
Understanding the impact of CUDA tuning
techniques for Fermi

Yuri Torres
Dpto. Informática,

Univ. Valladolid, Spain
Email: yuri.torres@infor.uva.es

Arturo Gonzalez-Escribano
Dpto. Informática,

Univ. Valladolid, Spain
Email: arturo@infor.uva.es

Diego R. Llanos
Dpto. Informática,

Univ. Valladolid, Spain
Email: diego@infor.uva.es

Abstract—While the correctness of an NVIDIA CUDA pro-
gram is easy to achieve, exploiting the GPU capabilities to obtain
the best performance possible is a task for CUDA experienced
programmers. Typical code tuning strategies, like choosing an
appropriate size and shape for the threadblocks, programming
a good coalescing, or maximize occupancy, are inter-dependent.
Moreover, the choices are also dependent on the underlying archi-
tecture details, and the global-memory access pattern of the de-
signed solution. For example, the size and shapes of threadblocks
are usually chosen to facilitate encoding (e.g. square shapes),
while maximizing the multiprocessors’ occupancy. However, this
simple choice does not usually provide the best performance
results. In this paper we discuss important relations between
the size and shapes of threadblocks, occupancy, global memory
access patterns, and other Fermi architecture features, such as
the configuration of the new transparent cache. We present an
insight based approach to tuning techniques, providing lines to
understand the complex relations, and to easily avoid bad tuning
settings.

Index Terms: GPU, Fermi, performance, code tuning

I. INTRODUCTION

Modern graphics processing units, such as new NVIDIA
GPUs, can be used as general purpose architectures with a
large amount of small processing cores. Nowadays, these de-
vices are an important resource for intensive-data computing.

NVIDIA CUDA architecture and its associated parallel
programming model [1], [2] was proposed in order to simplify
the encoding of parallel, general-purpose applications, on
heterogeneous systems with GPUs devices. Although the first
steps with CUDA are easy, due to its reduced primitives set, it
remains a difficult task to tune the code to efficiently exploit
the underlying GPU architecture.

Fermi is the NVIDIA’s latest generation of CUDA architec-
ture [3]. Compared with earlier versions, the new architecture
presents significant changes, such as an improved double
precision performance; a transparent cache hierarchy; variable-
size shared memory; and faster atomic operations.

Although a CUDA kernel is ensured to run correctly on
any CUDA device, its global performance can vary greatly
depending on how the code is tailored for a particular CUDA
architecture. Optimizing a parallel GPU code is not a trivial
task. There are several common optimization strategies in
order to make an efficient use of hardware resources (see
e.g. [1]). The details of these hardware-dependent strategies
change with each new architecture release. Therefore, the

programmer should take into account the underlying hardware
design and threading model in order to exploit these strategies
to achieve a good performance.

The CUDA programming model forces the programmer to
divide the original problem into blocks of threads, whose size
and shape should be tailored to the specific processing units
present in the hardware. More specifically, the size and shape
of the threadblock, together with the global memory access
pattern of the threads, affect significantly to the SM occupancy
and the access coalescence.

In this paper we provide new insights into the relationship
between occupancy, threadblock size and shape, Fermi cache
hierarchy configuration, and thread access pattern to global
memory. We show that these factors interact in non-intuitive
ways, and that their understanding is key to exploit GPUs for
best performance.

The rest of the paper is organized as follows. Section II
discusses some related work. Section III presents the Fermi
architecture, highlighting the differences between its predeces-
sors. Section IV shows the tradeoffs between different sizes
and shapes for threadblocks and their relationship with coa-
lescence and occupancy. Section V describes the experimental
environment, the benchmarks used and their access patterns.
Section VI discusses the experimental results obtained, while
Section VII concludes the paper.

II. RELATED WORK

Tuning strategies to improve performance, such as Coa-
lescing, Prefetching, Unrolling and Occupancy maximization,
are introduced in classical CUDA text books, such as [1]. A
typical, intuitive idea is that the best option when choosing
the threadblock size is to try to maximize the multiprocessors
Occupancy to hide latencies when accessing global device
memory. However, there is no discussion about how the size
and shape of the threadblocks are related to other tuning
techniques and how their may affect global performance.

In [4] the authors not only discuss the different tuning
strategies, but also show how the hardware resources usage is
critical for Occupancy and performance. However, the entire
study has been focused on a pre-Fermi architecture.

Focusing on Fermi, a description of how the cache memory
helps to take advantage of data locality at run time is presented
in [5]. However, the cache makes performance very hard to



predict, and dependent on algorithm parameters. The authors
study a particular case, adjusting automatically the shared
memory and the amount of data assigned to threads to optimize
the execution. The paper does not depend on the different
cache memory effects that appear when the global memory
access pattern is not perfectly coalesced. General trends, and
performance effects related with the threadblock size and
shape are not discussed.

Regarding hardware metrics, several metrics related to
hardware architecture and workload problems are presented
in [6]. They help to predict more accurately the performance
of CUDA kernel codes. In addition, they present the Ocelot’s
transaction infrastructure, where several low-level optimiza-
tions are automatized.

An optimizing compiler for GPGPU programs is presented
in [7]. They propose compiler techniques to generate memory
coalesced code. However, they only work with the same one
naive matrix multiplication problem, and one memory access
pattern. The only variable in the optimized code is the matrix
size.

Other authors (see e.g. [8], [9]), have developed compilers
that transform easy and high level input specifications to
optimized CUDA code. The input code is annotated by the
programmer, and translated to an optimized CUDA code using
pre-Fermi state-of-the-art tuning techniques. In [10] the author
introduces models in order to provide a methodology for
predicting execution time of GPU applications, identifying
and classifying the major factors that affect both, single
and multiple-GPU environments. Nevertheless, none of these
works relate their results to the critical choice of size and shape
of threadblock. So far, there is a lack of literature about specific
optimization and tuning problems for the Fermi architecture.
The new two-level cache memory hierarchy, incorporated by
this architecture, introduce new behaviors, not yet studied, in
the execution of CUDA kernels.

Our work focuses on new Fermi architecture problems. We
introduce key points and strategies to choose an appropriate
size and shape for the threadblock depending on the global
memory access pattern. Furthermore, we expose factors related
to the threadblock choice and the configuration of the cache
memory hierarchy, which may lead to thrashing and bandwidth
bottleneck problems.

III. FERMI ARCHITECTURE

Fermi is NVIDIA’s latest generations of CUDA architec-
ture [3], [11]. It was launched early on 2010. The main
changes introduced by Fermi architecture are: Transparent
L1 and L2 cache hierarchy, increased shared memory size,
ECC support, faster atomic operations, and improved double
precision support. Anyway, to make a good parameter setting
and code tuning, the programmer must take into account some
features described in the following sections.

Table I shows a summary of several architecture parame-
ters that have been modified in the new Fermi architecture.
Before Fermi arrival, each SM only had 16 KB of shared
memory to be addressed explicitly by the programmer, without

any transparent cache memory. Fermi introduces a two-level
transparent cache memory hierarchy. Each SM has 64 KB of
on-chip memory, divided into shared memory and transparent
L1 cache. The programmer may choose between two config-
urations: 48 KB of shared memory and 16 KB of L1 cache
(the default option), or 16 KB of shared memory and 48 KB
of L1 cache memory. Besides this, the L1 cache memory can
be deactivated.

Previously, the memory transaction segment sizes were
variable (32, 64, and 128 bytes). Depending on the amount
of memory needed and the memory pattern access (scatter-
ing or contiguous data in memory), the segment size was
automatically selected to avoid wasted bandwidth. In Fermi
architecture, the memory transaction segment sizes are deter-
mined as follows: When L1 cache memory is enabled, the
hardware always issues segment transactions of 128 bytes, the
cache-line size; otherwise, 32 bytes segment transactions are
issued. Finally, the Fermi architecture currently defines a non-
configurable, 768 KB L2 cache.

A frequent problem in pre-Fermi architectures is the par-
tition camping problem [12]. Partition camping is a fairy
common problem, mostly because the number of memory
controllers in these architectures are always power of two,
and programmers tend to allocate arrays whose sizes per
dimension are also a power of two. In Fermi architecture, the
partition camping problem is alleviated due to the existence of
a L2 cache, thus reducing the number of repetitive, conflicting
access to DRAM. Moreover, current Fermi cards present a
DRAM divided into five or six banks, and the alignment
described above is less frequent.

IV. CHOOSING THE THREADBLOCK SIZE AND SHAPE

A key decision in CUDA programming is the choice of
the size and shape of the threadblock. The cardinalities of the
three different dimensions of each block must be defined on
each CUDA kernel launch. For a given problem encoding, the
different threadblock sizes and shapes can significantly affect
the overall code performance.

A. Threadblock size and Occupancy

Fermi architecture supports at most 1 024 threads per
threadblock, 1 536 threads per multiprocessor, and eight

Parameter pre-Fermi Fermi
SPs (per-SM) 8 32
Registers (per-SM) 16 KB 32 KB
Max. number of threads (per-SM) 1024 1536
Max. number of threads (per-block) 512 1024
Warp size 32 32
Warp scheduler Single Dual
Shared memory banks (per-SM) 16 32
L1 cache (per-SM) - 0/16/48 KB
L2 cache - 764 KB
Global memory banks 8 6
Size of global memory transaction 32/64/128 Bytes 32/128 Bytes

TABLE I
SUMMARY OF CUDA ARCHITECTURE PARAMETERS



blocks simultaneously scheduled per multiprocessor. The most
widespread and intuitive threadblock choice criterion aims
to maximize Occupancy. For example, 8 × 8 and 16 × 16
threadblocks will produce different SM Occupancy. With 8×8
blocks, each block will have 64 threads, and we will need
1 536/64 = 24 blocks in a SM to reach its maximum number
of threads. However, the limit of eight blocks per SM prevent
to achieve maximum occupancy. On the other hand, 16 × 16
blocks lead to 256 threads per block. Since 1 536/256 = 6,
maximum Occupancy is obtained with six blocks per SM.
Recall that the number of threads per blocks should be multiple
of 32, to avoid idle processors when executing a warp.

The reasoning explained above implies: (1) The number of
threads per block should be an integer divisor of the maximum
number of threads per SM (1 536 in Fermi); (2) The number
of threads per block should be multiple of 32 to fill up warps
(32 threads), but also big enough to generate no more than 8
blocks per SM (no less than 1 536/8 = 192 threads per block).
Nevertheless, more threads imply more use of SM’s resources
(registers and shared memory addresses). If resources are
exhausted, not all the expected threadblocks may be scheduled
to the same SM, thus reducing Occupancy. Remind that Fermi
introduces new SM resource sizes, and that shared memory
and transparent L1 cache sizes may also be configured by the
programmer, adding a degree of freedom.

Finally, it is remarkable that not only the size, but the
shape of the threadblock in 2- or 3-dimensional problems, is
an important tuning parameter. In general, there are several
combinations of dimension sizes with the same number of
threads. Maximum Occupancy may be achieved with different
shapes, see discussion of Fig. 1 in section VI. The usual form
of coding coalescing is to use the global thread indexes to
directly access the corresponding matrix elements. In these
cases, shapes with less than 32 columns compromise coalesc-
ing. Thus, the last dimension of the threadblock shape should
be a multiple of 32; the warp size.

B. Coalescing and cache hierarchy

One of the most important and common optimization strate-
gies in order to leverage the hardware resources is Coalescing.
This technique aims to maximize global memory bandwidth
usage, by reducing the number of bus transactions. Coalescing
is obtained by forcing threads with adjacent global indexes in
a block to request contiguous data from global memory. In this
way, a single segment transfer can transport up to 32 requests
of integer or float elements when L1 cache is active. Reducing
bus transactions is critical to improve performance, since
warps are blocked until their memory requests are solved.

When the code uses a perfectly coalescent global memory
access pattern, the best threadblock size is intuitively one that
maximizes Occupancy. However, the algorithm may not lead
to a clear Coalescing pattern by itself, and/or rewriting the
CUDA kernel to improve Coalescing may be too expensive.
In these situations both L1 and L2 transparent caches may
help to solve the situation. Nevertheless, if the pattern does not

exploit some regularity and proximity, cache misses degrade
performance.

Continuous cache-failure, evicting useful cache lines to
store new ones, is known as cache-thrashing. When global
memory access patterns are not coalesced, and the memory
accesses do not reuse the same cache lines, the cache-failures
number is quickly increased. Therefore both, L1 and L2
cache memories, suffer the cache-thrashing effect. Moreover,
in Fermi architecture, cache-thrashing does not only leads to
lose the beneficial performance effect related to cache-lines
reutilization. When many different cache lines are requested
simultaneously, the global memory bandwidth may be an
important bottleneck. These combined effects can introduce
significant delays in the program execution.

Sometimes, changing the configuration of the transparent L1
cache size, increasing its size to 48 KB, may help to alleviate
the problem. Nevertheless, this increase in cache also means
a reduction of the manually addresses shared-memory to 16
KB, that may lead to a reduction of Occupancy in some cases.
Codes that heavily rely on global-memory accesses, with small
use of shared-memory, and good reutilization of cached data,
are candidates for this configuration change.

On the other hand, Fermi L1 cache may be disabled by the
programmer. In that case, the size of the segment transactions
is decreased form 128B to 32B. When only one data element
is used per transaction segment (like in many non-coalesced
and random global memory access patterns), smaller segments
reduce the transfer time, and global-memory bandwidth bot-
tleneck. New programmers are used to transparent caches
that, even in thrashing situations, do not hinder the overall
performance. In Fermi, they need to be aware that disabling L1
cache is a powerful and simple tuning technique for codes with
sparse global-memory accesses. Not disabling it may produce
an important slowdown.

V. DESIGN OF EXPERIMENTS

In this sections we present experiments devised to verify
the performance effects discussed in the previous section. Al-
though we focus on 2-dimensional problems and threadblock
shapes, results may be extrapolated to 3-dimensional cases. We
use as working examples the following problems: (1) Copy of
random elements of a matrix to another matrix; (2) matrix
addition; (3) two matrix multiplication algorithms.

The first problem simulates run-time or data-dependent
memory access patterns (such as those associated to graph
algorithms). We have developed a simple code in which each
thread computes two random indexes, and copies the element
in that position from matrix A to matrix B. There are as
many threads as matrix elements. Due to the random choice
of indexes, several positions are copied by different threads,
while some others are not copied. Several similar codes have
been developed and tested for one-dimensional vectors, finding
the same results discussed on the next section. the same results
discussed bellow.

We have selected as second benchmark a matrix addition
(C = A + B) algorithm. It presents a very simple global



````````Rows
Columns 1 2 4 8 16 32 64 128 256 512 1024

1 11058.98 6947.53 4179.44 2279.51 1223.05 653.31 393.02 348.15 354.68 411.52 *
2 7071.43 4130.58 2296.95 1230.77 655.25 392.73 348.24 353.67 411.41 * -
4 4072.45 2292.78 1244.79 655.47 393.31 348.37 352.98 410.99 * - -
8 2239.78 1231.08 657.29 393.39 348.8 353.1 411.26 * - - -

16 1207.69 652.23 394.05 349.08 353.68 411.27 * - - - -
32 649.39 391.78 349.82 354.46 411.86 * - - - - -
64 390.88 348.32 354.86 412.22 * - - - - - -

128 346.73 352.73 412.63 * - - - - - - -
256 352.01 410.91 * - - - - - - - -
512 409.31 * - - - - - - - - -

1024 * - - - - - - - - - -

TABLE II
EXECUTION TIME (MS.) OF PROGRAM WITH RANDOM ACCESS PATTERN, USING DIFFERENT THREADBLOCK SHAPES.

memory access pattern, with no reutilization of the same
matrix element on different threads. Each thread is associated
with a particular matrix position. This implies three global
memory accesses per thread (two reads and one write).

Our third benchmark algorithm is matrix multiplication
(C = A×B). We have tested two implementations. The first
one is very simple and straightforward for a non-experienced
programmer. Each thread is associated with a single C po-
sition, and computes the dot product of a row of matrix A,
and a column of matrix B. The global memory access pattern
is complex, and inefficient. There is also reutilization of data
between threads in the same block. Thus, it is interesting for
our study of code tuning properties. We also consider a second
more sophisticated implementation using an iterative block
product, using tuning techniques such as coalesced copy of
matrix blocks to local shared memory before computing.

The programs have been tested for different combinations of
square- and rectangular-shaped threadblocks. The experiments
have been conducted with integer and float matrices. In this
work we present results for the integer matrices experiments.
As the storage size of both types is the same, the effects on
the memory hierarchy, are similar. Float matrices experiments

simply present slightly higher execution times due to the extra
computation cost associated to the floating point operations.

We use matrices with 6144 rows and columns. This size
is small enough to allocate three matrices in the global
memory of the GPU device. The dimensions of the matrices
are multiples of the threadblock shapes considered in this
study, and the number of global memory banks. Thus, matrix
accesses on any threadblock are always aligned with the matrix
storage, generating the same access pattern.

The experiments have been run on an Nvidia GeForce GTX
480 device. The CUDA toolkit version used is 3.0. The host
machine is an Intel(R) Core(TM) i7 CPU 960 3.20GHz, 64
bits compatible, with a global memory of 6 GB DDR3. It runs
an UBUNTU desktop 10.4 (64 bits) operative system.

We present performance measures, considering only the
total execution time of the kernel functions in the GPU,
presented in milliseconds. We skip initialization, and CPU–
GPU communication times. The results show the mean of three
executions. Deviations are fairly low, as discussed bellow for
each application.

1.00

0.33

0.17

0.67

0.58

0.50

0.33

0.17

(a) Matrix addition and multiplication (b) Copy random positions

1

2

4

8

16

32

64

128

256

1024

512

1

2

4

8

16

32

64

128

256

1024

512

1 2 4 8 16 32 25
6

12
8

64 10
24

51
2

1 2 4 8 16 25
6

12
8

64 10
24

51
2

32

ro
w

s

ro
w

s

columns columns

Fig. 1. Occupancy of our benchmark programs for different threadblock shapes



````````Rows
Columns 1 2 4 8 16 32 64 128 256 512 1 024

1 261.1 145.9 87.1 58.7 43.8 36.4 33.2 32 32.03 32.1 33.07
2 155.07 92.5 61.01 45.6 37.1 33.3 32.1 31.8 31.8 33.05 -
4 103.28 66.12 48.09 38.79 33.63 31.98 31.93 31.91 33.08 - -
8 77.42 53.49 41.97 35.27 32.3 31.85 31.94 33.36 - - -

16 65.97 47.76 37.93 33.75 32.21 31.93 33.62 - - - -
32 58.22 44.13 36.94 33.3 32.48 33.43 - - - - -
64 56.28 43.27 37.17 34.12 34.34 - - - - - -

128 66.9 48.35 39.83 38.03 - - - - - - -
256 73.19 53.05 43.91 - - - - - - - -
512 81.05 56.94 - - - - - - - - -

1 024 98.23 - - - - - - - - - -

a) Execution time (ms.)

````````Rows
Columns 1 2 4 8 16 32 64 128 256 512 1 024

1 124 124 124 124 124 124 48 96 144 144 96
2 48 48 48 48 48 48 96 144 144 96 -
4 96 96 96 96 96 96 144 144 96 - -
8 192 192 192 192 192 144 144 96 - - -

16 288 288 288 288 288 144 96 - - - -
32 288 288 288 288 288 96 - - - - -
64 192 192 192 192 192 - - - - - -

128 384 384 384 384 - - - - - - -
256 768 768 768 - - - - - - - -
512 1 536 1 536 - - - - - - - - -

1 024 3 072 - - - - - - - - - -

b) Theoretical number of cache lines requested by a block

TABLE III
MATRIX SUM: EXECUTION TIME, AND CACHE LINES REQUESTED PER SM, FOR DIFFERENT SHAPES OF 2-DIMENSIONAL THREADBLOCKS.

VI. EXPERIMENTAL RESULTS

In this section we discuss the experimental results. We
explain the performance effects, how they relate to Fermi
hardware details, and the delicate choice of the size and shape
of the threadblocks. We also introduce simple ideas to avoid
the counter-intuitive situations that may appear when using the
new Fermi architecture, and to find appropriate threadblock
settings for good performance.

A. Occupancy

As discussed in section IV different multi-dimensional
threadblock shapes have the same number of threads per block,
and lead to the same occupancy of the SMs. Figure 1 shows the
occupancy reported by the CUDA profiler for our benchmark
programs. The pattern on the diagonals clearly indicates the
shapes with the same number of threads. The matrix addition
and multiplication programs do not use enough resources
(registers, shared memory, etc.) to produce a reduction of
Occupancy due to resource exhaustion. Indeed, the left plot in
Fig. 1 shows the maximum Occupancy that may be achieved
by any CUDA kernel, for the threadblock shapes considered
in our study. The plot on the right, shows the occupancy of
the program with the random-access pattern. The occupancy
reduction is produced by the amount of registers used by
the algorithm implemented to generate the random indexes.
Blocks with 1024 threads lead to occupancy 0, because the
SM registers are exhausted even for a single block.

B. Random pattern for memory accesses

Table II presents the execution times of the program with
random memory accesses. The first observation is the bad
performance for the threadblock shapes with light gray num-
bers. These blocks are too small, with not enough threads
to fill up even a single warp. Thus, inner SM parallelism
is not exploited. The performance is greatly reduced when
approaching the upper-left corner of the table. These small
block shapes should not be considered as a choice by the
programmer.

The second observation is that the execution times for
shapes in the same diagonals is practically the same. The
deviation of the results on several executions is in the order of
one millisecond. In programs where the memory access pattern
is random, and with no possibility of exploiting coalescing or
data reutilization, the performance is directly related to the
Occupancy. We can conclude that, in absence of a defined
memory access pattern, the best strategy is to maximize
occupancy, focusing on the number of threads, and not in the
shape of 2- or 3-dimensional blocks.

The random global accesses of this program imply con-
tinuous cache misses, one for each memory transaction. De-
activating the transparent L1 cache reduces the size of the
transaction segment from 128 bytes to 32 bytes, alleviating
the global memory bandwidth bottleneck. The deactivation of
the L1 cache simply improves the performance results shown,
without losing the occupancy-performance relation discussed.



````````Rows
Columns 1 2 4 8 16 32 64 128 256 512 1024

1 867 208 432 212 215 609 107 867 53 982 27 015 13 766 7 780 6 237 6 502 7 935
2 433 990 216 378 107 948 53 970 27 016 13 592 7 154 5 856 5 874 7 212 -
4 217 653 108 544 54 162 27 076 13 609 7 269 6 155 6 337 7 352 - -
8 109 559 54 653 27 277 13 669 7 328 6 163 6 431 7 990 - - -

16 74 759 38 522 18 448 12 316 7 313 6 348 8 638 - - - -
32 112 494 56 336 28 248 14 267 6 550 8 355 - - - - -
64 126 553 63 547 30 550 14 730 8 123 - - - - - -

128 166 618 73 826 31 344 11 856 - - - - - - -
256 184 812 80 330 28 562 - - - - - - - -
512 190 406 69 624 - - - - - - - - -

1024 194 297 - - - - - - - - - -

a) Execution time (ms.)

````````Rows
Columns 1 2 4 8 16 32 64 128 256 512 1024

1 - - - - - 379 429 512 520 503 488
2 - - - - 329 202 252 264 252 244 -
4 - - - 365 195 212 341 298 123 - -
8 - - 366 179 349 355 365 64 - - -

16 - 3 538 186 154 936 351 37 - - - -
32 4 294 4 294 3 635 1 831 797 30 - - - - -
64 4 294 4 294 3 829 1 811 45 - - - - - -

128 4 294 4 294 3 843 195 - - - - - - -
256 4 294 4 294 3 615 - - - - - - - -
512 4 294 4 294 - - - - - - - - -

1024 4 294 - - - - - - - - - -

b) Number of global load misses in L1 cache (in millions)

TABLE IV
MATRIX MULTIPLICATION: EXECUTION TIME, AND CACHE LINES REQUESTED PER SM, FOR DIFFERENT SHAPES OF 2-DIMENSIONAL THREADBLOCKS.

C. Matrix addition

The program exploits Coalescing, with a memory access
pattern where threads in the same warp access contiguous
global memory positions. Each matrix element is requested
and used only once, and no reutilization may be exploited.

Table III(a) shows the execution times obtained for this
program. We can observe performance changes in the same
diagonal (shapes with the same occupancy). Execution times
clearly increase on the left of the table, when the threadblock
shape have less than 32 columns. Remind that cache-lines on
Fermi have 128 bytes, enough size for 32 integer elements.
Blocks with less than 32 columns are requesting a full cache-
line for each row of threads, but they are not using all the data
in the cache-line. It is straightforward to relate the performance
results obtained to the theoretical number of cache lines
requested by a block. See Tab. III(b).

D. Matrix multiplication

Table IV(a) shows the performance obtained for the naive
matrix multiplication program. The deviation of the mea-
surements is in the order of milliseconds. We have already
discussed the bad performance on the upper-left corner of
the table, where small blocks with non-full warps lead to
poor inner parallelism in the SMs. And also the performance
degrading effect associated with block shapes with less than
32 columns. However, we observe some relevant differences
on the execution times found in the same diagonal, for blocks
with more than 32 columns.

In this benchmark, a straight-forward implementation lead
to access A by rows, while B is accessed by columns. Each
thread computes a dot product of a row of A, and a column
of B, storing the corresponding C element at the end. A
elements are reused by all threads with the same row index,
and B elements by all threads with the same column index.
Coalescing is exploited on A and C accesses, although the
impact of the small number of C accesses is very small. The
performance of this program is ruled by the non-coalesced
accesses to B elements. The L1 cache helps. Elements of B
are reused by other threads in the same column of the block,
during different iterations of the dot product. The key of the
performance of this program is to avoid cache-thrashing, in
order to keep B elements in cache until all threads in the
same block-column have used them.

With the delicate deal of cache misses produced by A, B,
and C accesses, it is difficult to model the cache behavior for
the full computation. Table IV(b) shows the number of global
load misses (in millions), as reported by the CUDA visual
profiler. The relation of the load misses and the performance
is clear on the right part of the table. We can see how the best
performance results are obtained for threadblocks of 2× 128
and 2× 256 threads, where we find the minimum number of
cache misses, and maximum occupancy.

It is remarkable the big amount of cache misses, and the
bad performance obtained for shapes with only one row. In
these blocks, the B elements are not reused, because there is
only one thread on each block with the same column index.



We also notice effects derived from partition camping on the
global memory banks. Each global memory bank has lines of
256 bytes. Thus, the requests of two consecutive cache-lines
of 128 bytes (32 consecutive integer elements), are camping
for the same global-memory bank. L2 cache helps to minimize
the impact of this effect, for cache-lines requested many times
due to L1 cache misses. Some other stochastic effects derived
from scheduling, and L1/L2 cache reutilization across different
blocks, slightly modify the final execution times.

Experiments with other non-naive matrix multiplication
implementations have been also conducted, finding always
the same relations on performance, occupancy, and cache-
misses. A proper choice of the threadblock shape may achieve
a good exploitation of the L1 cache, producing the same
performance effects as explicitly encoding coalesced copies
of global memory blocks to local shared memory, before
computing block products.

E. Discussion

The conclusion is that it is easy to identify the threadblock
sizes and shapes which produce maximum occupancy. For
shapes that produce maximum occupancy, performance is
related to the number of global memory transactions, repre-
sented in Fermi by cache misses. Due to the 128B cache-
line size, the maximum performance is obtained for shapes
with at least 32 columns when accessing integer or float
elements. Deriving a complete cost model is really difficult, as
cache hierarchy behavior is complicate to predict. However,
even for this narrowed search space, it is not so difficult
to relate performance with conceptually simple measures of
cache requests and elements reutilization.

It is interesting to notice that many matrix computations are
implemented with square blocks for code simplicity. However,
square blocks lead to threadblock shapes that are not good
candidates for best performance. Moreover, focusing only on
square-shaped blocks, the programmer may miss the important
relation of performance and cache-misses on the rest of the
possible shapes with the same number of threads.

The different threadblock sizes and shapes have an impor-
tant interaction with the cache, and the global memory access
patterns. Thus, this is the first decision to take when facing a
kernel tuning. Other tuning techniques should be applied after
selecting an appropriate threadblock, considering the insight
provided about the interactions with the GPU architecture
model, and in particular, the memory hierarchy.

VII. CONCLUSION

Writing efficient CUDA codes is demanding, because the
programmer need to know the underlying architecture spec-
ifications. Fermi architecture incorporates a two-level cache
hierarchy, introducing new parameters on the optimization
procedure. Although caches behavior is difficult to predict,
they help the programmer who understands its constraints and
advantages.

First, CUDA programmers should use known tuning tech-
niques to reduce the number of resources used by a thread-
block, in order to obtain the maximum occupancy possible

for any block size. The threadblock shape is a key choice, as
occupancy and shape present a predefined relationship.

Since cache-misses clearly determine the overall perfor-
mance results, the global memory access pattern is the key to
performance. Coalescing, a somewhat mystic CUDA tuning
technique, is easily understood in Fermi when thinking in
terms of cache-lines accesses. CUDA programs use the thread
and block indexes to create global memory access patterns.
Thus, it is straightforward to relate the threadblock shape to
both, the cache-misses and the occupancy. We have also found
that a good shape choice may derive on an efficient use of the
L1 cache, even for the non-coalesced access patterns, avoiding
the need to program explicit copies of the global memory to
the shared memory. Our results also indicate that codes using
square-blocks, such as many typical matrix computations, are
not exploiting efficiently the multicore devices.

Understanding all these relationships and interactions leads
to a more systematic approach to code tuning, and greatly
simplifies the optimization procedure and decisions.

ACKNOWLEDGMENTS

This research is partly supported by the Ministerio de
Educación y Ciencia, Spain (TIN2007-62302), Ministerio
de Industria, Spain (TSI-020302-2008-89, CENIT MARTA,
CENIT OASIS, CENIT OCEANLIDER), Junta de Castilla y
León, Spain (VA094A08), and the HPC-EUROPA2 project
(project number: 228398) with the support of the European
Commission - Capacities Area - Research Infrastructures Ini-
tiative.

REFERENCES

[1] D. B. Kirk and W. W. Hwu, Programming Massively Parallel Proces-
sors: A Hands-on Approach. Morgan Kaufmann, Feb. 2010.

[2] NVIDIA, NVIDIA CUDA ProgrammingGuide 3.0 Fermi, 2010.
[3] NVIDIA, “Fermi Architecture Home Page,” Last visit: August 2, 2010,

http://www.nvidia.com/object/fermi\ architecture.html.
[4] S. Ryoo, C. I. Rodrigues, S. S. Baghsorkhi, S. S. Stone, D. B. Kirk,

and W. W. Hwu, “Optimization principles and application performance
evaluation of a multithreaded GPU using CUDA,” in Proc. PPoPP ’08,
Salt Lake City, UT, USA, 2008, pp. 73–82.

[5] C. Z. Xiang Cui, Yifeng Chen and H. Mei, “Auto-tuning dense matrix
multiplication for GPGPU with cache,” in Proc. ICPADS’2010, Shang-
hai, China, Dec. 2010, pp. 237–242.

[6] A. Kerr, G. Diamos, and S. Yalamanchili, “Modeling GPU-CPU work-
loads and systems,” in Proc. GPGPU’10, Pittsburg, PA, USA, Apr. 2010.

[7] Y. Yang, P. Xiang, J. Kong, and H. Zhou, “An optimizing compiler
for GPGPU programs with input-data sharing,” in Proc. PPoPP ’10,
Bangalore, India, 2010, pp. 343–344.

[8] A. Leung, N. Vasilache, B. Meister, M. M. Baskaran, D. Wohlford,
C. Bastoul, and R. Lethin, “A mapping path for multi-GPGPU acceler-
ated computers from a portable high level programming abstraction,” in
Proc. GPGPU’10, Pittsburgh, PA, USA, Mar. 2010, pp. 51–61.

[9] M. Wolfe, “Implementing the PGI accelerator model,” in Proc.
GPGPU’10, Pittsburg, PA, USA, 2010, pp. 43–50.

[10] D. Schaa, “Modeling execution and predicting performance in multi-
GPU environments,” in Electrical and Computer Engineering Master’s
Theses. Boston, Mass: Department of Electrical and Computer Engi-
neering, Northeastern University, 2009.

[11] NVIDIA, “Tuning CUDA Applications for Fermi,” 2010,
http://developer.download.nvidia.com/compute/cuda/3 1/toolkit/docs/
NVIDIA FermiTuningGuide.pdf, Last visit: Jul 2010.

[12] P. M. Greg Ruetsch, “Nvidia optimizing matrix transpose in cuda,”
http://developer.download.nvidia.com/compute/cuda/3 0/sdk/website/
CUDA/website/C/src/transposeNew/doc/MatrixTranspose.pdf, Jun.
2010, Last visit: Dec 2, 2010.


