
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/220717656

Exclusive squashing for thread-level speculation

Conference Paper · June 2011

DOI: 10.1145/1996130.1996172 · Source: DBLP

CITATIONS

2
READS

23

3 authors, including:

Diego R. Llanos

University of Valladolid

163 PUBLICATIONS 951 CITATIONS

SEE PROFILE

Arturo Gonzalez-Escribano

University of Valladolid

149 PUBLICATIONS 836 CITATIONS

SEE PROFILE

All content following this page was uploaded by Diego R. Llanos on 05 February 2016.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/220717656_Exclusive_squashing_for_thread-level_speculation?enrichId=rgreq-3a90ecb1e19b1be81930bea55e41704a-XXX&enrichSource=Y292ZXJQYWdlOzIyMDcxNzY1NjtBUzozMjU4MDA3MjIyMjMxMDZAMTQ1NDY4ODM1MzkxOA%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/220717656_Exclusive_squashing_for_thread-level_speculation?enrichId=rgreq-3a90ecb1e19b1be81930bea55e41704a-XXX&enrichSource=Y292ZXJQYWdlOzIyMDcxNzY1NjtBUzozMjU4MDA3MjIyMjMxMDZAMTQ1NDY4ODM1MzkxOA%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-3a90ecb1e19b1be81930bea55e41704a-XXX&enrichSource=Y292ZXJQYWdlOzIyMDcxNzY1NjtBUzozMjU4MDA3MjIyMjMxMDZAMTQ1NDY4ODM1MzkxOA%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Diego-Llanos-3?enrichId=rgreq-3a90ecb1e19b1be81930bea55e41704a-XXX&enrichSource=Y292ZXJQYWdlOzIyMDcxNzY1NjtBUzozMjU4MDA3MjIyMjMxMDZAMTQ1NDY4ODM1MzkxOA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Diego-Llanos-3?enrichId=rgreq-3a90ecb1e19b1be81930bea55e41704a-XXX&enrichSource=Y292ZXJQYWdlOzIyMDcxNzY1NjtBUzozMjU4MDA3MjIyMjMxMDZAMTQ1NDY4ODM1MzkxOA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University-of-Valladolid?enrichId=rgreq-3a90ecb1e19b1be81930bea55e41704a-XXX&enrichSource=Y292ZXJQYWdlOzIyMDcxNzY1NjtBUzozMjU4MDA3MjIyMjMxMDZAMTQ1NDY4ODM1MzkxOA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Diego-Llanos-3?enrichId=rgreq-3a90ecb1e19b1be81930bea55e41704a-XXX&enrichSource=Y292ZXJQYWdlOzIyMDcxNzY1NjtBUzozMjU4MDA3MjIyMjMxMDZAMTQ1NDY4ODM1MzkxOA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Arturo-Gonzalez-Escribano?enrichId=rgreq-3a90ecb1e19b1be81930bea55e41704a-XXX&enrichSource=Y292ZXJQYWdlOzIyMDcxNzY1NjtBUzozMjU4MDA3MjIyMjMxMDZAMTQ1NDY4ODM1MzkxOA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Arturo-Gonzalez-Escribano?enrichId=rgreq-3a90ecb1e19b1be81930bea55e41704a-XXX&enrichSource=Y292ZXJQYWdlOzIyMDcxNzY1NjtBUzozMjU4MDA3MjIyMjMxMDZAMTQ1NDY4ODM1MzkxOA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University-of-Valladolid?enrichId=rgreq-3a90ecb1e19b1be81930bea55e41704a-XXX&enrichSource=Y292ZXJQYWdlOzIyMDcxNzY1NjtBUzozMjU4MDA3MjIyMjMxMDZAMTQ1NDY4ODM1MzkxOA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Arturo-Gonzalez-Escribano?enrichId=rgreq-3a90ecb1e19b1be81930bea55e41704a-XXX&enrichSource=Y292ZXJQYWdlOzIyMDcxNzY1NjtBUzozMjU4MDA3MjIyMjMxMDZAMTQ1NDY4ODM1MzkxOA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Diego-Llanos-3?enrichId=rgreq-3a90ecb1e19b1be81930bea55e41704a-XXX&enrichSource=Y292ZXJQYWdlOzIyMDcxNzY1NjtBUzozMjU4MDA3MjIyMjMxMDZAMTQ1NDY4ODM1MzkxOA%3D%3D&el=1_x_10&_esc=publicationCoverPdf

Exclusive Squashing for Thread-Level Speculation

Alvaro García-Yágüez
Dpto. de Informática

Univ. de Valladolid, Spain
alvarga87@gmail.com

Diego R. Llanos
Dpto. de Informática

Univ. de Valladolid, Spain
diego@infor.uva.es

Arturo
González-Escribano

Dpto. de Informática
Univ. de Valladolid, Spain
arturo@infor.uva.es

ABSTRACT

Speculative parallelization is a runtime technique that op-
timistically executes sequential code in parallel, checking
that no dependence violations appear. In this paper, we
address the problem of minimizing the number of threads
that should be restarted when a data dependence violation
is found. We present a new mechanism that keeps track of
inter-thread dependencies in order to selectively stop and
restart offending threads, and all threads that have con-
sumed data from them. Results show a reduction of 38.5%
to 81.8% in the number of restarted threads for real appli-
cation loops and up to a 10% speedup, depending on the
amount of local computation.

Categories and Subject Descriptors

D.1.3 [Concurrent programming]: Parallel programming

General Terms

Experimentation

Keywords

Loop-based Parallelization, Speculative Parallelization.

1. BACKGROUND
Speculative parallelization (SP), also called Thread-Level

Speculation (TLS) or Optimistic Parallelization [4] assumes
that sequential code can be optimisticallly executed in par-
allel, and relies on a runtime monitor to ensure that no de-
pendence violations are produced. A dependence violation
appears when a given thread generates a datum that has
already been consumed by a successor in the original se-
quential order. In this case, the results calculated so far by
the successor (called the offending thread) are not valid and
should be discarded. Early proposals [3, 5] stop the paral-
lel execution and restart the loop serially. Other proposals
stop the offending thread and all its successors, re-executing
them in parallel [1, 2].

Our contribution keeps track of inter-thread dependencies,
restarting only threads which are known to have consumed
values from the offending thread. We have implemented this
solution upon a state-of-the-art, software-based speculative
parallelization scheme, and evaluate it with five different
applications that present non-analyzable loops at compile
time.

Copyright is held by the author/owner(s).
HPDC’11, June 8–11, 2011, San Jose, California, USA.
ACM 978-1-4503-0552-5/11/06.

2. HANDLING DEPENDENCE VIOLATIONS
If a dependence violation occurs, the runtime monitor

should decide what to do with the parallel execution. This
lead us to a design space for squashing policies that can be
resumed in the following alternatives: (1) Stop parallel exe-
cution, simply discarding the parallel work done so far and
restarting the loop serially; (2) Stop and restart the offend-
ing thread and all its successors (we call this alternative “in-
clusive squashing”); (3) Only stop the offending threads, and
recursively, successors that have consumed any speculative
variable generated by them (we call it“exclusive squashing”);
and (4) to keep track of the dependence graph of every sin-
gle speculative variable being read or written to squash only
those threads that have consumed wrong values (“perfect
squashing”). In this paper we have implemented an exclu-
sive squashing mechanism, comparing its behaviour with an
implementation of inclusive squashing described in [1]. As
far as we know, this is the first working proposal of exclusive
squashing in the bibliography.

3. EXCLUSIVE SQUASHING MECHANISM
Our exclusive mechanism extends a previous inclusive pro-

posal [1] with a boolean W ×W matrix called consumer list
that keeps track of inter-thread dependences. Therefore,
once a violation dependence arises it is possible to selectively
decide whether a thread should be restarted or not.
With the aim of explaining the general behavior of this

new solution, Fig. 1 shows an execution example. Assuming
we have W running threads, a possible sequence of events
will be:

1. Thread W speculatively loads element D3 from the
speculative structure (event 1.1 in the figure). As none
of its predecessors have accessed the value yet, datum
D3 would be forwarded from the reference value. Af-
terwards thread 2 loads the same element D3 forward-
ing it from the reference value (event 1.2).

2. Thread 2 speculatively writes element D1 to the spec-
ulative structure (event 2). After writing the new
value, thread 2 searches for dependence violations (not
shown). None of its successors have used that datum
yet so no squashes are performed.

3. Thread 3 speculatively loads element D1. To do so, it
searches backwards to find the most up-to-date value
available. Thread 2 has the value, so thread 3 writes
in consumer list[3][2] to mark that it will consume a

...

...

...

...

...

...

...
...

...

...

...

...

...

...

Dx has been speculatively written (Update state)

Dx has been speculatively loaded (ExpLd state)Dx

Dx

window

non_spec

1 W

most_spec

RUN

1

5.1

5.1

SQUASH SQUASH
32

RUN RUN RUN

4
SQUASH

RUN

W

5.2

Thread 4 Thread W

D3

Thread 3

D1

3.2Thread 2

D12

D3

3.1

D34

Thread 1

local versionsglobal

D1

D2

D3

DMM

1

1.1

1.2

3

ref

2

consumer list

1

2

3

W

1 2 3 4 W

X

Figure 1: Execution example (see text). AM data
structure is not shown for simplicity.

value from thread 2 (event 3.1). After that, thread 3
forwards datum D1 from thread 2 (event 3.2).

4. Thread 1 speculatively writes element D3 (event 4).

5. After writing the value, thread 1 starts the search for
potential dependence violations. Since thread 2 have
consumed the value, a squash operation takes place.
Firstly (event 5.1), it squashes all threads that have
incorrectly consumed the value D3 (in our example,
threads 2 and W). Then, it looks at the consumer list
columns that correspond to slots owned by squashed
threads, looking for any thread that has consumed a
value from them. In our example (event 5.2), thread 3
is also squashed, and its consumer list column is also
checked. No additional squashes are performed.

6. This squash operation generates three bubbles in the
sliding window, that will be assigned in order to the
three threads that have been squashed (not shown).

In this example an inclusive squashing would produce
W − 1 re-executions while exclusive squahing only restarts
three threads. Note that thread 2 and thread W have been
squashed because they have consumed an incorrect value.
However, we have also squashed thread 3 because it has
consumed value D1 from thread 2. This value D1 may be
indeed correct, but to ensure this point it is neccessary a
perfect squashing policy, an operation that we consider too
costly.

4. EXPERIMENTAL RESULTS
We have evaluated our solution with five different appli-

cations. The first three applications have non-analyzable
loops that do not suffer from dependence violations at run-
time. From the PERFECT Club Benchmark suite, we have
chosen accel_10 from TREE, muldeo_200 and muldoe_200

from MDG. From SPECfp2000 benchmark, we have selected

interf_1000 fromWUPWISE. The results show a slowdown
that reaches 11.6% for TREE and as 16.2% for WUPWISE,
comparing with the inclusive mechanism. In MDG both
schemes perform equally well.
We have also evaluated two applications that present a

high number of dependence violations: The construction of
the two-dimensional Convex Hull (2D-Hull); and the con-
struction of the two-dimensional Delaunay Triangulation (2D-
DT). In 2D-Hull, exclusive squashing mechanism leads to a
38.5% reduction in the number of squashes for 16 proces-
sors. 2D-DT reaches a reduction of 81.83% in the number
of squashes. However, these reductions are not noticeable
in terms of speedup. In the case of 2D-Hull, any change in
the solution being processed will invalidate sooner or later
the work of all successors, making the inclusive policy more
practical. In the case of 2D-DT, the application spends a
small time in local computations comparing to the global-
data accesses. We have overloaded the main loop with addi-
tional local computation, increasing the sequential iteration
time by 10×, 23× and 41× factors. For these overloaded
versions, the exclusive squashing mechanism improves the
inclusive scheme by 7.7% to 10.0% in terms of speedup.

5. SUMMARY
Our experimental results with exclusive squashing show a

reduction in the number of squashes ranging from 10% for
4 threads up to 85% for 16 threads. We have also found
that the usefulness of this mechanism in terms of speedup
heavily depends on the cost associated to discard potentially
valid work. Our current work in this field is to extend the
spectrum of applications evaluated to further support this
claim.

Acknowledgments

The authors would like to thank Dr. Marcelo Cintra and Dr.
Belén Palop for many helpful discussions on this topic. This
research is partly supported by the Ministerio de Educación
y Ciencia, Spain (TIN2007-62302) and Junta de Castilla y
León, Spain (VA094A08). Part of this work was carried
out under the HPC-EUROPA2 project (project number:
228398), with the support of the European Community -
Research Infrastructure Action of the FP7.

6. REFERENCES

[1] Cintra, M., and Llanos, D. R. Toward efficient and robust
software speculative parallelization on multiprocessors. In
PPoPP 2003 (San Diego, CA, USA, 2003), ACM, pp. 13–24.

[2] Dang, F., Yu, H., and Rauchwerger, L. The R-LRPD
test: speculative parallelization of partially parallel loops. In
IPDPS ’02 (2002).

[3] Gupta, M., and Nim, R. Techniques for speculative
run-time parallelization of loops. In ACM/IEEE Conf. on
Supercomputing (San Jose, CA, 1998), pp. 1–12.

[4] Kulkarni, M., Pingali, K., Walter, B.,

Ramanarayanan, G., Bala, K., and Chew, L. P.

Optimistic parallelism requires abstractions. In ACM PLDI
’07 (San Diego, CA, USA, 2007), ACM, pp. 211–222.

[5] Rauchwerger, L., and Padua, D. The LRPD test:
speculative run-time parallelization of loops with
privatization and reduction parallelization. In ACM PLDI
’95 (La Jolla, CA, USA, 1995), pp. 218–232.

View publication stats

https://www.researchgate.net/publication/220717656

