 (2% + 2af) - (= (L + 2m;)ep — 2am; f)),
= Jpi.((2a =2 = 4m;)q. - f);
e+ (€)? = g 1Ny ) - [BL O Ejf]j),
= iy (25 +201)?),
so we can conclude that even if there exists some values of a > 0 such that E! = Fy,

condition |dl does not hold for these ones.
Finally, if §;, = 0 and C; = C, then by Proposition [I.2.22) and Lemma we have that

() €] = dig ((nje + (nja+ 1) f) - (=(1+ ngmg)ax —my(nja +1)f)),
= Jpi.((nja = 2nym; — 1), - f);
ef - (e)? = Jps.(e1(Nps ) - [ O Eg]j),
= I ((njsk + (nja + D,
= I ((2nj)sk - f),
so we can conclude, as in the previous case, that even if there exists some values of a > 0

such that E! = Fy, condition @ fails to be true for these ones either.

In the case |B} since C} 5N Cy, then it follows directly that
Ne,jz,_, 2 0@ 0O(-1),
so condition |} that is E! =2 Fy, does not hold. O

Corollary 6.2.2. Let E¥ be an irreducible exceptional component of a sequence of point
and rational curve blow-ups (Zy, ..., Zw, ), verifying the conditions of Propositionm
that is:
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a Ef is final, with base a “new” curve Cj,
b there exists two indexes j and k, such that C; — C; and C; — Cy,
c By =2y,
d and (e£) > 0.
i

indexes {y} in Proposition verify dim(C,) = 0, then the cardinal # {v} verifies
#{v} > A+ 1

If (ef)? - ef = (ef)* - e = =X, for X € Zy, and all the centers associated to the set of

Proof. It follows from the proof of Proposition that if £ is final, it satisfies con-
dition [c} and it does not exists any index v such that E;_l NE, E ' nES E;_l N
B! NEL! # 0, then EY = P(O(a) ® O(a)), with a > 1. Let us consider C,, € EJJ ﬂEi,
where dim(C,) = 0. Now, as a consequence of Proposition |[1.1.19] we have that the

normal bundle NC? /2, verifies
Nég/zw = Wf/’j (Nci/Zj) ® O(_C;y n .E:YY)7

SO

Negv 7z, = O(a—1)®O(a—1).

By induction, if we denote by N to the cardinal # {7}, it follows that

N5:+N—1/Z QO(G—N)@O((I—N),

Y+N-—-1

so N > a in order to satisfy condition [dl Moreover, by Proposition [I.2.22] we have that

(€8)” - e = jrex((si+ (a = N)f) - =),
= jesi((a—N)s; - f);
(ef)? - ef = jpes((si+ (a—N)f) - —s),
= jee«((a = N)s; - f)
Since a > 1, if (ef)? - e = (ef')? - ef = —A then it follows that N > X 4 1. O

Lemma 6.2.3. Let E* be an irreducible exceptional component of a sequence of point

and rational curve blow-ups (Zy, ..., Za, ), verifying the following conditions:
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a Ef is final, with base a “new” curve Cj,

b there exists just two indezes j and k, such that EfNESY, EF N EY #0, and C; — C,
and C; LN Chk,

C E,L-agIFo,

d and the following conditions are satisfied: (e&)® > 0, (e%)? - e = (e$)? - e¥.
Then C; is isomorphic to a fiber of Ej:, Cr 5 C; and (e£)® = 2.
Proof. Firstly, since EY = Fy, in particular EY = P(O(a) ® O(a)) for some a € Z. As

by the hypothesis Ef* is final, then Ngo 7, = Ope(—1) so we have that

(e8)? = jpes((—4)?),

= jee«((—2a)si - f).

Since (e$)? > 0, it follows that a < 0. Moreover, as a consequence of Lemma the

normal bundle of C;, Ng¢,,z,_,, verifies the following splitting:

~ . .
Ne,jz, ., = NC,i/E;_l ® NE;_l/Zi,l Ci»

Since E;‘l N E,i_l # (), then one of the following conditions holds:

A either Cy — C;, with dim(C) =1 (or vice versa),
B or Cj, & C; (or vice versa).
In the case as a consequence of Proposition|1.1.19, we have that NE;;/Zk = W]:(NEJI_C—I/Z]C71 ®
O(—E} N Ey), so
a(Ngiw1z,_,le) = miypa(eeWpres 7, ) - [C]) + 7, (= [B7 0 B - ),

Now, by Propositions [1.2.33| and [1.2.22| we have that

(€))% ex = i ([Ci1] - By er(Ngiyz,)),
=mi_y (= [BF N E] - [CF)),

= —a,
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. fo— i—
so it follows that Wf—l,k—l(cl(NE]’?*l/zk,l) - [Cf7']) = 0. Thus, we have that E} "' =
P(O @ O(—a)). From condition b, C; is an unmodified “old” curve, but then we get to
a contradiction by Proposition [5.4:3]
In the case E since the blow-up 7y : Zp — Zp_1 is an intrinsic elementary modification

of E’J’-“fl7 then we have that
NCZ—l/E;—l &~ Wzk—l(NCffl/Effl) X O(*E]k N .E]’CC n CZ),

and since ¢; (NC;L—I/E;—I) = —a, then it follows that 7} ; ; (e (ch_l/E;c_l)) =0. Asa
result, we have that either C; is isomorphic to a fiber of Effl or Effl = Fp and C’ik*1 is
isomorphic to a section So. In the latter case, we have that EF = P(O(—a)® O(—a)), so
by Proposition there must exists some other index ~ verifying E¥ N Ef N EF # 0.

In the former case, we have that Ngx /7, |cr = O(—1), so it follows
J i
Newyz, = O0(=1) ® O(-1),

and condition (e®)? = 2 is satisfied. O

Proposition 6.2.4. Let EY be the irreducible exceptional component of a sequence of
point and rational curve blow-ups (Zo, ..., Zo, 7). If EX is final and there exists an index

~ such that the following relations hold

with ¢ € Zy, then there must exist some other index X, with A # =, verifying EXNE # ().

Proof. Let us suppose that v is the only index such that E N ES # (). There must
exist an integer a € Z, such that N¢,/z,_, = O(a) ® O(a — 6;), so Ef* = F;,. Moreover,
since by the hypothesis E* is final, then Ef* N EJ must be isomorphic to a section of
Ey. As el - (e2)? = ¢ > 0, then the class of E} N EY in A'(E{) must be of the form

[Ef‘ N E,‘j‘] =¢; + (a+n,)f. Now, as a consequence of Proposition we have that
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NE?/Z@ = OE?(—].)7 SO

Then, we have that

—2a+06; =c
a—0; —ny=—c
0; +2ny =c,

and by solving the following linear system we get to a = 0, J; = ¢, and n, = 0, so
E2 =~ .. Moreover, e)? - e5 = —c <0, so C; must be isomorphic to the unique section
of EY with negative self-intersection. Since we are just considering points and rational
curves as centers of the blow-ups, we have that EJ = F;_, so in particular there exits an
integer b € Z such that N¢_ /7, = O(b) @ O(b— 6,). Then, C; is associated with the

line subbundle of maximal degree and its class [C;] in A'(E!™!) satisfies:
[Ci] =+ (b—=0,)/,
so we have that

Cl(NE

zr_l/Zi—l Ci = b’

[Ci] - [Ci] = —4,.

This fact lead us to conclude that it must be verified b = 0 and ¢, = c¢. As a consequence
of Proposition@ C, must be a “new curve”, that is, there must exists a curve C, such
that C', — C, . As we are supposing that that v is the only index such that E NES # 0,
then it must be verified that €J - (62)2 = ¢, so C,, must be isomorphic to the unique
section of E;j_l with negative self-intersection. Reasoning in an analogous manner as
above, we can conclude that N¢, 2z, , = O @ O(—c), so the hypothesis considering y
as the only index such that Ef* N ES # () led us to a sequence of centers {C,} verifying
Ne,/z,_, = O @ O(—c), which has non sense as a consequence of Proposition O
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Corollary 6.2.5. Let Ef = P(O @ O(—1)) be an irreducible exceptional component of
a sequence of point and rational curve blow-ups (Zy, ..., Za, ). If E is final and there
exists an index v such that C; — C, with C; non isomorphic to a fiber of Effl, and

()2 e5 = —1, then there exists some other index \, with A # v, verifying EZ N ES # 0.

K3
Proposition 6.2.6. Given a sequence of point and rational curve blow-ups (Z, ..., Zo, ),
let B C Zy be an irreducible exceptional component . Furthermore, let us suppose that

the following conditions are satisfied:

a There exists just two indexes j, k, with Ef N ES # 0 and EX N EY # 0, that verify

the following conditions:

aii o - ()2 = o2 - ()2 + (¢)? - ef,

> (0% « 6 J—
a.w e -ef ey =0.

b there exists at most one inder B, with Ef N E§ # 0, such that e - (eg)2 <0, if

(e9)?- e #0, (ep)? - e # 0, otherwise such an index does not eist,

c if there exists any other index v, with v # j, k, such that E{* N ES # (0, then the

following relations are satisfied, where n € Z-:

d and in the particular case where (ef)? - e} = (e5)* - e} = 0, with ef - (ef)* =

eg - (€2)2 = =\, for some \ € Z, if the following relations hold:

(63)2 6;‘! = 717
s ()2 =0,
(e(j)2 cep = —1,

thus # {v} > A+ 1.

143



Then E& = Fs, with § = |(e$)? - e

ol

= |(eg)2 . 6?’, and NE;’/ZQ =~ OE?(_]-)

Proof. By our hypotheses about the centers of the sequences of blow-ups we are working
with, if we denote by C; ; = Ef' N Ef* and C;x = Ep N E, then both C; ;,C; x must
be rational curves. Moreover, if we denote by [C; ;],[C; x] to the classes of C; ;,C; k in
AY(E®), then conditionimplies that ([C; x])? = —([Ci ;])?, so it follows from condition
that [Ci ;] - [Cik] = 0. Let us suppose that e - (e5)? > 0. Note that if (e})? - e > 0,
then by condition [B] there can not exists any other index v, with v # k, such that
Ef N ES # 0 and verifying ef - (63)2 < 0. This fact led us to distinguish between the
three following cases:

A (e9)? e = (e¥)? - e = 0.

B (e2)?-ef, (e2)? - e = 1.

(2

C (e9)? e, (e¥)? - e # 0, £1,

Firstly, we consider the case Let us suppose then that (e;‘)2 e = A > 1. As conditions
and are both satisfied, then it follows from Proposition and Theorem [5.3.3

that some of the following characterizations hold:

C. either B = Fs,, with 6; = A, in particular E¢ =2 P(O(a) ® O(a — §;)), and
C;,; C Ef is isomorphic to the section corresponding to the line subbundle
O(a — 6;) so

[Cij] =i +af € AYED),

and C; ;, C EY* is isomorphic to the section corresponding to the maximal line

subbundle O(a), that is
[Oz,k] =qG + (Cl — 51)f S Al(Eza)

Cii or E¥ = Fy,, with A = 9; + 2n for some n € Z,, in particular E® = P(O(a) ®
O(a —¢;)), and C; ; C E* must be isomorphic to the section corresponding

to the line subbundle O(a — §; — n) so

[Cijl =<+ (a+n)f € AYEY),
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and Cy, BN C, so C; ), C Ef* is isomorphic to A fibers of Ef', and
[Cix] = Af € AY(ER),

C.iii or if VA € Z., E¢ is a birational model of P2, and C;; C Ef* is isomorphic
to a rational curve of degree VA and C,, iN C;, so C; ), C EY is isomorphic to
A fibers of £}, and
[Cix] = Af € ANER),

In the subcase let us suppose that NE?/ZQ Z Ope (=1). Then, there must exists an
extrinsic modification of Ef, that is, either C; — C;, or Cy, — C;, or C;, C, — C;. Now,

it follows from Proposition [I.1.19] that
Nie sz, =m0 i(Npiyz,) © (O(xij(—Ef N EF))®™ @ (O(xn(—Ef N ER))®™,

where mj, my, € Zy, with mj,m;, > 1, and either x; j =1or x;x =1o0r xi; = Xi,k = 1,

so by Proposition [1.2:22]

(e)?- ef = jrex((Gi+af) - (=(1+ xijmj + xixmr)si — (Xijmja + xipme(a —6;))f)),

= jee+((a = 6i(1+ xiym; + Xip2me))si - f),

and

(6?)2 e = ng*((Q +(a—=08)f) (=14 xi3m5 + Xo,emr)si — (xijmja + xieme(a — 6;)) f))

= jeex((a — 0i(xikmi))si - f)-

As a result, condition does not hold since by our hypothesis either x; ; or x; are
not 0.
In the subcase since Cj, 5N C;, by Proposition [1.2.22| we have that

(e)? - ef = jmes(c1(Npa)z, | Bonme)si - f),

= jee(0; - f),

so in order to satisfy condition (e9)? -5 = —A. Moreover, in order to satisfy condition

then (e®)3 = A. It then follows, as a consequence of Proposition that there

must exist some index v, with v # j, such that EXNES # 0, and verifying either C; — C,
or C; 4 C,. In the former case, since C; — C; and C; — C,, then by Proposition m
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we have that ef* - (eﬁ)2 = —), so condition |E| fails to be true. In the latter case, that is

C; LN C,, in order to satisfy condition then C — C,, so by Proposition [1.2.33]

(€)% - ef = (mi(eh ™) —ef)? - milef ),

= (e})? ek,

We can conclude then that (eﬁ‘y‘)2 e # 0, so condition |c[ does not hold.
o t .
In the subcase since C — C;, then by Proposition |1.2.22| we have that

(ef)? - ep = jpas(ci(NEoz, | BonEs)si - 1),

= Jee+ (05 - f),

so in order to satisfy conditionﬁ (e2)? -5 = —A. Moreover, in order to satisfy condition

then (e?)3 = X\. Now, as a consequence of Proposition m there must exist some
index v, with v # j, such that Ef N ES # 0, and verifying either C; — C,, or C; 5N cy.
In the former case, since C; — C; and C; — C,,, then by Proposition @ we have that
e - (e$)2 = —), so condition |E| fails to be true. In the latter case, that is C; - Cy, in

order to satisfy condition [d then C — C, so by Proposition [1.2.33

()2 ef = (mi(el™) — ef)? - malel ™),

= (e})? - el

As a result, we have that (e$)2 e # 0, so condition [ is not satisfied.

Now, let us consider the case To begin with, let us suppose that (e;*)2 - = 1. Then,
as a consequence of Proposition [5.3.5] and Theorem [5.3.3] conditions [a.]] and imply

that E¢ must be either a birational model of P? or a birational model of Fy, so one of

the following characterizations holds:

B.i either EY = Fyq, in particular Ef = P(O(a) & O(a — 1)), and C; ; C EY is

isomorphic to the section corresponding to the line subbundle O(a — 1) so
[Cij] = i +af € AN(ED),

and C; ), C Ef* is isomorphic to the section corresponding to the maximal line

subbundle O(a), that is
[Ci] = ci + (a = 1) f € ANE}),
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Bii or B} = Fy, in particular E = P(O(a) ® O(a — 1)), and C;; C EY is

isomorphic to the section corresponding to the line subbundle O(a — 1) so
[Cij] = i +af € AN(ED),
and C}, £ C;, 50 C; ;; C EY is isomorphic to an exceptional curve, and
[Cix] = eir, € AL(ED),

Biii or E{ = Fq, in particular Ef = P(O(a) @ O(a — 1)), and C; ; C EY must be

isomorphic to the section corresponding to the line subbundle O(a — 1) so
[Cij] =i +af € AYEY),

and Cy, — C;, with dim(Cy) = 0, so C; , C Ef is isomorphic to an exceptional
curve, and

[Cik] = eix € AY(ED),

B.iv or Ef = Fy, in particular Ef = P(O(a) ® O(a — 1)), and C;; C E¢ is

isomorphic to the section corresponding to the line subbundle O(a — 1), so
[Cij] =i +af € AYED),

and Cy — Cy, with dim(Cy) = 1, s0 C; ,, C E¢ is isomorphic to the exceptional
curve C, and

[Ci ] = [C] € AY(EY).

In the subcase let us suppose that N ES)Za E OE?(—l). Then, there must exist
an extrinsic elementary modification of E!, that is, either C; — C;, or Cy — Cj, or

Cj,Cr — C;. Now, it follows from Proposition [[.T.T9] that
Nisyz, = 70i(Npisz,) ® (O(xi;(—Ef N E5))®™ @ (O(xin(—Ef N EY)) O™,

where mj;, my € Z, and m;,my > 1 and either x; ; = 1 or x;1 =1 or x;; = x50 = 1.

Now, by Proposition [T.:2.22] we have that

(7)€ = jpas((si +af) - (—(1 + xijms + Xixme)si — (Xiymia + Xipmr(a — 1)) f)),

= Jees((@ = 1(1 + x4, 5my + Xik2mp))si - ),
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and

(6?)2 e = ng*((Ci +(a—=0)f) (=14 x5,5mj + Xixmu)si — (xiymja+ xixme(a — 1)) f))
= jee«((a — 1(Xikmi))si - f)-

We can conclude then that condition does not hold since by our hypothesis either

Xi,j OF X,k are not 0 .

In the subcase since Cy, 5N C;, then by Proposition [1.2.22| we have that

(e)? - ef = jmee(c1(Npayz, | Bonmg)si - ),

= Jpes (06 - f),

K2

so in order to satisfy condition then (ef")? - ef = —1. Moreover, in order to satisfy
condition t(e)® = 1 must be satisfied. It then follows, as a consequence of Proposi-
tion there must exist some index v, with v # j, such that EY N ES # (), verifying
either C; — C, or C; KN C,. In the former case, since C; — C; and C; — C,, then
by Proposition we have that ef - (6?),‘)2 = —1, so condition |E| fails to be true. In

the latter case, that is C; EN Cy, in order to satisfy condition then C, — C., so by
Proposition [1.2.33]

We can conclude then that (eﬁ'y‘)2 - e # 0, so condition [c| does not hold.
In the subcase since Cy, — C;, with dim(C%) = 0, we have by Proposition [1.2.33

and

= (me(ef™1)° — (i)
so in order to satisfy condition (e2)?- ef = 0. Moreover, in order to satisfy condition

then (e)® = —1 must hold, so (e¥1)3 = 0. Since [C; ;] = ¢; + af € AY(ES), as a

7 7
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consequence of Proposition [[.I.19] we have that
Npoyz, = 7 i(Ngi/z,) ® (O(xi;(—Ef N ES))®™ @ (O(= B N EY)),
where m; € Z,, with m; > 1, and x; ; € {0,1}, so by Proposition
(e8)? - €5 = jpas((si+af) - (—(1+ xiymy)si — (xiymia) f — [Cix])),
= jeex((a =1 = xi3mj)si - ),
and

(e)? = jpos((—=(1+ xiymy)si — (xiymia) f — [Cik])?),
= jpes((—2a(xigm; + 1) + (L + xi3m;)* — 1)s; - f).

It then follows that either condition il or condition [l does not hold.
In the subcase since Cf, — C;, with C} isomorphic to an exceptional curve, then as
a consequence of Proposition [1.1.19] we have that

Nee )z, = 7o i(Npiyz,) @ (O(xi (=B 0 E})))®™ @ (O(=E} 0 ER))*™,

where where m;, my, € Zy, with m;,my > 1, and x; ; € {0,1}, so by Propostion [1.2.22
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= jpes(—mp [Cin]* < - f);

(
(

()2 ef = jpas((si+af) - (—(1+ xiymy)si — (xiymia) f —my [Ci])),
(

Jees((@—1—=xi,;m;) - f),

i

and

(e8)? = e (=(1 4 xiymy)si — (xijmia) f —my [Ci k])?),
= jre«(((=2a(ximj + 1) + (1 + xi3m;)?) — (mi)?)s; - ).
As a consequence, either condition or condition does not hold. Finally, let us
consider the case|A| Since [C; ;] [Ci ;] = [Cik]-[Cik] = 0in A°(E®), and conditions |E| and
a.1v] are satisfied, then it follows from Proposition [5.3.5] and Theorem [5.3.3] that some of

the following characterizations holds:

Al either EY is a birational model of Fs and [C; ;],[C; x] are isomorphic to two
fibers of EY, so
[Ci] = f € AY(E), (6.30)
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and
Cin] = f € AY(ED), (6.31)
Alii or B¢ is a birational model of Fy, in particular EY¥ = P(O(a) ® O(a)), and
Ci,j,Ci . C Ef are isomorphic to two sections corresponding to the line sub-
bundle O(a) so
[Cij] = i +af € AN(ED),

and

Cixl =ctaf e AYE®).

In the subcase if N B8 )Za & O(—1), then by Proposition there must exist some
index , such that C, — C;. In order to satisfy condition [c| then §; = 0, in particular
E¢ = P(O(a) ® O(a)), and C,; 4 must be isomorphic to the section corresponding to the
line subbundle O(a), so

[Cin] =i +af € ANEY), (6.32)

. Now, we should distingish between the two following cases:
Alii either C, * C; and C, 4 Ch,

Adii or ¢; 5 €, and Gy & €.
In the subcase as a consequence of Theorem Ngy-t1)7 | = (’)E_wfl/z%1 (-1),
so it follows from Proposition that
Neg /2o = Moy 1(Ngo-1, ) @ O(=Ef N ET)®™,

where m., € Z,, with m, > 1. Thus, by Proposition |1.2.22| we have that

—
)
=R
S~—
[\
Q)
S0
I
<
&
=9
*
~
—
L
—
+
)
N>
KA
s
)
S
S~—"
~
S~—"
=

150



and

() = jpes(—(1+my)s — (msa) f)?),

= jre«((—2a)(my + 1)g; - f).

. Moreover, we know that

As a result, conditions and [B] hold if m., = 1 and a = —1. However, as

C, is t—proximate to both C; and (Y, then we have that

Thus, condition @ does not hold since # {7} =1 < [(e)? - 9.
In the subcase since Cj, Cy and C, are all proximate to Cj, as a consequence of
Proposition we have that

Npeyz, = 74,{(Ngijz,) © O(-E} NEY) ® O(—E N EY) ® O(—E7 N EY),
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so by Proposition [1.2:22]

and

(ef)? = jees (=(L+my)s — (mqa +2)f)?),

= Jeg«((=2a(1 +my) + 4(1 +m4))s; - f).

As a result, condition holds only if @ = 1, but in this case condition [d] fails to be

true.

In the subcase let us suppose that N, Ex/Zo E OEg(—l). Then, there must exist

an extrinsic elementary modification of E!, that is, either C; — C;, or C, — C;, or

Cj,Crx — Cy. Now, it follows from Proposition [[.T.T9] that

Neg )z, = 7o i(Npiyz,) @ (O(xi i (=B 0 EF)))¥™ @ (O(xik(—E 0 E})))¥™,

where mj, my, € Zy, with m;,m;, > 1, and either x; ; =1or x;o =1o0r xi; = Xi,k = 1.

Now, by Proposition [[.2:22]

and

(i +af) - (—(1+ xi;m5 + xo.6mu)si — (a(xijmy + xieme)f)),

(6i+(a—0)f) (=(1+xiym; + Xiemr)si — (a(Xijmj + xipme)f))

()% = jmox((—(1 4 xiymj + Xixmu)si — (a(xims + Xieme) £))?),

= Jee«((—2a(1 + xi,5m; + Xi,emu))si - f),
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We can conclude then that condition does not hold since by our hypothesis either

Xi,j OT X4, are not O .

As we will see later in this section, the conditions of Proposition [6.2.6] imply that E{* has

an admissible final configuration for the sequential morphism =, : Z, — Zj.

Proposition 6.2.7. Let E C Z, be the strict transform of the exceptional irreducible

component E!. Let us suppose that the following conditions hold:

a there exists two indeves j, k, with E N ES # 0 and B 0 EY # 0, verifying

a.i (e;“)2 ce® = (ef)?er =1,

a.ii ef - (e)? =ef - (e0)? = —1,
a.111 e; - e; - ep =1,
a.iv and (ef +e$)? - e = (ef +ef)? - e = 0.

b if there exists any other index v, with y # j, k, such that EfNES # (0, the following

relations are satisfied:

(e8)?-es =1, (6.33)
el - (e9) =1, (6.34)
ef e el =elepeg =1 (6.35)

Then E;* = P? and Ngaz, = Ops(-1).

Proof. Firstly, by our hypothesis about the centers of the sequence of blow-ups, E{* must
be a birational model of either P? or Fs. As a consequence of Proposition and Theo-
rem|5.3.3} conditionsfaiand[b|imply that E® = P2 and [E¢ N E¢], [ES N ER], [E2 N ES] =
Gi in AL(E®). Let us suppose then that there exists at least one index A € {j, k, v} such
that C\ — C;. Then, by Proposition [1.1.19| we have

~

5 (Nt 2,)00 (i i (B NES))*™ @0 (xip (- B NER)) P ™ @0 (xi o (- EFNES)) 9™,

*
Tra,i

Nge/z,
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where mj, my, m, € Zy, with mj;, mg, m, > 1, and either x; ; or x;x or X;~ are not

equal to 0. By applying Proposition |1.2.22| we have that
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so condition fails to be true since either x; ; or x; r or x;. are not equal to 0 by our

hypothesis. O

Definition 6.2.8. Given an irreducible exceptional component E{, such that EY N

ES B¢ N ER # 0 then we will say that

a EY has an admissible proximity configuration of type |Z| with respect to ES and Ey

if it satisfies the relations[] in Proposition[6.1.7,

b Ef* has an admissible proximity configuration of type@ with respect to B and E}
if it satisfies the relations Il in Proposition [6.1.7

¢ EY has an admissible proximity configuration of type @ with respect to E and
Ey if if it satisfies the relations m m Propositionm,

d E{ has an admissible proximity configuration of typelm with respect to B and E}
if it satisfies the relations[IV] in Proposition [6.1.7

Proposition 6.2.9. Let 7 : Z, — Zy be a sequential morphism, and E; a final divisor
verifying that there exists just one index j such that E; N E; # 0. Then the classes e;
and e; of E; and E; (respectively) do not satisfy any of the following relations:

a (e)® =3ei- (€)%, (e:)? - ej = —2¢; - (€)%, and (e;)® =0,

b (€)= 2e;-(¢;)%, (e:)®-ej = —5ei- (€))%, and (¢;)* = —5e; - (e5)*.

Proof. Since E; N Ej # () and E; is final then either C; — C; or C; AN Cj;. In the
latter case, as e; - (ej)2 = 0, if condition @ or condition |b| hold, it would imply that
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(e;)> = (ei)?-e; = 0. In the former case, that is C; — C; we have to distinguish between

the following cases:

A either dim(C;) =0,
B or Cj is a rational curve and

B.i either C; is a “new” curve, so E;_l = P(O(a) ® O(a — d;)),
B.i.i and either [C;] =¢; + (a—9;)f € Al(E;.’l)7
B.iii or [Ci] =¢; +af € AYEI™);
B.ii or Cj; is an unmodified “old” curve,
B.ii.i and either there exists an index k # ¢ such that E, N E; # 0, so
Bliiii either [Cj] =g + (a —0;)f € AY(E}™Y),
Biiiiii or [Ci] =¢; +af € ANE;™");
B.ii.ii or there not exists an index k such that Ey N E; # () with &k # i so
B.iiiii either [C;] =g + (a —6;)f € AY(E;™Y),
Bliiiiii or [Ci] = ; +af € AYE™Y),
B.iliiiii or [Ci] = ¢; + (a +m)f € AY(E]),
B.ii.ii.iv or [Cj] = f,
B.iliiv or [Cj] = 2; + 2af € ANE; ™), if §; =1,
B.iliivi or [Cj] = bs; + (ba — bd; + 1) f € AY(EI™1), with b > 0, if §; = 0.

To begin with, let us consider the case@ Since j is the only index verifying that £;NE; #
(), then there can not exists any other index k such that C; — Cj. Moreover, we have

that E;:*l > P2 so [Cf] = 55 € A (E;-*l) and it follows that

(1) = =7 + i,
(e)?-ej =17,
€ - (ej)2 = 7722 - Yi»

(€;)° = (1+m)™

As a result, if either condition [a] or condition [b] holds, this would imply that ~; < 0.
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Now let us suppose that C; is a rational curve. Then E;fl = P(O(a) ® O(a — 6 )).
Furthermore, let us suppose that C;verifies that [C;] =¢; 4+ (a —9)f € Al(E;-*l), Thus,

we have that:

(ei)S =—a-+ 5]'?
O —

e; - (6j)2 =a-+ 5]‘.
Moreover, in the subcases and it is verified that
(e;)® = —4a,

so if either condition @ or condition @ holds, this would imply that a = §; = 0.
On the other hand, that is in the subcase we have that

(ej)g = —6a + 3(5j7
so if either condition [a] or condition [b] holds, this would imply that a = d; = 0.

Now, let us suppose that the class of C; verifies that [C;] =¢; + (a)f € Al(EJifl), Thus,

we have that:

Moreover, in the subcases [B.1.ii and |B.i1.1111| it is verified that

(€)% = —4a + 44;,

so if either condition [a] or condition [b] holds, this would imply that a = d; = 0.
On the other hand, that is in the subcase we have that

(6]‘)3 = —6a + 35]'7

so if either condition @ or condition |E| holds, this would imply that a = §; = 0.

[B] holds, this would imply that a = d; = 0.
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In the subcase we have that E]ifl = P(O(a) ® O(a — 1)), and
(e:)’ = —2a -2,
(€:)* e =4,
e; - (ej)* = 2a — 6,
(e;)® = —6a +9,

so neither condition [al nor condition [Bl is satisfied.

Finally, in the subcase we have that E;fl = P(O(a) ® O(a)), and the following

relations hold

i (ej)? = —2b+ba—1,
(e;)® = —2ab — 2a + 2b+ 2,

so if either condition [a or condition [b] holds, then a = 0. O

Definition 6.2.10. We will say that an irreducible exceptional component E; has an

admissible final configuration whenever it satisfies:

a If there exists just one index j such that E; N Ej # 0, then

a.i either (ej + e;)* - e; = 0 with the following exceptions:
i (e)® =3ei- (€))% (e:)® - ej = —2e; - (€))%, and (e;)* =0,
ii. (e:)® =2e;-(¢ej)%, (ei)?-¢j = —3e; - (¢j)%, and () = —3ei - (e))?,

a.ii or (e;)%-e; =0 and e; - (e;)? = —.

b If the cardinal set of indexes {v} such that E; N E, # 0 is greater or equal to 2,
#{v} > 2, then it verifies one of the conditions stated in Proposition with re-
spect to any pair {j,k} C {7}, that is, E; has an admissible proxzimity configuration
with respect to E; and Ey. Moreover, in case the irreducible exceptional component
E; has an admissible prozimity configuration of type [ITl, then it is with respect to
at most two irreducible exceptional components, and if it has an admissible proz-

imity configuration of type [IV] then it is with respect to at most three irreducible

exceptional components.
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¢ There exists at most one index v such that (e,)? - e; < 0.

d If there exists some index B such that (e;+ep)?-e; = 0, with (¢;)> > 0 and e;-(ep)? =
0, then E; verifies the conditions of Proposition[6.1.11] about the cardinality of the
set of index {v} verifying E; N E, # (0. Moreover, if it has an admissible prozimity
configuration of type@ with respect to E; and g then E; verifies Proposition
and Corollary (if the other hypothesis also hold), or if it has an admissible
prozimity configuration of type |Z| with respect to Eg and E; then it verifies Lemma

(if the other hypothesis are verified too).

e If there exists some index \ such that (e;)%-ex = —1, e;-(ex)? = 0 that also verifies

the above conditions then

e.i if there exists some index p such that Ey has an admissible prozimity con-
figuration of type |T_n| with respect to E; and E,,, then E; already verifies the
above conditions and the same relations with respect to all the same indexes
but Ey just by replacing e; by & = (e; +ey) and e, by €, = (e, + ex) in the

computations, and it also satisfies (€;)% - €, = —1 and & - (€,)> =0,

e.1i otherwise, E; already verifies the above conditions and the same relations with
respect to all the same indexes but Ey just by replacing e; by e; = (e; +ey) in

the computations.

Theorem 6.2.11. An irreducible exceptional component E; C Zs is a final divisor for the

sequential morphism 7 : Zs — Zy if and only if E; has an admissible final configuration.

Proof. To begin with, let us suppose that F; is final. Then, by Definition E; is
isomorphic to either Fs, or P2, and its normal bundle Ny, /z, verifies Ng, 7 = O(-1).
As a consequence of Propositions and and Theorem E; verifies either
condition @ or |E| on Definition Moreover, since (e,)? - e; = jg,«(([Ei N E,])?),
where [E; N E,] € AY(E;), then it follows from Theorem m that condition |d| is also
satisfied. Finally, if there exists some index /3 such that (e; +eg)?-e; = 0, with (e;)3 > 0
and e;- (65)2 =0, then C; = Cg and E; = [y, so condition@is verified too, and condition
[g] follows directly from Theorem and the Projection formula

Let us now suppose that E; is not final with respect to the sequential morphism 7 :

Zs — Zy, that is there not exists any sequence of point and rational curve blow-ups
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(Zo, ..., Zs, m) realizing it, for which F; is final. Firstly, let j be an index such that either
C; — Cjor Cj 4 C;, but such that there not exists any other index  with C', proximate
to both C; and Cj, or proximate and t—proximate to C; and C; respectively (or vice
versa). Now, if we consider the blow-up corresponding to the (j — 1)—level of a sequence
realizing the sequential morphism 7 : Z; — Zj, that is m; : Z; — Z;_4, since Eg is
final for the sequential morphism ;o : Z; = Zop, then one of the following conditions is

verified:
A either C}; is proximate to C;, and then it is satisfied that:
(el +€e)? el =0. (6.36)

B or C; is t—proximate to C; and then the following relations hold:

(€))? el = —n;, (6.37)
el ()2 =0, (6.38)

with n; € Z,..
To begin with, let us consider the particular case @, that is C; — C;. Then, we need to
distinguish between the three following cases:
A.i either the following relation is satisfied:
(e] +e))? el =0, (6.39)
A.ii or the following relations are verified:

(e])? el = —n, (6.40)
el (e))? =0, (6.41)

A.iii otherwise.

Firstly let us consider the case By adding Equations (6.36]) and (6.39) we get to the

following relation
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and as a consequence of the Projection formula [I.6] we have that
(713 =0. (6.43)

Now, by Proposition the set of indexes {7} verifying E/ " NEJ~ # () is non empty.

In fact, one of the following characterizations is satisfied:

A.ii either Eg_l is not final for the sequential morphism 7;_10 : Z;_1 — Zo,
with dim(C;) = 0, and there exists just one index k such that Cy, — C;,
with dim(Cy) = 0,
A.iii or Eg;l is not final for the sequential morphism 7;_10 : Zj_1 — Zo,
where C; is an unmodified “old” curve, that is, there exists at least one
index v such that C, — C;, with Cy non isomorphic to a generic fiber F;
of Ef,
A.iiii or Eg_l is final for the sequential morphism 7;_1,9 : Z;_1 — Zy, where
C; is a modified “o0ld” curve, that is, there exists at least one index « such

that
A.iiiii either C;, — C;, with C, isomorphic to a generic fiber F; of E!,
Adiiiii or C; 5 €,
A.iiv or Eg_l is final or not final for the sequential morphism m;_10: Z;_1 —

Zy, where C; is a “new” curve.

To begin with, let us suppose that the cardinal of the set of indexes v such that Ef -n
E!fl, #{~}, is equal to 1, and C; = Eg;l N E,Jfl. Then either C; — C,, or Cy — C;.
In the former case, it follows from Proposition that either relations

(@1 e = 2,

or relations
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are satisfied. Thus, (e§)3 = +a, and it follows from Proposition [1.2.33| that

= 2 (el ) - () + ()
el (e = (m (el ™) —el) - ()2,

and

As a result, if (e;)3 = a then we have that:

(e))? - el = 3a,

J
eg . (eg)2 = —2a,
(eg)?’ —4a,

and if (e§)3 = —a the following relations are satisfied:
(el)?- e;: = —3a,

In both cases, we can conclude that Ezj does not have an admissible final configuration,

as the previous relations correspond to the exceptions to condition [a] in Definition [6.2.10

In the latter case, that is C, — Cj, firstly, let us suppose that E} "' = P(O(a)&0(a—4;))

and C, is isomorphic to a section, that is, [C] = ¢; + cl(w]‘ c ANETN Tt

follows from Proposition [1.1.19 that N,z = 75(Ng-—1) @ O(—E] N EY)®™ . Now, by

Proposition [1.2.22) and Lemma we have that:

(€])3 = jE;y*((Cl(’]T:(NE;{—l) ® O(—E] N E3)®mw))2)’
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and

() - €] = jura((e1(piy (N a1/, ) ® O(=E] N E)®™)) - [E] N EJ]),
= G ((en(piy (N7, ) - [B] 0 B = ma ([E7 0 E7)));
e} - (e1)? = jpy.(c1(Npy 2z, - [E] NE]]),

= jmy(([E] N E]])?).
Since (€] )® = 0, then it follows from Equation (6.46) that m, = 1 and ¢;(L) = 0. As a
result, (¢1(piZ (Npy-1)))- [E] N EY] = 0 and we can conclude that (e])?-e = —e] - (e2)?.
Now, let us suppose that €] - (¢2)? = a. Then we have that (e?)?’ = 0, and by applying

3
Proposition [1.2.33| we get that:

= —2(m3 (7)) - () + ()",
= —2a;
el - (ef)? = (mj(e] ) = &f) - (¢])*,
(w5 (el ™) - () = (e)?,

and

= (77;(63_1))3 + 3(7‘&';(65_1)) (62)2 _ (6§)37
= 3a.

As a result, we can conclude that Ef does not have an admissible final configuration, as
the previous relations correspond to the exceptions to condition [a] in Definition
Now, if B} " 22 P2, then C,, is a point and E] 2 F; by Proposition Let us denote
by ¢ to ¢1(Opy(1)). It follows from Proposition|1.1.19|that Ny, = W,*;(NE?_WZWA)@
O(—E;] N EJ). By applying Proposition [1.2.22| and Lemma we have that:

(€])? = jiy (1 (pi5 (N o) ® O(=E] N E))))?), (6.47)
= jrr((=m3(s) — ([B] N E])?), (6.48)
= jer (=5 =S + 1)), (6.49)
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and

(1) - ¢ = . (e (pif(Ngy-1) ® O(~EY N E))) - [E7 N EJ)),

— —2(m (el ™) (€] + (),
=2

el (e)? = (w5 (e — €]) - (e,
= (T3 (e (€ — (),
=1

and

= (w5 (el7)° + 305 (el ™) - (€ — ()",
=-3.

Thus, we can conclude that Ef does not have an admissible final configuration, as the

previous relations correspond to the exceptions to condition [a] in Definition [6.2:10}

If there are more than one index «y verifying Efl N E%_l #0or C; #E/N E7, then we
have to distinguish between the different subcases.

In the particular subcase since C, and C; are both proximate to Cj, then it follows

from Proposition [1.1.19| that N, 7, & Opi(=1). By applying Propositions and
we can conclude that Ef does not have an admissible proximity configuration neither
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of type nor of type [[V|with respect to E,jg and EJJ . Now, we study the only remaining
case corresponding to an admissible proximity configuration of type[l] In this case either
C; — C;, Ck, with dim(C;) =0, or C; %5 C. In the former case, by Proposition
we have that

el ()P = (el ™) — e]) - (m el ) = )2,

= (el ™) - (w5 (el )? — ()’

SO ef . (6'2)2 = —2 # 0, and then EZ] fails to have an admissible proximity configuration
of type [I| with respect to Ei and EJJ With respect to the latter case, that is C} EN Ck,
since the blow-up 7; : Z; — Z;_; gives rive to an extrinsic elementary modification with
respect to Egil, then we have that

el - (e1)* = (mj(el ™) — ) - (w5 (ef )2,

=mi(e] ) (mj (el )

j—1 j—1
= ﬂ-;(eg : (ei )Z)a

SO eg . (ei)2 = —1 # 0, and in this case Ef fails also to have an admissible proximity

configuration of type [I| with respect to E,jc and Ejj

In the subcase let k£ € {7} be an index such that C}, — Cj, but that there not
exists any index 7 # j such that C, is proximate to both C; and C}, or proximate and
t—proximate to C; and Cj, respectively (or vice versa). Since C and C; are both proxi-
mate to C;, then NE{/ZJ- % OE{ (—1) by Proposition|1.1.19} By considering Propositions
and we can conclude that EY has not an admissible proximity configuration
neither of type nor of type with respect to Ei and Eg . The only remaining case,
that is corresponding to have an admissible proximity configuration of type[l] it implies

that either C; — C;, Cy, with dim(C;) = 0, or C} L €. In the former case, that is
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Cj — Cy, Cy, as a consequence of Proposition [T.2.33] we have that

el (e)? = (my(el ) = &) - (w5 (el ™) — e,

=m;(e] ) (m (e ))? = (¢),

= (el (7)) — ()

J ) J
= (w (el ™) m e ) — (e])?,
= (7 (el 7)) = (D),

and

In order to satisfy condition |d, then the following relations must be satisfied:

(el el =0, (6.50)
Tr;‘(ef_l . (ei_1)2) =1, (6.51)

From equation it follows that B ™' 2 Fy, in particular B ' = P(O(a) ®O(a—1)) .
Moreover, we know that Ef_l must be final for the sequential morphism 7,10 : Zx—1 —

Zy (otherwise EZJ could not have an admissible proximity configuration), so
[Ef NEf] = +af € AY(E}).

Now, as a consequence of Proposition [1.1.19 we have that Ngk,,, = WZ(NEF—l/Zk_l) ®
O(—E¥ N EY), so by Proposition [1.2.22

In order to satisfy Equation 1) then a = 1+ my, but since (e¥)? = 0 then a = H%,
so we get to a contradiction.

With respect to the latter case, that is C; AN C', since the blow-up 7 : Z; — Z;_; defines
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an extrinsic elementary modification with respect to EZJ 71, then by Proposition |1.2.33

we have
el () = (mj(e] ) —e)) -y (e )’
=mi(ed ™t ar(el ),
=mi(el ™ (e 7))
(€)?-ep) = (5 (el ™) —e))? - i (el ),
= (m3 (el ™) wiel ) + () - miel ),
=5 (el (e )+ (e)? mp (el )

. . . i1 ; i i—1
el el el = (el ) —€l) el mi(el ),

j j—1
=—(ej)” m (e ),

so (e])2-el) # —e! -e;: -¢] unless w;f((eg_l)Q -(eJ71)) = 0, but in order to get an admissible

proximity configuration of type the relation e/ - (¢])? = ﬂ;(ef “!(el71)?) = 0 must be
satisfied too. Thus (ef‘l)?’ = 0, and by Propositionthis implies N¢, /7, , = O®O0,
which is an absurd.

In the case let k € {7} be an index such that C}, — C;, with C}, isomorphic to a
fiber F; of E!, but there not exists any index « # j such that C,, is proximate to both C;
and Cy, or proximate and t—proximate to C; and Cj, respectively (or vice versa). Now,
since C; and C; are both proximate to C;, with C; non isomorphic to a fiber F; of E,
by applying Propositions and we can conclude that Ef has not an admissible
proximity configuration neither of type nor of type [[V| with respect to E,Jf and Eg LIt
may have an admissible proximity configuration of type [, but in this case we have that
either dim(C;) = 0 and C} is proximate to both C; and Cj, or dim(C;) = 1 and C} is

t—proximate to Cj. In the former case, we have

el (e]) = (mj(e] ) =€) - (mj(e] 1) —e))?,
)

=i ) mea ) = ()"

() () = (w5 (el ™) =) - (x5 () — e,

1 . .
= 'n'*.‘(e]. )2 . W;(ei 1) - (e;-)s,
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and

so el - (e])? = —1+#0and E! fails to have an admissible proximity configuration of type
With respect to Ei and EJJ

With respect to the latter case, since the blow-up 7 : Z; — Z;_; defines an extrinsic
elementary modification with respect to E/ " we have that

(E)? ek = (el ™) = e my (el )

3 J 1 7
j—1 i—1 j i—1
=m;((e] ) mi (e )+ (e))? mp (el ),
and
o . o .
e -ej-ep = (mi(e] ) —ej) e -miler ),

_ .
=—(e})® (e} ),

so (e1)2-el # —el - e} -ei and E7 fails also to have an admissible proximity configuration

of type |ll with respect to Ej] and Ei

In the case let £ € {7} be an index such that C; % Ck but that there not
exists any index v # j such that C is proximate to both C; and C}, or proximate and
t—proximate (or vice versa). Now, since C; is proximate to Cj, as a consequence of
Propositions and we can conclude that Ef has not an admissible proximity
configuration neither of type nor of type with respect to E]j and Ei In order to
get an admissible proximity configuration of type [l then either dim(C;) = 0 and C} is
proximate to both C; and Cj, or dim(C;) = 1 and it is t—proximate to C. In the former

case, we have

el (e)? = (m}(el ) = ) - (i (el ) — €,

T
= (e e ) - ()

so el - ( J )2 =—-1#0and Ef fails to have an admissible proximity configuration of type
With respect to EJJ and E,jC In the latter case, since the blow-up 7 : Z; — Z;_; defines

an extrinsic elementary modification with respect to EZJ 71, by Proposition [1.2.33|we have

that
j j * j—1 j * j—1
(€)* e = (m(e] ) —e)?-mi(en ),
* j—1 * j—1 i * j—1
=m;((e] ) (e )+ (e)? - mi(er ),



and

, . - . -
e -eje = (mj(e] ) —ej) e miler ),

j j—1
—(e3)? m(er ),

so (el)? el # —eg . eg -e{c and Ef also fails to have an admissible proximity configuration
of type |ll with respect to EJJ and Ei

In the subcase let us suppose that Ef s final, and let £ the index such that
C; — C, but that there not exists any index v # j such that C, is proximate to both
C; and C}, or proximate and {—proximate. Since C; — Cj, then by Proposition
we have that N Bz, & O(—1). Tt follows then from Propositions and @ that

Ef has not an admissible proximity configuration neither of type nor of type[[V|with

respect to Ei and Eg . In order to get an admissible proximity configuration of type
then either dim(C;) = 0 and Cj is proximate to both C; and Cj, or dim(C;) =1 and it

is t—proximate to Cj. In the former case, we have

e () = (m () — o)) (e ) — )
)

and

so el - (ei)2 = 42a—1# 0 and E’ fails to have an admissible proximity configuration of

type [[| with respect to E]] and E,]f In the latter case, since the blow-up 7 : Z; — Z;_;

defines an extrinsic elementary modification with respect to Ef ~! we have that

(e)? el = (m5(el™h) - 62)2 '”;(ei_l)’

=i ((e] 2w ) + () mi(el ),

and

i1 j i1
(m5(e; ") —ej)-ef-mier ),

j j—1
=—(ej)” m(er ),
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so F; has not an admissible proximity configuration of type |I| with respect to E; and

E;_y either.

Let us now consider the case that is, we have that

(61)2 ' 6‘; = —"Ni,
J J\2 _

el - (ej)”=0.
We shall now distinguish between two different cases:

A.ii either n; =1,

Aiiii or m; > 1.

In the subcase we should distingish two cases. If the index i is the only one verifying
that EJJ N Ef = (), then since Eg is final for the sequential morphism ;¢ : Z; = Zy, then
by Corollary EJJ NE! =~ C; must be isomorphic to a fiber F; of E!. We should then
consider the next index k < j satisfying that Cy, — C; or Cg AN C; but such that there
not exists any index 7 such that C is proximate to both C; and C}, or proximate and
t—proximate to C; and Cy respectively (or vice versa).
Now, let us suppose that there exists other indexes {8}, with 8 # 4, such that EJJ ﬂEg |
and Ef N Eé # (. Let k € {B} be an index such that Cy — C; or Cy EN C; (or vice
versa), but that there not exists any index A # j such that C) is proximate to both
C; and C}, or proximate and t—proximate (or vice versa). Now, since C; is proximate
to C;, it follows from Proposition that N i)z, 2 O(—1). As a consequence of
Propositions and we can conclude that Ef has not an admissible proximity
configuration neither of type [[II|nor of type|[[V|with respect to Ej and E,jf In all possible
cases C; must be t—proximate to C. Now, we should distinguish between the following
subcases:

A.iii either C} is t—proximate to C;,

A.ii.iii or Cf is proximate to C;,

A.ii.iiii or C; is t—proximate to C,

A.i.iiv or C; is proximate to Cj.

In the subcase let us suppose that EF ™! = P(O® O(a—4;)). Since Ej] is final for

the sequential morphism ;¢ : Z; — Zo, in particular (] —|—e§)2 ~e§ =0, so (e-jj)?’ =1.In
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order to get an admissible proximity configuration of typefor Ef , then e{ -e;: -ei =n; = 1.
As E; is final for m; ¢ so it must be verified that (e;)2 . ei = —n; = —1. Now, since the
blow-up 7 : Zx — Zi—1 defines an intrinsic elementary modification of Ef_l then by

Proposition [T.2.22] and Lemma [2:2.1] we have that
(€))? el = I (e1(Npgiz,) - [Ss,42n,] — [Ef ﬂEi}),
= iz ([Sseen,] = [BI 0 ).
= Jr ([Sscran,)?) + Jr ([BT O EL)2),
S0 jEf*(([Sdeltaﬁgnj])z) =1as (.e;)2 -el = 0. Tt follows then that §; = 1 and n; = 0, so
in particular, [C}] = [5{71} € AYE!™"), where [S1] = ¢; + af € AY(EF™!). In addition,

as a consequence of Proposition |1.1.19| we have that NE:;/ZJ = 7r;f7k(NE;/Zj) ® O(—Ef N
Eg)®mf7 so by Proposition [1.2.22| we have that

(€)= g (1 (W) (Ngsn ) @ O(=E] N ED)®™) - {Ef ﬂEﬂ),
= Jgi. (M (Ngi 7)) - [§1})7
= Jpr (=i (i +af - [Ej N Eﬂ))’
= Jpi.((a=1si - f).

As a result, since (e/)? - e;: = —1, then a = 0, that is, EF ! = P(O @ O(-1)). Now,
as a consequence of Proposition there exists at least one index 7y such that either
C; 4 C, or C; — C,. In the former case EJJ ﬂEg QE% # ) so Ef fails to have an admissi-
ble proximity configuration. In the latter case, either Ei DE% =0 so EZJ fails also to have

an admissible proximity configuration, or there exists another index A such that C; — C,.

In the subcase we consider first dim(Cy) = 0. Let us suppose that E571 =
P(O® O(a — 9;)). Since EJJ is final for the sequential morphism 7, : Z; — Zy, then
(el + e§)2 . ej: = 0, so in particular (e§)3 = 1. In order to get an admissible proximity

J

configuration of type [[| for EY, then ¢’ - ¢/ - ¢! = n; = 1, so since E? is final it must be
% i j k n J

verified that (eg)2 - e} = —n; = —1. Since the blow-up 7y : Z, — Zix_1 defines a mixed
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elementary modification of EF~* then by Proposition [1.2.22{ and Lemma

(e;:)z ’ eg = jEJ]*(Cl(NEJJ/ZJ) ! [S(SrFQTL]] - I:Ei N E£:|)7
:ng*(([Séﬁznj] - [Ef QEQ)Q),

= Jigro(([So.20,)%) + . (B N EL])P).

Since (e})? - el =0, s0 ng*(([Sdelmﬁan])Q) =1, and it follows that 6; = 1 and n; = 0.
In particular, [C;] = {5{71] € AY(E!™Y), where [S1] = ¢; +af € AY(EF™!). In addition,
as a consequence of Proposition we have that NE{/Zj = ”}'k,k(NE{/Zj ® O(-EF N
EF®m) @ O(—E! N Ej)7 so by Proposition we have that

()2 €] = jpa,(e1(7} (N 7, @ O(=EE N EE)®™) 0 O(~E{ n EY) - [ B N EJ)),
= Jipr. (L (T (N1 7, © O(=Ef 0 ER)®™)) - {Ef ﬁEJJf]),
= Jpr (=6 — e [Ef mEi}) e taf - {Ef ﬁEi})),
= Jpi.((@=mp —1)g; - f).

As a result, since (e)? - eg = —1, then a = my, that is, EF~! = P(O(my,) ® O(my, — 1)).
Now, by Proposition [T.:2.33] we have that

()’ = (M porel ™ — e — )’

= (mjef 13+ 3(mrel ™) - (e] + ) — (e))?,

so (e])? = —(my)? — 2my + 3, but we have that

(@) = (™) — )P wi e,

As aresult, (e)? -e5, = my—1, and Ef fails to have an admissible proximity configuration
of type [ll with respect to EJJ and Ei

Let us now suppose that dim(Cy) = 1. Then, since both C; and C} are proximate
to Cj, its corresponding blow-ups 7, : Zy — Zp_1 and 7; : Z; — Z;_; define an
extrinsic elementary modification of Ef_l and EZJ - respectively. Now, it follows from
the relation (e?)2 el =0 that E¥' = B/7' = EJ = P(O(a) ® O(a)) = Fy. Moreover,

in order to get an admissible proximity configuration of type [I| then eg . e; . ei =n; =1.

If we denote by [C}], [Eg_l N Ei_l} € AY(E!™") to its classes, then [C}] = ¢; + af and
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Elfl N Ei;l = f. As a consequence of Proposition [1.1.19] we have that

NEg/Zj = 77; (W;—l,k—l(NEf—l) ® (’)(_Ef N Elli)@mk) ® O(—Ef n Ejj)a

where my, m; € Z, so by Proposition [1.2.22

(6?)2 : 6? = jE-Z*(Cl(NE{/Zj) ) [Ezj n Eﬂ%
= . (0~ mi)si - )
(e)? € = jigs.(1(Ny ) - | B N EL)),
= Jps (=1 =mj)si - f).
Moreover, we have that
() == s, (e1(N 3512,
== Jpi.((2a(=1 = m;) + 2my(1 + m;))si - f),
so in order to get an admissible proximity configuration of type |I|, m;, my, satisfy:

a—mg=—1,

2a(—1 —mj) +2mp(1 +m;) +2(=1 —m;) = 0.

Moreover, since the following relations hold

(e))? =1,
(e))?-el =0,
e (e])’ =1,
(6;)2 e} =—1,

then it follows from condition |E| than the following relation must be verified (eg + e; +

i
Propositionthat there exists another index 7 # k, such that E%_lﬂEf_lﬂEk_l #0,
and Eg fails to have an admissible final configuration.

In the subcase as m; : Z; — Z;j—1 defines an extrinsic elementary modification
of E/~" and we know that (6?)2 -e) =0, then /™" = P(O(a) ® O(a)), and in particular

ej)Q-(e{—i—e?—&—ei) =0, that is, (¢ "' +el ")2-¢/7" = 0, but this implies (¢!~")? > 0'so by

[C] = +af € Al(Eg_l). Moreover, since Ej is final for the sequential morphism
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w0t 4 — Zy, then (eg + eg)2 : eg =0so (e;)3 = 1. Now by Proposition |1.2.33| we have

that:

so since (e])? - e; = —1, then a = —1, that is B/~ = P(O(~1) ® O(~1)). As a con-
sequence of Proposition there must exist at least another index v # k such that
EI7' N EJ7" # 0, and it follows from Corollary that if (eJ7')% - e/~" = —1 then
there must exist another index A # 7 such that Elj n Ef\;l # (). We can conclude then
that EZJ fails to have an admissible final configuration.

In the subcase since the blow-up m; : Z; — Z;_; defines an extrinsic ele-
mentary modification of E/™' and (e;)2 el =0, then E/7' = P(O(a) ® O(a)). In
order to get an admissible proximity configuration of type |I| then ez . e;: . ei =mn = 1.

If we denote by [Cj], {Ef_l NE;™' € AYE!™") to its classes, then [C;] = f and

?

Eg_l N Ei_l} = ¢ + (a4 nk)f. As a consequence of Theorem [6.1.5) EY is final, so we

get to a contradiction with our initial hypothesis (E; not final).

In the subcase as a consequence of Proposition [6.1.13 Ef ~! verifies one of the

following characterizations:

ALilili either B/~" 2 Fy is not final, with dim(C;) = 0, and C; is isomorphic
to a fiber of ngl;

Aiiiil or Eg_l = Ty is final, with base a modified “old” curve C; with a
modification of type I, that is, such that there exists at least one
index 3, with Cs — C; and Cjs isomorphic to a fiber of E!, and
Cj = So;

A.iiiidii or Ef;l = [y is final, with base an “new” curve C;, and C; = S,

Aiiii.iv or Ef*1 is not final, it is a birational model of [F; and there exists just
one index f such that either dim(Cg) = 0, Cg — C;, with Cg € Sq,
or dim(Cj) = 1, Cg & Cy, with EP ' nCj € Sy, and C; = S7,

Aiiii.v or E571 is not final, it is a birational model of Fs,and there ex-

ists just one index § such that dim(Cg) = 1, Cp L ¢, verifying
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#{CoN B} =6+ 20, Bl 00y € Sspan, and C; 2 87,
A ii.ii.vi or EZ 1~ Fy is not final, there exists at least one index [ such that

Cs — C}, and C} is isomorphic to a fiber F; of EZ’

In the subcase let k the index such that Cy — C;, but that there not exists any
index v # j such that C,, is proximate to both C; and C, or proximate and ¢t—proximate
(or vice versa). Now, since C; and C} are proximate to C;, then NEg' % O(-1) by
Proposition [1.1.19] and as a consequence of Propositions and we can conclude
that Ef has not an admissible proximity configuration neither of type |[1I| nor of type
with respect to Eg and Ei It may have an admissible proximity configuration of type ,

and then C; must be t—proximate to Cy, so by Proposition [T.2.33] we have that

SR
and
¢ e el = (mi(e )~ ) e il ),
= =T (el ) - ().
By our hypotheses ez . (e?)Q — 0, so since eg .e;f i ei — 1 and (ez)Q i e;: — o, withm; > 1,

then E¢ fails to have an admissible proximity configuration of type |I| with respecto to
E] and EJ.

In the subcase let k the index such that Cp — C;, with C} isomorphic to a fiber
of E!, but that there not exists any index vy # j such that C, is proximate to both C;
and Cj, or proximate and {—proximate (or vice versa). Now, since C; is proximate to C;
and it is not isomorphic to a fiber, then as a consequence of Propositions [6.2.6] and [6.2.7]
we can conclude that Ef has not an admissible proximity configuration neither of type

[11]| nor of type with respect to Eg and Ei Since Cj is isomorphic to a section, then
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it is t—proximate to C, so by Proposition [[.2.22] and Proposition [[.2.33] we have that

() e = G, (F - —59),

= G (=1 ),

and
j v j—1 1
¢ ¢ el = (nj"(e] ") —e}) - ef i (e ),
1
= _( j) mj ( 1 )7
j\2

= —(6;) e?w

As a result, € - e§ . ei =1+# —(e))?- ej: = —n, and EY fails to have an admissible

proximity configuration of type |I| with respecto to Ei and EJJ .
In the subcase let £ be an index such that C; — Cj. We have proved in
Proposition [6.1.11] that there exists at least one index v, with v # k, such that

EIT'nET NE £0. (6.52)

We should distinguish between two cases: either C; = Ef n Eifl, or Cj is isomorphic
to a section of E/~" and then EJ] N Ei = (). In both subcases, since C; is proximate to
C; and it is not isomorphic to a fiber of E!, it follows from Propositions and
that Ef has not an admissible proximity configuration neither of type nor of type
with respect to E; and Ei Now, let us consider the subcase C; = Ef_l N Ei_l.
Since Ef_l is final, then NEg'—l/Zj71 = Ongl(—l). Moreover, Eg_l = [Fy, in particular

EJ7N = P(O(—n:) ® O(=n;)), so by Proposition [1.2.33 we have that

(7 = s, (—)?),
= ngfl*(277i§i : f)

Firstly, let us suppose that C; EN C,. Then by Proposition |1.2.33 we have that

(el D2 et = (] - (=),
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Moreover, the class of EJJ N Ef verifies [E]J N Ef} =—nfe€ Al(Eg), so by Propositions
[L119 and [1.2.22]

(€])? = Jr ((—(L+my)a +myn; [)°),
= Jpi. (2n(1 +m;)si - f);
(el)? el = Jpr iy f - (= (L4 my)si + myn; f)),
= Jpi (= (L+my)si - f),

Now, since EJJ is final for the sequential morphism 7, : Z; — Zj, and C} EN C, then

(€))% el = T f - (=<5)),

= jE]a:*((*m)% 1),

and
S - L a
e e el = (mi(e] ) —ef) e (e b,
= (@ e,
= —(e;)2 el.

In order to get an admissible proximity configuration of type with respect to EJJ and

E%, then the following relations must hold:

so 1; = 1. It follows then by Lemma that C; is isomorphic to a fiber of Ef and
el 713 = 2, that is ; = 1. According to this, we have then that
i n
(e)? =2(1 +m;)

(e])? - e = —(1+my),

i ¥
eg (eZ'Y)2 =0,
(eg)z 6; = -1,

where m; > 1. Applying again Lemma[6.2.3] we can conclude that Ef* does not have an

admissible proximity configuration of type with respect to Eg and E%
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If we consider now the case where C; — C., then as a consequence of Proposition @
there exists another index A # k,~ such that C; Lo '\, SO we can proceed as above.

In the subcase corresponding to C; isomorphic to a section of EZ ~! since C; is isomorphic
to a section, then m; : Z; — Z;_; is an extrinsic elementary modification with respect to

Eg*1 and by Proposition [1.2.33| we have that

P i1 j i—1
~e§~ef§:(7r;(eg )fez.)~e;'7r;f(efC ),

_ .
=—(e})® (e} ),

but (eg)2 . ei =0, so Ef fails to have an admissible proximity configuration of type
with respecto to Ej and EJJ .

In the subcase since EJJ is final for the sequential morphism ;¢ : Z; = Zp and
Cj iN Cp then

(€2 e = dip. (£ (=)

= Jp (-1 £).

Moreover,
S . i . S i
e e ep=(mj(e] ) —e})-ef-miel ),
j w7 j—1

= —(e})* -7 (ef ),

— (IN2 . I

= (ej) 1 €5,
so in order to have an admissible proximity configuration of type |I| then (eg )2 e§ =—1.

Moreover, we know that E°~' = Fy, in particular B’ =~ P(O(a) ® O(a — 1)), and
[Ej mEf} - [Sﬂ, where [S1] = ¢ +af € AY(E]™"). Since 75 : Zg — Zs_; is an
(eP71)2.[8,], and by Proposition

intrinsic modification for E” ™!, then we have (e)2 ~e; =

11.2.22)
(72 [81) = g, (s + af) - (=s0).
= jEf*I*((a —1)si - f))s

so a = 0, and then Eiﬁ*1 = P(O @ O(-1)). It follows from Proposition that C;
can not be an unmodified “old” curve, so either C; is an “old” curve with a modifications

of type I and II or it is a “new curve”. In both cases, there exists and index 7 such
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that E5 N Ezﬁ # (). In order to get an admissible proximity configuration of type then
Cg — Cy and
(eZ:)2 ' ei = _17
el (el)? = 1.
Since (ef)? = 1, then as a consequence of Proposition there must exist some other
index A, with X # v, such that E! N ES # 0.
In the subcase since E]J is final for the sequential morphism ;0 : Z; — Zo,
Cj 2S5, 5, and C; 5 Cj then

(€5)% - e = dps. (0 +2nf - (=))),

= G (—(5+20)5; - ).

Moreover,
i § j—1 NI i—1
el ~e§ . 6]5 = (ﬂ;(eg ) — 6;‘) -e;» 'ﬂ;(eé ),
j i—1

=—(e)* - mi(es ),

_ (N2 . d

= (ej) €5
so in order to have an admissible proximity configuration of type|l|then (e{ )2 eg =—(0+

2n). Moreover, we know that Eff1 = Fs, in particular Eff1 = P(O(a)®O(a—9;)), and
{Ej] N Ef} = [S?Hr%} , where [Ss, 1on] = i+ (a+n)f € Al(EiB_l). Since mg : Zg — Zg_1
is an intrinsic elementary modification of E° ', then we have (/)2 -e§ = (7712 [S5,12n],
and by Proposition [1.2:22] we know
(] ) 18] = g, (s + (@t ) f) - (=),
g (a= 8= D),
so a = —n, and Eff1 = P(O(—n) ® O(—n — §)). Moreover, we have

j j v j—1 j w( g—1
(€))* ep = (m5(e] ) —e))* - mi(ef ),

= (w7 m (e ) + () (e,

and

= (m;(e] ) = 3(m (] ) - €] 435 (el ) - (€)) — (¢])?



It follows from Proposition [5.4.3] that C; can not be an unmodified “old” curve, so either
C; is an “old” curve with a modifications of type I and I or it is a “new curve”. In both
cases, there exists and index v such that Eff N EZB # (. In order to get an admissible
proximity configuration of type EI, then Cg — C,, C; — C, so n = 0 as a consequence

of Lemma and

Since (e!)? = §; then, as a consequence of Proposition there must exist some other
index A, with \ # v, such that E! N E% # 0.

In the subcase since C, — C; and Cj is non isomorphic to a fiber of Ef, then
it follows from Propositions and Proposition we can conclude that Ef has not
an admissible proximity configuration neither of type [[TI] nor of type [[V] with respect to

Ej and E,i It may have an admissible configuration of type Since C} is final for the

sequential morphism ;¢ : Z; — Zo, and C} LN C}, then
() ek = dps. (=i f - (=),
= I ((=15)55 - f)-

Moreover, it follows from Proposition [I.2.33] that

o - . -
e -eje = (mi(e] ) —e))-ef-mi(er )

j j—1
=—(e))* - mj(ex ),

so in order to have an admissible proximity configuration of type then (eg )2 'eg = —n;.

Now, as a consequence of Proposition [1.1.19] the normal bundle N Bz, verifies
NEf/Zj = W;,kfl(NEf’l/Zk,l) X O(—Ezj N Ei) & O(—Ezj N Eg),
so by Proposition [1.2:22]

(€)? €)= g (f - er(Npgiz),
=ng*(f'9;,1@_101(NEf—1/zk_1) o [Ezj mEﬂ =)

= Jpi ([ Gp—1c1(Ngrr 5, ) = (03)si - f)-
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Since f-g7,_1c1 (NE{cfl/Zkil) # 0, then Ef fails to have an admissible proximity config-

uration of type [l with respect to E; and E’,JC

Let us now consider the case [B] that is, the case where the following conditions hold:

(e;)z : eg = ="

We shall distinguish between the following two cases:

B.i the case where the following relation is satisfied:

(e +el)?-el =0, (6.53)

B.ii otherwise.

In the case we shall distinguish between the following subcases:
Biin; =1,

B.iii n; > 1.

In the subcase as a consequence of Proposition Ef ! must satisfy one of the
following characterizations:
B.iii either B/ =2 P? is final, with dim/(C;) = 0,
B.iiii or Ef;l is not final, with dim(C;) = 0, and there exists at least an
index 3 such that Cjg 4 C;, with the cardinal n, = # {Ck N Effl} >
1

B.i.i.ii or qu is final, C; is a modified “old” curve with a modification of type
I1, that is, there exists at least one index S such that dim(Cg) = 1,
and C; 5 O,

B.i.iiv or Ef ~is not final, with C; a modified “old” curve, that is there exists
at least one index § such that Cg — C;, with Cg non isomorphic to

a fiber of EY,

.. i—1 . .
B.i.i.v or E/™" is final or not final, and C; is a “new” curve.

In the subcase it follows from Theorem that E7 is final, so our hypothesis,

E; non final, fails to be true.
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In the subcase let k € {8} be an index such that Cj, — C;, but that there not
exists any index v # j such that C is proximate to both C; and Cj, or proximate
and t—proximate to C; and C} respectively (or vice versa) Since Cy EN C;, with n, =
# {C’k N Ef_l} > 1, and C} 5N C;, it follows from Propositions and that Ef
can not have an admissible proximity configuration, neither o type [[TI] nor of type [[V]
with respect to EJJ and Ei It may have an admissible configuration of type and in
this case C; — Cy. However, by Proposition [.2.33] have that

(T () el (@) () e = (el () — ),

so (6?)2 . ei = 0 and eg . (ei)2 < 0. Thus, Ezj fails to have an admissible proximity
configuration of type [I| with respect to EJJ and E,]C

In the subcase let k € {8} be an index such that Cy — C;, but that there
not exists any index v # j such that C, is proximate to both C; and C}, or proximate
and t—proximate to C; and Cj, respectively (or vice versa). Since C} 5N C;, then it
follows from Propositions and that Ef can not have an admissible proximity
configuration, neither o type nor of type with respect to Ej and Ei In order to
have an admissible proximity configuration of type |I|, then C; — Cy, that is m; : Z; —

Zj_1 is an extrinsic elementary modification of Ei_l, so by Proposition [1.2.33| we have

that
. A - , A
(e1)? el = (mj (e}, ") —e))* i (el ),
- - .
=m;((e ) el )+ (e)? e,
SO (ef;)2 . eg =—1+#0and Ef fails to have an admissible proximity configuration of type

With respect to EJJ and FJ. In the remaining subcases, let k € {#} be an index such
that C, — C;, but that there not exists any index v # j such that C, is proximate to
both C; and Cy, or proximate and t—proximate to C; and Cy, respectively (or vice versa).
Since C} 4 C;, then it follows from Propositions and that Ef can not have
an admissible proximity configuration, neither o type [[II| nor of type [[V] with respect to
E; and Ei It may have an admissible configuration of type and in this case C; — Cj.

Since 7; : Z; — Z;_; is an intrinsic elementary modification with respect to EZ ~! then
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by Proposition [[.2.33] we have that

() el = (mi(el ™) (my(el ) = €)),
= (mi(ed™ )2 mi(el )
el (el = mel ™) (el ™) - €],
=mi(e] 1) - (e )P (el ) - (),

=mi(e ) (mi(e ) el - (e

and

el el el =miel ™) el (miel ) —€l),

so in order to get an admissible proximity configuration of type with respect to Eg

and Ei, the following conditions must hold:

j—1\2 j—1
() e =-1,

(6.54)

6{71 . (63;1)2 =1.

Since (e;)2 -e} < 0, there can not exist any other indexes 3 such that (eé)2 el <0, s0
EJ7' = F,. In particular, it follows from relation that EF ' = P(O(a) @ O(a — 1)),
SO [Efl N Eiil} =g +af € A (Effl) Let us suppose that C — C;. Then it follows

from Proposition [1.1.19 that NEJ—I/ZJ_71 = W;_l)k_l(NEk—l/Zk_l) ® O(—EF N EF)®me
with my, € Z,, so by Proposition [[.2.22] and Lemma [2.27]

(el e =i (G +af) - (=14 mi)s; — ami f)),
= Jpr—.((@ = (L+mp))si - f);
e (T = G (W) - BT 0BT,
= g ([T N B,
= Jp-1.(16 - f);
and
(7)) = G (= (1 + mu)ss = amif)?),

= Jpr—r.((=2a(1 4+ m) + (1 +mx)?)si - f),
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The system defined by the previous relations, that is,

a—(l—l—mk):—l,

—2a(1+mp) + (1 +mp)? =1,

has only the trivial solution a = 0, my = 0, so C} can not be the only center proximate
to C;. Then, the only possibilities are either there exists another index v # k, such that
Cy — Cjor Ef ~1 is final, with base a “new” curve C;. In the latter case, it follows from
Proposition that there exists another index A such that Ef_l N Ei_l N Ef\_l £ 0,

and Ef fails to have an admissible final configuration.

In the case as a consequence of Proposition [6.1.10} one of the following character-

izations is satisfied:

B.iiii either B/~ 2 P? is not final, and there exists at least one index f
verifying Cg — C;, with dim(Cg) =1,

B.iii.ii or Eff1 is final, with base a modified “old” curve, with modifications
of type I, that is there exists at least one index 3 such that C3z — Cj,
with Cjs isomorphic to a fiber of E},

B.iiiiii or £/ is final, with base a modified “old” curve with a modification
of type I1, that is, such that there exists at least one index (3 verifying
C; 5 Cp,

B.i.ii.iv or Ef_l is not final, with base an “old” curve, that is, there exists at
least one index 3 verifying Cg — C}, with Cg non isomorphic to a
fiber of EY,

... i1 . .
B.iii.v or B/ is final or not final, with base a “new” curve.

In the case let & € {8} be an index such that Cy — C;, but that there not
exists any index v # j such that C, is proximate to both C; and Cj, or proximate and
t—proximate to C; and C}, respectively (or vice versa). Now, since C; SN C; and Cy, — C,
it follows from Proposition and Proposition we can conclude that Ef has not
an admissible proximity configuration neither of type [[II] nor of type [[V] with respect to
Eg and Ei Moreover, since C; is t— proximate to C;, then in order to get an admissible

proximity configuration of type |I|, it must be proximate to Cj, that is C; — Ci. Now,
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by Proposition [[.2.33] we have that

—¢] e = —mi(el ) (el —e)) e
= () ¢,

but (e‘g )2 ei #* —eg : ei . e'jj, SO Ef fails to have an admissible proximity configuration of
type || with respect to Ei and Ej .

In the case let k& € {8} be an index such that C, — Cj;, but that there not
exists any index vy # j such that C is proximate to both C; and Cj, or proximate
and t—proximate to C; and C}, respectively (or vice versa). Now, as a consequence of
Proposition [6.2.6] and Proposition [6.2.7] we can conclude that E; has not an admissible
proximity configuration neither of type nor of type with respect to EJJ and Ei
Moreover, since C; is t—proximate to C;, then it must be proximate to Cj in order to
get an admissible proximity configuration of type [, and by Proposition we have
that

- - AP
el () =mj(e] ) (i (e ) — ),

=—n; #0.

We can conclude then that Ef has not an admissible proximity configuration of type
with respect to E,i and Eg either.

In the subcase let k € {f} be an index such that C, — C;, but that there
not exists any index v # j such that C, is proximate to both C; and C}, or proximate
and t—proximate to C; and C} respectively (or vice versa). Since C' — j 5N C;, it
follows from Proposition and Proposition we can conclude that E; has not an
admissible proximity configuration neither of type nor of type [[V| with respect to Eg
and Ei Moreover, in order to get an admissible configuration of type then, since Cj is

t—proximate to C;, it must be proximate to Cj, and by Proposition [1.2.33] we have that

- - N
el () =mj(e; ) (mj(en ) — ),

=—n; # 0.

We can conclude then that E; has not an admissible proximity configuration of type [l
with respect to E,Jc and Ej
In the remaining subcases, let k£ € {8} be an index such that Cy, — C;, but that there not

exists any index 7 # j such that C, is proximate to both C; and C}, or proximate and
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t—proximate to C; and C}, respectively (or vice versa). As C; 5N C;, by Propositions
and we can conclude that Ef can not have an admissible proximity configuration,
neither o type nor of type |[V|with respect to EJJ and Ei It may have an admissible
configuration of type E|, and in this case C; — C}. Since 7; : Z; — Z;_1 is an intrinsic

elementary modification with respect to Ef 71, then by Proposition [1.2.33| we have that

() ef, = (ms(e] ™)) - (mi el 1) =€),
= (mj(e] ™)) - mi(ef ™)

el - (ef)? =m(el ) (mi(el ) =€),
= mi(el ") - (milel )2+ mi(el ) - (€))2,

=mj(e] ) (mi(el ))? + el - ()

and

so in order to have an admissible proximity configuration of type |I| with respect to Ej

and Ei the following conditions must hold:

i—1 i—1
(el™H)? el " = —nj, (6.55)
i—1 , j—1
el (e )= (6.56)
Since (eg)2 . eg < 0, there can not exists any other indexes 5 such that (6%)2 el <0, 50

EJ7! >~ Fs. Moreover, as E! ™' = P(O(a) ® O(a — §;)), it follows that |E/~' N Ei_l] =
G+ (a+ng)f € Al(Eg_l), with n; = 6; + 2ny. Firstly, let us suppose that C, — C; and
that there not exists anyother index v # k such that C;, — C;. Then, it follows from

Proposition |1.1.19) that Ny, = T 11 (Ngi-1,7, ) ® O(—EF N EF)®™r with
my, € Z4, so by Proposition [1.2.22] and Lemma [2.2.1| we have that
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and

(77 = g1, (= (L + mi)s; — m(a +m) f)?),

= jE;A*((fZa(l -+ mk) -+ (51(1 + mk)z -+ 2nkmk(1 + mk))gl . f)
The system defined by the previous relations, that is,

a—06;(14+mg) —ng(l+2my) = —6; — 2ng,

—2a(1 + mk) + 51(1 + mk)2 + anmk(l + mk) = 9; + 2ng,

has no non-trivial solutions verifying d;, nx > 0, so C can not be the only center proxi-
mate to C;. Then, the only possibilities are either there exists another index v # k such
that C, — Cj, or Ef_l is final for the sequential morphism 7;_10 : Z;_1 — Zp, with
base a “new” curve C}, that is, there exists an index « such that C; — C,. However, in
the latter case, it follows from Proposition that there exists another index A such
that £/ "' N EJ"1 N B! # 0, and EY fails to have an admissible final configuration.

O

6.3 The Chow ring of the sky Z;

As for the whole of this chapter, we will restrict ourselves to the case of sequences of
point and rational curve blow-ups, that is, either C, = P or C, = C, with the ground
variety Zo = P3.
As a consequence of Theorem we have that the Chow ring of the ground variety
A*(Zy) is isomorphic to

A*(Z0) 2 Z[u) (), (6.57)

by sending u to h, where h € A'(Zy) is the rational equivalence class of any hyperplane
[H] in P3. Moreover, since Vo it is satisfied that either E¢ =2 P? or E¢ = Fy, then it
follows from Theorems and that:

Z1s] /(s®) by sending s to ¢, if Cy, = P, (6.58)
AY(Eg) =S Z[t,u] /(t* 4+ e1(Ne, 7. )t - u,u®) by sending t,u to o, f respectively (6.59)

it C, = C., (6.60)

186



where ¢, € A'(E2) is the rational class of any hyperplane and f € A'(EY) is the rational

class of a fiber.

In these sequences, we are able to give generators of the Chow ring of the sky A®(Z;) as
a Z—algebra. To begin with, let us consider the following partition of the centers of the

sequence of blow-ups:
{Ci};l = {Ci}iell U {Ci}ieIz ) (6'61)

where i € 7 if dim(C;) = 0 and i € Z, otherwise.

Lemma 6.3.1. The Chow ring of the sky of the sequence A*(Zs) is generated by
{ho* {es Y aer, {85 e Y aer, | a8 a Z—algebra.
Proof. The result follows by induction on «. It is clear that A®(Zy) is generated by {h}.
Let us suppose that A°*(Z,) is generated by
{ha*a {elq*}i‘il-l ) {e?*’ wz@*}iEIQ} : (662)
1Sa iga
Now we have to consider the two following settings: either dim(Cy41) = 0 or dim(Cay1) =

1. In the former case, since ESf] = P2, that is A*(ESt]) = Z[s] /(s®), and e2T1* -

egﬂ* = —Jat1x+(Sat1) by Proposition [1.2.33} then by Proposition [1.2.29| and Theorem
1.2.24| we have that A®(Z,+1) is generated by

{ha—‘rl*? {€?+1*} i€l > {E?H_l*, w?+1*}i612} (663)
i<a+1 i<a

as a Z—algebra. In the latter case, that is dim(Cyy1) = 1, we have that Eg‘ill = s, that
is AS(BEE) 2 Z[t ) /(2 + e1(New )t ?), and e@21 - e@tl® = —jo i (sar) by
Proposition Then as a consequence of Proposition [1.2.29] and Theorem we
have that A®(Z,+1) is generated by
{h““*, O S O S g } . (6.64)
i<a i<atl

O

Now, in order to compute the relations between the generators, let us restrict firstly to

the blow-up at the a + 1—level, that is 7441 : Zay1 — Za, where Cyyq is a rational
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curve, and Z, is the sky of a sequence of #I¢ point blow-ups and #Z¢ rational curve

blow-ups.

From Proposition|1.2.29|we know that A®(Z,) is generated by 7}, ; A*(Z,) and jaH*A‘Egill.

We can thus define a ring homomorphism

fat1: A% (Za) [egi%vwgiﬂ — A*(Zat1),

such that,
Tyt () if © € A*(Z,), (6.65)
far1 (@) =4 Jarr () if o = 0t (6.66)
Jari=(gh (P)) i @ = wltl, (6.67)

where the class of P, [P] € A'(Cy+1) is a generator of A'(Cy1). Consequently, we have
that

A (Zass) = A%(Za) [et wiH] fherfura. (6.68)
Theorem 6.3.2. The Chow ring of Zat1, A*(Za+1), is isomorphic to
A.(Za) [ea+1 wa+1]

a+1) Ya+1
A*(Zair) = , (6.69)
ja-i—l
where
_ -k a+1 a+1x _a+l a+1 a+1\2 a—+1x% a—+1
ja+1 - (kerlaJrl €a+17h ea-i—l Mowa-ﬁ-l’ {6 : a+1 lu’Bwoc-‘rl (wa—i-l) 7h 'wa+17
ok a+1 a+1 a+1 a+1 a+1 a—+1x%
{eﬁ : a+1}5 10 a+1 —C1 (NC'Q-H/ZQ )wa+1 + [CaJrl] 1 €at1 Wat1 + (h ) )

(6.70)

with pg = g™ - [Cot1].

Proof. In order to compute the relations between the generators of A*(Z,+1), let us now

consider the ring homomorphism induced by the inclusion iy41 : Coy1 — Zg, that is
i1t A%(Za) = A*(Cov),

and let us denote by Z,+1 to

Tat1:= (qaoh™ + Y ageg™ o, (h*)* {h™" - e§™}5_
B=1

{eg* ! e?*}3,5<a+1 ’ {wg*} BEL, )7 (671)
B85 B<atl
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where {aouo + Zgzl agug} denotes the minimum set of relations of the finitely gener-

ated free abelian group S, 11 generated by

{0 = degliz h°), {ps = deglizae3)}5_, } - (6.72)

Then, it can be proved that Ker(i},,) = Zoy1. Firstly, we will prove that Z,41 C
Ker(i%, 1). Since Cqq1 is a rational curve, then A'(Cq41) is generated by the class [P] €
AY(Cyy1) so we can conclude that {aomo + 351 agmg} C Ker(i},, ). Moreover, we
know that the pull-back morphism 4, ; : A*(Z,) = A*(Cqaq1) is graded on codimension,

so it follows that

((h)? {h e o, e 5 Yoacar {wi") per, ) C Ker(ifen). (673)

Now, we will prove that Ker(i}, ) C Zo4+1. Note that i}, : A*(Zy) = A*(Caqr) is
homogenous, so ker (i, | ;) is an homogenous ideal, and Z,1 is an homogenous ideal too

by construction. Let us suppose that

Q [h’a*a 6?*, NG w?*v ) wg*] € Ke’r(i:;—i-l)/za-i-lv (674)

-5 Cq s

with deg(Q) = n. Then n < 1, since all polynomials of weighted degree 2 are all in Z, 1,
and Q [h>*, e, ..., 2", w, ..., ws*| must be of the form Q [h**, ¥, ..., eX*, w*, ..., w¥*] =
boh®*+> "5 | bie?*mod(Za41). But then b; = 0fori =0, ..., a since {aopo + Zgzl aﬁufg}
is the minimum set of relations of the finitely generated free abelian group Sq41.

Before going on, we should distinguish between two possible cases, that is:

A either i}, is surjective,

B or i}, is not surjective.

In case |A] we have that A*(Coy1) = A®*(Zy)/keri},, ;. Moreover, there must exist a

relation of the form
agis  h™ + > agit, e =[P, (6.75)
where [P] € AY(Cy41) is a generator of A'(Cy1), so in this case we can conclude that:

A*(Cor) = A%(Z4) [P] /(kerityy, aoh®™ + 3 agel” — [P)). (6.76)

However, the case |B| is a bit more tricky. In particular, we have that A®*(Cy41) is

isomorphic to

A*(Can1) = A*(Za) [P) [ (kerit iy, ™ — o [P, {e§™ — ug [PI}5_, , ([PD?). (6.77)
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Now, since E”‘ﬂ is isomorphic to the projective bundle P(N¢,,,,z,) over Cqy1, then

by Theorem [.2.25] it follows that:

A*(ESH) = A*(Caqa) [sas1) /(soy1 + c1(Ney oy /2. )Sat1 - P)- (6.78)

It can be proved that in both cases [A] and [B]it is satisfied the following inclusion Ju41 C
Kerfay1. Recall that

_ - % a+1 a+1x _a+l a+1 a+1\2 pa+1x a+1
joz-i-l - (kerza—i-l ea+1’ h ea—i—l uowa+1’ {6 a+1 Mﬁwa+1 (wa+1) 7h 'w(x+17
ok a+1 a+1 2 @ a—+1 a+1 a+1x
{6,8 : a+1}5 10 a+1) - CI(NCQH/Za)waH + [Cart1] 1€at1 " Woi1 T (h ) )

(6.79)
Firstly, since fo41 is a ring homomorphism then we have that foi1(x-y) = fat1(z) -

fat1(y), so the inclusion

a+1 ha+1* a+1 a+1 {ea* . 6a+1 a+1

s a+1\2 7 a+1x a+1
(k‘f”a-s-l Cat1s "Cat1 T HOWqy, )°h ’

a+1 :uﬂwa—l-l (wa—l-l wa+17
{ed" - w g—ﬂ}g ) Ckerfoi1, (6.80)

follows directly from Proposition [1.2.33] Moreover, the inclusion

((ea11)? = e1(Neyyy 2z )wait + [Casa]) C ker foy, (6.81)

is a direct consequence of the key formula (see Proposition[1.2.29). Finally, the inclusion
(et g‘ﬁ + (h**t1*)3) C kerfay1 follows from the key formula and the birational

invariance of A¢(Z;) (see [17, Example 16.1.11]).

In order to continue with the proof, let us recall that by Proposition [[.2.:29] we have the

following exact sequence:
0— A*(Cay1) & AN (B @ A%(Za) = A% (Zay1) — 0 (6.82)

where [(z) = (954161 (NCo i1 /20 ) Hat1)N95 41 (%), fat1 (2) and m(y) = (—Joat14(); To11(Y)-

Let us now define
Roy1:= A%(Z,) [egi}, gﬂ] [Tat1, (6.83)

and a group homorphism v : A*(EST])®A(Zs) — Ra+1 such that v(z,y) = —haq1(2)+
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7401 (y), where

(eat)™! if 2= (=1)"(Sa41)" for n>1
wg‘ﬁ ifx=p

ha—&-l(x) =
(doh®* + > 5_1 dgeg™ )1 - waiy if z = (p)* for A >2

harr((p)Y) - (e3th) if @ = (p)* - (cas1)” for A>2 and > 1

, giving factorization of m : A*(EST]) @ A*(Z,) — A*(Zay1), that is,

AYEZT) ® A% (Za) ————> A*(Zas1) (6.84)
| |
Rot LA (Za) [eSth wiTh] Jher faia

In order to prove that Rot1 = A®(Za41), that is @441 is an isomorphism, it suf-
fices to verify that v ol = 0. Choose [Cyhi1] € A%(Cay1). Then I([Coti]) = (so +
c1(Ney, /2., )P, [Cavt1]), and

YU[Cara))) = (€651)? — e1(Ney 1 /2. )0 + [Carr] = 0. (6.85)
Choose now [Pyy1] € AY(Chs1). Then [([Pa]) = (Sas1 - p, (R¥*)3) and

Y(U([Pasr))) = a1y - wii + (h*7)* =0. (6.86)

Corollary 6.3.3. The Chow ring of the sky A®*(Zs) is isomorphic to

7 |:hs*7 {egz*}aEIl ’ {62*’w2*}ﬁ612:|

A*(Z,) = , 6.87
(Zs) I (6.87)
where
.A: ((hs*)4, {{hs* ~€S*},{€S* . 6%* ,{—(68*)3 + (hs*)n}} ;
(03 « a;éﬂ (o7 a,BEIl
{kerig? el b - e — powy, {ef - € *”ﬁwfsx*}ﬁ<a’ 2 a5 w S {er - wl bea
(%LM%mﬁﬁ+%WﬁW%MWhm)®w

Proof. By Theorems and we know that
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A if dim(Cy41) =0, that is Cpy1 = Pay1, then

A*(Zy) [eat]

(heee e b Lo e Y (e )+ (o)

A*(Zar1) =

B and if dim(Cyy1) = 1, that is Cyqq1 = Cox1, then

A0(20) e ]

ja—i—l

1%

A.(Za-‘rl)

So, since A®(Zy) = (Z}E;d by Theorem [1.2.24] the result follows directly by induction. [

Corollary 6.3.4. Given two sequences of blow-ups (Zs, ..., Zy,7), (Z;, ...,Z(l),wl), such
that Zy = Z(;, with the same length and proximity relations, then A®*(Zs) and A'(Z;)

may be non-isomorphic.

Proof. Let w1 : Z1 — Zy be the blow-up with center C a rational curve of degree 1,
with v1 > 4, let mo : Zo — Z; be the blow-up with center Cs the section corresponding
to the line subbundle O¢, (2y; — 1 — a — n), and let m, : Zy — Z; be the blow-up with
center C’é the section corresponding to the line subbundle O¢, (271 — 1 — a — m) with
m # n. Then, it follows from Corollary that the Chow ring A®(Z2) is isomorphic

to
2% 2% 2% 2%
[h el , WY ,ez,wz}

A*(Z,) 1 ;

IIZ

(6.89)

with

A= ((hQ*)47 (hz*)Q T h*ee ’71w1 ’hQ* wl ) (wl )27 (e%*)2_(471_2)w%*+71 (hQ*)Q’
er* - wit + (h*)?, (h*)? - €3 7(6%) LR et wit - et hP eyt — wi,
2% 2% 2% 2 2% 2% ( 2*)2

2% 2%
€1 €2 —(271—1—a—n)w2 R w3t ey s wy, wiT - wyt, (W)

(e3°)? — 2y — 1+ a+n)ws* + (—(eI*)* + 271 — 1+ a+ n)wi*),e3* - w3* + (h*)?),
(6.90)

and the Chow ring A*(Z,) is isomorphic to

! 2% 2% 2/ %
Z[h ,e1 L, wi t, ey ¥, ws

A/ bl

A®(Zs) = (6.91)
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with

A= (W) (B2)ed 02 edr =y ™ 1w, (] ), (e ) = (4 —2)wi 4 ()7,

’

2/ % 2/ % 2'%\3 2'%\2 2« 2'%\2 2% 2% 2% 2'x  2'x  2'x 327 2/
€1 -wjy +(h )7 (R )% ey ", (ef *) ey T AT T el Ty FLwy ey YR —71102

6%* (2'71 —l—a—-—m ) »h2/* 'wg’*’e%’* ~w§/*,w%/* 'wgl*v(wg *)27
(€37)? = (2 —1+at+m)ws " +(=(e] *)*+ (20 —1+a+mwi *),ed *-wj *+ (h**)%).
(6.92)
Now we will prove that A®(Z3) and A'(Zé) are not isomorphic. To begin with, we know

that A®(Z,) is generated by

{n* e, e3* in codimension 1,
{(h?*)?,w}*,w3*} in codimension 2,
{(n?*)3} in codimension 3,
and A®(Z,) is generated by
{h2 * €2 e2 *} in codimension 1,
{(h2/*)2, w?* wd* } in codimension 2,
{(th*)?’} in codimension 3.

Let us define a graded ring homomorphism ¢ : A*(Zy) — A*(Zs,), so

¢(h2*) = aoh2/* + ale%/* + ageg*,
B(e¥) = boh®* + bye2 ™ + byed ¥,
P(e2*) = c0h2 4 clel * 4+ 0263 *
S(wi™) = do(h*™*)* + dyw?™ + dyw3 ™,
$(w3") = fo(h**)* + frwl™ + fowi ™.

Since A®(Zy) is generated by {(th*)?’} in codimension 3, then we have that
S((h*)%) = ((h*))* = (W*)?, (6.93)

so we can conclude that ¢(h%*) = h2*, that is, ag = 1,a; = ag = 0. If ¢ would be a
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graded isomorphism, then the following relations will hold

G((h**)? - e) = ¢(h**)? - p(eF”) =0, (6.94)
P((h*)? - e5*) = p(h**)? - p(e3") =0, (6.95)
P(h** - el —mwi) = ¢(h**) - d(el") = md(wi*) =0, (6.96)
P(h** - €5 —mw3") = ¢(h**) - d(e3") — 1 d(w3") =0, (6.97)

pel" - w3*) = p(ef") - p(w3") =0,
(6.98)

¢(e3" - wi*) = p(e3") - p(wi*) =0,
(6.99)

pel” - wi™ + (h*)?) = p(el”) - p(wi™) + ¢(h**)? =0,
(6.100)

p(ex” - wi™ + (h*)?) = p(e3”) - p(w3™) + ¢(h**)? =0,
(6.101)

¢es" - e3" — (2n — 1 —a—n)wd*) = ¢(e3*) - p(e3*) — (2 — 1 —a —n)p(wy*) =0.
(6.102)

From equations [6.94] and [6.94] we have that by = ¢ = 0. Moreover, equations [6.96] and
m implies that by = dy, by = ds, ¢y = f1 and co = fo. Now, as a consequence of
equations arf6.99] the following relations hold —by fi — bafas = —c1di — cada = 0.
Finally, it follows from equations and that —(b1)2 — (b2)? = —(c1)? — (c2)? =

—1, so we can conclude that if ¢ would be a graded isomorphism, then

A either by = d; = co = fo = land by = dy = ¢; = f; = 0, that is, ¢(e?*) =

e%,*, ¢(w%*) = w%,*, ¢(€%*) = eg*) (w%*) = w%/*)

Borb =d =cy = fo =0and by =dy = ¢; = f1 = 1, that is, ¢(e?*) =

e3 " p(wi*) = w3, o(e3") = ef ", p(w3) = wi™.

Let us now consider the ideal I = (e2*) < A®*(Z,). If ¢ would be a graded isomorphism,
then I < A*(Zy) and ¢(I) < A®*(Z,) would have the same Hilbert-Poincaré series, but
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in the particular case [B| this equality is not true

Py (to, t1) = 1 — to — t§ — Bty — 5tgty + 95 + 1565t + t5t5 + 9tg — Stgty — 3ttT
— 1915 — 25t5ty + tgtT + t§ + 25t5t1 + 5yt + 105 + 5toty — 5tot? — 4ty — 155t

— 713 4 5tgty + 3t5t3 — t9t3,  (6.103)

Py (to,tr) = 1 — to — 215 — 2t5 — 3t3ty + 8tg + 9oty + {517 + 415 — 3oty — 3totT
— 145 — 1515ty + ot + 245 + 15t5t1 + 5tgt? + Tt + 3t7ty — 5tdt — 3¢5 — 9t5t,

— 1017 + 3tty + 35t — 1913, (6.104)

so we have that ¢(e2*) = e2* ¢p(w?*) = w?*, ¢(e2*) = e2*, p(w2*) = w* in order to

have a graded isomorphism. However, even in the case [A] the relation of equation

is not satisfied since
pe¥ - e2* — (271 — 1 —a—n)wd*) = (—m+n)wd * #0, (6.105)

so we can conclude that the graded homomorphism ¢ : A*(Z) — A*(Z,) is not a graded

isomorphism.

We finish this section by giving some interesting and non-trivial examples of sequences
of point and rational curve blow-ups, where we explicitly compute the Chow ring of their

corresponding skies.

Example 6.3.5. Let P € P? be a point, and let my : Z1 — Zy = P3 be the blow-up of
Zy with center C; = P. Consider now a rational curve of degree one C € Ef, and let
mo @ Zoy — Z1 be the blow-up of Zy with center Cy = C. Finally, If we denote by D to
E2NE2, let w3 : Z3 — Zy be the blow-up of Zy with center C3 = D.

s =% Zy 225 70 =5 Z,

The Chow ring of Zs, A*(Z3), is isomorphic to

Z [y0=y17w1>y27y37w3]
J3 ’

I

A*(Zs)
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where

T3 = (Yo - y1, (1)° + (0)°, 0 - y2, (Y1 +y2 + 2y3)° - (Y2 +y3), (Y1 + 2 + 2u3) - Y2 + wa,
(y1 +y2 + 2y3) - w2, (y2 + y3)* — (y1 + y2 + 2y3)°, (Y2 + y3) - (w2 + ws) + (yo)?,
Yo - Y3, (Y1 +y2 + 2y3)* - ys, (Y2 + y3)” - ys, (y1 + y3) - ws, (y2 + ys) - ws,
(Y1 +y2 +2y3) - (Y2 +y3) - y3, (Y1 + y3) - Y3 + 2ws, (y2 + y3) - y3 — w3,

(y3)® +ws + (y1 +y3) - (Y2 + y3), y3 - w3 + (y0)*),

by sending yo, Y1, Y2, w2, Y3 and w3 to h*, €3, €3, r3, e3 and r3 respectively.

We are going to verify that only Es3 is a final divisor, even if for Ey the relation (es +

2. ey = 0 also holds. Let us start with Es. To begin with, we already know that

€s)
relation (ez + e3)? - e3 = 0 is satisfied. Moreover, from relations (e1 + ea + 2e3)? - e3 = 0,
(ea+e3)-e3—r3 = 0 and (e;+e3)-r3 = 0 it follows that (e;+e3)?-e3 = 0 also holds. Finally,
we can conclude from relations (e1 + e3) - e3 + 2r3, (e2 +e3) - e3 —rs, (e1 +e3)-r3 =0,
(ea +e3)-r3 = 0 and e3 - 13 + (h*)3 = 0 that the following es - (e2)® = —e3 - (e1)?,
(e3)%-ea = (e3)%-e1+e3-(e1)? and ey - ea - e3 = 0 are satisfied too.

Now, we will see that Eo has a non-admissible final configuration. To begin with, it
follows from (es + e3)? — (e1 + ez + 2e3)? = 0 and (e1 + ea + 2e3)? - (e2 + e3) = 0 that
relation (ea+e3)® = 0 holds and consequently (e3+e3)?-eq = 0 is satisfied too. Moreover,
it follows from relations (ea+e3)-e3—r3, ez 13+ (h*)3 and (e3)?+r3+(e1+e3)-(e2+e€3)
that (e3)® + %(e3)? - eo = 0 also holds. Finally, from relations (es + e3) - e3 —r3 = 0,
(ea+e3)-r3 =0 and ez -r3+ (h*)> =0, we can conclude that (e2)? - ez + %62 (e3)?=0

1s verified.

Example 6.3.6. Let P € P2 be a point, and let m, : Z1 — Zy = P2 be the blow-up of Zy
with center C; = P. Consider now a point Q € E}, and let wo : Zo — Z; be the blow-up
of Z1 with center Cy = Q. Finally, If we denote by C to E? N E32, let w3 : Z3 — Z be
the blow-up of Zo with center C3 = C.

Zs 2 7y 2 70 I 74

The Chow ring of Zs, A*(Zs), is isomorphic to

[ ] Z b b bl ,'UJ
A(Zg)% [l/o yljfy; Y3 3]’
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where

Tz = (Yo -y, (W1 +y2 +2y3)* -1 + (0)*, 50 - y2, (1 + y2 + 2u3) - (Y2 + y3),
(y2 + y3)3 + (y0)3,y0 3, (Y1 +y2 + 2y3)2 ‘3, (y2 + y3)2 -3, (1 +y3) - ws,
(y2 +y3) - w3, (1 +y2 +2y3) - (y2 +y3) - y3, (Y1 + ¥3) - Y3 — w3, (Y2 + y3) - y3 + ws,

(y3)® + (y1 +y3) - (Y2 + ¥3), y3 - w3 + (%0)*),

by sending yo, Y1, Y2, Y3 and wz to h*, €3, e3, e3 and r§ respectively.

We are going to verify that only Es is a final divisor, even if for Ey the relation (e +
e3)?-e; = 0 also holds. Let us start with Es. To begin with, we already know that relation
(e2 + €3)? - e3 = 0 is satisfied. Moreover, it follows from relations (e; + ex + 2e3)? - e3,
(ea+e3)-e3+7r3 =0 and (e; +e3)-r3 = 0 that (e; +e3)%-e3 = 0 is satisfied too. Now, we
can conclude that relations e3 - (e2)? +e3 - (e1)> = 0 and (e3)? - ea = (e3)?-e1 + ez - (e1)?
are deduced from relations (e1 +e3)-e3—r3 =0, (e2+e3)-e3+r3 =0, e3-r3+ (h*)3 =0
and (e3)? + (e1 + e3) - (e2 +e3) = 0.

Now, we will see that By has a non-admissible final configuration. To begin with, it follows
from relations (e1+ea+2e3)%+(h*)3 = 0, (ea+e3)3+(h*)? = 0, (e1+ea+2e3)-(ea+e3z) = 0,
so in particular (e; + e3)? - e; = 0 that (e1 + e3)? - ey = 0 i also satisfied. Now, we get
(e3)3 = 0 by considering the relations (e3)? + (e1 +e3) - (ea +e3) =0, (e2 +e€3) - e3 + 73
and (e1 + e3) - r3 = 0. Moreover, it follows from relation (eq + e3) - e3 — r3 = 0 that
(e1)?-e3+2e1 - (e3)? =0 holds. Now, we can verify from (e; +e3)? - e; = 0 that relation

(e1)® — 3e1 - (e3)? = 0 holds too.

Example 6.3.7. Let C € P3 be a rational curve of degree v > 4, and let w1 : Z, — Zy =
P2 be the blow-up of Zo with center C1 =C, so B} = P(O(2y—1+a)® O0(2y—1—a)).
Consider now a section S € Ei such that [S] =1 + (2y —1+a+m)f in AY(E}). If
P € § is a closed point, let wo : Zo — Z1 be the blow-up of Z1 with center Cy = P.
Finally, If we denote by S the strict transform of S, let w3 : Z3 — Za be the blow-up of
Zo with center Cy = S.

Zs =% Zo 225 70 =5 Z,
The Chow ring of Z3, A®*(Z3) is isomorphic to

[ ] Z ) 7w? ) ?w
A (23)2 [yo Y1 }3?!2 Y3 3]
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where

Tz = ((%0)* - y1,%0 - w150 - (1 + y2 + y3) — (w1 + ws), (w1 + ws3)?,

(y1 +y2 +43)* + (=47 + 2) (w1 + w3) +7(y0)%, (Y1 + y2 +y3) - (w1 +w3) + (0)°, 90 - Y2,
(1 +y2 +y3) - Y2, w1 - y2, (¥2)° = (40)°, (0)? - w3, (Y1 + Y2 +y3)? - sz, (w1 + w3) - s,
Y2+ Y3, Y0 - w3, (Y1 + Y2 +Y3) - w3, Y2 - w3, Yo - Y3 — YW3, (Y1 +y3) - y3 — (27 —a —m — 2)ws,
Y2 - ys — w3, (y3)> — (27 =3+ a+m)ws — (y1 + 2 + y3)* + (27 — 1+ a+m) (w1 + ws)—

— Y2, y3 - w3 + (¥0)*),

by sending yo, Y1, w1, Y2, y3 and w3 to h*, €3, 13, 3, e3 and r3 respectively.

We are going to verify that both Fo and Es3 are final divisors. Let us start with Es. We
already know that relation es - (e3)? = 0 is satisfied. Now, from relations es - e3 — w3 = 0
and e3 - r3 + (h*)3 = 0, we get (e3)? - ea = —(h*)3. Moreover, by combaning relations
ex-e3—13 =0, (e +ex+e3) 73, ex-13 and ez -r3 + (h*)® = 0 we can conclude that
e1-ex-e3—(h*)3 = 0. Finally, it follows from relation (e +ea+e3)?-e3 = 0 that relation
(e1 +e3)% e3=0.

In the following, we verify that Eo is final too. From relations (e; + ea + e3) - e2 = 0,
(e2)? - e3 =0, (e2)® — (h*)3 = 0, we obtain (e2)? - e1 + (h*)® = 0. Now, it follows from
relation (ey + es + e3) - ea = 0 that e - (e1)?> = 0 also holds. Finally, we obtain from
relations (e2)® — (h*)2 = 0 and e3 - (e2)? = 0 that relation (ez + e3)? - e = 0 is satisfied

too.
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Conclusions

Let Zy = Z,_4 EE N N Z1 =% Zy be a sequence of blow-ups at smooth centers
(see Definition [2.1.1)), with Z; = P". As higher dimensional centers are allowed, not
just 0 dimensional ones, we introduce the concept of t—proximity. We say that C} is
t—proximate to C;, and write C) 5N C;if Cjn E{fl # (0 but C; ¢ Effl. Moreover, we
define sequential morphisms as those which can be expressed, in at least one way, as a
composition of blow-ups verifying the conditions of Definition 2.1.1} In order to study
both sequences of blow-ups and its associated sequential morphisms, we introduce the key
concept of final divisor. Roughly speaking, an irreducible exceptional component FE; is
final with respect to a sequence of blow-ups (Z, ..., Zp, 7) if there exists an open set U; on
Z;, with EZ C U;, such that the restriction of the composition ;41 0m;120...0ms_1 07|y,
is an isomorphism (F; is final with respect to a sequential morphism if it is final for one
of the sequences of blow-ups that realize it). Some quite natural question arises when
dealing with final divisors: Given a sequential morphism 7 : Z — Z; is it possible for
two irreducible exceptional components E; and E; to be final with E; N E; # 07 And in
this case, which type of proximity relation could exist between them? Moreover, what
is the geometric structure of E; N E; when E; is final?, and is it possible to exploit this
structure and give a characterization of final divisor in terms of some relations defined
over the Chow group of zero-cycles of its sky Ag(Zs)?

We answer the first three ones in the general setting, that is considering general smooth
centers C;, with dim(C;) > 0. In Theorem we prove that it can exists two final
divisors E; and E;, with E; N E; # (), but in this case proximity relations are quite
restrictive, that is either F; — E; and Ej AN FE; or vice versa. Moreover, regarding the

geometric structure of E; N E; when E; is final, we prove in Proposition that if
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dim(C;) > 1 then either (e; +e;) - e; or e; - e; equals the pull-back of a Weil divisor in
AY(C;), and e - e; is equivalent to the hyperplane class g; € A*(E;) otherwise.

In the case of sequences of point blow-ups defined over both algebraically closed fields
and perfect fields, we introduce two equivalence relations with classification purposes:
the algebraic equivalence and the combinatorial one, for both sequences of blow-ups and
its associated sequential morphisms. Previous to this, in the particular case where the
base field k is perfect, then in order to consider different fields K, with k C K C k, we
define combinatorially and algebraically compatible partitions of the exceptional divisors

(see Definitions [4.1.4] [4.1.5] 4.1.7| and [4.1.8). Whereas the algebraic equivalence has to

deal with the existence of certain isomorphism, the combinatorial one is related to the
existences of certain permutations preserving the proximity relations an the intersection
numbers.

Moreover, we give a positive answer to the fourth question proposed above, that is
in Propositions [3.2.4] and [£.3.I] we characterize final divisor in terms of some relations
defined over the Chow group of zero-cycles of its sky Ay(Zs). By using these results, we
are able to recover the sequence of point blow-ups, modulo algrebaic equivalence, from

the associated sequential morphism, and prove Theorems [3.4.7] [3.4.5] [£.5.8] [£.5.5] which

relate the algebraic and combinatorial equivalence classes of sequences of blow-ups with
the corresponding ones of sequential morphisms.

Finally, we give two explicit presentations of the Chow ring of the sky of a sequence of
point blow-ups using the strict and the total transforms of the irreducible exceptional
components in Theorems and and come to a surprising result, that is two
sequences of point blow-ups of the same length have isomorphic Chow rings (see Corollary

35.5).

In the case of sequences of point and rational curve blow-ups with dim(Z;) = 3, we
also give a positive answer to the question related to characterize final divisors in terms
of some relations defined over the Chow group of zero-cycles of its sky in Theorem
Moreover, we give an explicit presentation of the Chow ring of its sky A®(Z;) by
considering the total transform of the irreducible components of the exceptional divisor
as generators, and to which we have to add the total transforms of a generic fiber of the
associated projective bundles (see Corollary . As a result, we prove in Corollary
that there exists an important difference with respect to the sequences of point
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blow-ups, that is, two sequences of point and rational curve blow-ups of the same length

and even with the same proximity relations may not have isomorphic Chow rings.

As a general conclusion, the surprising result of independency on the geometry of the
point centers of a sequential morphism, seems to be not easy to extend for cases of centers
of higher dimensions. Even for blow-ups of few rational curves or points in dimension 3,
the geometry of the centers is influent for the Chow ring as shown in Chapter [} The
basic example in Chapter 5] shows how, in fact, the geometry of the exceptional divisor of
the blow-up of a smooth rational curve in P? of degree v > 4 depends on its embedding
in P? and not only on the numerical value of . Thus, the surprising result looks as a

special result of its kind.
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Index

n-ary multilinear intersection, ground variety,

t—proximity, [4§]
multilinear form, [59]

blow-up,
new curve,
brick blow-up, [62] 18L

) . old curve, 115
compatible partition,

algebraically (sequences of point blow- projective bundle,

ups), proximity, [A§]

algebraically (sequential morphism),
regular projective contraction,

ruled surface, [107]
Hirzebruch surface, [I11]

combinatorially (sequence of point blow-

ups),

combinatorially (sequential morphism),
k5 minimal section, [108

contraction, [51] sequence of blow-ups,

projective, [51] of point blow-ups (k algebraically closed),
regular, [51] Gl
degree, T algebraically equivalent, [63]
combinatorially equivalent, [63]
elementary modification, of point blow-ups (k perfect),
extrinsic, [IT7] algebraically marked,
intrinsic, [T17] algebraically equivalent, [92]
mixed, combinatorially equivalent,

combinatorially marked,
length of,

sequential morphism, [48]

final divisor,
of a sequence of blow-ups,

of a sequential morphism, [50]
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associated to a sequence of point blow-
ups (k algebraically closed),
algebraically equivalent, [62]
combinatorially equivalent, [62]
associated to a sequence of point blow-
ups (k perfect)
algebraically equivalent, [01]
algebraically marked, [90]
combinatorially equivalent,
combinatorially marked, [00]

sky variety, [48]

vector bundle, 2]
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