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que me han acompañado en todo mi proceso de crecimiento en el mundo de las
matemáticas.
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matemáticas desde que era pequeño. Gracias por aguantarme y apoyarme siempre,
en especial en mi labor docente. Quiero agradecer a mi abuela Sonsoles, todo el
cariño que me ha dado, y que me da, y sus ganas de que la cuente lo que hago,
aunque no siempre lo entienda. Además, quiero acordarme de mi t́ıo Luis que de
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Introducción

La presente memoria trata principalmente de varios problemas en el contexto de
las clases ultraholomorfas en sectores no acotados de la superficie de Riemann
del logaritmo, a saber: resultados de estabilidad en estas clases bajo algunas
operaciones estándar; nuevos resultados de sobreyectividad para la aplicación de
Borel asintótica en el caso de las clases ultraholomorfas de Carleman, definidas
en términos de una sucesión peso; y la existencia de operadores de extensión li-
neal, inversas por la derecha para la aplicación de Borel. Como subproducto, que
surge de la detección de una nueva condición que garantiza la sobreyectividad de
la aplicación de Borel en sectores adecuadamente estrechos, se puede abordar un
problema de momentos de Stieltjes modificado en espacios generales de Gelfand-
Shilov definidos por sucesiones peso.

El primer caṕıtulo consta de toda la información preliminar necesaria para
introducir los espacios y los problemas que se estudiarán. En particular, se recopila
la información básica estándar sobre sucesiones peso, funciones peso y matrices
peso para su uso posterior, junto con algunos métodos, ya clásicos, para pasar de
una sucesión peso a una función peso, y de esta última a una matriz peso. Además,
se analizan varios ı́ndices de O-variación regular, asociados con sucesiones peso
o funciones peso, ya que jugarán un papel destacado al determinar la apertura
ĺımite, para sectores en la superficie de Riemann del logaritmo, por debajo de la
cual nuestros resultados de sobreyectividad y de extensión serán válidos.

Describimos ahora con más detalle los resultados obtenidos en la tesis, y comen-
zamos con los contenidos del segundo caṕıtulo. En la literatura se pueden encontrar
con frecuencia las llamadas clases ultradiferenciables, tanto en el sentido de Carle-
man como de Braun-Meise-Taylor, cuyos elementos son funciones indefinidamente
derivables definidas sobre subconjuntos abiertos de Rn (o posiblemente gérmenes
en un punto) de manera que el ritmo de crecimiento de sus derivadas sucesivas esté
controlado (excepto por un factor geométrico) en términos de una sucesión dada
de números reales positivos en el primer caso, o en términos de (valores obtenidos
a partir de) una función peso dada en el segundo uno. Además, dependiendo de la
elección de un cuantificador universal o existencial para el factor geométrico en las
estimaciones, se pueden considerar clases tipo Beurling o tipo Roumieu en ambas
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situaciones. El estudio de la estabilidad bajo inversas (o división) en este con-
texto tiene una larga historia, véanse los trabajos de W. Rudin [66], J. Bruna [8]
y J. A. Siddiqi [75], y también se ha estudiado la composición en el trabajo de
C. Fernández y A. Galbis [21]. Recientemente, la introducción por parte de G.
Schindl [69, 70] de clases asociadas a una matriz peso, que engloban estrictamente
las clases mencionadas anteriormente, les ha llevado a él y a A. Rainer [59, 60] a la
caracterización de la estabilidad bajo diferentes operaciones en términos de condi-
ciones para la matriz peso considerada, dando aśı una solución general satisfactoria
a estos problemas.

En relación con la teoŕıa asintótica de soluciones para ecuaciones diferenciales
y en diferencias alrededor de puntos singulares en el dominio complejo, es natural
considerar el análogo en el dominio complejo de tales clases, generalmente llamadas
clases ultraholomorfas. Estas contienen funciones holomorfas en regiones sectoria-
les en la superficie de Riemann del logaritmo (se supone que el punto singular está
en 0, el vértice de la región) cuyas derivadas admiten nuevamente estimaciones
adecuadas de tipo Roumieu en términos de una sucesión de números reales posi-
tivos, que en las aplicaciones suele ser una sucesión de Gevrey (p!a)p∈N0 para algún
a > 1 (N0 = {0, 1, 2, . . . }). El estudio de las propiedades de estabilidad en tales
clases es bien conocido en el caso Gevrey, ver el libro de W. Balser [1], pero ya en
1987 M. Ider y J. A. Siddiqi [76] estudiaron la estabilidad bajo composición con
funciones anaĺıticas y bajo inversión para clases generales de Carleman-Roumieu
en sectores no acotados que no sean más amplios que un semiplano. El primer
objetivo de esta disertación es ampliar sus resultados en varios sentidos: (1) con-
sideramos clases de Roumieu definidas por matrices peso, incluyendo en nuestras
consideraciones aquellas de tipo Carleman y aquellas definidas por una función
peso, como en el entorno ultradiferenciable; (2) podemos tratar con clases definidas
en sectores de apertura arbitraria en la superficie de Riemann del logaritmo, y (3)
ampliamos la lista de propiedades de estabilidad, incluida la de cierre por com-
posición. Es importante señalar que, en el caso de clases dadas por una función
peso, la condición de que esta función sea equivalente a una función peso cóncava,
lo que equivale a la propiedad de casi crecimiento de las ráıces para la matriz peso
asociada, juega un papel fundamental en las propiedades de estabilidad.

Las principales novedades surgen de dos fuentes diferentes. Por un lado, las
técnicas propias del trabajo con matrices peso permiten una mejor comprensión
de las condiciones que suelen aparecer en dichos resultados de estabilidad, y pro-
porcionan una manera clara de establecer resultados para el caso de sucesiones
peso y funciones eso. De hecho, nuestros resultados ampĺıan los conocidos para las
clases de Carleman y coinciden, en el ĺımite cuando la apertura del sector tiende
a 0, con los de las clases ultradiferenciables en un semieje. Por otro lado, las prin-
cipales afirmaciones se basan en gran medida en la construcción de las llamadas
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funciones caracteŕısticas en las clases ultraholomorfas de Carleman-Roumieu en
sectores de apertura arbitraria. Estas funciones son aquellas de una clase que no
pueden pertenecer a una clase estrictamente contenida en la original y, por lo tanto,
son en cierto sentido maximales dentro de la clase. Mientras que Ider y Siddiqi
sólo obtuvieron tales funciones en sectores adecuadamente estrechos, el trabajo de
B. Rodŕıguez Salinas [65] proporciona de hecho los datos clave para trabajar en
sectores generales, y esto a su vez es crucial para nuestros propósitos.

Para las clases ultraholomorfas introducidas en la Sección 2.1, mostramos cómo
construir funciones caracteŕısticas en la Sección 2.2. Los resultados de estabilidad
para clases asociadas con matrices peso se dan en la Sección 2.3, y la Sección 2.4
está dedicada a su particularización para el caso de clases inducidas por una función
peso. Presentamos también en la Sección 2.5 algunos ejemplos, incluidos los de las
clases Gevrey y q-Gevrey, para ilustrar los resultados obtenidos. Cabe mencionar
que los resultados sobre estabilidad discutidos hasta ahora han sido publicados en
un trabajo conjunto con J. Jiménez-Garrido, J. Sanz y G. Schindl [29].

En la última sección de este caṕıtulo nos centramos en problemas similares
para las clases correspondientes tipo Beurling. La propiedad de estabilidad bajo
composición debe adaptarse adecuadamente, y establecerse convenientemente la
condición que caracterizará la conservación de la estabilidad. Sin embargo, la prin-
cipal diferencia en las técnicas y los resultados se debe a la falta en este marco
de funciones que puedan desempeñar un papel similar al que desempeñan las fun-
ciones caracteŕısticas en el caso Roumieu. Dado que sólo para sectores no más
amplios que un semiplano tenemos una familia conveniente (de hecho, compuesta
de exponenciales) disponible para nuestros argumentos, nuestros resultados sólo
considerarán tales sectores. Además, esta familia es perfectamente apropiada para
la aplicación de resultados de la teoŕıa de álgebras de Fréchet multiplicativamente
convexas que llevan a la solución.

El tercer caṕıtulo contiene nuestros resultados sobre la sobreyectividad de la
aplicación de Borel, y la existencia de inversas por la derecha para la misma, en
clases ultraholomorfas de Carleman en sectores no acotados de la superficie de
Riemann del logaritmo. La aplicación de Borel asintótica env́ıa una función, que
admite un desarrollo asintótico en una región sectorial, a la serie de potencias for-
mal que proporciona dicho desarrollo. En muchos problemas dentro de la teoŕıa
asintótica para ecuaciones diferenciales ordinarias meromorfas en puntos singulares
irregulares en el dominio complejo, es importante decidir sobre la inyectividad
y sobreyectividad de esta aplicación cuando se considera entre las clases ultra-
holomorfas de Carleman-Roumieu y la clase correspondiente de series formales,
definidas restringiendo el crecimiento de algunos de los datos caracteŕısticos de sus
elementos (las derivadas de las funciones, los restos del desarrollo o los coeficientes
de la serie) en términos de una sucesión peso dada M = (Mp)p∈N0 de números
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reales positivos (ver Subsección 3.1 para la definición de tales clases). La inyec-
tividad ha sido completamente caracterizada para regiones sectoriales y sucesiónes
peso generales, ver los trabajos de S. Mandelbrojt [46], B. Rodŕıguez-Salinas [64]
y J. Jiménez-Garrido, J. Sanz y G. Schindl [33]. Sin embargo, el problema de la
sobrejetividad aún está en estudio.

El teorema clásico de Borel-Ritt-Gevrey de B. Malgrange y J.-P. Ramis [63],
que resuelve el problema para el caso de los desarrollos de tipo Gevrey (para el
cual M = (p!α)p∈N0 , α > 0), fue parcialmente extendido a diferentes situaciones
más generales por J. Schmets y M. Valdivia [74], V. Thilliez [79, 80], J. Sanz [68],
J. Jiménez-Garrido, J. Sanz y G. Schindl [33, 37] y A. Debrouwere [14, 15]. Re-
sumiendo, cuando empezamos a estudiar este problema se sab́ıa que la condición
de no casianaliticidad fuerte, abreviada (snq), para M , y que equivale al hecho de
que el ı́ndice γ(M) introducido por V. Thilliez sea positivo, es de hecho necesaria
para la sobreyectividad. Además, para un sector no acotado Sγ de apertura πγ
(γ > 0) en la superficie de Riemann del logaritmo y para sucesiones peso regulares
en el sentido de E. M. Dyn’kin [20] –aquellas que satisfacen la condición de cierre
por derivación, es decir, Mp+1 ≤ C0H

p+1Mp para todo p ∈ N0 y ciertos C0 > 0 y
H ≥ 1–, la aplicación de Borel es sobreyectiva siempre que γ < γ(M), mientras
que no lo es para γ > γ(M ) (la situación para γ = γ(M ) todav́ıa no está clara en
general). Aqúı, γ(M ) es un ı́ndice de crecimiento para la sucesión M introducido
por V. Thilliez [80] para sucesiones fuertemente regulares y posteriormente estu-
diado por J. Jiménez-Garrido, J. Sanz y G. Schindl [34] para cualquier sucesión
peso. Es importante señalar que la prueba conocida de la sobreyectividad en esta
situación no era constructiva, sino que se basaba en la caracterización, mediante
técnicas abstractas de análisis funcional, de la sobreyectividad de la aplicación
de momentos de Stieltjes en espacios de Gelfand-Shilov definidos por sucesiones
regulares debida a A. Debrouwere [14]. Esta información se transfirió al contexto
asintótico en un semiplano mediante la transformada de Fourier, y las transfor-
madas anaĺıticas de Laplace y Borel de orden arbitrario permitieron concluir para
sectores generales, ver [37]. Sin embargo, en el caso particular de clases dadas
por sucesiones fuertemente regulares en el sentido de V. Thilliez, la prueba de
sobreyectividad de la aplicación de Borel [80] descansa en la construcción de fun-
ciones planas óptimas en sectores adecuados y una doble aplicación de resultados
de extensión tipo Whitney. Posteriormente, A. Lastra, S. Malek y J.Sanz [42]
probaron de nuevo la sobreyectividad de una manera más expĺıcita mediante una
transformada formal de Borel y otra de Laplace truncadas, definidas a partir de
funciones núcleo adecuadas obtenidas a partir de funciones planas óptimas.

El primer objetivo de este caṕıtulo es construir funciones planas óptimas para
clases ultraholomorfas de Carleman-Roumieu definidas por sucesiones peso gene-
rales (no solo para las fuertemente regulares) y en sectores Sγ con γ < γ(M ).
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La idea clave proviene de un trabajo reciente de D. N. Nenning, A. Rainer y G.
Schindl [51], donde estudiaron el problema mixto de Borel en clases ultradiferen-
ciables de Beurling. Estos autores consideran una condición mixta inspirada en
otra relacionada (ver (3.15)) y que aparece en un art́ıculo de M. Langenbruch [41].
Resulta que la condición de Langenbruch es, bajo hipótesis naturales, equivalente
al hecho de que γ(M) > 1, y es crucial para construir funciones planas óptimas en
un semiplano mediante la clásica extensión armónica de la función asociada ωM .
Un proceso de ramificación proporciona entonces funciones planas óptimas en la
situación general.

En segundo lugar, para clases ultraholomorfas definidas por sucesiones regu-
lares, obtenemos la sobreyectividad de la aplicación de Borel proporcionando una
técnica constructiva para los operadores de extensión locales correspondientes, in-
versos por la derecha lineales y continuos para la aplicación de Borel cuando actúa
sobre espacios de Banach adecuados dentro de nuestras clases, en la misma ĺınea
que en [42]. En aras de la exhaustividad, en el caso de sucesiones fuertemente regu-
lares damos también un enfoque alternativo, basado en el trabajo de J. Bruna [9].

Para resaltar la potencia de esta técnica en situaciones concretas, también pre-
sentamos una familia de sucesiones (no fuertemente) regulares para las cuales se
pueden proporcionar funciones planas óptimas en cualquier sector de la superfi-
cie de Riemann del logaritmo (lo que concuerda con la hecho de que el ı́ndice
γ(M ) es en este caso igual a ∞), basándose en estimaciones precisas para la
función asociada ωM en lugar de apelar a su extensión armónica. Observamos
que las sucesiones clásicas q-Gevrey se encuentran entre estos ejemplos. Termi-
namos mostrando cómo se pueden obtener funciones planas óptimas y resultados
de extensión para sucesiones convolucionadas, en caso de que las sucesiones fac-
tores admitan tales construcciones por separado. Se comentan algunos ejemplos
al respecto de esta técnica. Los resultados presentados hasta este punto en este
caṕıtulo han aparecido en un trabajo conjunto con J. Jiménez-Garrido, J. Sanz y
G. Schindl [28].

El objetivo principal de la Sección 3.5 es proponer una nueva condición para la
sucesión peso, mucho más débil que la condición de cierre de derivación incluida en
la definición de sucesión peso regular, y que aún permita la obtención de teoremas
de Borel-Ritt en nuestro marco de manera constructiva. Decimos que M = (Mp)p
tiene momentos desplazados, (sm) para abreviar, si existen C0 > 0 y H > 1 tales
que

log

(
mp+1

mp

)
≤ C0H

p+1, p ∈ {0, 1, 2, . . . },

donde mp = Mp+1/Mp. Resulta que, siempre que γ(M) > 0, (sm) equivale a la
equivalencia de M+1 := (Mp+1)p y la sucesión de momentos de Stieltjes para un
núcleo e(z) = G(1/z) definido a partir de una función plana óptima G en la clase
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definida por M . Bajo esta condición débil, es posible adaptar las transformadas
formal de Borel y de Laplace truncada para hacer que nuestra técnica funcione y
obtener operadores de extensión locales y, por lo tanto, la sobreyectividad, de la
aplicación de Borel para clases de Roumieu.

Respecto al caso Beurling, A. Debrouwere [14, Th. 7.4] caracterizó por primera
vez la sobreyectividad de la aplicación asintótica de Borel en un semiplano para
sucesiones regulares, y más tarde resolvió completamente el problema para de-
sarrollos asintóticos no uniformes, y proporcionó operadores de extensión globales
para γ < γ(M ) en el caso de estimaciones uniformes, véase [15]. Presentaremos en
la Sección 3.6.1 una técnica diferente para tratar el problema para clases con esti-
maciones uniformes, siguiendo las mismas ideas que en el caso de Roumieu [37], que
se basan en el uso de transformadas integrales de Borel y de Laplace ramificadas.
Para hacer esto, necesitamos probar el Teorema 3.6.2, que mejora ligeramente
un resultado de J. Schmets y M. Valdivia [74] (Teorema 3.6.1 en este trabajo)
y la implicación (i) ⇒ (iii) del resultado antes mencionado de A. Debrouwere
(Teorema 3.6.4 en este trabajo). Finalmente, la nueva condición (sm) también
es válida para demostrar la sobreyectividad para clases de Beurling siempre que
0 < γ < γ(M ), gracias a una técnica de J. Chaumat y A. M. Chollet [11] ya
aplicada por V. Thilliez [80, Th. 3.4.1] para sucesiones fuertemente regulares. Es
importante mencionar que, bajo la condición (sm) y tanto en el caso Roumieu
como en el Beurling, no podemos determinar la longitud del intervalo de sobreyec-
tividad, formado por los valores γ > 0 para los que la aplicación de Borel es
sobreyectiva para la clase definida en Sγ, a diferencia de lo que ocurre cuando se
supone satisfecha (dc). En otras palabras, a partir de la sobreyectividad para Sγ

y suponiendo (sm) no somos capaces de deducir que γ ≤ γ(M ).
El último caṕıtulo contiene una nueva contribución al estudio del problema

de momentos de Stieltjes en el contexto de los espacios de Gelfand-Shilov de
tipo Roumieu definidos por sucesiones peso, presentados por primera vez en su
libro [24]. El problema de momentos tiene una larga tradición que se remonta al
trabajo fundamental de T. J. Stieltjes [77]. En 1939, R. P. Boas [5] y G. Pólya [57]
demostraron de forma independiente que, para cada sucesión (cp)

∞
p=0 de números

complejos, existe una función F de variación acotada tal que∫ ∞

0

xpdF (x) = cp, p ∈ N0 = {0, 1, 2, . . .}.

Este resultado fue mejorado por A. J. Durán [18] en 1989, quien demostró cons-
tructivamente que, para cada sucesión (cp)p∈N0 de números complejos, el sistema
infinito de ecuaciones lineales

µp(φ) :=

∫ ∞

0

xpφ(x)dx = cp, p ∈ N0, (1)
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admite una solución φ ∈ S(0,∞), el subespacio del espacio de Schwartz de fun-
ciones complejas indefinidamente derivables y de decrecimiento rápido en R y con
soporte en [0,∞) (este resultado también se puede deducir mediante un breve
argumento no constructivo a través del teorema de Eidelheit [49, Thm. 26.27]).

Dadas dos sucesiones de números reales positivos M = (Mp)p∈N0 y A =

(Ap)p∈N0 , consideramos los espacios de Gelfand-Shilov de tipo Roumieu S{A}
{M}(0,∞)

y S{M}(0,∞), que constan de todas las funciones φ ∈ S(0,∞) tales que existe
h > 0 con

sup
p,q∈N0

sup
x∈R

|xpφ(q)(x)|
hp+qMpAq

<∞

y

sup
p∈N0

sup
x∈R

|xpφ(q)(x)|
hpMp

<∞ por cada q ∈ N0,

respectivamente. Está claro que S{A}
{M}(0,∞) ⊂ S{M}(0,∞), y que para cada

φ ∈ S{M}(0,∞) la sucesión de momentos de Stieltjes (µp(φ))p∈N0 está bien definida
y tiene un crecimiento restringido. En caso de que M sea cerrada por derivación,
es fácil comprobar que la sucesión de momentos pertenece a la clase Λ{M} =

{(cp)p∈N0 : supp∈N0

|cp|
hpMp

< ∞ para algún h > 0}. El problema de momentos de

Stieltjes estándar en este contexto consiste entonces en el estudio de la sobreyec-
tividad e inyectividad de la aplicación de momentos de Stieltjes M, que env́ıa φ en
(µp(φ))p∈N0 , cuando se define en S{A}

{M}(0,∞) o en S{M}(0,∞) y con rango Λ{M}.
La sobreyectividad se ha estudiado en una serie de art́ıculos, siempre basándose

en ideas de A. L. Durán y R. Estrada [19] que combinan la transformada de Fourier
con teoremas tipo Borel-Ritt propios del análisis asintótico, ver S.-Y. Chung,
D. Kim y Y. Yeom [13, Thm. 3.1] para M = (p!α)p∈N0 (las sucesiones de Gevrey)
siempre que α > 2, y A. Lastra y J. Sanz [43, 44] para S{(p!Mp)p}(0,∞) y suce-
siones fuertemente regulares M cuyo ı́ndice de crecimiento γ(M ) es estrictamente
mayor que 1. Posteriormente, A. Debrouwere, J. Jiménez-Garrido y J. Sanz [16]

mejoraron y completaron estos resultados incluyendo los espacios S{(p!Ap)p}
{(p!Mp)p}(0,∞)

en sus consideraciones, suprimiendo algunas hipótesis sobre M (especialmente la
de crecimiento moderado, más fuerte que el cierre por derivación), y estudiando
también la inyectividad de la aplicación de momentos de Stieltjes. Las nuevas
herramientas clave fueron una mejor comprensión del significado de las diferentes
condiciones de crecimiento generalmente impuestas a la sucesión M y su expresión
en términos de ı́ndices de O-variación regular, como se desarrolló en [34], y la infor-
mación mejorada obtenida en [33] acerca de la inyectividad y sobreyectividad de la
aplicación asintótica de Borel en clases ultraholomorfas de Carleman-Roumieu en
sectores y definidas por sucesiones M sujetas a condiciones mı́nimas. Finalmente,
A. Debrouwere [14] caracterizó completamente la sobreyectividad y la existencia
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de inversas por la derecha globales para la aplicación de momentos en espacios de
Gelfand-Shilov de tipo Roumieu o Beurling bajo cierre por derivación. Su técnica
no se basa en teoremas tipo Borel-Ritt, sino que relaciona el problema con la so-
breyectividad y existencia de inversas por la derecha globales para la aplicación
de Borel en clases ultradiferenciables de Carleman, ya caracterizadas por H.-J.
Petzsche [52].

El objetivo principal de este último caṕıtulo es el estudio del problema del
momento de Stieltjes en un nuevo marco, que permite considerar de forma natural
un espacio de llegada más grande para la aplicación de momentos. La motivación
proviene de la introducción de la condición (sm), mucho más débil que el cierre por
derivación, en los resultados anteriores de tipo Borel-Ritt. El hecho clave es que
(sm) caracteriza la equivalencia de M+1 := (Mp+1)p y la sucesión de momentos de
Stieltjes de la función núcleo e(z) (que aparece en una transformada de Laplace
truncada), lo que hace que el procedimiento funcione. Entonces, se vuelve natural
(ver Proposiciones 4.2.2 y 4.2.3) cambiar el espacio de llegada a uno más grande,
Λ{M+1}, y estudiar nuevamente la inyectividad y la sobreyectividad en este nuevo
escenario. Como la técnica in [14] no parece ser de aplicación, hemos recuperado la
técnica in [44], apoyándonos en la construcción de inversas por la derecha locales
para la aplicación de momentos. Esto requiere un estudio cuidadoso de la acción
de la transformada de Fourier bajo esta nueva condición (sm) (Proposición 4.1.10),
y la adaptación de algunos resultados auxiliares que ya fueron útiles en situaciones
anteriores.

Hemos podido caracterizar la inyectividad de la aplicación de momentos de
Stieltjes bajo la condición (sm) en el Teorema 4.2.6, mientras que el Teorema 4.2.7
estudia el problema de sobreyectividad y su conexión con la existencia de inversas
por la derecha locales para M con un escalado uniforme del parámetro que define
los espacios de Banach bajo consideración.



Introduction

The present dissertation deals mainly with several problems in the framework
of ultraholomorphic classes in unbounded sectors of the Riemann surface of the
logarithm, namely: stability results of these classes under some standard oper-
ations; new surjectivity results for the asymptotic Borel mapping in the case of
Carleman ultraholomorphic classes, defined in terms of a weight sequence; and the
existence of linear extension operators, right inverses for the Borel mapping. As
a by-product, emanating from the detection of a new condition guaranteeing the
surjectivity of the Borel mapping in suitably narrow sectors, a modified Stieltjes
moment problem can be dealt with in general Gelfand-Shilov spaces defined by
weight sequences.

The first chapter consists of all the preliminary information needed in order to
introduce the spaces and problems under study. In particular, the standard, basic
information concerning weight sequences, weight functions and weight matrices
is gathered for later use, together with some, by now classical, methods to go
from a weight sequence to a weight function, and from this latter to a weight
matrix. Also, several indices of O-regular variation, associated with either weight
sequences or weight functions, are discussed, since they will play a prominent role
when determining the limiting opening, for sectors in the Riemann surface of the
logarithm, below which our surjectivity and extension results will be valid.

We describe now in more detail the results obtained in the dissertation, and
start with the contents of the second chapter. In the literature one can frequently
find the so-called ultradifferentiable classes, both in the Carleman and the Braun-
Meise-Taylor sense, whose elements are smooth functions defined on open subsets
of Rn (or possibly germs at a point) such that the rate of growth of their successive
derivatives is controlled (except for a geometric factor) in terms of a given sequence
of positive real numbers in the first case, or in terms of (values obtained from) a
given weight function in the second one. Moreover, depending on the choice of a
universal or existential quantifier for the geometric factor in the estimates, one can
consider Beurling- or Roumieu-like classes in both situations. The study of stability
under inversion (or division) in these frameworks has a long history, see the works
of W. Rudin [66], J. Bruna [8] and J. A. Siddiqi [75], and also composition has been

9
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studied in the work of C. Fernández and A. Galbis [21]. Recently, the introduction
by G. Schindl [69, 70] of classes associated with a weight matrix, which strictly
encompass those classes mentioned before, has led him and A. Rainer [59, 60] to
the characterization of stability under different operations in terms of conditions
for the weight matrix under consideration, so giving a satisfactory general solution
to these problems.

In connection with the asymptotic theory of solutions for differential and dif-
ference equations around singular points in the complex domain, it is natural to
consider the complex analogue of such classes, usually called ultraholomorphic
classes. They consist of holomorphic functions in sectorial regions in the Riemann
surface of the logarithm (the singular point is assumed to be at 0, the vertex of
the region) whose derivatives admit again suitable estimates of Roumieu type in
terms of a sequence of positive real numbers, which in the applications is typically
a Gevrey sequence (p!a)p∈N0 for some a > 1 (N0 = {0, 1, 2, . . . }). The study of
stability properties in such classes is well-known for the Gevrey ones, see the book
of W. Balser [1], but already in 1987 M. Ider and J. A. Siddiqi [76] studied sta-
bility under composition with analytic functions and under inversion for general
Carleman-Roumieu classes in unbounded sectors not wider than a half-plane. The
first aim of this dissertation is to extend their results in several senses: (1) we
consider Roumieu classes defined by weight matrices, so including in our consid-
erations those of Carleman type and those defined by a weight function, as in the
ultradifferentiable setting; (2) we are able to deal with classes defined in sectors of
arbitrary opening in the Riemann surface of the logarithm, and (3) we extend the
list of stability properties, including that of composition closedness. It is important
to note that, in the case of classes given by a weight function, a fundamental role
in the stability properties is played by the condition that this function is equivalent
to a concave weight function, what amounts to the root almost increasing property
for the associated weight matrix.

The main novelties arise from two different sources. On the one hand, the tech-
niques coming with the weight matrix structure allow for a better understanding
of the conditions usually appearing in such stability results, and provide a clear
way to establish results for the weight sequence and weight function approach.
Indeed, our results extend the known ones for Carleman classes, and they match,
in the limit when the opening of the sector tends to 0, with the ones for ultradif-
ferentiable classes on a half-line. On the other hand, the main statements heavily
rest on the construction of so-called characteristic functions in Carleman-Roumieu
ultraholomorphic classes in sectors of arbitrary opening. These functions are those
in a class which cannot belong to a class strictly contained in the original one, and
so are in a sense maximal within the class. While Ider and Siddiqi only got such
functions in suitably narrow sectors, the work of B. Rodŕıguez Salinas [65] provides
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indeed the key facts for working in general sectors, and this is in turn crucial for
our purposes.

For the ultraholomorphic classes introduced in Section 2.1 we show how to
construct characteristic functions in Section 2.2. The stability results for classes
associated with weight matrices are given in Section 2.3, and Section 2.4 is devoted
to their particularization to the case of classes induced by a weight function. We
present also in Section 2.5 some examples, including those of Gevrey and q-Gevrey
classes, in order to illustrate the obtained results. It may be mentioned that the
results about stability discussed so far have been published in a joint work with J.
Jiménez-Garrido, J. Sanz and G. Schindl [29].

In the last section of this chapter we focus on similar problems for the Beurling-
like corresponding classes. The property of stability under composition has to
be suitably adapted, and the characterizing condition for this stability to hold
conveniently stated. However, the main difference in the techniques and the results
is due to the lack in this framework of functions that can play a similar role as
the one played by characteristic functions in the Roumieu setting. Since only for
sectors not wider than a half-plane we have a convenient family (indeed, consisting
of exponentials) available for our arguments, our results will only consider such
narrow sectors. Moreover, this family is perfectly appropriate for the application
of results from the theory of multiplicatively convex Fréchet algebras which yield
the solution.

The third chapter contains our results about the surjectivity of the Borel
mapping, and the existence of right inverses for it, in Carleman ultraholomor-
phic classes in unbounded sectors of the Riemann surface of the logarithm. The
asymptotic Borel mapping sends a function, admitting an asymptotic expansion
in a sectorial region, into the formal power series providing such expansion. In
many problems within the asymptotic theory for meromorphic ordinary differen-
tial equations at irregular singular points in the complex domain, it is important to
decide about the injectivity and surjectivity of this map when considered between
Carleman-Roumieu ultraholomorphic classes and the corresponding class of formal
series, defined by restricting the growth of some of the characteristic data of their
elements (the derivatives of the functions, the remainders in the expansion, or the
coefficients of the series) in terms of a given weight sequence M = (Mp)p∈N0 of
positive real numbers (see Subsection 3.1 for the definition of such classes). The
injectivity has been fully characterized for sectorial regions and general weight
sequences, see the works of S. Mandelbrojt [46], B. Rodŕıguez-Salinas [64] and J.
Jiménez-Garrido, J. Sanz and G. Schindl [33]. However, the surjectivity problem
is still under study. The classical Borel-Ritt-Gevrey theorem of B. Malgrange and
J.-P. Ramis [63], solving the case of Gevrey asymptotics (for which M = (p!α)p∈N0 ,
α > 0), was partially extended to different more general situations by J. Schmets
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and M. Valdivia [74], V. Thilliez [79, 80], J. Sanz [68], J. Jiménez-Garrido, J.
Sanz and G. Schindl [33, 37] and A. Debrouwere [14, 15]. Summing up, when we
started to study this problem it was known that the strong nonquasianalyticity
condition (snq) for M , equivalent to the fact that the index γ(M ) introduced
by V. Thilliez is positive, is indeed necessary for surjectivity. Moreover, for an
unbounded sector Sγ of opening πγ (γ > 0) in the Riemann surface of the loga-
rithm and for regular weight sequences in the sense of E. M. Dyn’kin [20] – those
satisfying derivation closedness, that is, Mp+1 ≤ C0H

p+1Mp for every p ∈ N0 and
some C0 > 0 and H ≥ 1–, the Borel map is surjective whenever γ < γ(M ), while
it is not for γ > γ(M ) (the situation for γ = γ(M ) is still unclear in general).
Here, γ(M ) is a growth index for the sequence M introduced by V. Thilliez [80]
for strongly regular sequences and later studied by J. Jiménez-Garrido, J. Sanz
and G. Schindl [34] for any weight sequence. It is important to note that the
known proof of surjectivity in this situation was not constructive, but rested on
the characterization, by abstract functional-analytic techniques, of the surjectivity
of the Stieltjes moment mapping in Gelfand-Shilov spaces defined by regular se-
quences due to A. Debrouwere [14]. This information had been transferred into the
asymptotic framework in a halfplane by means of the Fourier transform, and in [37]
Laplace and Borel analytic transforms of arbitrary order allowed to conclude for
general sectors. However, in the particular case of classes given by strongly regular
sequences in the sense of V. Thilliez, his proof of surjectivity of the Borel map [80]
rests on the construction of optimal flat functions in suitable sectors and a double
application of Whitney extension results. Subsequently, A. Lastra, S. Malek and J.
Sanz [42] reproved surjectivity in a more explicit way by means of formal Borel- and
truncated Laplace-like transforms, defined from suitable kernel functions obtained
from those optimal flat functions. The first aim in this chapter is to construct such
optimal flat functions for Carleman-Roumieu ultraholomorphic classes defined by
general weight sequences (not just strongly regular ones) and in sectors Sγ with
γ < γ(M ). The key idea comes from a recent work by D. N. Nenning, A. Rainer
and G. Schindl [51], where they have studied the mixed Borel problem in Beurling
ultradifferentiable classes. They consider a mixed condition inspired by a related
one (see (3.15)) appearing in a paper of M. Langenbruch [41]. It turns out that
the condition of Langenbruch is, under natural hypotheses, equivalent to the fact
that γ(M ) > 1, and it is crucial in order to construct optimal flat functions in a
halfplane by means of the classical harmonic extension of the associated function
ωM . A ramification process provides then optimal flat functions in the general
situation.

Secondly, for ultraholomorphic classes defined by regular sequences, we obtain
the surjectivity of the Borel map by providing a constructive technique for the
corresponding local extension operators, linear and continuous right inverses for



INTRODUCTION 13

the Borel map when acting on suitable Banach spaces within our classes, in the
same vein as in [42]. For the sake of completeness, in the case of strongly regular
sequences we also give an alternative approach, based on the work of J. Bruna [9].

In order to highlight the power of the technique in concrete situations, we will
also present a family of (non strongly) regular sequences for which such optimal flat
functions can be provided in any sector of the Riemann surface of the logarithm
(what agrees with the fact that the index γ(M) is in this case equal to ∞),
resting on precise estimates for the associated function ωM instead of appealing
to its harmonic extension. We note that the classical q-Gevrey sequences are
found among these examples. We end by showing how optimal flat functions
and extension results can be obtained for convolved sequences, in case the factor
sequences admit such constructions separately. Some examples are commented
on in regard with this technique. The results presented up to this point in this
chapter have appeared in a joint work with J. Jiménez-Garrido, J. Sanz and G.
Schindl [28].

The main aim of Section 3.5 is to put forward a new condition for weight
sequences, much weaker than the condition of derivation closedness included in
the definition of regular weight sequence, and still allowing for the obtention of
Borel-Ritt theorems in our setting in a constructive way. We say M = (Mp)p has
shifted moments, (sm) for short, if there exist C0 > 0 and H > 1 such that

log

(
mp+1

mp

)
≤ C0H

p+1, p ∈ {0, 1, 2, . . . },

where mp = Mp+1/Mp. It turns out that, whenever γ(M) > 0, (sm) amounts to
the equivalence of M+1 := (Mp+1)p and the sequence of Stieltjes moments for a
kernel e(z) = G(1/z) defined from an optimal flat function G in the class defined
by M . Under this weak condition it is possible to adapt the Borel- and truncated
Laplace-transforms in order to make our technique work and obtain local extension
operators, and so the surjectivity, of the Borel map for Roumieu classes.

Regarding the Beurling case, A. Debrouwere [14, Th. 7.4] first characterized
the surjectivity of the asymptotic Borel map in the right half-plane for regular
sequences, and later on he completely solved the problem for non-uniform asymp-
totics, and provided global extension operators for γ < γ(M ) in the case with
uniform estimates, see [15]. We will present in Section 3.6.1 a different technique
in order to treat the problem for classes with uniform estimates, following the same
ideas as in the Roumieu case [37], which rest on the use of ramified Borel and
Laplace integral transforms. In order to do this, we need to prove Theorem 3.6.2,
which slightly improves both a result of J. Schmets and M. Valdivia [74], The-
orem 3.6.1 in this paper, and the implication (i) ⇒ (iii) of the aforementioned
result of A. Debrouwere (Theorem 3.6.4 in this work). Finally, the new condi-
tion (sm) is also valid in order to prove surjectivity for Beurling classes as long
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as 0 < γ < γ(M ), thanks to a technique of J. Chaumat and A. M. Chollet [11]
already applied by V. Thilliez [80, Th. 3.4.1] for strongly regular sequences. It is
important to mention that, under condition (sm) and both in the Roumieu and the
Beurling cases, we cannot determine the length of the surjectivity interval, con-
sisting of the values γ > 0 such that the Borel mapping is surjective for the class
defined on Sγ, unlike the situation when (dc) is assumed. In other words, from
the surjectivity for Sγ and under (sm) we are not able to deduce that γ ≤ γ(M ).

The last chapter contains a new contribution to the study of the Stieltjes mo-
ment problem in the context of Gelfand-Shilov spaces of Roumieu type defined by
weight sequences, first introduced in their book [24]. The moment problem has a
long tradition that goes back to the seminal work of T. J. Stieltjes [77]. In 1939,
R. P. Boas [5] and G. Pólya [57] independently showed that, for every sequence
(cp)

∞
p=0 of complex numbers, there is a function F of bounded variation such that∫ ∞

0

xpdF (x) = cp, p ∈ N0 = {0, 1, 2, . . .}.

This result was improved by A. J. Durán [18] in 1989, who constructively showed
that, for every sequence (cp)p∈N0 of complex numbers, the infinite system of linear
equations

µp(φ) :=

∫ ∞

0

xpφ(x)dx = cp, p ∈ N0, (2)

admits a solution φ ∈ S(0,∞), the subspace of the Schwartz space of rapidly
decreasing complex smooth functions in R with support in [0,∞) (this result can
also be deduced by a short non-constructive argument via Eidelheit’s theorem [49,
Thm. 26.27]). Given two sequences of positive real numbers M = (Mp)p∈N0 and

A = (Ap)p∈N0 , we consider the Gelfand-Shilov spaces of Roumieu type S{A}
{M}(0,∞)

and S{M}(0,∞), consisting of all φ ∈ S(0,∞) such that there exists h > 0 with

sup
p,q∈N0

sup
x∈R

|xpφ(q)(x)|
hp+qMpAq

<∞

and

sup
p∈N0

sup
x∈R

|xpφ(q)(x)|
hpMp

<∞ for every q ∈ N0,

respectively. It is clear that S{A}
{M}(0,∞) ⊂ S{M}(0,∞), and that for every φ ∈

S{M}(0,∞) the sequence of Stieltjes moments (µp(φ))p∈N0 is well defined and has
a restricted growth. In case M is derivation closed, it is easy to check that the mo-
ment sequence belongs to Λ{M} = {(cp)p∈N0 : supp∈N0

|cp|
hpMp

< ∞ for some h > 0}.
The standard Stieltjes moment problem in this context consists then in the study
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of the surjectivity and injectivity of the Stieltjes moment mapping M, sending
φ to (µp(φ))p∈N0 , when defined on either S{A}

{M}(0,∞) or S{M}(0,∞) and with
range Λ{M}. Surjectivity has been studied in a series of papers, always resting
on ideas of A. L. Durán and R. Estrada [19] that combine the Fourier transform
with Borel-Ritt-like theorems from asymptotic analysis, see S.-Y. Chung, D. Kim
and Y. Yeom [13, Thm. 3.1] for M = (p!α)p∈N0 (the Gevrey sequences) when-
ever α > 2, and A. Lastra and J. Sanz [43, 44] for S{(p!Mp)p}(0,∞) and general
strongly regular sequences M whose growth index γ(M ) is strictly greater than 1.
Subsequently, A. Debrouwere, J. Jiménez-Garrido and J. Sanz [16] improved and

completed these results by including the spaces S{(p!Ap)p}
{(p!Mp)p}(0,∞) in their consider-

ations, by dropping some hypotheses on M (specially moderate growth, stronger
than derivation closedness), and by also studying the injectivity of the Stieltjes
moment mapping. The new key tools were a better understanding of the mean-
ing of the different growth conditions usually imposed on the sequence M and
their expression in terms of indices of O-regular variation, as developed in [34],
and the enhanced information obtained in [33] about the injectivity and surjec-
tivity of the asymptotic Borel mapping on Carleman-Roumieu ultraholomorphic
classes in sectors defined by sequences M subject to minimal conditions. Finally,
A. Debrouwere [14] completely characterized the surjectivity and the existence of
global right inverses for the moment mapping in Gelfand-Shilov spaces of both
Roumieu and Beurling type under derivation closedness. His technique does not
rest on Borel-Ritt-like theorems, but relates the problem to the surjectivity and
existence of global right inverses for the Borel mapping in Carleman ultradifferen-
tiable classes, already characterized by H.-J. Petzsche [52].

The main aim of this final chapter is the study of the Stieltjes moment problem
in a new framework, allowing for a naturally larger target space for the moment
mapping. The motivation comes from the introduction of the condition (sm),
much weaker than derivation closedness, in the previous results of Borel-Ritt type.
The key fact is that (sm) characterizes the equivalence of M+1 := (Mp+1)p and
the Stieltjes moment sequence of the kernel function e(z) (appearing in a trun-
cated Laplace transform), what makes the procedure work. So, it becomes natural
(see Propositions 4.2.2 and 4.2.3) to change the target space into the larger one
Λ{M+1}, and study again the injectivity and surjectivity in this new setting. As
the technique in [14] does not seem to apply, we have recovered the technique
in [44], resting on the construction of local right inverses for the moment map-
ping. This requires a careful study of the action of the Fourier transform under
this new condition (sm) (Proposition 4.1.10), and the adaptation of some aux-
iliary results which were already useful in previous frameworks. We are able to
characterize the injectivity of the Stieltjes moment mapping under condition (sm)
in Theorem 4.2.6, while Theorem 4.2.7 studies the surjectivity problem and its
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connection to the existence of local right inverses for M with a uniform scaling of
the parameter defining the Banach spaces under consideration.



Chapter 1

Preliminaries

The classes of functions that will appear throughout this PhD dissertation are
described by means of a precise control on the growth of their derivatives, when
ultraholomorphic classes of functions are dealt with, or on the growth of the re-
mainders of their asymptotic expansions when those are available. Accordingly,
classes of formal complex power series or of sequences of complex numbers will
be defined by a suitable control on the growth of their coefficients, respectively of
their elements. This control can be established in terms of three kinds of weight
structures: weight sequences, weight functions, or weight matrices. This chapter
consists mainly of the definitions and main properties of all these objects, and col-
lects many of the well-known and useful facts needed in the sequel. Moreover, two
growth indices, appearing in the literature within the general theory of O-regular
variation and playing an important role in some of our results, will be described.

1.1 Weight sequences

In this section, we will treat the notion of weight sequence and describe some of the
properties that can be assigned to these sequences and which will be particularly
relevant during this work. These properties have mainly appeared in several classi-
cal works such as those of S. Mandelbrojt [46] and H. Komatsu [38]. The study of
the gamma index for strongly regular weight sequences was initiated by V. Thilliez
[80], and we collect here the main facts concerning it for general sequences.

1.1.1 Definition and properties

We write N0 := {0, 1, 2, . . . } and N := {1, 2, 3, . . . }. In what follows, we always
denote by M = (Mj)j∈N0 a sequence of positive real numbers with M0 = 1. We

also denote by M̂ = (M̂ j)j (resp. M̂ = (M̂j)j) the sequence defined by M̂ j :=
Mj

j!

17
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(resp. M̂j := j!Mj). Now, let us start with some properties of these sequences.

Definition 1.1.1. We say that:

(i) M is called normalized if 1 =M0 ≤M1 holds true.

(ii) M is logarithmically convex (for short, (lc)) if

M2
j ≤Mj−1Mj+1, j ∈ N.

(iii) M is stable under differential operators or satisfies the derivation closedness
condition (briefly, (dc)) if there exists D > 0 such that

Mj+1 ≤ Dj+1Mj, j ∈ N0.

(iv) M is of, or has, moderate growth (for the sake of brevity, (mg)) if there exists
A > 0 such that

Mj+k ≤ Aj+kMjMk, j, k ∈ N0.

(v) M satisfies the condition (nq) of non-quasianalyticity if

∞∑
j=0

Mj

(j + 1)Mj+1

< +∞.

(vi) M satisfies the condition (snq) of strong non-quasianalyticity if there exists
B > 0 such that

∞∑
j=k

Mj

(j + 1)Mj+1

≤ B
Mk

Mk+1

, k ∈ N0.

According to V. Thilliez [80], if M satisfies (lc), (mg) and (snq), we say M is
strongly regular.

Remark 1.1.2. In the classical work of H. Komatsu [38], the properties (lc), (dc)
and (mg) are denoted by (M.1), (M.2)′ and (M.2), respectively, while (nq) and

(snq) for M are the same as properties (M.3)′ and (M.3) for M̂ , respectively.

All these properties are preserved when passing from M to M̂ , but not con-

versely, i .e., when passing from M to M̂ . For example, it is straightforward to
check that both conditions (mg) and (dc) hold simultaneously true or false for M

and M̂ , but if M satisfies (lc), or (nq), or (snq), then M̂ does not necessarily
satisfy any of them.
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Remark 1.1.3. The form of the estimates in some of these properties admits
slight modifications. For example, the property (dc) can be clearly rephrased as

∃C0 > 0, D ≥ 1: Mj+1 ≤ C0D
j+1Mj, j ∈ N0.

This alternative expression can provide some flexibility in some of our arguments,
and we will use one or another without further comment.

For a given sequence M we can associate a new one, defined by the quotients
between two consecutive terms of M .

Definition 1.1.4. Let M be a sequence, we define its associated sequence of
quotients m = (mj)j∈N0 by

mj :=
Mj+1

Mj

, j ∈ N0.

Remark 1.1.5. Let us note that if M0 = 1, there is a one-to-one correspondence
between M and m by observing that

Mj :=
Mj

Mj−1

Mj−1

Mj−2

· · ·M2

M1

M1

1
=

j−1∏
i=0

mi, j ∈ N. (1.1)

Sometimes, we will express some properties for M in terms of m without further
mentioning this relation. In general, if L is a sequence we denote by a lowercase
letter ℓ the corresponding sequence of quotients.

We can obtain the following properties as a consequence of the previous defi-
nitions.

Lemma 1.1.6. (see, for example, [26, Lemmas 1.1.6 and 1.1.7]) For every se-
quence M we have that:

(i) If M has moderate growth then M satisfies the derivation closedness condi-
tion.

(ii) If M satisfies the condition of strong non-quasianalyticity then M has the
condition of non-quasianalyticity.

(iii) M is logarithmically convex if and only if m is nondecreasing.

(iv) If M is logarithmically convex, then (Mj)
1/j ≤ mj−1 for every j ∈ N,

((Mj)
1/j)j∈N is nondecreasing, and limj→∞(Mj)

1/j = ∞ if, and only if,
limj→∞mj = ∞.
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(v) If M is logarithmically convex and nonquasianalytic, then limj→∞mj = ∞.

(vi) If M is logarithmically convex, then MjMp ≤Mj+p for every j, p ∈ N0.

Example 1.1.7. We mention some interesting examples. In particular, those in
(i), (iii) and (iv) appear in the applications of summability theory to the study of
formal power series solutions for different kinds of equations.

(i) The sequences Mα,β :=
(
j!α
∏j

i=0 log
β(e + i)

)
j∈N0

, where α > 0 and β ∈ R,
are strongly regular (in case β < 0, the first terms of the sequence have to
be suitably modified in order to ensure (lc)).

(ii) The sequence M 0,β := (
∏j

i=0 log
β(e + i))j∈N0 , with β > 0, satisfies (lc) and

(mg), and m tends to infinity; (nq) is satisfied only if β > 1, and (snq) is
never satisfied.

(iii) For a ∈ R we set

Ga := (j!a)j∈N0 , G
a
:= (jja)j∈N0 Γa := (Γ(1 + ja))j∈N0 .

For a > 0 the sequence Ga is the Gevrey sequence of index a (note that it is
M a,0 in example (i)). Clearly Ga and G

a
are the best known example of a

strongly regular sequence for any a > 0 (by the convention 00 := 1).

(iv) For q > 1 and σ > 1, M q,σ := (qj
σ
)j∈N0 satisfies (lc) and (snq), but not (mg).

The condition (dc) is satisfied if, and only if, 1 < σ ≤ 2. In case σ = 2, we
get the well-known q-Gevrey sequence.

The next properties have a key role in the study of the stability properties in
some classes, as we are going to see in the following chapter.

Definition 1.1.8. We say that:

(i) M has the root almost increasing property, denoted by (rai), if the sequence

of roots (M̂
1/j

j )j∈N is almost increasing, that is, if there exists C > 0 such
that

M̂
1/j

j ≤ CM̂
1/k

k , j, k ∈ N0, 1 ≤ j ≤ k.

(ii) M has the Faà-di-Bruno property, denoted by (FdB), if there exist C, h ≥ 1
such that

M̂
◦
j ≤ ChjM̂ j, j ∈ N0,

where M̂
◦
:= (M̂

◦
j)j∈N0 is the sequence defined by

M̂
◦
k := max

{
M̂ ℓ · M̂ j1 · · · M̂ jℓ : ji ∈ N,

ℓ∑
i=1

ji = k

}
, k ∈ N; M̂

◦
0 := 1.

(1.2)
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Definition 1.1.9. We say that a sequence M is a weight sequence if it is loga-
rithmically convex and limj→∞mj = ∞.

In the third chapter, we will present several Borel-Ritt-like theorems, stating
the surjectivity of the Borel map in ultraholomorphic classes, which will be valid
for more general sequences than covered previously in the literature. In particular,
we will deal with regular sequences in the sense of E. M. Dyn’kin [20].

Definition 1.1.10. We say M̂ is regular if M is a weight sequence and satisfies
(dc).

Lemma 1.1.11. Let M be a sequence. If M is strongly regular, then M̂ is
regular.

Proof. If M is strongly regular, then M has (lc), (mg) and (snq). Thanks to 1.1.6

we know that M has (nq), (dc) and limj→∞mj = ∞. Therefore, M̂ is regular.

1.1.2 Comparable and equivalent sequences

The notions of comparable and equivalent sequences are naturally present in the
consideration of our classes of functions, as we will see in the next sections.

Definition 1.1.12. Let M = (Mp)p∈N0 and L = (Lp)p∈N0 be sequences with
arbitrary M0, L0 > 0, we say that M is smaller than L, and we write M ≾ L, if
there exist A,B > 0 such that

Mj ≤ ABjLj, j ∈ N0,

or, equivalently, if

sup
j∈N0

(
Mj

Lj

)1/j

< +∞.

If M ≾ L and L ≾ M , we say that M is equivalent to L, and we write M ≈ L.
Note that, in case M0 = L0 = 1, equivalence amounts to BjMj ≤ Lj ≤ CjMj for
every j ∈ N0 and suitable B,C > 0.

Remark 1.1.13. Some properties like (mg) and (dc) are clearly preserved under
equivalence for the relation ≈.

Example 1.1.14. We recall some useful elementary estimates,

∀ j ∈ N :
jj

ej
≤ j! ≤ jj, (1.3)

which immediately imply that Ga ≈ G
a
for any a ∈ R. Stirling’s formula for

Euler’s Gamma function implies that also Ga ≈ Γa.
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We can also establish an equivalence relation at the level of the sequence of
quotients.

Definition 1.1.15. Let m and ℓ be the sequences of quotients associated with
M and L, respectively. We say that m is strongly smaller than ℓ, and we write
m ⪯ ℓ, if it exists A > 0 such that

mj ≤ Aℓj, j ∈ N0,

or, equivalently, if

sup
j∈N0

mj

ℓj
< +∞.

If m ⪯ ℓ and ℓ ⪯ m, we say that m is strongly equivalent to ℓ, and we write
m ≃ ℓ.

Remark 1.1.16. Whenever m ≃ ℓ we have M ≈ L (see (1.1)), but in general
the converse does not hold.

Finally, we can compare sequences term by term. For this, we use the following
notation.

Definition 1.1.17. Let M = (Mp)p∈N0 and L = (Lp)p∈N0 be sequences with
arbitrary M0, L0 > 0, we write M ≤ L if

Mj ≤ Lj, j ∈ N0.

1.1.3 The growth index γ(M)

The index γ(M ), introduced by V. Thilliez [80, Sect. 1.3] for strongly regular
sequences M , can be equally defined for (lc) sequences, or even any sequence. For
a comprehensive study of this index we refer to the work of J. Jiménez-Garrido, J.
Sanz and G. Schindl [34, Sect. 3], especially to the characterizing result [34, Thm.
3.11].

Definition 1.1.18. Let M be a sequence and γ ∈ R. We say M satisfies property
(Pγ) if there exists a sequence of real numbers ℓ = (ℓj)j∈N0 such that:

(i) m ≃ ℓ (and therefore M ≈ L), that is,

∃ a ≥ 1 ∀ j ∈ N0 : a−1mj ≤ ℓj ≤ amj,

(ii) ((j + 1)−γℓj)j∈N0
is nondecreasing.
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If (Pγ) holds true for M , then (Pγ′) also holds for any γ′ ≤ γ. It is then natural
to define the growth index γ(M) by

γ(M ) := sup{γ ∈ R : (Pγ) is fulfilled}.

Remark 1.1.19. We use the conventions inf ∅ = supR = +∞ and inf R = sup ∅ =
−∞.

We can also introduce the γ(M ) index for an (lc) sequence M by using the
condition (γβ) for m, given by J. Schmets and M. Valdivia [74]. We refer to the
PhD dissertation of J. Jiménez-Garrido [26] and [34] for more details.

Definition 1.1.20. Let M be an (lc) sequence. For any β > 0 we say that m
satisfies the condition (γβ) if there exists A > 0 such that

∞∑
ℓ=p

1

(mℓ)1/β
≤ A(p+ 1)

(mp)1/β
, p ∈ N0. (γβ)

It turns out that

γ(M ) = sup{β > 0; m satisfies (γβ) },

and moreover

γ(M ) > β ⇐⇒ m satisfies (γβ). (1.4)

There exists also a third approach by using the theory of O-regular variation. In
this context, the index γ(M ) is precisely the lower Matuszewska index β(m).
Again, we refer to [26, 34].

Definition 1.1.21. A sequence (cp)p∈N0 is almost increasing if there exists a > 0
such that for every p ∈ N0 we have that cp ≤ acq for every q ≥ p. Then for any
sequence M one has

γ(M ) = sup{γ > 0 : (mp/(p+ 1)γ)p∈N0 is almost increasing}. (1.5)

A straightforward verification shows the following properties for the gamma
index.

Proposition 1.1.22. Let M be a sequence and s > 0, one has

γ((p!sMp)p∈N0) = γ((Γ(1 + sp)Mp)p∈N0) = γ(M) + s, (1.6)

γ((Mp/p!
s)p∈N0) = γ((Mp/Γ(1 + sp))p∈N0) = γ(M)− s. (1.7)
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In this dissertation, the termwise product, respectively quotient, of two se-
quences M and L will be denoted, resp., by

M ·L = ML := (MpLp)p∈N0 and M/L := (Mp/Lp)p∈N0 .

We can characterize the property of strong non quasianalyticity in terms of the
gamma index associated to M .

Proposition 1.1.23. Let M be a sequence. Then, M satisfies (snq) if, and only
if, γ(M ) > 0.

Proof. The condition (snq) for M is precisely (γ1) for m̂, the sequence of quotients

for M̂ . Thanks to the fact that γ(M̂ ) = γ(M ) + 1 (this is clear from (1.6)), we
deduce from (1.4) the desired result.

Moreover, from the very initial definition of the gamma index we can establish
the following comparison with Gevrey sequences.

Lemma 1.1.24. Let M be a weight sequence and β > 0. If γ(M ) > β, then we
have that (p!β)p ≾ M .

We recall also the following result for later use.

Lemma 1.1.25 ([34], Remark 3.15). For an arbitrary sequence M such that

γ(M ) > 1, there exists a weight sequence L such that ℓ̂ ≃ m, and so L̂ ≈ M and

γ(L̂) = γ(M ).

Finally, the gamma index is stable under ≃. However, in general it is not
possible to extend the equality between the gamma index of two sequences under
the weaker equivalence ≈. In this sense, we present a partial result

Proposition 1.1.26 ([34], Corollary 3.14). Let M and L be sequences with M ≈
L. Assume that there exists r ≥ 0 such that GrM and GrL are weight sequences.
Then γ(M ) = γ(L) holds true.

In particular, if M and L are weight sequences with M ≈ L, the last equality
holds.

1.1.4 Auxiliary functions

In this subsection, we are going to introduce some auxiliary functions which have
a key role in the study of the properties of classes of functions defined in terms
of a sequence. For instance, see the works of H. Komatsu [38], J. Chaumat and
A.-M. Chollet [11] and V. Thilliez [80].
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Definition 1.1.27. For an arbitrary sequence M we consider the function hM :
[0,∞) → R defined as

hM (t) := inf
p∈N0

Mpt
p, t > 0; hM (0) = 0.

In fact, if M is a weight sequence we have that

hM (t) =

{
Mpt

p, if t ∈ [ 1
mp
, 1
mp−1

), p ∈ N,
1, if t ≥ 1

m0
.

(1.8)

Now, the following elementary facts about hM are straightforward.

Lemma 1.1.28. Let M = (Mp)p∈N0 be a weight sequence, then:

(i) hM (t) is nondecreasing and continuous.

(ii) hM (t) ≤ 1 for all t > 0, and hM (t) = 1 for all t sufficiently large.

(iii) limt→0 hM (t) = 0.

We can consider the logarithmically convex minorant sequence M lc of a se-
quence M , that is, the (lc) sequence such that M lc ≤ M , and for every other (lc)
sequence L with L ≤ M we have that L ≤ M lc. In particular, M is (lc) if and
only if M = M lc.

Indeed, we can recover the logarithmically convex minorant M lc from the
knowledge of hM . More precisely,

Proposition 1.1.29 (H. Komatsu [38], G. Schindl [73]). Let M be a sequence
with limp→∞(Mp)

1/p = ∞. Then, one has that

M lc
p = sup

t>0
tphM (1/t), p ∈ N0, (1.9)

In particular, we can compute the terms of a weight sequence by using the previous
expression.

If we consider two sequences which are equivalent, then there exists a relation
between the associated functions.

Lemma 1.1.30. Let M and L be two equivalent weight sequences. Then, there
exist A,B > 0 such that

hM (At) ≤ hL(t) ≤ hM (Bt), t ≥ 0.

We also introduce a second associated function, namely the counting function
νm for the sequence m.
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Definition 1.1.31. For an arbitrary weight sequence M , we define the counting
function νm : (0,∞) → N0 for the sequence m, as

νm(t) := #{p ∈ N0 : mp ≤ t} = max{p ∈ N : mp−1 ≤ t}. (1.10)

The counting function νm is obviously nondrecreasing, and limt→∞ νm(t) = ∞.
In [34], the relation between the indices of O-regular variation of m and νm is

clarified, and from this connection we can characterize some properties of νm that
will be important for our aim.

Lemma 1.1.32. ([34]) Let M = (Mp)p∈N0 be a weight sequence, then:

(i) γ(M ) > 0 if and only if νm satisfies the condition νm(2t) = O(νm(t)) as t
tends to ∞.

(ii) γ(M ) > 1 if and only if νm satisfies the condition (ωsnq), i. e., there exists
D > 0 such that ∫ ∞

1

νm(ys)

s2
ds ≤ Dνm(y) +D, y ≥ 0.

Proof. (i) follows by Proposition 1.1.23 and [34, Corollary 4.2.(ii)].
(ii) holds true by combining [34, Lemma 2.10], [34, Corollary 2.13], [34, Theorem
3.10] and [34, Proposition 4.1].

1.2 Weight functions in the sense of Braun-Meise-

Taylor

In the second chapter of this dissertation, we will deal with classes of functions
associated with a weight function; for this reason, we introduce the definition and
main properties of these functions below. For this section, we refer to the PhD
dissertation of G. Schindl [70] and the references therein.

Let us start with the definition of weight function.

Definition 1.2.1. A weight function is a continuous, nondecreasing function ω :
[0,+∞) → [0,+∞) with ω(0) = 0 and limt→+∞ ω(t) = +∞.

If ω satisfies in addition ω(t) = 0 for all t ∈ [0, 1], then we call ω a normalized
weight function. For convenience we will write that ω has (ω0) if it is a normalized
weight function.

Remark 1.2.2. Sometimes in the literature the weight function ω is extended to
t ∈ R or t ∈ C in a radial-symmetric way, i. e., we replace t by |t|.
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Now, we present some examples of weight functions.

Example 1.2.3. The following are easily checked to be weight functions:

(i) For a > 0, ω(t) = ta (Gevrey weight function of index a).

(ii) For a > 1, ω(t) = (log(1 + t))a.

(iii) For a > 1, ω(t) = t(log(e+ t))−a.

(iv) For 0 < a < 1 and b > 0, ω(t) = exp(b(log(1 + t))a).

Remark 1.2.4. For any a > 0 we put ωa for the function given by ωa(t) := ω(ta),
i. e., the result of composing ω with the Gevrey weight t 7→ ta.

In a similar way as one does with sequences, we can compare two weight func-
tions.

Definition 1.2.5. Let σ, τ be weight functions, we write σ ⪯ τ if

τ(t) = O(σ(t)), t→ +∞,

and call them equivalent, denoted by σ ∼ τ , if

σ ⪯ τ and τ ⪯ σ.

Remark 1.2.6. Note that if we take a weight function ω, we can always consider
a new weight function σ which is equal to ω for all large t > 0 and σ(t) = 0 for all
t ∈ [0, 1]. In other words, we can always take a normalized weight function which
is equivalent to the original one, and so the property (ω0) can be assumed without
loss of generality.

Now, we consider the following (standard) conditions on weight functions. This
terminology has already been used in [70] and some subsequent works.

(ω1) ω(2t) = O(ω(t)) as t→ +∞, i. e. ∃ L ≥ 1 ∀ t ≥ 0 : ω(2t) ≤ L(ω(t) + 1).

(ω2) ω(t) = O(t) as t→ +∞.

(ω3) ln(t) = o(ω(t)) as t→ +∞.

(ω4) φω : t 7→ ω(et) is a convex function on R.

(ω5) ω(t) = o(t) as t→ +∞.

(ω6) ∃ H ≥ 1 ∀ t ≥ 0 : 2ω(t) ≤ ω(Ht) +H.
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Example 1.2.7. The Gevrey weight of index a > 0, satisfies (ω1), (ω3), (ω4) and
(ω6) for all a > 0. However, (ω2) holds only if a ≤ 1, and (ω5) does only if a < 1.

Some of these properties on ω are stable with respect to the relation ∼.

Proposition 1.2.8. ([70, Lemma 3.2.2]) The properties (ω1), (ω2), (ω3), (ω5) and
(ω6) are stable under the relation ∼ for weight functions.

The following sets of weight functions will be important in Chapter 2.

Definition 1.2.9. We define the set W0 as

W0 := {ω : [0,∞) → [0,∞) : ω has (ω0), (ω3), (ω4)},

and the set W as

W := {ω ∈ W0 : ω has (ω1)}.

Finally, let us recall the following crucial growth assumption.

Definition 1.2.10. We say that a weight function ω satisfies the property (α0) if
the following holds:

∃ C ≥ 1 ∃ t0 ≥ 0 ∀ λ ≥ 1 ∀ t ≥ t0 : ω(λt) ≤ Cλω(t). (1.11)

Remark 1.2.11. This property (α0) has a key-role. Following a recent paper of
G. Schindl [72, Sect. 4.1] and the citations therein, we can establish an equivalence
between a weight function ω and a subadditive weight function σ (i. e., such that
σ(s+ t) ≤ σ(s) + σ(t) for every s, t ≥ 0), or even to a concave weight function, if
and only if (1.11) holds true.

It is also known that (α0) characterizes some desired stability properties for
ultradifferentiable classes E[ω], e. g. closedness under composition, inverse closed-
ness and closedness under solving ODE’s. The definition of such classes (which
will not be used in this dissertation) and these results can be found in the works of
A. Rainer and G. Schindl [59], [60, Thm. 1, Thm. 3], of these two authors with S.
Fürdös and D. N. Nenning [22, Thm. 4.8], and of C. Fernández and A. Galbis [21].

1.2.1 Associated weight function

In this subsection, we introduce an auxiliary weight function ωM constructed from
a weight sequence M and even determining it, and already appearing in the classi-
cal works of S. Mandelbrojt [46] and H. Komatsu [38]. We note that G. Schindl [73]
has recently added more information about the construction of the function ωM .
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Definition 1.2.12. For an arbitrary sequence M we consider the associated func-
tion ωM : [0,∞) → R ∪ {+∞} defined as

ωM (t) := sup
j∈N0

ln

(
tj

Mj

)
, t > 0, ωM (0) := 0.

Note that ωM (t) ≥ 0 for any t ≥ 0, since t0/M0 = 1 for all t > 0.

If lim infj→+∞(Mj)
1/j > 0, then ωM (t) = 0 for sufficiently small positive t, since

t0/M0 = 1 and ln (tj/Mj) < 0 precisely if t < (Mj)
1/j, for all j ∈ N. In particular, if

Mj ≥ 1 for all j ∈ N, then ωM vanishes on [0, 1]. Moreover, under this assumption
t 7→ ωM (t) is a continuous nondecreasing function, which is convex in the variable
ln(t) and tends faster to infinity than any ln(tj), j ≥ 1, as t→ +∞. However, we
cannot guarantee, in general, that the function ωM will be finite for all t > 0, in
particular, ωM would not be a weight function as defined in Definition 1.2.1.

Example 1.2.13. If M = {1/2n}∞n=0, then ωM (t) = 0 for any t ≤ 1/2, and
ωM (t) = ∞ for any t > 1/2.

It is not difficult to check that limj→+∞(Mj)
1/j = +∞ if, and only if, ωM (t) <

+∞ for each finite t, so this will be a basic assumption for defining ωM . In this
case, the function ωM is indeed a weight function and it satisfies (ω3) and (ω4).
Note that weight sequences M satisfy this condition, see Lemma 1.1.6.(iv). In
fact, for a weight sequence M we have that

ωM (t) =

{
p ln(t)− ln(Mp) if t ∈ [mp,mp+1), p = 0, 1, . . . ,

0 if t < m0.
(1.12)

In particular, we deduce that

ωM (mp) = ln

(
mp

p

Mp

)
, p ∈ N0.

Most of the properties for the weight function ωM can be characterized in
terms of the weight sequence M . For example, G. Schindl [72, Thm. 4.5] did so
for the condition (α0). We recall the following facts, which can be found, e. g.,
in H. Komatsu [38, Lemma 4.1], A. Rainer and G. Schindl [59, Sect. 5] and J.
Jiménez-Garrido, J. Sanz and G. Schindl [35, Lemma 2.4].

Lemma 1.2.14. Let M be a normalized weight sequence, then ωM ∈ W0 holds
true. Moreover,

(i) lim infj→∞(M̂ j)
1/j > 0 if and only if (ω2) holds for ωM ,
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(ii) limj→∞(M̂ j)
1/j = +∞ if and only if (ω5) holds for ωM ,

(iii) (ω6) holds for ωM if and only if M does have (mg).

In addition, if we compose some of these weight functions ωM with the Gevrey
weight function of index β > 0 then we obtain, except for a constant, the weight
function associated with the same power of the original sequence M . More pre-
cisely, for β > 0 we write M 1/β := (M

1/β
j )j∈N0 , then (see [35, (2.7)])

ωβ
M (t) := ωM (tβ) = βωM1/β(t), t ≥ 0.

For any sequence M , the functions hM and ωM are related by

hM (t) = exp(−ωM (1/t)), t > 0 (1.13)

(where we adopt the convention e−∞ = 0). Hence, as it occurs with the function
hM (compare with (1.9)), we can compute the log convex minorant associated with
a sequence M such that limp→∞(Mp)

1/p = ∞ as follows (see S. Mandelbrojt [46,
Chapitre I, 1.4, 1.8] and H. Komatsu [38, Prop. 3.2]):

M lc
p = sup

t≥0

tp

exp(ωM (t))
p ∈ N0. (1.14)

It also follows that ωM ≡ ωM lc , and that if M is log-convex, the right-hand side
of formula (1.14) yields Mp.

Also, from Lemma 1.1.30 or by a direct computation one gets that, if M and
L are two equivalent weight sequences, then there exist A,B > 0 such that

ωM (At) ≤ ωL(t) ≤ ωM (Bt), t ≥ 0.

Finally, if M is a weight sequence, we can also establish a relation between
the functions νm and ωM through the following integral representation, see [38,
(3.11)]:

ωM (x) =

∫ x

0

νm(λ)

λ
dλ =

∫ x

m0

νm(λ)

λ
dλ, x > 0. (1.15)

1.2.2 The growth index γ(ω)

In [35] and [36], J. Jiménez-Garrido, J. Sanz and G. Schindl introduced the index
γ(ω) associated with a weight function ω, in order to study the maximal opening
of a sector in the Riemann surface of the logarithm for which the Borel map, in
the corresponding ultraholomorphic class associated with ω, is surjective. In this
dissertation we are only going to consider such index for weight functions, but a
more general treatment is possible, see [34, Sect. 2.3] and the references therein.
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Definition 1.2.15. Let ω be a weight function and γ > 0. We say that ω has
property (Pω,γ) if there exists K > 1 such that

lim sup
t→+∞

ω(Kγt)

ω(t)
< K.

If (Pω,γ) holds for some K > 1, then also (Pω,γ′) is satisfied for all γ′ ≤ γ with the
same K. It is then natural to define the growth index γ(ω) by

γ(ω) := sup{γ > 0 : (Pω,γ) is satisfied}.

Note that in the previous definition we can restrict to γ > 0, because for γ ≤ 0
condition (Pω,γ) is satisfied for all weights ω, since ω is nondecreasing and K > 1.

We recall some facts about this index:

(i) If ω ∼ σ then γ(ω) = γ(σ), see [34, Rem. 2.12].

(ii) γ(ω) > 0 holds if and only if (ω1), see [34, Cor. 2.14].

(iii) By definition one has γ(ωa) = 1
a
γ(ω) for any a > 0.

(iv) If M is a weight sequence, in general we can only establish the inequality
γ(M ) ≤ γ(ωW ) between gamma indices [34, Cor. 4.6 (i)]. Moreover, if M
has in addition (mg), then γ(M ) = γ(ωM ), see [34, Cor. 4.6 (iii)].

1.3 Weight matrices

A. Rainer and G. Schindl [59, 70] introduced the new notion of weight matrix.
Their goal when considering this object was to give a unified treatment of the
spaces defined by a single weight sequence and by a single weight function, by
considering both cases as spaces associated with suitable weight matrices. For the
following definitions and conditions see [59, Sect. 4].

Definition 1.3.1. A weight matrix M is a (one parameter) family of sequences
M := {M (α) ∈ RN0

>0 : α > 0}, such that

M (α) ≤ M (β) for α ≤ β; M
(α)
0 = 1, ∀ α > 0.

We use the same notation as for the case of weight sequences. For example,

for each α > 0 we denote by M̂
(α)

j :=M
(α)
j /j! for j ∈ N0, and m

(α)
j :=M

(α)
j+1/M

(α)
j

for j ∈ N0.
Moreover, we can stablish properties for weight matrices, by taking the corre-

sponding ones for each sequences.
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Definition 1.3.2. We say that:

(i) A weight matrix M is log-convex, denoted by (Mlc), if M
(α) is a log-convex

sequence for all α > 0.

(ii) A weight matrix M is standard log-convex, abbreviated by (Msc), if M
(α) is

a normalized weight sequence for all α > 0.

If M is a weight matrix with limj→∞(M
(α)
j )1/j = +∞ for all α > 0, then we

can compute the log-convex minorant, or log-convex regularization, of the weight
matrix M, defined as

Mlc := {(M (α))lc : α > 0}.

Let us observe that for 0 < α ≤ β, since M (α) ≤ M (β) we have (M (α))lc ≤
(M (β))lc. Moreover, (M (α))lc0 =M

(α)
0 = 1.

Let us consider the following crucial assumptions (of Roumieu-type) on a given
weight matrix M, see [59, Sect. 4.1] and [70, Sect. 7.2]:

Definition 1.3.3. We say that:

(i) M has the Cω property, denoted by (M{Cω}), if there exists some α > 0 such
that

lim inf
j→∞

(M̂
(α)

j )1/j > 0.

(ii) M has the H property, denoted by (MH), if for all α > 0 we have that

lim inf
j→∞

(M̂
(α)

j )1/j > 0.

(iii) M has the root almost increasing property, denoted by (M{rai}), if

∀ α > 0 ∃ C > 0 ∃ β > 0 ∀ 1 ≤ j ≤ k : (M̂
(α)

j )1/j ≤ C(M̂
(β)

k )1/k.

(iv) M has the Faà-di-Bruno property, denoted by (M{FdB}), if

∀ α > 0 ∃ β > 0 : (M̂
(α)

)◦ ⪯ M̂
(β)

,

where (M̂
(α)

)◦ is the sequence defined by (1.2).

(v) M is of, or has, moderate growth, denoted by (M{mg}), if

∀ α > 0 ∃ C > 0 ∃ β > 0 ∀ j, k ∈ N0 :M
(α)
j+k ≤ Cj+kM

(β)
j M

(β)
k .
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(vi) M satisfies the derivation closedness condition, denoted by (M{dc}), if

∀ α > 0 ∃ C > 0 ∃ β > 0 ∀ j ∈ N0 :M
(α)
j+1 ≤ Cj+1M

(β)
j .

We can compare two matrices, as we can see in the following definition.

Definition 1.3.4. Let M = {M (α) : α > 0} and L = {L(α) : α > 0} be given.
We write M{⪯}L if

∀ α > 0 ∃ β > 0 : M (α) ⪯ L(β),

and call M and L R-equivalent, if M{⪯}L and L{⪯}M (R stands for Roumieu).

Remark 1.3.5. A matrix is called constant if M (α) ≈ M (β) for all α, β > 0.

Let us gather now some relevant information needed in the forthcoming sec-
tions.

Lemma 1.3.6. Let M = {M (α) : α > 0} be a weight matrix. If M has (M{rai}),
then

∀ α > 0 ∃ H ≥ 1 ∃ α′(≥ α) ∀ k ∈ N ∀ j1, . . . , jk ∈ N0 :

M̂
(α)

j1
· · · M̂

(α)

jk
≤ Hj1+···+jkM̂

(α′)

j1+···+jk
. (1.16)

Note that the indices α and α′ are related by property (M{rai}).

Proof. If j1, . . . , jk ≥ 1 we estimate by

M̂
(α)

j1
· · · M̂

(α)

jk
≤ Hj1(M̂

(α′)

j1+···+jk
)

j1
j1+···+jk · · ·Hjk(M̂

(α′)

j1+···+jk
)

jk
j1+···+jk

= Hj1+···+jkM̂
(α′)

j1+···+jk
,

and the remaining cases follow by M̂
(α)

0 =M
(α)
0 = 1.

There exist some connections between the different properties of weight matri-
ces.

Lemma 1.3.7. Let M = {M (α) : α > 0} be a weight matrix. Then we have the
following:

(i) (M{rai}) implies (MH) up to equivalence of matrices, i. e., there exists a
weight matrix N which is R-equivalent to M and has (MH).

(ii) (M{dc}) and (M{rai}) imply (M{FdB}).
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(iii) If

∀ α > 0 ∃ H ≥ 1 ∀ 1 ≤ j ≤ k : (M
(α)
j )1/j ≤ H(M

(α)
k )1/k, (1.17)

i. e., if each sequence ((M
(α)
j )1/j)j is almost increasing, then (MH) and

(M{FdB}) imply (M{rai}).

In particular, (1.17) holds true (with H = 1 for any α) provided that M is
log-convex.

Proof. (i) By the order of the sequences we can assume without loss of generality
β ≥ α and for each α > 0 there exists a minimal β = β(α) ≥ α such that

M̂
(α)

and M̂
(β)

are related by (M{rai}). Then (M̂
(β)

j )1/j ≥ M̂
(α)

1

C
> 0 for

some C ≥ 1 and all j ≥ 1 (see also [72, Lemma 3.6 (ii)]). Since without
loss of generality we can restrict in the Roumieu case to all β(α) (yielding
an R-equivalent matrix) we are done.

(ii) See the proofs of [59, Thm. 4.9 (3) ⇒ (4)] and [70, Lemma 8.2.3 (2)].

(iii) See the proofs of [60, Lemma 1 (2)] and [70, Lemma 8.2.3 (4)].

1.3.1 Weight matrices associated with weight functions

In this subsection, we associate a weight matrixMω with a given weight function ω.
The idea is to transfer properties from the weight function ω to the associated
weight matrix.

For a given weight function ω, let us start introducing the Legendre-Fenchel-
Young-conjugate of the function ω ◦ exp.

Definition 1.3.8. For any ω ∈ W0 we define the Legendre-Fenchel-Young-conjugate
of φω : t 7→ ω(et) by

φ∗
ω(x) := sup{xy − φω(y) : y ≥ 0}, x ≥ 0. (1.18)

Note that by normalization we can extend the supremum in (1.18) from y ≥ 0
to y ∈ R without changing the value of φ∗

ω(x) for given x ≥ 0.
In the work of R. W. Braun, R. Meise and B. A. Taylor [7, Remark 1.3, Lemma

1.5] one finds that, for a given weight function ω ∈ W0, the Legendre-Fenchel-
Young-conjugate of φω has the following properties:

(i) φ∗
ω is a convex, nondecreasing function. Moreover, φ∗

ω(0) = 0 and φ∗∗
ω = φω.

(ii) The Legendre-Fenchel-Young-conjugate φ∗
ω tends to infinity faster than x,

and therefore limx→+∞ x/φ∗
ω(x) is equal to zero.
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(iii) The functions

x 7→ φω(x)

x
, and x 7→ φ∗

ω(x)

x
, x ∈ [0,+∞),

are nondecreasing.

Thanks to this conjugate, we can associate a weight matrix with a given weight
function ω ∈ W0.

Definition 1.3.9. Let ω be a weight function in W0, then we can associate a
weight matrix Mω defined as

Mω := {W (ℓ) = (W
(ℓ)
j )j∈N0 : ℓ > 0},

where

W
(ℓ)
j := exp

(
1

ℓ
φ∗
ω(ℓj)

)
. (1.19)

We summarize some facts which are shown in [59, Section 5] and are needed
in this work. Observe that we obtain strong properties for Mω automatically by
considering general weight functions ω with (ω0), (ω3) and (ω4). Of course, extra
conditions on ω provide new properties for the associated weight matrix.

Remark 1.3.10. Let ω be a weight function in W0, then we have that:

(i) The weight matrix Mω is standard log-convex (Msc), see [70, Lemma 5.1.1].

(ii) The weight matrix Mω satisfies

∀ ℓ > 0 ∀ j, k ∈ N0 : W
(ℓ)
j+k ≤ W

(2ℓ)
j W

(2ℓ)
k , (1.20)

so both (M{mg}) and (M{dc}) are satisfied, see [70, Lemma 5.1.2].

(iii) There exists some connection between the weight function ω and the weight
function associated to each weight sequence W (ℓ). More precisely, we have
ω ∼ ωW (ℓ) for each ℓ > 0, in fact

∀ ℓ > 0 ∃Dℓ > 0 ∀ t ≥ 0 : ℓωW (ℓ)(t) ≤ ω(t) ≤ 2ℓωW (ℓ)(t) +Dℓ, (1.21)

see [70, Theorem. 4.0.3, Lemma 5.1.3] and also [35, Lemma 2.5].

(iv) In case ω has in addition (ω1), then Mω has also

∀ h ≥ 1 ∃ A ≥ 1 ∀ ℓ > 0 ∃ D ≥ 1 ∀ j ∈ N0 : hjW
(ℓ)
j ≤ DW

(Aℓ)
j , (1.22)

see [59, Lemma 5.9 (5.10)].
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(v) Condition (ω6) holds if and only if some/each W (ℓ) satisfies (mg) if and only
if W (ℓ) ≈ W (ℓ1) for each ℓ, ℓ1 > 0, see [70, Proposition 5.2.2]. Consequently
(ω6) characterizes the situation when Mω is constant.

Proposition 1.3.11. Let ω be a weight function in W0, then Mω satisfies (MH)
if and only if ω has in addition (ω2).

Proof. The condition (ω2) is stable with respect to the relation ∼, see Proposition
1.2.8. Moreover, the previous Remark (see (1.21)), and (i) in Lemma 1.2.14 show
the equivalence.

Proposition 1.3.12. Let ω be a weight function in W0 with (ω2), then properties
(M{rai}) and (M{FdB}) for Mω are simultaneously satisfied or violated.

Proof. In view of (i), (ii) in the previous Remark, and Proposition 1.3.11, we
can apply Lemma 1.3.7 ([60, Lemma 1]) to Mω in order to show the equivalence
between both properties.

Finally, despite a gamma index associated with a weight matrix has not been
introduced by now, we can establish some relation between the gamma index
associated with the weight function ω, and the gamma index of each associated
weight function ωW (ℓ) .

Remark 1.3.13. If ω ∈ W0 is given with associated weight matrixMω := {W (ℓ) :
ℓ > 0} and γ(ω) > β, then (1.21) implies γ(ωW (ℓ)) > β. However, in general we
can only obtain the following inequality γ(W (ℓ)) ≤ γ(ωW (ℓ)) (see the comments at
the end of the Subsection 1.2.2). Here γ(W (ℓ)) is the index in Subsection 1.1.3.



Chapter 2

Stability properties in
ultraholomorphic classes

When dealing with function spaces (usually called classes) it is very interesting to
decide whether the usual operations (pointwise product, composition, algebraic in-
version, differentiation, integration, etc.) on the functions of the space provide new
functions inside it. These stability properties play a crucial role in the setting and
the solution of, for example, algebraic, differential or integro-differential equations
in the class. This chapter is devoted to the study of several stability properties,
such as inverse or composition closedness, for ultraholomorphic function classes of
both Roumieu and Beurling type defined in terms of a weight matrix.

Firstly, we will transfer and extend known results for Roumieu classes in the
work of J. Siddiqi and M. Ider [76], from the weight sequence setting and in sectors
not wider than a half-plane, to the weight matrix framework and for sectors in the
Riemann surface of the logarithm with arbitrary opening. The key argument rests
on the construction, under suitable hypotheses, of characteristic functions in these
classes for unrestricted sectors. As a by-product, we obtain new stability results
when the growth control in these classes is expressed in terms of a weight sequence,
or of a weight function in the sense of Braun-Meise-Taylor.

Secondly, in the Beurling setting and in the weight matrix framework, we are
only able to treat the case of sectors not wider than a half-plane, as the construction
of characteristic functions is no longer available. The technique now is completely
different, and rests on the work of W. Żelazko [85] on multiplicatively convex
Fréchet algebras.

37
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2.1 Roumieu ultraholomorphic classes

In this section, we present the ultraholomorphic classes of functions we will deal
with. While those associated to a weight sequence are classical and already ap-
peared in the works of S. Mandelbrojt [46], B. Rodŕıguez-Salinas [64, 65] and J.
Schmets and M. Valdivia [74], to cite but a few, the ones associated with a weight
function or a weight matrix were first introduced in the works of J. Jiménez-
Garrido, J. Sanz and G. Schindl [35, Sect. 2.5] and [36, Sect. 2.5].

The functions under consideration are defined in regions of the Riemann surface
of the logarithm, R. In fact, we wish to work in general unbounded sectors in R
with vertex at 0. Since the problems under study will be rotation-invariant, we
will always suppose that they are bisected by the positive real line, and we just
record their opening απ, for α > 0, in the notation. So, we set

Sα :=
{
z ∈ R : | arg(z)| < απ

2

}
.

In what follows, given an open set U ⊂ R, the set of all holomorphic functions
in U will be denoted by H(U).

Definition 2.1.1. LetM be a sequence, S ⊆ R an (unbounded) sector and h > 0.
We define

AM ,h(S) := {f ∈ H(S) : ∥f∥M ,h := sup
z∈S,j∈N0

|f (j)(z)|
hjMj

< +∞}.

(AM ,h(S), ∥ · ∥M ,h) is a Banach space and

A{M}(S) :=
⋃
h>0

AM ,h(S),

is called the Denjoy-Carleman ultraholomorphic class of Roumieu type associated
with M in the sector S. It has a natural structure of an (LB) space.

Remark 2.1.2. Note that, by definition, it is immediate that M ≈ L implies
A{M}(S) = A{L}(S) (as locally convex vector spaces) for any sector S. Moreover,
if the sequence M has additional properties, then the ultraholomorphic class has
more structure. In this sense, it is straightforward to check that, if the sequence
M is (lc), then the ultraholomorphic class is an algebra; if the sequence has (dc)
then the class is closed under taking derivatives.

Similarly as for the ultradifferentiable case, we now define ultraholomorphic
classes associated with a weight function ω.
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Definition 2.1.3. Let ω be a weight function in W0, S ⊆ R an (unbounded)
sector and ℓ > 0, we first define

Aω,ℓ(S) := {f ∈ H(S) : ∥f∥ω,ℓ := sup
z∈S,j∈N0

|f (j)(z)|
exp(1

ℓ
φ∗
ω(ℓj))

< +∞}.

(Aω,ℓ(S), ∥ · ∥ω,ℓ) is a Banach space and we put

A{ω}(S) :=
⋃
ℓ>0

Aω,ℓ(S),

which is called the ultraholomorphic class of Roumieu type associated with ω in
the sector S and it is again an (LB) space.

Again, equivalent weight functions provide equal associated ultraholomorphic
classes.

Finally, we define ultraholomorphic classes of Roumieu type defined by a weight
matrix M, analogously as for the ultradifferentiable counterparts introduced by
A. Rainer and G. Schindl in [70, Section 7] and [59, Section 4.2].

Definition 2.1.4. Let M = {M (α) ∈ RN0
>0 : α > 0} be a weight matrix and S be

an unbounded sector in R. We introduce the ultraholomorphic class of Roumieu
type associated with M, denoted by A{M}(S), as

A{M}(S) :=
⋃
α>0

A{M (α)}(S).

As in the previous cases, R-equivalent weight matrices yield (as locally convex
vector spaces) the same function class on each sector S.

For a given weight function, we can compute the associated weight matrix, as
we see in Subsection 1.3.1. It is natural to ask about the relation between the
corresponding ultraholomorphic classes.

Remark 2.1.5. Let ω ∈ W and let Mω be the associated weight matrix given in
Definition 1.3.9, then

A{ω}(S) = A{Mω}(S) (2.1)

holds as locally convex vector spaces. This equality is an easy consequence of
(1.22) and the way the seminorms are defined in these spaces.

On the other hand, by Remark 1.3.10 (v) we get the following result.

Lemma 2.1.6. Let ω ∈ W and assume that ω has (ω6). Then, for all sectors S
we get that

∀ ℓ > 0 : A{ω}(S) = A{W (ℓ)}(S),

as locally convex vector spaces.



40 2.2. CHARACTERISTIC FUNCTIONS IN ROUMIEU CLASSES

Finally, for a given sector S, if f belongs to any of the previous classes, we may
define the complex numbers

f (p)(0) := lim
z∈S,z→0

f (p)(z) ∈ C p ∈ N0. (2.2)

thanks to the fact that all the derivatives of f are Lipschitz.

2.2 Characteristic functions in Roumieu ultra-

holomorphic classes

In this section we introduce characteristic functions. This concept has a major
role in the stability properties for the previous classes. The aim of this section
is to construct, under suitable assumptions, characteristic functions in A{M}(Sα).
We start with the following definition.

Definition 2.2.1. Let L ∈ RN0
>0 and S be a given sector. A function f ∈ A{L}(S) is

said to be characteristic in the class A{L}(S) if, whenever f ∈ A{M}(S) ⊆ A{L}(S)

for some M ∈ RN0
>0, we have that A{M}(S) = A{L}(S).

For f ∈ A{L}(S) we consider the sequence defined by

Cn(f) := sup
z∈S

|f (n)(z)|, n ∈ N0.

The next statement provides conditions on f which imply it is characteristic.

Theorem 2.2.2. Let L ∈ RN0
>0, S be a given sector and f ∈ A{L}(S). Then, each

of the following conditions implies the next one:

(1) The sequence (|f (j)(0)|)j∈N0 is equivalent to L.

(2) The sequence (Cj(f))j∈N0 is equivalent to L.

(3) f is characteristic in the class A{L}(S).

Proof. (1) ⇒ (2) As f ∈ A{L}(S), there exist A,B > 0 such that Cn(f) ≤ ABnLn

for every n ∈ N0. On the other hand, it is clear that Cn(f) ≥ |f (n)(0)|, and the
hypothesis allows us to conclude the other estimate.

(2) ⇒ (3) By assumption, there exist A,B > 0 such that Ln ≤ ABnCn(f) for
every n ∈ N0. If for some M = (Mn)n∈N0 ∈ RN0

>0 we have f ∈ A{M}(S) ⊆ A{L}(S),
there exist C,D > 0 such that Cn(f) ≤ CDnMn for every n ∈ N0. The two
deduced inequalities show that Ln ≤ AC(BD)nMn for every n ∈ N0, what easily
implies that A{L}(S) ⊆ A{M}(S), and we are done.
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2.2.1 Basic functions

Recall the notationsGs := (j!s)j∈N0 andG
s
:= (jjs)j∈N0 , s ∈ R, and thatG

s ≈ Gs,
see (1.3). We introduce in this section two examples of characteristic functions in
the ultraholomorphic class A{Gα−1}(Sα) if 0 < α ≤ 1, and in A

{Gα′−1}
(Sα) if

1 < α ≤ α′.

Definition 2.2.3. The two-parametric Mittag-Leffler function is defined for all
complex parameters A,B with ℜ(A) > 0 (where ℜ denotes the real part) by

EA,B(z) :=
∞∑
j=0

zj

Γ(Aj +B)
, z ∈ C,

where Γ denotes Euler’s Gamma function.

For the construction of characteristic functions in sectors Sα for α ∈ (0, 1] we
will take A = 2− α and B = 4− α and we set

Ẽα(z) := E2−α,4−α(−z)=
∞∑
j=0

(−1)jzj

Γ((2− α)(j + 1) + 2)
, z ∈ C.

We recall the following statements from the work of B. Rodŕıguez-Salinas [65],
where use is made of the implication (1)⇒(3) in Theorem 2.2.2.

Theorem 2.2.4. ([65, Thm. 5, Thm. 20]) Let α ∈ (0, 1], then

∀ z ∈ Sα ∀ n ∈ N0 :
∣∣∣Ẽ(n)

α (z)
∣∣∣ ≤ 2

n!en

n(2−α)n
. (2.3)

Consequently, Ẽα ∈ A{Gα−1}(Sα). Moreover,

Ẽ(n)
α (0) =

(−1)nn!

Γ((2− α)(n+ 1) + 2)
, n ∈ N0,

and so Ẽα is a characteristic function in the class A{Gα−1}(Sα).

Definition 2.2.5. Let α > 1 and take α′ > α. For all z ∈ Sα we define

gα,α′(z) :=

∫ ∞(−ϕ)

0

e−zvα
′−1

e−vdv, (2.4)

where we choose ϕ ∈ (− (α−1)
(α′−1)

π
2
, (α−1)
(α′−1)

π
2
) with | arg(z)− (α′ − 1)ϕ| < π/2.



42 2.2. CHARACTERISTIC FUNCTIONS IN ROUMIEU CLASSES

Theorem 2.2.6. ([65, Thm. 28]) Let α > 1, α′ > α and gα,α′ be the function
from (2.4).

Then,

∃ C,A ≥ 1 ∀ z ∈ Sα ∀ n ∈ N0 :
∣∣∣g(n)α,α′(z)

∣∣∣ ≤ CAnΓ((α′ − 1)n+ 1). (2.5)

Consequently, gα,α′ ∈ A
{Gα′−1}

(Sα). Moreover,

g
(n)
α,α′(0) = (−1)nΓ((α′ − 1)n+ 1), n ∈ N0,

and so gα,α′ is a characteristic function of the class A
{Gα′−1}

(Sα).

2.2.2 Characteristic transform

Following again the work of B. Rodŕıguez Salinas [65], we present a functional
transform that modifies the derivatives at 0 of a function in a ultraholomorphic
class with a precise control, which allows for the construction of characteristic
functions in more general classes than the Gevrey ones, considered previously.

Definition 2.2.7. Let M be an (lc) sequence, L ∈ RN0
>0, S a sector and f ∈

A{L}(S). Then we define the TM−transform of f by

TM (f)(z) :=
∞∑
j=0

1

2j
Mj

mj
j

f(mjz), z ∈ S.

This expression should be compared with the characteristic functions obtained
in the ultradifferentiable setting by V. Thilliez [81, Thm. 1] and A. Rainer and G.
Schindl [59, Lemma 2.9], and originating in the classical work of T. Bang [2].

For every j ∈ N0 let us set

Rj :=
∞∑
n=0

1

2n
Mn

mn
n

mj
n.

The following result provides estimates for this sequence in terms of the general
sequence M we depart from.

Lemma 2.2.8. Let M ∈ RN0
>0, then

∀ j ∈ N0 : Rj ≥
1

2j
Mj.

If M is (lc), then also
∀ j ∈ N0 : Rj ≤ 2Mj,

and so (Rj)j∈N0 is equivalent to M .
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Proof. For any j ∈ N0 we choose n = j in the sum and get Rj ≥ 1
2j

Mj

mj
j

mj
j =

1
2j
Mj.

For the converse we recall that since M is (lc) we have m0 ≤ m1 ≤ . . . and so

∀ j, n ∈ N0 : (mn)
j−n ≤ Mj

Mn

,

see [81, Thm. 1] and the detailed proof in [69, (3.1.2)]. Thus

Rj =
∞∑
n=0

1

2n
Mnm

j−n
n ≤

∞∑
n=0

1

2n
Mn

Mj

Mn

= 2Mj

for all j ∈ N0.

Recall that LM denotes the sequence obtained by the termwise product of
two sequences L and M .

Theorem 2.2.9. Let M be an (lc) sequence, L ∈ RN0
>0 and for a given sector S

take f ∈ A{L}(S).Then, TM (f) ∈ A{LM}(S) with

TM (f)(j)(0) = Rjf
(j)(0), j ∈ N0. (2.6)

Moreover, for any A > 0, TM : AL,A(S) → ALM ,A(S) is a continuous linear
operator.

Proof. By definition of A{L}(S) we have that f is bounded in S by some constant

C > 0. Since M is log-convex, we have that Mj ≤ mj
j for all j ∈ N0 and then

∞∑
j=0

1

2j
Mj

mj
j

|f(mjz)| ≤ C
∞∑
j=0

1

2j
= 2C, z ∈ S.

Consequently, the series defining TM (f) normally converges in the whole of S,
it provides a function holomorphic in S, and differentiation and limits can be
interchanged with summation. For each z ∈ S and every j ∈ N0 we observe then
that

(TM (f))(j)(z) =
∞∑
n=0

1

2n
Mn

mn
n

mj
nf

(j)(mnz),

and so

TM (f)(j)(0) =
∞∑
n=0

1

2n
Mn

mn
n

mj
nf

(j)(0) = Rjf
(j)(0), j ∈ N0,

as desired.
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Suppose f ∈ AL,A(S) for some A > 0, then for all j ∈ N0 we can estimate

|(TM (f))(j)(z)| ≤
∞∑
n=0

1

2n
Mn

mn
n

mj
n|f (j)(mnz)|

≤ ∥f∥M ,AA
jLj

∞∑
n=0

1

2n
Mnm

j−n
n = ∥f∥M ,AA

jLjRj.

By Lemma 2.2.8 we know that Rj ≤ 2Mj, so TM (f) ∈ ALM ,A(S), and moreover

∥TM (f)∥LM ,A = sup
z∈S

|(TM (f))(j)(z)|
AjLjMj

≤ 2∥f∥M ,A.

It follows that TM : AL,A(S) → ALM ,A(S) is a well-defined continuous linear
operator for any A > 0.

Theorem 2.2.10. Let M be an (lc) sequence, L ∈ RN0
>0 and for a given sector S

take f ∈ A{L}(S). If (|f (j)(0)|)j∈N0 is equivalent to L, then (|TM (f)(j)(0)|)j∈N0 is
equivalent to LM . Consequently, TM (f) is characteristic in the class A{LM}(S).

Proof. The first assertion is clear from Lemma 2.2.8 and (2.6). The second one
stems from Theorem 2.2.2.

2.2.3 Construction of characteristic functions

Given a sequence M ∈ RN0
>0 and α > 0 we construct now, under suitable as-

sumptions, characteristic functions in A{M}(Sα). For this we are using the basic
functions from Subsection 2.2.1 and the characteristic transform from Subsection
2.2.2.

Theorem 2.2.11. Let M ∈ RN0
>0 and α > 0.

1. If α ≤ 1, we assume that G
1−α

M := (j(1−α)jMj)j∈N0 is equivalent to an (lc)

sequence L. Then, TL(Ẽα) is characteristic in the class A{M}(Sα).

2. If α > 1, we assume that there exists α′ > α such that G
1−α′

M is equiv-
alent to an (lc) sequence L. Then, TL(gα,α′) is characteristic in the class
A{M}(Sα).

Proof. This follows by Theorems 2.2.4, 2.2.6, 2.2.9 and 2.2.10, and from the fact

that G
α−1

L in case 1, resp. G
α′−1

L in case 2, is equivalent to M .
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Remark 2.2.12. In order to guarantee that the hypotheses in the previous theo-
rem are satisfied, one can compute the index γ(M) and check whether it is greater
than α − 1. If this is the case, the very definition of this index implies that for
any β such that γ(M ) > β > α − 1 the property (Pβ) (see Subsection 1.1.3) is
satisfied, and so there exists a suitable (lc) sequence L with the desired conditions.

2.3 Stability properties for Roumieu ultraholo-

morphic classes defined by weight matrices

The aim of this section is to generalize and extend the stability result of Ider
and Siddiqi [76, Thm. 1], valid for Carleman-Roumieu ultraholomorphic classes
in sectors not wider than a half-plane. We give the proof in the general weight
matrix setting, we get rid of the restriction on the opening of the sector (thanks
to the construction of characteristic functions in arbitrary sectors), and we extend
the list of stability properties.

Our main result is concerned with several stability properties which will be
defined next.

Definition 2.3.1. Let M ∈ RN0
>0 be a sequence and U ⊆ C be an open set. Given

a compact set K ⊂ U , we define

HM ,h(K) := {f ∈ H(U) : ∥f∥M ,K,h := sup
z∈K,j∈N0

|f (j)(z)|
hjMj

< +∞}.

We put

H{M}(K) :=
⋃
h>0

HM ,h(K).

Moreover, given a weight matrix M = {M (p) : p > 0}, we may introduce the class
H{M}(U) as

H{M}(U) :=
⋂
K⊂U

⋃
p>0

H{M (p)}(K).

Definition 2.3.2. Let M = {M (p) : p > 0} be a weight matrix and α > 0. The
class A{M}(Sα) is said to be:

(i) holomorphically closed, if for all f ∈ A{M}(Sα) and g ∈ H(U), where U ⊆ C
is an open set containing the closure of the range of f , we have g ◦ f ∈
A{M}(Sα).

(ii) inverse-closed, if for all f ∈ A{M}(Sα) such that infz∈Sα |f(z)| > 0, we have
1/f ∈ A{M}(Sα).
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(iii) closed under composition, if for all f ∈ A{M}(Sα) and for all g ∈ H{M}(U),
where U ⊆ C is an open set containing the closure of the range of f , we have
g ◦ f ∈ A{M}(Sα).

Remark 2.3.3. We wish to highlight that it is important to state these definitions
in a clear way. We cannot relax the condition infz∈Sα |f(z)| > 0 in the definition
of inverse-closed by considering, for example, the weaker requirement:

f(z) ̸= 0 for all z ∈ Sα.

While this is enough when working with ultradifferentiable classes on compact in-
tervals, as done by P. Malliavin [45], our situation is different as Sα is not compact.
This is easily seen by considering the function z 7→ exp(−1/z), which belongs to
the class A{G2}(Sα) for every α ∈ (0, 1) (as a consequence of Cauchy’s integral
formula for the derivatives) and never vanishes in Sα. However, observe that its
multiplicative inverse z 7→ exp(1/z) is not bounded, and hence it does not belong
to any of the ultraholomorphic classes under consideration.

In the same vein, the open set U in (i) and (iii) has to contain the closure
of the range of f , and not just the range. This is clearly seen in the forthcoming
arguments involving the function z 7→ 1/z, whose derivatives admit global analytic
bounds in closed subsets of C \ {0}, but not in the whole of it.

Our first statement will consider classes in sectors Sα contained in a half-plane
and defined by a weight matrix M. In this case, the matrix can be changed,
without altering the class, into a new matrix Mα which we define now.

Definition 2.3.4. Let M = {M (p) : p > 0} be a weight matrix (not necessarily

satisfying (Msc)). Given α > 0 we assume that limj→+∞(j(1−α)jM
(p)
j )1/j = ∞ for

all p > 0. The matrix
Mα := {M (p,α) : p > 0}

is defined as

M (p,α) = G
α−1
(
G

1−α
M (p)

)lc
, M

(p,α)
j = j(α−1)j

(
G

1−α
M (p)

)lc
j
, j ∈ N0.

(2.7)

So, every sequence in the original matrix is termwise multiplied by the Gevrey-

like sequence G
1−α

(recall that G
1−α ≈ G1−α), this sequence is changed into its

log-convex regularization, and finally one termwise divides by G
1−α

again. It is
clear that M

(p,α)
0 = M

(p)
0 = 1 (recall the convention 00 := 1) for all α > 0 and

p > 0, and that the map p 7→ M
(p,α)
j is non-decreasing for any j ∈ N0 fixed. So,

M (p,α) ≤ M (p′,α) for all 0 < p < p′, i. e., Mα is a weight matrix according to the
definition given in Subsection 1.3. However, in general Mα is not log-convex.
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Remark 2.3.5. Let us observe that if there exists some positive value p such that
limj→+∞(j(1−α)jM

(p)
j )1/j = ∞, then the same is valid for all p′ > p, thanks to the

fact that the M (p) ≤ M (p′). In this situation, since we also have A{M (p)}(Sα) ⊆
A{M (p′)}(Sα) and the class associated to the weight matrix M is the increasing
union of such classes, in order to study stability properties in it we can restrict
our attention to the case described in the previous definition.

In case limj→+∞(j(1−α)jM
(p)
j )1/j exists but is not infinity for any p > 0, then

there are some possibilities:

(i) If α > 1 and lim infj→+∞(j(1−α)jM
(p)
j )1/j < ∞ for all p > 0, the class

A{M (p)}(Sα) only contains constant functions, see [65, Thm. 21, and p.
8], and the same holds for the class A{M}(Sα). So, the stability results turn
out to be trivial.

(ii) If 0 < α ≤ 1 and lim infj→+∞(j(1−α)jM
(p)
j )1/j = 0 for all p > 0, the class

A{M (p)}(Sα) only contains constant functions, see [65, Thm. 20], and again
we are done.

(iii) If 0 < α ≤ 1 and lim infj→+∞(j(1−α)jM
(p)
j )1/j ∈ (0,∞) for all p > 0 (or from

some p0 > 0 on), taking into account [65, Cor. 8] we have that the class
A{M (p)}(Sα) coincides with A{Gα−1}(Sα) for all p > 0 (or for p ≥ p0), and so

A{M}(Sα) = A{Gα−1}(Sα), where Gα−1
is the matrix with all the rows equal

to the sequence G
α−1

. We will study the stability properties for this class in
Section 2.5.

In order to prove the aforementioned equality of the classes associated with
M and Mα, it is convenient to recall the following result of B. Rodŕıguez-Salinas,
which provides Gorny-Cartan like inequalities for holomorphic functions in sectors.

Theorem 2.3.6. ([65, Thm. 23]) Let 0 < α ≤ 1 and f ∈ H(Sα). If Cn(f) =
supz∈Sα

|f (n)(z)|, n ∈ N0, then the sequence Bn = n(1−α)nCn(f) verifies

Bn ≤ Aq(1−α)nB
n2−n
n2−n1
n1 B

n−n1
n2−n1
n2 , n1 < n < n2,

where A = 4 and q = 1 if α = 1, or A = 8π and q = 2e(2 − α)/(1 − α) for the
remaining cases.

Theorem 2.3.7. Let M = {M (p) : p > 0} be a weight matrix and 0 < α ≤ 1 be

given such that limj→+∞(j(1−α)jM
(p)
j )1/j = ∞ for all p > 0. Let Mα = {M (p,α) :

p > 0} be the matrix given in (2.7). Then, we have that

A{M}(Sα) = A{Mα}(Sα).
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Proof. Given f ∈ A{Mα}(Sα), there exists some p > 0 such that f ∈ A{M (p,α)}(Sα).

Since G
1−α

M (p,α) is the log convex minorant of G
1−α

M (p), we obviously have

that G
1−α

M (p,α) ≤ G
1−α

M (p), and therefore M (p,α) ≤ M (p). We conclude that
f ∈ A{M}(Sα).
For the converse inclusion, let us consider f ∈ A{M}(Sα). There exist some

C,D ∈ R>0 and p > 0 such that Cn(f) = supz∈Sα
|f (n)(z)| ≤ CDnM

(p)
n , for

all n ∈ N0.

Let us fix n ∈ N0 and distinguish two cases:

i) If M
(p,α)
n =M

(p)
n then supz∈Sα

|f (n)(z)| ≤ CDnM
(p,α)
n .

ii) If not, by the construction of the log convex minorant, there exist so-called

principal indices n1, n2 ∈ N0, with n1 < n < n2, such that M
(p,α)
ni =M

(p)
ni for

i = 1, 2 (see [46, Chapitre I] and, for a detailed discussion of the regulariza-
tion process and its intricacies, [73]). So, we have

ln(n(1−α)nM (p,α)
n ) =

n2 − n

n2 − n1

ln(n
(1−α)n1

1 M (p,α)
n1

) +
n− n1

n2 − n1

ln(n
(1−α)n2

2 M (p,α)
n2

)

≥ n2 − n

n2 − n1

ln(
1

CDn1
n
(1−α)n1

1 Cn1(f))

+
n− n1

n2 − n1

ln(
1

CDn2
n
(1−α)n2

2 Cn2(f)).

Therefore, with the notation of the previous theorem, we deduce from above:

B
n2−n
n2−n1
n1 B

n−n1
n2−n1
n2 ≤ (CDn1)

n2−n
n2−n1 (CDn2)

n−n1
n2−n1 n(1−α)nM (p,α)

n = CDnn(1−α)nM (p,α)
n .

Now, from the previous estimate and by applying Theorem 2.3.6, there exist
some A, q > 0 such that

Cn(f) ≤ n(α−1)nAq(1−α)nB
n2−n
n2−n1
n1 B

n−n1
n2−n1
n2 ≤ AC(q(1−α)D)nM (p,α)

n .

We conclude that f ∈ A{Mα}(Sα).

Now, we need to establish a suitable condition under which the equality of the
classes H{M}(U) and H{Mα}(U) can be stated for a general open set U in C. This
will be necessary in the proof of the implication (e) ⇒ (d) in the forthcoming
Theorem 2.3.14, as noted by A. Rainer [58], who has also provided us with a proof
for the aforementioned equality. Let us start with some preliminary definitions
and results in the ultradifferentiable framework.
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Definition 2.3.8. Let M be a sequence of positive real numbers and U ⊆ C be
an open set. Given a compact set K ⊂ U , we define

EM ,h(K) := {f ∈ C∞(U) : ∥f∥M ,K,h := sup
z∈K,j∈N0

|f (j)(z)|
hjMj

= sup
j∈N0

∥f (j)∥K
hjMj

< +∞},

where ∥ · ∥K is the supremum norm. We put

E{M}(K) :=
⋃
h>0

EM ,h(K).

Moreover, given a weight matrix M = {M (p) : p > 0}, we may introduce the
Denjoy-Carleman class of Roumieu type E{M}(U) as

E{M}(U) :=
⋂
K⊂U

⋃
p>0

E{M (p)}(K).

We first recall a classical result of H. Cartan.

Lemma 2.3.9. ([10, Lemme 2]) Let f : [−r, r] → C be a Cp function satisfying

∥f∥[−r,r] ≤ A0, ∥f (p)∥[−r,r] ≤ Ap.

Then
|f (k)(0)| < 2ekA

1−k/p
0 max{Ap, A0p!/r

p}k/p.

In order to establish the aforementioned equality for the classes associated to
M and Mα, we introduce the following property.

Definition 2.3.10. We say that M has the property (M{G}) if

M
(p)
k

M
(p)
j

≥ (k − j)! whenever k ≥ j

for all p > 0.

Observe that, taking j = 0 in the previous condition, one deduces that

M
(p)
k ≥ k!, k ≥ 0, (2.8)

what guarantees that, given α ∈ (0, 1], limj→+∞(j(1−α)jM
(p)
j )1/j = ∞ for all p > 0,

and so the matrix Mα can be considered. We are ready to prove a first result in
the one-dimensional case.
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Lemma 2.3.11. Let M = {M (p) : p > 0} be a weight matrix that has (M{G}).

Fix α ∈ (0, 1]. Consider Mα = {M (p,α) : p > 0}, the matrix given in (2.7). Then,
for each open interval I ⊆ R we have that

E{M}(I) = E{Mα}(I).

Proof. Since M (p,α) ≤ M (p), only the inclusion E{M}(I) ⊆ E{Mα}(I) must be
checked. Let f ∈ E{M}(I). Then for each compact interval J ⊆ I there exist
C, ρ, p > 0 such that

||f (k)||J ≤ CρkM
(p)
k , k ∈ N.

Let δ = dist(J,R∖I). We may assume that ρ ≥ 1/δ. There is a strictly increasing
sequence kn ∈ N0 such that

M
(p,α)
kn

= M
(p)
kn
, n ∈ N0.

Let kn < k < kn+1. Note that, by (M{G}) and since ρ ≥ 1/δ,

ρkn+1M
(p)
kn+1 ≥ ρknM

(p)
kn

(kn+1 − kn)!

δkn+1−kn
.

By Lemma 2.3.9,

∥f (k)∥J ≤ 2ek−kn(CρknM
(p)
kn

)
1− k−kn

kn+1−kn (Cρkn+1M
(p)
kn+1

)
k−kn

kn+1−kn

= 2Cek−knρk(k(α−1)kn
n k(1−α)kn

n M
(p,α)
kn

)
1− k−kn

kn+1−kn

· (k(α−1)kn+1

n+1 k
(1−α)kn+1

n+1 M
(p,α)
kn+1

)
k−kn

kn+1−kn .

By the construction of the log-convex minorant,

(k(1−α)kn
n M

(p,α)
kn

)
1− k−kn

kn+1−kn (k
(1−α)kn+1

n+1 M
(p,α)
kn+1

)
k−kn

kn+1−kn = k(1−α)kM
(p,α)
k .

Furthermore

(k(α−1)kn
n )

1− k−kn
kn+1−kn (k

(α−1)kn+1

n+1 )
k−kn

kn+1−kn ≤ k(α−1)k

thanks to the log-convexity of the map k 7→ kk. We conclude that

∥f (k)∥J ≤ 2C(eρ)kM
(p,α)
k .

This implies the assertion.

Corollary 2.3.12. In the setting of Lemma 2.3.11, for each open subset U ⊆ C,

E{M}(U) = E{Mα}(U).

More precisely, if p > 0, δ > 0, K ⊆ C is compact and Kδ := {x ∈ C : dist(x,K) ≤
δ}, then (by restriction)

E{M (p)}(Kδ) = E{M (p,α)}(K).
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Proof. This follows from Lemma 2.3.11, using directional derivatives and the po-
larization inequality. Let f ∈ E{M (p)}(Kδ). For all x ∈ K and v ∈ S1, the function

fx,v(t) = f(x+tv) satisfies ∥f (k)
x,v∥[−δ,δ] ≤ CρkM

(p)
k for some C, ρ > 0 (independently

of x and v), where we may assume that ρ ≥ 1/δ. The proof of Lemma 2.3.11 yields

that |dkvf(x)| = |f (k)
x,v (0)| ≤ 2C(eρ)kM

(p,α)
k . In view of the polarization inequality

[40, (7.13.1)], the assertion follows.

Finally, we deduce the desired equality.

Proposition 2.3.13. Let M = {M (p) : p > 0} be a weight matrix such that M
has (M{G}). Fix α ∈ (0, 1]. Consider Mα = {M (p,α) : p > 0} given in (2.7).
Then, for each open subset U ⊂ C,

H{M}(U) = H{Mα}(U).

Proof. This follows from Corollary 2.3.12 and the fact that for a holomorphic
function f ∈ H(U) we have (by the Cauchy-Riemann equations)

∂f

∂z
=
∂f

∂x
.

We are ready to state our first main result.

Theorem 2.3.14. Let M = {M (p) : p > 0} be a weight matrix (not necessarily

(Msc)) and 0 < α ≤ 1 be given such that limj→+∞(j(1−α)jM
(p)
j )1/j = ∞ for all

p > 0. Let Mα = {M (p,α) : p > 0} be the matrix according to (2.7). Then:
(I) The following assertions are equivalent:

(a) The matrix Mα satisfies the property (M{rai}).

(b) The class A{M}(Sα) is holomorphically closed.

(c) The class A{M}(Sα) is inverse-closed.

(II) If Mα has (M{dc}), then any of the previous statements implies:

(e) The matrix Mα satisfies the property (M{FdB}).

(III) If M has (M{G}), then (e) implies:

(d) The class A{M}(Sα) is closed under composition.
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(IV) If M has (M{Cω}), then (d) implies (b).

(V) If M has (M{G}) and Mα has (M{dc}), then all the statements from (a) to
(e) are equivalent.

Proof. (I) (a) ⇒ (b) First recall that by the so-called Faà-di-Bruno formula for
the composition we get

(g ◦ f)(n)(z) =
∑

∑n
i=1 ki=k∑n
i=1 iki=n

n!

k1! · · · kn!
g(k)(f(z))

n∏
i=1

(
f (i)(z)

i!

)ki

, z ∈ Sα, n ∈ N.

Let now f ∈ A{M}(Sα) be given. By Theorem 2.3.7 we know that the classes
A{Mα}(Sα) and A{M}(Sα) are equal, therefore f ∈ A{Mα}(Sα). In particular, f
is bounded and thus any function g which is analytic in a domain containing the
(compact) closure of the range of f satisfies

∃ C1, h1 ≥ 1 ∀ k ∈ N0 ∀ z ∈ Sα : |g(k)(f(z))| ≤ C1h
k
1k!. (2.9)

By applying this and the fact that f ∈ A{Mα}(Sα), we estimate as follows for all
n ∈ N and z ∈ Sα:

|(g ◦ f)(n)(z)| ≤
∑

∑n
i=1 ki=k,

∑n
i=1 iki=n

n!

k1! · · · kn!
|g(k)(f(z))|

n∏
i=1

∣∣∣∣f (i)(z)

i!

∣∣∣∣ki

≤
∑

∑n
i=1 ki=k,

∑n
i=1 iki=n

n!

k1! · · · kn!
C1h

k
1k!

n∏
i=1

(
C2h

i
2M̂

(p,α)

i

)ki

≤ C1

∑
∑n

i=1 ki=k∑n
i=1 iki=n

n!

k1! · · · kn!
hk1k!C

k1+···+kn
2 hk1+···+nkn

2

n∏
i=1

(M̂
(p,α)

i )ki

≤︸︷︷︸
(1.16)

C1(C2h1h2)
n

∑
∑n

i=1 ki=k,
∑n

i=1 iki=n

n!

k1! · · · kn!
k!

n∏
i=1

H iki
1 M̂

(p′,α)

iki

≤︸︷︷︸
(1.16)

C1(H1C2h1h2)
n

∑
∑n

i=1 ki=k∑n
i=1 iki=n

n!

k1! · · · kn!
k!Hk1+···+nkn

2 M̂
(p′′,α)

k1+···+nkn

= C1(H1H2C2h1h2)
nM (p′′,α)

n

∑
∑n

i=1 ki=k,
∑n

i=1 iki=n

k!

k1! · · · kn!

≤ C1C3(H1H2C2C4h1h2)
nM (p′′,α)

n .
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For the estimates also note that k ≤ n and w.l.o.g. C2, h1, h2, H1 ≥ 1. More-
over, we have that ∑

∑n
i=1 ki=k,

∑n
i=1 iki=n

k!

k1! · · · kn!
= 2n−1,

see the book of S. G. Krantz and H. R. Parks [39, Lemma 1.4.1] or C. Fernández
and A. Galbis [21, Prop. 2.1]. Finally, by taking into account that the classes
A{Mα}(Sα) and A{M}(Sα) are equal, then g ◦ f ∈ A{M}(Sα) is verified.

(b) ⇒ (c) This is obvious by taking g : z 7→ 1
z
since g ∈ H(C\{0}) and C\{0}

contains the (compact) closure of the image of any element f ∈ A{M}(Sα) such
that infz∈Sα |f(z)| > 0.

(c) ⇒ (a) We follow the ideas from J. A. Siddiqi and M. Ider [76, Thm. 1]
and apply the constructions from the previous section. First, recall that L(p) :=

G
1−α

M (p,α)= (G
1−α

M (p))lc is log-convex for any p > 0, see (2.7). Let p > 0 be
arbitrary but from now on fixed. According to Theorem 2.2.11 we put

fp(z) := TL(p)(Ẽα)(z).

By using (2.3) and Lemma 2.2.8 we estimate as follows:

|f (n)
p (z)| ≤

∞∑
k=0

1

2k
L
(p)
k

(ℓ
(p)
k )n

(ℓ
(p)
k )k

|Ẽ(n)
α (ℓ

(p)
k z)| ≤ 4L(p)

n

n!en

n(2−α)n

= 4M (p,α)
n

n!en

nn
≤ 4enM (p,α)

n ,

for all n ∈ N0 and z ∈ Sα. This estimate shows that fp ∈ A{Mα}(Sα) and, in
particular when being applied to n = 0, it yields supz∈Sα

|fp(z)| ≤ 4 < +∞.

Set R
(p)
n :=

∑∞
k=0

1
2k
L
(p)
k (ℓ

(p)
k )n−k and so we get

∀ n ∈ N0 : f (n)
p (0) = R(p)

n

n!(−1)n

Γ((2− α)(n+ 1) + 2)
, (2.10)

and from Lemma 2.2.8

∀ n ∈ N0 : R(p)
n ≥ n(1−α)nM

(p,α)
n

2n
. (2.11)

Take λ > 4 (note that in [75, p. 349, line 5] there is a mistake, one should write

λ > C0(f)M
α
0 ). Then, if we put f̃p := λ−fp, we have that f̃p ∈ A{Mα}(Sα). More-

over, since infz∈Sα |f̃p(z)| > 0 and A{Mα}(Sα), which coincides with A{M}(Sα), is
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assumed to be inverse-closed, we get that z 7→ 1

f̃p(z)
= 1

λ−fp(z)
∈ A{Mα}(Sα). We

write g : z 7→ 1
λ−z

, then by applying again the Faà-di-Bruno-formula to the com-

position g ◦ fp ∈ A{Mα}(Sα) and thanks to the fact that g(k)(z) = k!
(λ−z)k+1 for all

k ∈ N0, yields: For some C, h > 0 and some index p′ > 0 (large) we get for all
n ∈ N0 that

|(g ◦ fp)(n)(0)| =

∣∣∣∣∣∣
∑

∑n
i=1 ki=k,

∑n
i=1 iki=n

n!

k1! · · · kn!
k!

(λ− fp(0))k+1

n∏
i=1

(
f
(i)
p (0)

i!

)ki
∣∣∣∣∣∣

≤ ChnM (p′,α)
n .

By (2.10) we see(
f
(i)
p (0)

i!

)ki

=

(
(−1)iR

(p)
i

Γ((2− α)(i+ 1) + 2)

)ki

, 1 ≤ i ≤ n,

and by taking into account that
∏n

i=1(−1)iki = (−1)n, we deduce that for every
n ∈ N0,∑

∑n
i=1 ki=k∑n
i=1 iki=n

n!

k1! · · · kn!
k!

(λ− fp(0))k+1

n∏
i=1

(
R

(p)
i

Γ((2− α)(i+ 1) + 2)

)ki

≤ ChnM (p′,α)
n .

Each summand in this sum is strictly positive and we focus now on the one given
by the choices kj = k, ki = 0 for i ̸= j and n = jkj = jk with j, k ∈ N. Thus,
there exist C, h, p′ > 0 such that

∀ j, k ∈ N :
(jk)!

(λ− fp(0))k+1

(
R

(p)
j

Γ((2− α)(j + 1) + 2)

)k

≤ ChjkM
(p′,α)
jk ,

is valid and clearly (λ− fp(0))
k+1 ≤ hjk+1

1 for some h1 > 0 (large) and all k ∈ N0.
Hence

∃ C, h, h1, p′ > 0 ∀ j, k ∈ N :

(
R

(p)
j

Γ((2− α)(j + 1) + 2)

)k

≤ Ch1(hh1)
jk
M

(p′,α)
jk

(jk)!
.

(2.12)
By involving (2.11) we estimate the left-hand side of (2.12) as follows:

R
(p)
j

Γ((2− α)(j + 1) + 2)
≥

j!1−αM
(p,α)
j

2j((2− α)(j + 1) + 1)Γ((2− α)(j + 1) + 1)

≥
M

(p,α)
j

C112
jhj+1

3 j!
.
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The last estimate is valid since (2−α)(j+1)+1 ≤ 2(j+1)+(j+1) = 3(j+1) ≤ 6j

for all j ∈ N, and Γ((2− α)(j + 1) + 1) ≤ C1h
(2−α)(j+1)
2 j!2−α for some C1, h2 ≥ 1

and all j ≥ 1 (by the properties of the Gamma function), where we have put
h3 := h2−α

2 . Consequently, by (2.12) we get

∃ C,C1, h, h1, h3, p
′ > 0 ∀ j, k ∈ N :

(
M

(p,α)
j

j!

)k

≤ Ch1(12hC1h1h
2
3)

jk
M

(p′,α)
jk

(jk)!
,

and so

∃ H ≥ 1 ∃ p′(≥ p) > 0 ∀ j, k ∈ N :

(
M

(p,α)
j

j!

)1/j

≤ H

(
M

(p′,α)
jk

(jk)!

)1/(jk)

. (2.13)

(2.13) establishes (M{rai}) for indices p and p′ for all choices j, k ∈ N and so for
all multiplies n = jk of j ∈ N. For the remaining cases let now n ≥ 1 such that
jk < n < j(k + 1) for some j, k ∈ N. Then, by using (2.13) (with appearing

constant H), (1.3) and the fact that j 7→ (j(1−α)jM
(p′,α)
j )1/j is non-decreasing for

each index p′ > 0 (by log-convexity), we estimate as follows:(
M

(p′,α)
n

n!

)1/n

=
(n(1−α)nM

(p′,α)
n )1/n

n1−α(n!)1/n
≥

((jk)(1−α)jkM
(p′,α)
jk )1/(jk)

n1−α(n!)1/n

=
(jk)1−α

n!1/nn1−α

(
M

(p′,α)
jk

(jk)!

)1/(jk)

(jk)!1/(jk)

≥ 1

H

(
M

(p,α)
j

j!

)1/j

(jk)!1/(jk)

n!1/n

(
jk

n

)1−α

≥ 1

H

(
M

(p,α)
j

j!

)1/j

e−1jk

n

(
jk

j(k + 1)

)1−α

≥ 1

H

(
M

(p,α)
j

j!

)1/j

jk

ej(k + 1)

(
1

2

)1−α

≥ 1

He22−α

(
M

(p,α)
j

j!

)1/j

.

Summarizing, property (M{rai}) is verified for the matrix Mα between the indices
p and p′ and when choosing the constant C := He22−α(> H).

(II) (a) ⇒ (e) follows by (ii) in Lemma 1.3.7.

(III) (e) ⇒ (d) follows by Theorem 2.3.7, Proposition 2.3.13 and by repeating
the arguments in the proof of (a) ⇒ (b) above (a word-by-word repetition of the
proof in the ultradifferentiable setting), see [70, Thm. 8.3.1].
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(IV) The property (M{Cω}) implies that for all open set U ⊆ C, the class H(U)
is contained in H{M}(U), so (d) ⇒ (b).

(V) It suffices to observe that, according to (2.8), the property (M{G}) for M
implies that M has (M{Cω}). So, all the previous implications are valid.

Remark 2.3.15. (i) If M has (M{dc}) then Mα has it too (the converse is not
clear in general).

(ii) As said before, the property (M{G}) implies (M{Cω}). The converse does
not hold, as shown by the constant matrix given by the sequence M defined
as M2j = (2j)!, M2j+1 = (2j + 1)!2, j ∈ N0.

(iii) Regardless the property (M{G}), the implication (e) ⇒ (d) is valid provided
that M and Mα are R-equivalent, since then H{M}(U) and H{Mα}(U) are
equal for every open U ⊆ C. This trivially happens when M is (Mlc) (i. e.

M (p) is a log-convex sequence for all p > 0), or if G
1−α

M (p) is log-convex
for every p > 0, since in any case we would indeed have M = Mα.

(iv) The condition that limj→+∞(j(1−α)jM
(p)
j )1/j = ∞ for all p > 0 can be weak-

ened as long as the log-convex regularization of G
1−α

M (p) makes sense (for

example, in caseM (p) = G
α−1

). In this situation, the proof of Theorem 2.3.7
is still valid, Theorem 2.2.11 can be applied and the availability of charac-
teristic functions (needed in the previous proof of the implication (c) ⇒ (a))
is guaranteed. A similar comment can be made regarding the next corollary.

For a sequence M ∈ RN0
>0 such that limj→+∞(j(1−α)jM

(p)
j )1/j = ∞, we can

extend [76, Thm. 1] by considering the constant weight matrix M = {M (p) =
M : p > 0} and applying to it the previous result.

Corollary 2.3.16. Let M ∈ RN0
>0 be a sequence, and 0 < α ≤ 1 be given such that

limj→+∞(j(1−α)jMj)
1/j = ∞. Let M (α) := G

α−1
(
G

1−α
M
)lc

. Then:

(I) The following assertions are equivalent:

(a) The sequence M (α) has the property (rai).

(b) The class A{M}(Sα) is holomorphically closed.

(c) The class A{M}(Sα) is inverse-closed.

(II) If M (α) is (dc), then any of the previous statements implies:

(e) The sequence M (α) has the property (FdB).
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(III) If the constant matrix M = {M (p) = M : p > 0} has (M{G}), then (e)
implies:

(d) The class A{M}(Sα) is closed under composition.

(IV) If M = {M (p) = M : p > 0} has (M{Cω}), then (d) implies (b).

(V) If M = {M (p) = M : p > 0} has (M{G}) and M (α) is (dc), then all the
statements from (a) to (e) are equivalent.

Remark 2.3.17. Although the ultradifferentiable classes E{M}(0,+∞) are defined
by local estimates, instead of the global ones defining our ultraholomorphic classes,
it is interesting to mention that the main stability result of A. Rainer and G.
Schindl [60, Thm. 1] (see also [59, Thm. 3.2]) for the former ones can be partially
seen as the limiting case when taking α = 0 in the previous result, i. e. when the
sector Sα “collapses” to the ray (0,+∞).

Thanks to the construction of characteristic functions in classes defined in
sectors of arbitrary opening, undertaken in Subsection 2.2.3, we study now the
stability properties for classes defined in sectors wider than a half-plane.

Theorem 2.3.18. Let M = {M (p) : p > 0} be a weight matrix and consider
α > 1. For each p > 0, we suppose that there exists some αp > α such that

G
1−αp

M (p) is equivalent to an (lc) sequence L(p) depending on αp. Then the
following assertions are equivalent:

(a) The matrix M satisfies the property (M{rai}).

(b) The class A{M}(Sα) is holomorphically closed.

(c) The class A{M}(Sα) is inverse-closed.

If M has in addition (M{Cω}) and (M{dc}), then the list of equivalences can be
extended by

(d) The class A{M}(Sα) is closed under composition.

(e) The matrix M satisfies the property (M{FdB}).

Proof. The proof of (a) ⇒ (b) ⇒ (c) is similar to the one in Theorem 2.3.14.
(c) ⇒ (a) Although the arguments are similar to those developed in the same

implication in Theorem 2.3.14, we consider it worthy to complete the details be-
cause now we will work with the original weight matrix (instead of Mα), and
the characteristic functions are different in this framework. Let p > 0 be arbi-
trary but from now on fixed. There exist αp > α and L(p) log-convex such that
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G
1−αp

M (p) ≈ L(p). Then, there exist Ap, Bp > 0 such that An
pn

(1−αp)nM
(p)
n ≤

L
(p)
n ≤ Bn

pn
(1−αp)nM

(p)
n for all n ∈ N0. According to Theorem 2.2.11 we put

fp(z) := TL(p)(gα,αp)(z).

By using (2.5), Lemma 2.2.8 and the above inequality we have

|f (n)
p (z)| ≤

∞∑
k=0

1

2k
L
(p)
k

(ℓ
(p)
k )n

(ℓ
(p)
k )k

|g(n)α,αp
(ℓ

(p)
k z)| ≤ 2CDnL(p)

n Γ((αp − 1)n+ 1)

≤ EB̃n
pn

(1−αp)nM (p)
n n(αp−1)n = EB̃n

pM
(p)
n ,

for suitable constant B̃p, C,D,E > 1 and for all n ∈ N0 and z ∈ Sα. This estimate
shows that fp ∈ A{M}(Sα) and, in particular, it yields supz∈Sα

|fp(z)| ≤ E < +∞.

Set R
(p)
n :=

∑∞
k=0

1
2k
L
(p)
k (ℓ

(p)
k )n−k, so that

∀ n ∈ N0 : f (n)
p (0) = (−1)nΓ((αp − 1)n+ 1)R(p)

n , (2.14)

and from Lemma 2.2.8,

∀ n ∈ N0 : R(p)
n ≥ L

(p)
n

2n
≥
An

pn
(1−αp)nM

(p)
n

2n
. (2.15)

Now take λ > E and put f̃p := λ− fp. Thus we get f̃p ∈ A{M}(Sα), and moreover

infz∈Sα |f̃p(z)| > 0. Since A{M}(Sα) is assumed to be inverse-closed, we get that
z 7→ 1

λ−fp(z)
∈ A{M}(Sα). When writing gp : z 7→ 1

λ−z
, the dependence on p is

justified because λ is clearly depending on this chosen index. By applying the
Faà-di-Bruno-formula to the composition gp ◦fp we get that for some F, h > 0 and
some index p′ > 0 (large) and for all n ∈ N0,

|(gp ◦ fp)(n)(0)| =

∣∣∣∣∣∣
∑

∑n
i=1 ki=k,

∑n
i=1 iki=n

n!

k1! · · · kn!
k!

(λ− fp(0))k+1

n∏
i=1

(
f
(i)
p (0)

i!

)ki
∣∣∣∣∣∣

≤ FhnM (p′)
n .

Using (2.14) and since
∏n

i=1(−1)iki = (−1)n, we deduce that for every n ∈ N0

∑
∑n

i=1 ki=k∑n
i=1 iki=n

n!

k1! · · · kn!
k!

(λ− fp(0))k+1

n∏
i=1

(
Γ((αp − 1)i+ 1)R

(p)
i

i!

)ki

≤ FhnM (p′)
n .
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Given j, k ∈ N, we focus on the summand for kj = k, ki = 0 for i ̸= j and
n = jkj = jk, so we get that

∃ F, h, p′ > 0 ∀ j, k ∈ N :
(jk)!

(λ− fp(0))k+1

(
Γ((αp − 1)j + 1)R

(p)
j

j!

)k

≤ FhjkM
(p′)
jk .

Clearly, (λ− fp(0))
k+1 ≤ hjk+1

1 for some h1 > 0 (large) and all k ∈ N0. Hence, for
all j, k ∈ N we have

∃ F, h, h1, p′ > 0 ∀ j, k ∈ N :

(
Γ((αp − 1)j + 1)R

(p)
j

j!

)k

≤ Fh1(hh1)
jk
M

(p′)
jk

(jk)!
.

(2.16)
By involving (2.15) we estimate the left-hand side of (2.16) as follows:

Γ((αp − 1)j + 1)R
(p)
j

j!
≥
Aj

pj
(1−αp)jΓ((αp − 1)j + 1)M

(p)
j

2jj!

≥
Ãj

pj
(1−αp)jj(αp−1)jM

(p)
j

2jj!
=
M

(p)
j

A
j

pj!
.

The last inequality is a consequence of the properties of the Gamma function for
a suitable constant Ãp > 0, and we have put Ap = 2/Ãp. Consequently, by (2.16)
we get

∃ F, h, h1, Ap, p
′ > 0 ∀ j, k ∈ N :

(
M

(p)
j

j!

)k

≤ Fh1(hh1Ap)
jk
M

(p′)
jk

(jk)!
,

and so there exists H ≥ 1 such that

(
M

(p)
j

j!

)1/j

≤ H

(
M

(p′)
jk

(jk)!

)1/(jk)

. (2.17)

Equation (2.17) establishes (M{rai}) for indices p and p′ for all choices j, k ∈ N
and so for all multiples n = jk of j ∈ N. For the remaining cases let now n ≥ 1
such that jk < n < j(k + 1) for some j, k ∈ N. Then, by using (2.17), (1.3), the

equivalence G
1−αp′M (p′) ≈ L(p′) and the fact that j 7→ (L

(p′)
j )1/j is non-decreasing
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for each index p′ > 0, we estimate(
M

(p′)
n

n!

)1/n

=
(Bn

p′n
(1−αp′ )nM

(p′)
n )1/n

Bp′n
1−αp′ (n!)1/n

≥ (L
(p′)
n )1/n

Bp′n
1−αp′ (n!)1/n

≥
(L

(p′)
jk )1/(jk)

Bp′n
1−αp′ (n!)1/n

≥
(Ajk

p′ (jk)
(1−αp′ )jkM

(p′)
jk )1/(jk)

Bp′n
1−αp′ (n!)1/n

=
Ap′(jk)

1−αp′

Bp′n!1/nn
1−αp′

(
M

(p′)
jk

(jk)!

)1/(jk)

(jk)!1/(jk)

≥ Ap′

Bp′H

(
M

(p)
j

j!

)1/j

(jk)!1/(jk)

n!1/n

(
jk

n

)1−αp′

≥ Ap′

Bp′H

(
M

(p)
j

j!

)1/j

e−1jk

n

≥ Ap′

Bp′H

(
M

(p)
j

j!

)1/j

jk

ej(k + 1)
≥ Ap′

2Bp′He

(
M

(p)
j

j!

)1/j

.

Summarizing, property (M{rai}) is verified for the matrix M between the indices
p and p′ and when the constant C := 2Bp′He/Ap′ is chosen.

(a) ⇒ (e) and (d) ⇒ (b) are as in Theorem 2.3.14.

(e) ⇒ (d) One can repeat the proof in the ultradifferentiable setting, see [70,
Thm. 8.3.1].

Remark 2.3.19. In the same line of Remark 2.2.12, if for a weight matrix M =
{M (p) : p > 0} we know that γ(M (p)) > α−1 for all p > 0, then there exists some

αp > α such that G
1−αp

M (p) is equivalent to an (lc) sequence L(p) depending on
αp.

Note that there exist some differences between the statements of the Theorems
2.3.14 and 2.3.18, concerning the fact that the conditions for stability are imposed
on different weight matrices, M or Mα. In general, if α > 1 we only know that
A{Mα}(Sα) ⊂ A{M}(Sα). However, the hypotheses of the second theorem have
strong implications and, under an additional assumption, these results perfectly
match, as the next proposition shows.

Proposition 2.3.20. Let M = {M (p) : p > 0} be a given weight matrix. Sup-

pose that for every p > 0 there exists αp > 0 such that G
1−αp

M (p) is equivalent
to an (lc) sequence L(p), and that there exists β > 0 such that β < αp for all

p > 0. Then, for every p > 0 one has limj→+∞(j(1−β)jM
(p)
j )1/j = ∞, M and
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Mβ (defined as in (2.7)) are R-equivalent, and therefore M satisfies the property
(M{rai}) (resp.(M{FdB})) if and only if the matrix Mβ satisfies this condition too.
Moreover, A{Mβ}(Sγ) = A{M}(Sγ), for all γ > 0.

Proof. Let p > 0 be arbitrary but fixed. First, note that

G
1−β

M (p) = G
αp−β

(G
1−αp

M (p)) ≈ G
αp−β

L(p) =: L̃
(p)
,

where the sequence L̃
(p)

is log-convex (as the product of two such sequences).

On the one hand, the condition L(p) ≈ G
1−αp

M (p) guarantees that there
exists some A > 0 such that AjL

(p)
j ≤ j(1−αp)jM

(p)
j , for all j ∈ N0. More-

over, for all j > 0 we can estimate (j(1−β)jM
(p)
j )1/j = j(αp−β)(j(1−αp)jM

(p)
j )1/j ≥

j(αp−β)(AjL
(p)
j )1/j, and thanks to the fact that L(p) is (lc) and αp > β, we deduce

that limj→+∞(j(1−β)jM
(p)
j )1/j = ∞. Moreover, there exists some Ã > 0 such that

the (lc) sequence B(p) := (ÃjL̃
(p)
j )j satisfies B(p) ≤ G

1−β
M (p). Then, we have that

B(p) = (B(p))lc ≤ (G
1−β

M (p))lc, which implies that L̃
(p)

⪯ (G
1−β

M (p))lc.

On the other hand, we observe that G
1−β

M (p) ⪯ L̃
(p)
, and therefore, we have

(G
1−β

M (p))lc ⪯ L̃
(p)
. Finally, we conclude that L̃

(p)
≈ (G

1−β
M (p))lc.

The previous equivalence ensures that M (p,β) is equivalent to G
β−1

L̃
(p)
, and

therefore M (p) ≈ M (p,β). Finally, the two matrices M and Mβ are R-equivalent,
and the property (M{rai}) (resp.(M{FdB})) is stable under R-equivalence, see [70,
Remark 8.2.2].

Under the assumptions of the previous proposition, we can prove a weaker
variant of Theorem 2.3.18 using a similar technique to the one used in the proof
of Theorem 2.3.14.

Corollary 2.3.21. Let M = {M (p) : p > 0} be a weight matrix and consider
α > 1. For each p > 0, we suppose that there exist some αp > α such that

G
1−αp

M (p) is equivalent to an (lc) sequence L(p) depending on αp, and that there
exists β > α such that β < αp for all p > 0. Then the following assertions are
equivalent:

(a) The matrix M, or equivalently Mβ, satisfies property (M{rai}).

(b) The class A{M}(Sα) is holomorphically closed.

(c) The class A{M}(Sα) is inverse-closed.

If M has in addition (M{Cω}) and (M{dc}), then the list of equivalences can be
extended by
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(d) The class A{M}(Sα) is closed under composition.

(e) The matrix M, or equivalently Mβ, satisfies property (M{FdB}).

We end this section by providing the version of Corollary 2.3.16 for wide sectors,
which can be again deduced as a straightforward consequence of the corresponding
result for weight matrices, Theorem 2.3.18.

Corollary 2.3.22. Let M ∈ RN0
>0 and α > 1. Suppose there exists α′ > α such

that G
1−α′

M is equivalent to an (lc) sequence L (depending on α′). Then the
following assertions are equivalent:

(a) The sequence M has the property (rai).

(b) The class A{M}(Sα) is holomorphically closed.

(c) The class A{M}(Sα) is inverse-closed.

If lim infj→∞(M̂ j)
1/j > 0 and M is (dc), then the list of equivalences can be

extended by

(d) The class A{M}(Sα) is closed under composition.

(e) The sequence M has the property (FdB).

2.4 The weight function case in the Roumieu set-

ting

We start proving, for the reader’s convenience, how the condition (M{rai}) for a
weight matrix associated to a weight function ω translates into a condition on ω.
Note that this matrix has (Mlc) and therefore (Mω)

α ≡ Mω for all α ∈ (0, 1].

Lemma 2.4.1. Let ω ∈ W0 be given with associated weight matrix Mω := {W (ℓ) :
ℓ > 0}. Then the following are equivalent:

(a) The matrix Mω has (M{rai}), i. e. (recall Ŵ
(ℓ)

j = W
(ℓ)
j /j!)

∀ ℓ > 0 ∃ ℓ′ > 0 ∃ H ≥ 1 ∀ 1 ≤ j ≤ k : (Ŵ
(ℓ)

j )1/j ≤ H(Ŵ
(ℓ′)

k )1/k.

(b) ω satisfies the condition (α0) (see (1.11)), i. e.

∃ C ≥ 1 ∃ t0 ≥ 0 ∀ λ ≥ 1 ∀ t ≥ t0 : ω(λt) ≤ Cλω(t).
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Proof.
(a) ⇒ (b) The property (M{rai}) is preserved under equivalence of matrices,

then Mω
W (ℓ)

has (M{rai}) for some/any l > 0. By a result of G. Schindl [72,

Thm. 4.5 (iv) ⇔ (i)], ωW (ℓ) satisfies the condition (α0), and therefore ω satisfies
it too, because ω ∼ ωW (ℓ) (see (1.21)) and the condition (α0) is preserved under
equivalence of weight functions.

(b) ⇒ (a) If ω satisfies the condition (α0), then ωW (ℓ) satisfies it too (arguing
as before). By [72, Thm. 4.5 (i) ⇔ (iv)], the matrix Mω

W (ℓ)
has (M{rai}) for

some/any l > 0. Finally, by [70, Lemma 5.3.1] the matrices Mω
W (ℓ)

and Mω are

equivalent, and (M{rai}) is preserved under equivalence of matrices.

We can provide now a statement about stability properties for classes associated
to a weight function in small sectors.

Theorem 2.4.2. Let ω ∈ W be given with associated weight matrix Mω :=
{W (ℓ) : ℓ > 0} and let 0 < α ≤ 1. Then the following are equivalent:

(a) The matrix Mω has (M{rai}).

(b) ω satisfies the condition (α0) (see (1.11)).

(c) The class A{ω}(Sα) is holomorphically closed.

(d) The class A{ω}(Sα) is inverse-closed.

If ω has in addition (ω2), then the list of equivalences can be extended by:

(e) The class A{ω}(Sα) is closed under composition.

(f) The matrix Mω satisfies the property (M{FdB}).

Proof. The equivalence (a) ⇔ (b) is a consequence of the Lemma 2.4.1. Moreover,
the equivalences (a) ⇔ (c) ⇔ (d) ⇔ (e) ⇔ (f) follow by applying Theorem 2.3.14
to M ≡ Mω. Let us observe that Mα ≡ Mω, thanks to the fact that W (ℓ) is
(lc) for all ℓ > 0. Moreover, ω has (ω1) and therefore A{ω}(Sα) = A{Mω}(Sα), see
(2.1). In addition, note that Mω has automatically (M{dc}) by (1.20).

Remark 2.4.3. With the same cautions as in Remark 2.3.17, related to the differ-
ent nature (local versus global) of the imposed estimates, we mention that, when
taking α = 0 in the previous result, i. e., when the sector Sα ”collapses” to the
ray (0,+∞), then we partially get the main stability result [60, Thm. 3] for the
ultradifferentiable class E{ω}((0,+∞)), see also [59, Thm. 6.3].
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The next lemma will be necessary for stating a similar result for wide sectors.

Lemma 2.4.4. Let ω ∈ W0 be given with associated weight matrix Mω := {W (ℓ) :
ℓ > 0}. Suppose there exists s > 0 such that, for ωs(t) := ω(ts), one has:

(i) ωs(t) = o(t) as t→ ∞, (i. e., ωs(t) has (ω5).)

(ii) ωs satisfies the condition (α0), i. e., it is equivalent to a concave weight
function.

Then there exists a weight matrix U = {U(ℓ) : ℓ > 0}, R-equivalent to Mω, and

such that for each ℓ > 0, the sequence G
−s
U(ℓ) is equivalent to an (lc) sequence

L(ℓ) depending on s.

Proof. First, let us consider the matrix Mωs := {V(ℓ,s) : ℓ > 0}. There exists
a relation between both matrices (see [36]), more precisely, for all ℓ > 0 we have
that V(ℓ,s) = (W (ℓ/s))1/s. So, we can write

W (ℓ) = (V(ℓs,s))s = Gs(V̂
(ℓs,s)

)s ℓ > 0.

Now, by taking into account that ωs satisfies the condition (α0) and (ω5) we

deduce from [62, Prop 3] that the matrices M̂ωs := {V̂
(ℓ,s)

: ℓ > 0} and M̂
lc

ωs

are R-equivalent. Finally, since taking the power s in each sequence of these
two matrices respects R-equivalence for the resulting matrices, we deduce that

U := {Gs[(V̂
(ℓ,s)

)lc]s : ℓ > 0} and Mω are R-equivalent.

Theorem 2.4.5. Let ω ∈ W0 be given with associated weight matrix Mω :=
{W (ℓ) : ℓ > 0} and let α > 1. Suppose there exists s > α − 1 such that, for
ωs(t) := ω(ts), one has:

(i) ωs(t) = o(t) as t→ ∞, (i.e ωs(t) has (ω5)).

(ii) ωs satisfies the condition (α0), i. e., it is equivalent to a concave weight
function.

Then the following are equivalent:

(a) The matrix Mω has (M{rai}).

(b) ω satisfies the condition (α0).

(c) The class A{ω}(Sα) is holomorphically closed.

(d) The class A{ω}(Sα) is inverse-closed.
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If ω has in addition (ω2), then the list of equivalences can be extended by:

(e) The class A{ω}(Sα) is closed under composition.

(f) The matrix Mω satisfies the condition (M{FdB}).

Proof. The equivalence (a) ⇔ (b) is a consequence of Lemma 2.4.1. Lemma
2.4.4 ensures that there exists a weight matrix U := {U(ℓ) : ℓ > 0}, R-equivalent
to Mω (and therefore A{U}(Sα) = A{Mω}(Sα)), such that for each ℓ > 0 the

sequence G
−s
U(ℓ) is equivalent to an (lc) sequence L(ℓ) depending on s. Then,

the equivalences (a) ⇔ (c) ⇔ (d) ⇔ (e) ⇔ (f) follow by applying Theorem 2.3.18
to M ≡ U , and taking αℓ = s+1. Finally, thanks to the fact that ωs has (α0), then
ω satisfies (ω1) and therefore A{ω}(Sα) = A{Mω}(Sα), see (2.1). In addition, note
thatMω has automatically (M{dc}) by (1.20). And (ω2) for ω implies thatMω has
(MH). Finally, the conditions (M{dc}) and (MH) are stable under R-equivalence,
and therefore U satisfies both too.

Remark 2.4.6. The hypotheses (i) and (ii) on ω in Theorem 2.4.5 can be quickly
guaranteed by the condition γ(ω) > α − 1, in terms of the index described in
Subsection 1.2.2. Note that, by choosing s such that γ(ω) > s > α − 1, we have
γ(ωs) = γ(ω)/s > 1 (see property (iii) in that subsection), and this fact implies:

(a) By [34, Remark 2.15 (i) ⇒ (v)], we have property (ω5) for ω
s.

(b) By [34, Thm. 2.11 (v) ⇒ (ii)], we deduce that ωs is equivalent to a concave
weight function, and so (α0) is satisfied by ωs.

Remark 2.4.7. In some situations it is straightforward that all the conditions on
the weight function ω in the previous result are satisfied, and so all the statements
(a) through (f) are equivalent. We comment on two special cases:

(i) If 2 > α > 1, suppose that ω(t) = O(t) as t → ∞, (i.e ω(t) has (ω2)), and
that there exists some s > α − 1 such that ωs satisfies the condition (α0).
Let us observe that we can take s′ < s such that 1 > s′ > α − 1, and it is
then easy to show that ωs′ satisfies the conditions (ω5) and (α0).

(ii) If α ≥ 2, suppose there exists s according to the assumptions in the theorem.
Then, we will have s > 1, and since ωs satisfies the condition (ω5), we can
check immediately that ω has (ω2).

2.5 Examples

In this section, we apply the previous results to some well-known examples of
ultraholomorphic classes. Let us fix α > 0.



66 2.5. EXAMPLES

2.5.1 Gevrey-related classes

Consider the sequence G
β
:= (jjβ)j∈N0 of index β ∈ R. Note that this sequence

has the (rai) property if and only if β ≥ 1. We are going to study the stability
of the class A{Gβ}(Sα) in terms of the values of α and β. Let us distinguish some
cases:

(a) Let α ∈ (0, 1]:

(i) If β < α− 1 then limj→+∞(j(1−α)jjjβ)1/j = 0, and therefore the class is
stable because it is trivial, i. e., it only contains constant functions (see
Remark 2.3.5).

(ii) If β ∈ (α − 1, 1) Corollary 2.3.16, together with the fact that G
β
has

not the (rai) property, ensure that the class is non stable.

(iii) If β = α− 1, the sequence Mα is G
β
, which does not satisfy (rai). So,

by Remark 2.3.15 and Corollary 2.3.16 the class is not stable.

(iv) If β ≥ 1 we deduce from the Corollary 2.3.16 that the class is stable.

(b) Let α > 1:

(i) If β ≤ α−1 then the lim infj→+∞(j(1−α)jjjβ)1/j <∞, and therefore the
class is stable because it only contains constant functions (see Remark
2.3.5).

(ii) If β > α − 1, we have stability provided that β ≥ 1, thanks to the
Corollary 2.3.22.

We include a graphic in order to see the stability (resp. non stability) regions:
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We consider now a second example. Let us fix α > 1, take some β > α and

consider the weight matrix L(β) = {Gβ− 1
p+1 : p > 0}. Note that the ultraholomor-

phic class associated with L(β) is strictly smaller than the class associated with

the constant matrix Gβ = {Gβ
: p > 0}. Under these assumptions, let us observe

that G
β− 1

p+1 is an (lc) sequence for all p > 0. Then Theorem 2.3.18 guarantees
that the class A{L(β)}(Sα) is stable, thanks to the fact that β − 1

p+1
> 1 for large

p, and we can ensure that the corresponding matrix has (M{rai}).

2.5.2 q-Gevrey case

In this subsection, we will work, for q > 1, with the q-Gevrey sequence, i.e M q =
(qj

2
)j≥0. First, thanks to the fact that the sequence M q has (lc) and (dc), and

moreover M̂ q is also (lc), we can easily prove the stability properties for the class
A{Mq}(Sα). For α ∈ (0, 1], Corollary 2.3.16 ensures that the class A{Mq}(Sα) is

stable. On the other hand, for α > 1 and for any β > α the sequence G
1−β

M q

is equivalent to an (lc) sequence, because the gamma index of M q is infinity. So,
Corollary 2.3.22 again ensures the stability.

Now, we want to study the stability properties for the class A{ωMq}(Sα). For
this purpose, let us observe that we can estimate the normalized weight function
ωMq ,

ωMq(t) = sup
j∈N0

ln

(
tj

qj2

)
= sup

j∈N0

(j ln(t)− j2 ln(q)), t > 1.

Obviously, ωMq(t) is bounded above by the supremum of x ln(t) − x2 ln(q) when
x runs over (0,∞), which is easily obtained by elementary calculus and occurs at
the point (

ln(t)

2 ln(q)
,
ln2(t)

4 ln(q)

)
.

In particular, it is easy to check that ω(t) := ln2(t)/(4 ln(q)) verifies (after nor-
malization in the interval [0, 1]) that ω ∈ W , ω has (ω5) (and therefore (ω2)) and
ω ∼ ωMq , so the corresponding matricesMω andMωMq

are R-equivalent. In order
to compute the matrix associated with ω, the Legendre-Fenchel-Young-conjugate
of φω is

φ∗
ω(x) := sup

y≥0
{xy − ω(exp(y))} = x2 ln(q) = ln(qx

2

), x ≥ 0.

So, we have that

W
(ℓ)
j = exp(

1

ℓ
φ∗
ω(ℓj)) = qℓj

2

, j ≥ 0,
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and therefore
W (ℓ) = (qℓj

2

)j≥0, ℓ > 0.

Note that each sequenceW (ℓ) is (lc), (dc) and has the property (rai) for all ℓ > 0, in
this situation Theorem 2.4.2 ensures that the class A{ω}(Sα) (resp. A{ωMq}(Sα)) is

stable for α ∈ (0, 1]. On the other hand, note that γ(ω) = ∞, since γ(ω) ≥ γ(W (ℓ))
for all ℓ > 0 (see Subsection 1.2.2) and γ(W (ℓ)) is also infinity. In this case, Remark
2.4.6 ensures that we can apply Theorem 2.4.5 in order to deduce that the class
A{ω}(Sα) (resp. A{ωMq}(Sα)) is stable for α > 1.

2.6 The Beurling case

We turn now our attention to the Beurling-like ultraholomorphic classes, and try to
obtain similar results. However, due to the lack of characteristic functions in wide
sectors in this situation, we have been able to reason only for sectors contained in
a half-plane.

2.6.1 Beurling ultraholomorphic classes

We introduce now the classes under consideration in this section analogously as
we did for the Roumieu setting in Section 2.1; these Beurling type spaces have
been already considered by J. Jiménez-Garrido, J. Sanz and G. Schindl [36, Sect.
2.5], A. Debrouwere [15] and A. Rainer and G. Schindl[50].

Definition 2.6.1. Let M be a sequence of positive real numbers and S ⊆ R
an unbounded sector. We define the Denjoy-Carleman ultraholomorphic class of
Beurling type associated with M in the sector S, denoted by A(M)(S), as

A(M)(S) :=
⋂
h>0

AM ,h(S).

It has a natural structure of Fréchet space.

As it occurs in the Roumieu case, it is straightforward from the definition that
M ≈ L implies A(M)(S) = A(L)(S) (as locally convex vector spaces) for any
sector S.

Now, we define ultraholomorphic classes of Beurling type defined by a weight
matrix M analogously as the ultradifferentiable counterparts introduced in [70,
Sect. 7] and also in [59, Sect. 4.2].

Definition 2.6.2. Let M = {M (α) ∈ RN0
>0 : α > 0} be a weight matrix and S

be an unbounded sector. The ultraholomorphic class of Beurling type associated
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with M in S, denoted by A(M)(S), is

A(M)(S) :=
⋂
α>0

A(M (α))(S).

For the Beurling context, we define a different notion of equivalence between
weight matrices.

Definition 2.6.3. Let M = {M (α) : α > 0} and L = {L(α) : α > 0} be given.
We write M (⪯)L if

∀ α > 0 ∃ β > 0 : M (β) ⪯ L(α),

and call M and L B-equivalent, if M(⪯)L and L(⪯)M (B stands for Beurling).

By definition, B-equivalent weight matrices yield (as locally convex vector
spaces) the same function classes of Beurling type on each sector S.

Similarly as for the ultradifferentiable case, we now define ultraholomorphic
classes of Beurling type associated with a weight function ω ∈ W0.

Definition 2.6.4. Let ω be a weight function in W0, the ultraholomorphic class
of Beurling type associated with ω in the sector S, denoted by A(ω)(S), is

A(ω)(S) :=
⋂
ℓ>0

Aω,ℓ(S).

It is again a Fréchet space.

Of course, equivalent weight functions provide equal associated ultraholomor-
phic classes of Beurling type.

Moreover, let ω ∈ W be given and let Mω be the associated weight matrix
defined in Subsection 1.3.1. Then, analogously as (2.1) we get that

A(ω)(S) = A(Mω)(S) (2.18)

holds as locally convex vector spaces. This equality is an easy consequence of
(1.22) and the way the seminorms are defined in these spaces.

On the other hand, by (v) in Remark 1.3.10 we get the following result, which
is analogous to Lemma 2.1.6.

Lemma 2.6.5. Let ω ∈ W be given and assume that ω has (ω6). Then, for all
sectors S we get that

∀ ℓ > 0 : A(ω)(S) = A(W (ℓ))(S),

as locally convex vector spaces.

Finally, as in the Roumieu case, if f belongs to any of such classes, we may
define the complex numbers

f (j)(0) := lim
z∈S,z→0

f (j)(z), j ∈ N0. (2.19)
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2.6.2 Stability properties for Beurling ultraholomorphic
classes defined by weight matrices

The aim of this section is to transfer the stability results from Section 2.3 to the
Beurling setting. In order to proceed, analogously to the Roumieu setting, we
begin by introducing some auxiliary spaces, and defining the stability properties
under study. First, we recall the definition 2.3.1, and we adapt it to this new
framework.

Definition 2.6.6. Let M be a sequence of positive real numbers and U ⊆ C be
an open set. Given a compact set K ⊂ U , we put

H(M)(K) :=
⋂
h>0

HM ,h(K).

Moreover, given a weight matrix M = {M (p) : p > 0}, we may introduce the class
H(M)(U) as

H(M)(U) :=
⋂
K⊂U

⋂
p>0

H(M (p))(K).

We continue with the analogue of the definition 2.3.2.

Definition 2.6.7. Let M = {M (p) : p > 0} be a weight matrix and α > 0. The
class A(M)(Sα) is said to be:

(i) closed under (composition with) Beurling-analytic functions, if for all func-
tions f ∈ A(M)(Sα) and every g ∈ H(G1)(U), where U is an open set contain-
ing the closure of the range of f , we have g ◦ f ∈ A(M)(Sα). We recall that
G1 = {G : p > 0}.

(ii) inverse-closed, if for all f ∈ A(M)(Sα) such that infz∈Sα |f(z)| > 0, we have
1/f ∈ A(M)(Sα).

(iii) closed under composition, if for all f ∈ A(M)(Sα) and for all g ∈ H(M)(U),
where U ⊆ C is an open set containing the closure of the range of f , we have
g ◦ f ∈ A(M)(Sα).

Remark 2.6.8. As occurs in the Roumieu case, see Remark 2.3.3, we cannot relax
the condition infz∈Sα |f(z)| > 0 in the definition of inverse-closedness. Note that
the function z 7→ exp(−1/z) belongs to the class A(Gβ)(Sα) for every α ∈ (0, 1)
and β > 2 (as a consequence of Cauchy’s integral formula for the derivatives)
and never vanishes in Sα. However, its multiplicative inverse z 7→ exp(1/z) is not
bounded, and hence it does not belong to any of the Beurling ultraholomorphic
classes under consideration.
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Also, the open set U in (i) and (iii) has to contain the closure of the range
of f , and not just the range. This is clearly seen in the forthcoming arguments
involving the function z 7→ 1/z, whose derivatives admit global Beurling-analytic
bounds in closed subsets of C \ {0}, but not in the whole of it.

We will consider classes in sectors Sα contained in a half-plane and defined by
a weight matrix M. As it occurs in the Roumieu case, we are going to prove that
the weight matrix Mα (see definition 2.3.4) induces the same Beurling class as the
original matrix.

Remark 2.6.9. For all p′ ≥ p we have M (p) ≤ M (p′) and so A(M (p))(Sα) ⊆
A(M (p′))(Sα). Moreover, A(M)(Sα) is the intersection of all classes A(M (p))(Sα).

Therefore, any (small) index is relevant and we cannot consider here the situation
described in Remark 2.3.5.

Next, we state the Beurling variant of Theorem 2.3.7. Although the idea of
its proof is the same but by taking into account the Beurling type estimates, we
include it for the sake of completeness.

Theorem 2.6.10. Let M = {M (p) : p > 0} be a weight matrix and 0 < α ≤ 1 be

given such that limj→+∞(j(1−α)jM
(p)
j )1/j = ∞ for all p > 0. Let Mα = {M (p,α) :

p > 0} be the matrix given in (2.7). Then, we have that

A(M)(Sα) = A(Mα)(Sα).

Proof. Since G
1−α

M (p,α) is the log convex minorant of G
1−α

M (p), we have that

G
1−α

M (p,α) ≤ G
1−α

M (p), and therefore M (p,α) ≤ M (p) for all p > 0. Conse-
quently, by the definition of the classes, we also get A(Mα)(Sα) ⊆ A(M)(Sα).

For the converse inclusion, let us consider f ∈ A(M)(Sα). Then for all p > 0
and h > 0 there exist some D = D(p, h) ∈ R>0 (large) such that Cn(f) :=

supz∈Sα
|f (n)(z)| ≤ DhnM

(p)
n , for all n ∈ N0.

Let us fix now an arbitrary index p and h > 0. Consider n ∈ N0 and distinguish
two cases:

i) If M
(p,α)
n =M

(p)
n then supz∈Sα

|f (n)(z)| ≤ DhnM
(p,α)
n .

ii) If not, there exist principal indices n1, n2 ∈ N0, with n1 < n < n2, such that

M
(p,α)
ni = M

(p)
ni for i = 1, 2. Note that these indices may also depend on the
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sequence, i. e. on the given but fixed index p. So, we have

ln(n(1−α)nM (p,α)
n ) =

n2 − n

n2 − n1

ln(n
(1−α)n1

1 M (p,α)
n1

) +
n− n1

n2 − n1

ln(n
(1−α)n2

2 M (p,α)
n2

)

≥ n2 − n

n2 − n1

ln

(
1

Dhn1
n
(1−α)n1

1 Cn1(f)

)
+

n− n1

n2 − n1

ln

(
1

Dhn2
n
(1−α)n2

2 Cn2(f)

)
.

Therefore, with the notation of Theorem 2.3.6, we deduce from above:

B
n2−n
n2−n1
n1 B

n−n1
n2−n1
n2 ≤ (Dhn1)

n2−n
n2−n1 (Djn2)

n−n1
n2−n1 n(1−α)nM (p,α)

n = Dhnn(1−α)nM (p,α)
n .

Now, from the previous estimate and by applying Theorem 2.3.6, there exist
some A, q > 0 only depending on the opening α, such that

Cn(f) ≤ n(α−1)nAq(1−α)nB
n2−n
n2−n1
n1 B

n−n1
n2−n1
n2 ≤ AD(q(1−α)h)nM (p,α)

n . (2.20)

Since q is only depending on the opening α and since the above choice for the
principal indices is only depending on the sequence/index but not on h, as h→ 0
we conclude that f ∈ A(M (p,α))(Sα). Finally, since p was arbitrary and (2.20) holds
then for any index p we have verified f ∈ A(Mα)(Sα).

As in the Roumieu case, we need to establish a suitable condition ensuring the
equality of the classes H(M)(U) and H(Mα)(U) for any open set U . Let us start
with some preliminary results in the ultradifferentiable framework.

Definition 2.6.11. Let M ∈ RN0
>0 be a sequence and U ⊆ C be an open set.

Given a compact set K ⊂ U , we define

E(M)(K) :=
⋂
h>0

EM ,h(K).

Moreover, given a weight matrix M = {M (p) : p > 0}, we may introduce the
Denjoy-Carleman class of Beurling type E(M)(U) as

E(M)(U) :=
⋂
K⊂U

⋂
p>0

E(M (p))(K).

We consider now a Beurling-type condition for the matrix M.

Definition 2.6.12. We say that M has the property (M(G)) (of Beurling type)
if for all p,A > 0 there is B > 0 (B may depend on p and A) such that

B
M

(p)
k

M
(p)
j

≥ Ak−j(k − j)! whenever k ≥ j.
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We note that the previous condition guarantees the possibility of constructing
the matrix Mα for α ∈ (0, 1].

Proposition 2.6.13. Let M = {M (p) : p > 0} be a weight matrix which has
(M(G)). Fix α ∈ (0, 1] and consider the matrix Mα = {M (p,α) : p > 0} given
in (2.7). Then, for each open U ⊆ C we have that

E(M)(U) = E(Mα)(U).

Proof. We have to show the inclusion E(M)(U) ⊆ E(Mα)(U). By reasoning as in
proof of Corollary 2.3.12, it suffices to prove the equality in the one-dimensional
situation. Fix p > 0, and assume I is an open interval in R. Let f ∈ E(M (p))(I).
Then for each compact interval J ⊂ I and each ρ > 0 there is C > 0 such that

∥f (k)∥J ≤ CρkM
(p)
k , k ∈ N0.

Let δ = dist(J,R \ I). Let (kn) be the sequence from the proof of Lemma 2.3.11.
Thanks to (M(G)) (for A := 1/(ρδ)), there is B ≥ 1 such that

Bρkn+1M
(p)
kn+1 ≥ ρknM

(p)
kn

(kn+1 − kn)!

δkn+1−kn
.

Then the proof of Lemma 2.3.11 implies that f ∈ E(M (p,α))(I), and we are done.

Finally, we deduce the proposed equality as before.

Corollary 2.6.14. Let M = {M (p) : p > 0} be a weight matrix satisfying (M(G)).

Fix α ∈ (0, 1] and onsider Mα = {M (p,α) : p > 0} given in (2.7). Then, for each
open U ⊆ C we have that

H(M)(U) = H(Mα)(U).

2.6.3 On m-convexity for Beurling ultraholomorphic classes

According to the definitions given in Section 2.6.1, the topology of A(M)(S) is
given by the family of seminorms {∥ · ∥M (p),h : p, h > 0} (we may only consider the

values p = h = 1
n
with n ∈ N arbitrary), which make it a Fréchet space. In our

regards, it is interesting to have a structure of algebra.

Lemma 2.6.15. Let M be a log-convex weight matrix, i. e., such that (Mlc) is
valid. Then for any sector S the space A(M)(S) is a commutative Fréchet algebra
with respect to the point-wise multiplication of functions.
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Proof. Since each M (α) is a log-convex sequence we get

∀ α > 0 ∀ j, k ∈ N0 : M
(α)
j M

(α)
k ≤M

(α)
j+k.

Combining this estimate with Leibniz’s product rule yields closedness under point-
wise multiplication and that multiplication is continuous.

Remark 2.6.16. Note that for A(M)(S) being a commutative Fréchet-algebra it
suffices to assume for the matrix M that

∀ α > 0 ∃ β > 0 ∃ C ≥ 1 ∀ j, k ∈ N0 : M
(β)
j M

(β)
k ≤ Cj+kM

(α)
j+k.

In order to formulate and prove the main result in this section, first we have
to recall some crucial abstract results by W. Żelazko [85].

Definition 2.6.17. ([85, Def. 7.7, Def. 9.1 and Def. 10.1]) We recall:

(∗) A topological algebra B in which the set of invertible elements is open is
called a Q-algebra.

(∗) A Fréchet algebra B is called multiplicatively convex, or m-convex for short,
if there exists an equivalent system of (countably many) seminorms {∥ · ∥i :
i ∈ N} satisfying the submultiplicativity condition

∀ i ∈ N ∀ x, y ∈ B : ∥xy∥i ≤ ∥x∥i∥y∥i;

see [85, (9.6.1)].

Theorem 2.6.18. [85, Thm. 13.17] Let B be a commutative Fréchet algebra and
assume that it is also a Q-algebra. Then B is m-convex.

In order to characterize the stability properties of Beurling ultraholomorphic
classes, we need to adapt the root almost increasing property.

Definition 2.6.19. We say that a weight matrix M has the root almost increasing
property of Beurling type, denoted by (M(rai)), if

∀ α > 0 ∃ H > 0 ∃ β > 0 ∀ 1 ≤ j ≤ k : (M̂
(β)

j )1/j ≤ H(M̂
(α)

k )1/k.

Under suitable conditions, stability properties for the Beurling ultraholomor-
phic class guarantee the root almost increasing property of Beurling type for the
associated weight matrix.

Theorem 2.6.20. Let M = {M (p) : p > 0} be a log-convex weight matrix, and
0 < α ≤ 1 be given. Consider the following assertions:
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(a) A(M)(Sα) is inverse-closed.

(b) A(M)(Sα) is a locally m-convex Fréchet-algebra (w.r.t. the point-wise multi-
plication of functions).

(c) The matrix M satisfies the property (M(rai)).

Then (a) ⇒ (b) is valid. Moreover, if in addition limj→∞(M
(p)
j )1/j = ∞ for all

p > 0, then (b) ⇒ (c) is valid, too.

Proof. We follow the ideas and techniques given in a paper of J. Bruna [8, Thm.
5.2]; see also the works of A. Rainer and G. Schindl [60, Lemma 3] and [59, Thm.
4.11 (2) ⇒ (3)].

(a) ⇒ (b) Since M is log-convex, by Lemma 2.6.15 we have that A(M)(Sα) is
a commutative Fréchet algebra, and we show now that it is also a Q-algebra.

By assumption, those functions in A(M)(Sα) whose modulus is bounded away
from 0 uniformly on Sα are precisely the invertible elements in A(M)(Sα). If f ∈
A(M)(Sα) is given with |f(z)| ≥ c > 0 for some c > 0 and all z ∈ Sα, consider h > 0
and a function g ∈ A(M)(Sα) such that ∥f − g∥M (p),h < c/2 for some p > 0. Then,
supz∈Sα

|f(z)− g(z)| < c/2, and we necessarily get |g(z)| ≥ c/2 > 0 for all z ∈ Sα

and so 1/g ∈ A(M)(Sα). Consequently, the set {f ∈ A(M)(Sα) : 1/f ∈ A(M)(Sα)}
is open (in the topology generated by the seminorms {∥ · ∥M (p),h : p, h > 0}).

Thus, we get m-convexity by Theorem 2.6.18.

(b) ⇒ (c) By m-convexity we get that the canonical system of seminorms
{∥ · ∥M (p),h : p, h > 0}) is equivalent to a submultiplicative system {∥ · ∥i : i ∈ N}
and this implies the following crucial estimate:

∀ p, h > 0 ∃ C,D ≥ 1 ∃ i0 ∈ N ∃ p1, h1 > 0 ∀ m ∈ N ∀ f ∈ A(M)(Sα) :

∥fm∥M (p),h ≤ C∥fm∥i0 ≤ C(∥f∥i0)m ≤ CDm(∥f∥M (p1),h1
)m.

The aim is to apply this estimate to a “convenient” one-parameter family of func-
tions ft ∈ A(M)(Sα), for every t ≥ 0. Then let us set ft(z) := e−tz for t ≥ 0 and

z ∈ Sα. We get f
(j)
t (z) = (−t)je−tz for all j ∈ N0 and |e−tz| = e−tℜ(z) ≤ 1 for all

z ∈ Sα. Since, by assumption, limj→∞(M
(p)
j )1/j = ∞ for any p > 0, we get

∀ t ≥ 0 ∀ h > 0 ∃ C ≥ 1 ∀ j ∈ N0 ∀ z ∈ Sα : |f (j)
t (z)| ≤ tj ≤ ChjM

(p)
j ,

which proves ft ∈ A(M)(Sα) for any t ≥ 0. Now fix p > 0, choose above for
simplicity h := 1 and let C,D ≥ 1 and p1, h1 > 0 be the parameters depending on
the index p > 0 and h = 1. Then (fm

t )(j)(z) = (−tm)je−tmz for all j ∈ N0, m ∈ N,
z ∈ Sα and t ≥ 0 and therefore there exist C,D ≥ 1 and p1, h1 > 0 such that

∀ m ∈ N ∀ t ≥ 0 : sup
z∈Sα,j∈N0

(tm)je−tmℜ(z)

M
(p)
j

≤ CDm

(
sup

z∈Sα,j∈N0

tje−tℜ(z)

M
(p1)
j hj1

)m

.
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It follows from above, that

sup
z∈Sα,j∈N0

tje−tℜ(z)

M
(p1)
j hj1

= sup
j∈N0

tj

M
(p1)
j hj1

, and sup
z∈Sα,j∈N0

(tm)je−tmℜ(z)

M
(p)
j

= sup
j∈N0

(tm)j

M
(p)
j

,

because supz∈Sα
|e−tz| = supz∈Sα

e−tℜ(z) = 1. Thus the definition (1.2.12) provides
that there exist C,D ≥ 1 and p1, h1 > 0 such that

∀ m ∈ N ∀ t ≥ 0 : exp(ωM (p)(mt) ≤ CDm exp(mωM (p1)(t/h1)). (2.21)

Now let 1 ≤ j ≤ k and first we assume that k = ℓj for some ℓ ∈ N. Then applying
(2.21) to m := ℓ gives

∀ t ≥ 0 : exp(k−1ωM (p)(t)) = exp(k−1ωM (p)(ℓt/ℓ))

≤ C1/kD1/j exp(j−1ωM (p1)(t/(ℓh1)). (2.22)

Set D1 := CD(≥ 1) and by combining now (2.22) with (1.14) and recalling the
assumption that each sequence is log-convex, we get

(M
(p)
k )1/k = sup

t≥0

t

exp(k−1ωM (p)(t))
≥ 1

D1

sup
t≥0

t

exp(j−1ωM (p1)(t/(ℓh1)))

=
1

D1

sup
s≥0

(sℓh1)

exp(j−1ωM (p1)(s))
=
ℓh1
D1

(
sup
s≥0

sj

exp(ωM (p1)(s))

)1/j

=
ℓh1
D1

(M
(p1)
j )1/j.

Moreover, by (1.3) we continue the estimate as follows:

(M̂
(p)

k )1/k =

(
M

(p)
k

k!

)1/k

≥ (M
(p)
k )1/k

k
≥ ℓh1
kD1

(M
(p1)
j )1/j

=
ℓh1
kD1

j!1/j(M̂
(p1)

j )1/j ≥ ℓjh1
keD1

(M̂
(p1)

j )1/j =
h1
eD1

(M̂
(p1)

j )1/j.

So far we have verified (M(rai)) between the sequences M (p) and M (p1) with H :=
eD1/h1 and for all 1 ≤ j ≤ k such that k = ℓj for some ℓ ∈ N.

Now let 1 ≤ j ≤ k such that ℓj < k < (ℓ+1)j for some ℓ ∈ N. Then, by taking

into account the fact that j 7→ (M
(q)
j )1/j is non-decreasing for each index q > 0,

which follows by log-convexity and M
(q)
0 = 1, we have

(M
(p)
k )1/k ≥ (M

(p)
ℓj )1/(ℓj) ≥ ℓh1

D1

(M
(p1)
j )1/j ≥ (ℓ+ 1)h1

2D1

(M
(p1)
j )1/j,
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which gives similarly as before:

(M̂
(p)

k )1/k ≥ (M
(p)
k )1/k

k
≥ (ℓ+ 1)h1

2kD1

(M
(p1)
j )1/j

≥ j(ℓ+ 1)h1
2ekD1

(M̂
(p1)

j )1/j ≥ h1
2eD1

(M̂
(p1)

j )1/j.

Summarizing, (M(rai)) between the sequences M (p) and M (p1) is verified with
H := 2eD1/h1.

2.6.4 Main characterizing results

In order to establish our first stability result for the ultraholomorphic classes of
Beurling type, we shall consider the following crucial assumptions of Beurling-type
on a given weight matrix M, see [59, Sect. 4.1] and [70, Sect. 7.2].

Definition 2.6.21. We say that:

(i) M has the Cω property of Beurling type, denoted by (M(Cω)), if for all α > 0
we have that

lim
j→∞

(M̂
(α)

j )1/j = +∞.

(ii) M has the Faà-di-Bruno property of Beurling type, denoted by (M(FdB)), if

∀ α > 0 ∃ β > 0 : (M̂
(β)

)◦ ≾ M̂
(α)

,

where (M̂
(α)

)◦ is the sequence defined by (1.2).

(iii) M satisfies the derivation closedness condition of Beurling type, denoted by
(M(dc)), if

∀ α > 0 ∃ C > 0 ∃ β > 0 ∀ j ∈ N0 :M
(β)
j+1 ≤ Cj+1M

(α)
j .

Using these Beurling-type conditions we immediately get the following analogue
of Lemma 1.3.7, which is needed in the forthcoming arguments.

Lemma 2.6.22. Let M = {M (α) : α > 0} be a weight matrix. Then we have the
following:

(i) (M(rai)) implies (MH) up to equivalence of matrices.

(ii) (M(dc)) and (M(rai)) imply (M(FdB)).
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(iii) If

∀ α > 0 ∃ H ≥ 1 ∀ 1 ≤ j ≤ k : (M
(α)
j )1/j ≤ H(M

(α)
k )1/k, (2.23)

i. e. if each sequence ((M
(α)
j )1/j)j is almost increasing, then (MH) and

(M(FdB)) imply (M(rai)).

In particular, (2.23) holds true (with H = 1 for any α) provided that M is
log-convex.

Proof. (i) By (M(rai)) we get that for each α > 0 there exist some C ≥ 1 and

β = β(α) ≤ α such that (M̂
(α)

j )1/j ≥ M̂
(β)

1 /C > 0 for all j ≥ 1 (see also [72,
Lemma 3.6 (ii)]).

(ii) See the proofs of [59, Thm. 4.11 (3) ⇒ (4)] and [70, Lemma 8.2.3 (2)].

(iii) See the proofs of [60, Lemma 1 (2)] and [70, Lemma 8.2.3 (4)].

We are ready to state our first main result for small openings, which is analo-
gous to Theorem 2.3.14. Observe that if M = {M (p) : p > 0} is a weight matrix

which satisfies (M(Cω)) and 0 < α ≤ 1, then limj→+∞(j(1−α)jM
(p)
j )1/j = ∞ for all

p > 0, and therefore we can consider the matrix Mα = {M (p,α) : p > 0} defined
in (2.7).

Theorem 2.6.23. Let M = {M (p) : p > 0} be a weight matrix which satisfies
(M(G)) and (M(dc)), and let 0 < α ≤ 1 be given. Then, the following assertions
are equivalent:

(a) The class A(M)(Sα) is closed under composition.

(b) The class A(M)(Sα) is closed under Beurling-analytic functions.

(c) The class A(M)(Sα) is inverse-closed.

(d) The matrix Mα satisfies the property (M(rai)).

(e) The matrix Mα satisfies the property (M(FdB)).

Proof. First, note that if M has (M(G)), then for all A > 0 there exist some B > 0

such that BM
(p)
k ≥ Akk! for all k ≥ 0 and p > 0. Thanks to the fact that A is

arbitrary, we can deduce that M has (M(Cω)) and therefore the matrix Mα is well
defined.

(a) ⇒ (b) If M has the property (M(Cω)), then we can establish the relation
G1(⪯)M, which implies that H(G1)(U) ⊆ H(M)(U), where U ⊆ C is an open set.
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Consequently, if the class A(M)(Sα) is closed under composition, then it is closed
under Beurling-analytic functions.

(b) ⇒ (c) Again, property (M(Cω)) implies that

∀ p > 0 ∀ h > 0 ∃ C = Cp,h ≥ 1 ∀ j ∈ N0 : j! ≤ ChjM
(p)
j , (2.24)

and therefore the map g : z 7→ 1
z
belongs to the class H(M)((C\{0})) and C\{0}

contains the (compact) closure of the image of any element f ∈ A(M)(Sα) such
that infz∈Sα |f(z)| > 0.

(c) ⇒ (d) The previous estimate (2.24) applied with h = 1, ensures that

limj→+∞(j(1−α)jM
(p)
j )1/j = ∞ for all p > 0 and for a given 0 < α ≤ 1. Thanks

to Theorem 2.6.10, we deduce that both classes, A(M)(Sα) and A(Mα)(Sα), coin-
cide and therefore the class A(Mα)(Sα) is inverse-closed. Finally, Theorem 2.6.20
ensures that Mα satisfies the property (M(rai)).

(d) ⇒ (e) It is straightforward from Lemma 2.6.22.

(e) ⇒ (a) First recall that by the so-called Faà-di-Bruno formula for the com-
position (see [83, pp. 124–126]) we get

(g ◦ f)(n)(z) = n!
n∑

i=1

∑
∑i

j=1 kj=n, kh≥1

g(i)(f(z))

i!

i∏
j=1

f (kj)(z)

kj!
z ∈ Sα, n ∈ N.

Let f ∈ A(M)(Sα) be given. By Theorem 2.6.10 we know that A(Mα)(Sα) =
A(M)(Sα), therefore f ∈ A(Mα)(Sα). Also, for any function g ∈ H(M)(U), where
U ⊆ C is an open set containing the closure of the range of f , we have that
g ∈ H(Mα)(U) thanks to Corollary 2.6.14, and therefore

∀p > 0∀ h1 > 0 ∃ C1 ≥ 1 ∀ k ∈ N0 ∀ z ∈ Sα : |g(k)(f(z))| ≤ C1h
k
1M

(p,α)
k . (2.25)

Let now p > 0 be a given index and h̃ > 0, both arbitrary and small but from now
on fixed. By applying (M(FdB)) once we get an index p′ > 0 and a constant H > 0
such that

(M̂
(p′)

)◦ ≾ M̂
(p)

, and therefore (M̂
(p′)

j )◦ ≤ HjM̂
(p)

j , j ∈ N0. (2.26)

By assumption f ∈ A(Mα)(Sα) we have that

∀ h2 > 0 ∃ C2 ≥ 1 ∀ k ∈ N0 ∀ z ∈ Sα : |f (k)(z)| ≤ C2h
k
2M

(p′,α)
k . (2.27)
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We choose now h2 :=
h̃
2H

in (2.27) and h1 in (2.25) small enough to ensure h1C2 ≤ 1.
Then we can estimate as follows for all n ∈ N and z ∈ Sα:

|(g ◦ f)(n)(z)| ≤ n!
n∑

i=1

∑
∑i

j=1 kj=n, kh≥1

|g(i)(f(z))|
i!

i∏
j=1

|f (kj)(z)|
kj!

≤ n!
n∑

i=1

∑
∑i

j=1 kj=n, kh≥1

C1h
i
1M̂

(p′,α)

i

i∏
j=1

(
C2h

kj
2 M̂

(p′,α)

kj

)

≤ C1n!
n∑

i=1

∑
∑i

j=1 kj=n, kh≥1

hi1C
i
2h

k1+···+ki
2 M̂

(p′,α)

i

i∏
j=1

(
M̂

(p′,α)

kj

)

≤ C1h
n
2n!

n∑
i=1

∑
∑i

j=1 kj=n, kh≥1

(h1C2)
iM̂

(p′,α)

i

i∏
j=1

(
M̂

(p′,α)

kj

)

≤︸︷︷︸
(M(FdB))

C1h
n
2n!

n∑
i=1

∑
∑i

j=1 kj=n, kh≥1

(h1C2)
i(M̂

(p′)

n )◦

≤︸︷︷︸
(2.26)

C1h
n
2n!

n∑
i=1

∑
∑i

j=1 kj=n, kh≥1

(h1C2)
iHnM̂

(p)

n

≤ C1(Hh2)
nM (p)

n

n∑
i=1

∑
∑i

j=1 kj=n, kh≥1

(h1C2)
i

= C1(Hh2)
nM (p)

n

n∑
i=1

(
n− 1

i− 1

)
(h1C2)

i

= h1C1C2(Hh2)
nM (p)

n (1 + (h1C2))
n−1

≤ h1C1C2(2Hh2)
nM (p)

n = h1C1C2h̃
nM (p)

n .

Note that H depends only on p (via (M(FdB))); C2 depends on p′ (and therefore

p) and on h̃ via h2 and the choice for the constant H. Thus, finally C1 depends

on p and on h̃ as well since h1 depends on C2.
Summarizing, by taking into account that A(Mα)(Sα) = A(M)(Sα) and since

both p and h̃ are arbitrary we have verified g ◦ f ∈ A(M)(Sα).

For a sequence M with (dc) and such that for all A > 0 there exist some B > 0
such that BMk/Mj ≥ Ak−j(k − j)! whenever k ≥ j, we can study the stability
of the class A(M)(Sα), for 0 < α ≤ 1, by considering the constant weight matrix

M = {M (p) = M : p > 0} and applying to it the previous result.
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Corollary 2.6.24. Let M be a sequence, and 0 < α ≤ 1 be given such that
M has (dc) and the weight matrix M = {M (p) = M : p > 0} has (M(G)).
Then, limj→+∞(j(1−α)jMj)

1/j = ∞, and therefore we can consider the sequence

M (α) := G
α−1
(
G

1−α
M
)lc

. Moreover, the following assertions are equivalent:

(a) The class A(M)(Sα) is closed under composition.

(b) The class A(M)(Sα) is closed under Beurling-analytic functions.

(c) The class A(M)(Sα) is inverse-closed.

(d) The sequence M (α) has the property (FdB).

(e) The sequence M (α) has the property (rai).

Now, we can adapt theorem 2.6.23 to the weight function case. First, let us
observe how the condition (M(FdB)) for a weight matrix associated to a weight
function ω translates into a condition on ω. As occurs in the Roumieu case, note
that this matrix has (Mlc) and therefore (Mω)

α ≡ Mω for all α ∈ (0, 1].

Lemma 2.6.25. ([59, Theorem 6.5]) Let ω ∈ W be given with associated weight
matrix Mω := {W (ℓ) : ℓ > 0}. Suppose that ω has also (ω2). Then the following
are equivalent:

(a) The matrix Mω has (M(FdB)).

(b) ω satisfies the condition (α0) (see (1.11)).

We can provide now a statement about stability properties for classes associated
to a weight function in small sectors.

Theorem 2.6.26. Let ω ∈ W be given with associated weight matrix Mω :=
{W (ℓ) : ℓ > 0} and let 0 < α ≤ 1. Suppose that ω has also (ω5). Then the
following are equivalent:

(a) ω satisfies the condition (α0) (see (1.11)).

(b) The matrix Mω has (M(FdB)).

(c) The class A(ω)(Sα) is closed under composition.

(d) The class A(ω)(Sα) is closed under Beurling-analytic functions.

(e) The class A(ω)(Sα) is inverse-closed.

(f) The matrix Mω satisfies the property (M(rai)).
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Proof. The equivalence (a) ⇔ (b) is a consequence of the Lemma 2.6.25.
Moreover, the equivalences (b) ⇔ (c) ⇔ (d) ⇔ (e) ⇔ (f) follow by applying

Theorem 2.6.23 to M ≡ Mω. Let us observe that Mα ≡ Mω, thanks to the fact
that W (ℓ) is (lc) for all ℓ > 0. Moreover, ω has (ω1) and therefore A(ω)(Sα) =
A(Mω)(Sα), see (2.18). In addition, note that Mω has automatically (M(dc)) by
(1.20) and (M(Cω)) thanks to (ω5) (see [70, Lemma 5.3.2.] and the comments
below or [59, Corollary 5.15]).



Chapter 3

Borel-Ritt theorems and
extension operators

This chapter is devoted to present several results of Borel-Ritt type, stating the
surjectivity of the asymptotic Borel mapping in Carleman ultraholomorphic classes
in unbounded sectors. Closely related to these classes are the ones consisting of
functions admitting a uniform asymptotic expansion at the vertex of the sector,
and in some situations one or the other classes are preferable. In most cases such
results come with extension operators, i. e., linear and continuous right inverses
for the Borel mapping. Both the Roumieu case, predominant in the literature, and
the Beurling case will be addressed.

3.1 Asymptotic expansions and the asymptotic

Borel map

We introduce now some new classes under consideration in this chapter, i.e., the
classes of functions that admit a uniform asymptotic expansion at the vertex of
the sector where they are defined. We define classes of both Roumieu and Beurling
type, analogously as it was done for ultraholomorphic classes.

Recall that R stands for the Riemann surface of the logarithm. Let T and S
be sectors in R with vertex at 0. We say that T is a proper subsector of S if T ⊂ S
(where the closure of T is taken in R, and so the vertex of the sector is not under
consideration).

We denote by C[[z]] the space of formal power series in z with complex coeffi-
cients. We start by recalling the concept of uniform asymptotic expansion.

Definition 3.1.1. Let S be an unbounded sector and M be a sequence. We say
a holomorphic function f : S → C admits f̂ =

∑
n≥0 anz

n ∈ C[[z]] as its uniform

83
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M -asymptotic expansion in S (of type 1/h for some h > 0) if there exists C > 0
such that for every p ∈ N0, one has∣∣∣∣∣f(z)−

p−1∑
n=0

anz
n

∣∣∣∣∣ ≤ ChpMp|z|p, z ∈ S. (3.1)

In this case we write f ∼u
M ,h f̂ in S, and Ãu

M ,h(S) denotes the space of functions
admitting uniform M -asymptotic expansion of type 1/h in S, endowed with the
norm

∥f∥
M ,h,

∼
u
:= sup

z∈S,p∈N0

|f(z)−
∑p−1

k=0 akz
k|

hpMp|z|p
, (3.2)

which makes it a Banach space.

Now, we define the classes of uniform asymptotic expansion of Roumieu and
Beurling type

Definition 3.1.2. Let S be an unbounded sector andM be a sequence. We define
the (LB) space of functions admitting a uniform {M}-asymptotic expansion in S

(of Roumieu type), denoted by Ãu
{M}(S), as

Ãu
{M}(S) =

⋃
h>0

Ãu
M ,(S).

When the type needs not be specified, we simply write f ∼u
{M} f̂ in S.

Moreover, we can consider the space of Beurling-type, denoted by Ãu
(M)(S),

and defined as

Ãu
(M)(S) :=

⋂
h>0

Ãu
M ,h(S),

which becomes a Fréchet space when endowed with the topology generated by the
family of seminorms (∥·∥

M ,h,
∼
u
)h>0.

Remark 3.1.3. First, note that, taking p = 0 in (3.1), we deduce that every

function in Ãu
{M}(S) or Ãu

(M)(S) is a bounded function.

Secondly, when a statement is valid for both Roumieu and Beurling classes,
we will use the notation A[M ](S), Ãu

[M ](S) and so on (substituting every square
bracket by either of them, curly brackets or parentheses, but the same all through
the statement). For example, if M is (lc), the spaces A[M ](S) and Ãu

[M ](S) are

algebras, and if M is (dc) they are stable under taking derivatives. Moreover, if
M ≈ L the corresponding classes coincide.
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As a consequence of Taylor’s formula and Cauchy’s integral formula for the
derivatives, there is a close relation between Carleman ultraholomorphic classes
and the concept of asymptotic expansion (this can be proved similarly as [1, Prop.
8]).

Proposition 3.1.4. Let M be a sequence and S be a sector. Then,

(i) If f ∈ AM̂ ,h(S) then f admits f̂ :=
∑

p∈N0

1
p!
f (p)(0)zp as its uniform M -

asymptotic expansion in S of type 1/h, where (f (p)(0))p∈N0 is given by (2.2).

Moreover, ∥f∥
M ,h,

∼
u
≤ ∥f∥M̂ ,h, and so the identity map AM̂ ,h(S) ↪→ Ãu

M ,h(S)

is continuous. Consequently, we also have that A[M̂ ](S) ⊆ Ãu
[M ](S) and

A[M̂ ](S) ↪→ Ãu
[M ](S) is continuous.

(ii) If S is unbounded and T is a proper subsector of S, then there exists a
constant c = c(T, S) > 0 such that the restriction to T , f |T , of functions f
defined on S and admitting a uniform M -asymptotic expansion in S of type
1/h > 0, belongs to AM̂ ,ch(T ), and ∥f |T∥M̂ ,ch ≤ ∥f∥

M ,h,
∼
u
. So, the restriction

map from Ãu
M ,h(S) to AM̂ ,ch(T ) is continuous, and it is also continuous from

Ãu
[M ](S) to A[M̂ ](T ).

One may similarly define classes of formal power series. More precisely:

Definition 3.1.5. Let M be a sequence, and h be a positive number. We define
the class of formal power series as

C[[z]]M ,h =
{
f̂ =

∞∑
p=0

apz
p ∈ C[[z]] :

∣∣∣ f̂ ∣∣∣
M ,h

:= sup
p∈N0

|ap|
hpMp

<∞
}
. (3.3)

Moreover, by taking into account that (C[[z]]M ,h, | · |M ,h) is a Banach space, we
can consider the Carleman-Roumieu (LB) space of formal power series, defined as

C[[z]]{M} :=
⋃
h>0

C[[z]]M ,h,

and the Carleman-Beurling Fréchet space, defined as

C[[z]](M) :=
⋂
h>0

C[[z]]M ,h.

After we have introduced the previous spaces, it is natural to consider the Borel
map, more precisely.
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Definition 3.1.6. Let S be a sector, and M be a sequence. We define the asymp-
totic Borel map, denoted by B̃, as the map sending a function f ∈ Ãu

M ,h(S) into

its M -asymptotic expansion f̂ ∈ C[[z]]M ,h, i.e. B̃(f) := f̂ .

Remark 3.1.7. Note that, by Proposition 3.1.4.(i) the asymptotic Borel map

may be defined from Ãu
[M ](S) or A[M̂ ](S) into C[[z]][M ] (with the aforementioned

meaning), and from AM̂ ,h(S) into C[[z]]M ,h, and it is continuous when considered
between the corresponding (LB), Fréchet or Banach spaces.

Moreover, if M is (lc), B̃ is a homomorphism of algebras; if M is also (dc),

differentiation commutes with B̃. Finally, M ≈ L implies C[[z]][M ] = C[[z]][L],
and the corresponding Borel maps are in all cases identical.

We will focus on the surjectivity of the Borel map in unbounded sectors Sγ

bisected by direction 0, as this problem is invariant under rotation. Note that the
value γ can be any positive real number, since we work in the Riemann surface of
the logarithm; in case γ is greater than 2, multivalued functions (i. e. whose values
depend on the considered sheet within the Riemann surface) naturally occur. We
define

S[M̂ ] :={γ > 0; B̃ : A[M̂ ](Sγ) −→ C[[z]][M ] is surjective},

S̃u
[M ] :={γ > 0; B̃ : Ãu

[M ](Sγ) −→ C[[z]][M ] is surjective}.

Thanks to the fact that if γ > 0 is in any of those sets then every 0 < γ′ < γ also
is, we deduce that S[M̂ ] and S̃

u
[M ] are either empty or left-open intervals having 0

as endpoint, called surjectivity intervals. Moreover, by Proposition 3.1.4, we see
that

(S̃u
[M ])

◦ ⊆ S[M̂ ] ⊆ S̃u
[M ], (3.4)

where I◦ is the interior of I. The determination of these intervals is closely related
to the existence of right inverses for the asymptotic Borel map.

Definition 3.1.8. We say that T is a extension operator for B̃ if it is linear and
continuous, and such that B̃◦T is the identity map on a class of formal power series.
It can be global, defined from C[[z]][M ] into Ãu

[M ](S) or A[M̂ ](S) (with its respective

(LB) or Fréchet space structures), and local, at the level of Banach spaces, defined

from C[[z]]M ,h into some Ãu
M ,h′(S) or AM̂ ,h′(S) for suitable h′ depending on h. In

this latter case, it is common that a scaling of the type occurs, that is, h′ = ch for
a universal constant c > 0 independent from h.
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3.2 Optimal flat functions and a Borel-Ritt re-

sult for Roumieu classes under (dc)

The following result for the Roumieu case, already hinted at in the work of V.
Thilliez [80, Subsect. 3.3] and resting on a result of H.-J. Petzsche [52, Th. 3.5],
appeared, in a slightly different form, in [33, Lemma 4.5]. Since the result of
Petzsche is equally valid for the Beurling case [52, Th. 3.4], one can state the
following.

Lemma 3.2.1. Let M be a weight sequence. If S̃u
[M ] ̸= ∅, then M satisfies (snq)

or, equivalently, γ(M ) > 0.

Regarding the precise determination of the surjectivity intervals, the first sem-
inal results appeared in a work of J. Schmets and M. Valdivia [74], whose results
prove that

(0, ⌈γ(M )⌉ − 1) ⊂ S[M̂ ],

where ⌈x⌉ is the least integer greater than or equal to a real number x. Moreover,
for such openings surjectivity comes with local extension operators with scaling of
the type, and with global extension operators in the Beurling case, while global
extension operators in the Roumieu case need the extra condition (β2) of H.-J.
Petzsche [52]. In the case of strongly regular sequences, V.Thilliez [80] showed that
(0, γ(M)) ⊂ S[M̂ ], again with local extension operators with scaling of the type.

Several improvements followed in the Roumieu case [68, 33, 14, 37], trying firstly
to determine the surjectivity intervals, or at least their length, for (certain classes
of) strongly regular sequences, and afterwards trying to weaken the condition of
moderate growth. These efforts have lead to the following precise statement that
appeared in [37, Th. 3.7] under the condition (dc). It shows that the length of the
surjectivity intervals is precisely given by γ(M ).

Theorem 3.2.2. Let M̂ be a regular sequence such that γ(M ) > 0. Then,

(0, γ(M)) ⊆ S{M̂} ⊆ S̃u
{M} ⊆ (0, γ(M)].

In particular, if γ(M ) = ∞, we have that S{M̂} = S̃u
{M} = (0,∞).

So, the surjectivity of the Borel map for regular sequences is governed by the
value of the index γ(M ).

3.2.1 Construction of optimal flat functions

Our aim is to relate the surjectivity of the Borel map in a sector to the existence of
optimal flat functions in it, which we now define and construct in this subsection.
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Definition 3.2.3. Let M be a weight sequence, S an unbounded sector bisected
by direction d = 0, i.e., by the positive real line (0,+∞) ⊂ R. A holomorphic
function G : S → C is called an optimal {M}-flat function in S if:

(i) There exist K1, K2 > 0 such that for all x > 0,

K1hM (K2x) ≤ G(x). (3.5)

(ii) There exist K3, K4 > 0 such that for all z ∈ S, one has

|G(z)| ≤ K3hM (K4|z|). (3.6)

Besides the symmetry imposed by condition (i) (observe that G(x) > 0 for
x > 0, and so G(z) = G(z), z ∈ S), we note that the estimates in (3.6) amount to
the fact that

|G(z)| ≤ K3K
p
4Mp|z|p, p ∈ N0, z ∈ S,

which exactly means that G ∈ Ãu
{M}(S) and is {M}-flat, i.e., its uniform {M}-

asymptotic expansion is given by the null series. The inequality imposed in (3.5)
makes the function optimal in a sense, as its rate of decrease on the positive real
axis when t tends to 0 is accurately specified by the function hM . Note that,
in previous instances where such optimal flat functions appear [80, 42, 27], the
estimates from below in (3.5) are imposed and/or obtained in the whole sector S,
and not just on its bisecting direction. We think the present definition is more
convenient, since it is easier to check for concrete functions, and for our purposes
it provides all the necessary information in order to work with such functions.

In order to construct such optimal flat functions, we need to start by intro-
ducing the harmonic extension and a particular majorant of a nondecreasing non-
quasianalytic function.

Definition 3.2.4. A nondecreasing (or even just measurable) function σ : [0,∞) →
[0,∞) satisfies the nonquasianalyticity property (ωnq), and we say σ is nonquasi-
analytic, if ∫ ∞

1

σ(t)

t2
dt <∞.

For a nondecreasing nonquasianalytic function, we can consider the harmonic
extension of such function.

Definition 3.2.5. Let σ : [0,∞) → [0,∞) be a nondecreasing nonquasianalytic
function. The harmonic extension Pσ of σ to the open upper and lower halfplanes
of C is defined by

Pσ(x+ iy) =

 σ(|x|) if x ∈ R, y = 0,
|y|
π

∫ ∞

−∞

σ(|t|)
(t− x)2 + y2

dt if x ∈ R, y ̸= 0.
(3.7)
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There exist some relation between σ and the harmonic extension Pσ of σ. More
precisely.

Remark 3.2.6. For every z ∈ C one has (see, for example, [6, Remark 3.2] or [51,
Prop. 5.5]):

σ(|z|) ≤ Pσ(z). (3.8)

Moreover, the harmonic extension Pσ has the following properties.

Proposition 3.2.7. Let σ : [0,∞) → [0,∞) be a nondecreasing nonquasianalytic
function. Then, we have the following properties

(1) σ1 ≤ σ2 implies Pσ1 ≤ Pσ2.

(2) λPσ1(z) + µPσ2(z) = Pλσ1+µσ2(z), λ, µ ∈ R.

(3) Pt7→σ(Ct)(z) = Pσ(Cz), C > 0.

Another important auxiliary function appears in the study of extension re-
sults in Braun-Meise-Taylor ultradifferentiable classes, defined in terms of weight
functions (see, for example, [48, 6] and the references therein).

Definition 3.2.8. Let σ : [0,∞) → [0,∞) be a nondecreasing and nonquasiana-
lytic function. Then, the function κσ is defined by

κσ(y) =

∫ ∞

1

σ(ys)

s2
ds, y ≥ 0,

Remark 3.2.9. Thanks to the fact that σ is nondecreasing, we have the following
estimate

σ(y) ≤ κσ(y), y ≥ 0. (3.9)

Moreover, if σ is also continuous, then κσ is concave, cf. the proof of (3) ⇒ (4) in
[48, Proposition 1.3].

In particular, consider a weight sequence M such that
∑∞

p=0 1/mp <∞ (this is

condition (M3)′ in [38]); in other words, the sequence M̂ := (Mp/p!)p∈N0 satisfies
(nq). According to [38, Lemma 4.1], this property amounts to νm and/or ωM

being nonquasianalytic. So, it makes sense to consider the concave function κωM

associated with ωM , and κνm associated with the counting function νm. Moreover,
we can establish the following equality

Proposition 3.2.10 ([38], Proposition 4.4). Let M be a weight sequence such that

M̂ satisfies (nq). Then, we have that

κωM
(y) = ωM (y) + κνm(y), y ≥ 0. (3.10)
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As a first step for the construction of such flat functions, we need to estimate
the harmonic extension Pσ in terms of the majorant κσ. The right-hand side
estimate in the next result is a slight refinement of the one in [6, Lemma 3.3],
which was not precise enough for our purposes. We include the whole proof for
the sake of completeness.

Proposition 3.2.11. Let σ : [0,∞) → [0,∞) be a nondecreasing nonquasianalytic
function. Then, we have

1

π
κσ(y) ≤ Pσ(iy) ≤ κσ(y), y ≥ 0. (3.11)

Proof. If y = 0 all the values are equal to σ(0) and so the inequalities hold true.
Now, for y > 0 we have

Pσ(iy) =
y

π

∫ ∞

−∞

σ(|t|)
t2 + y2

dt =
2y

π

∫ ∞

0

σ(t)

t2 + y2
dt =

2

π

∫ ∞

0

σ(ys)

s2 + 1
ds

≥ 2

π

∫ ∞

1

σ(ys)

s2 + 1
ds.

Since s2 + 1 ≤ 2s2 for s ≥ 1, we deduce that

Pσ(iy) ≥
1

π

∫ ∞

1

σ(ys)

s2
ds =

1

π
κσ(y).

In order to prove the right inequality, we start by splitting the integral into two
parts:

Pσ(iy) =
2

π

∫ ∞

0

σ(ys)

s2 + 1
ds =

2

π

(∫ 1

0

σ(ys)

s2 + 1
ds+

∫ ∞

1

σ(ys)

s2 + 1
ds

)
. (3.12)

As σ is nondecreasing, we may write∫ 1

0

σ(ys)

s2 + 1
ds ≤ σ(y)

∫ 1

0

1

s2 + 1
ds =

π

4
σ(y), (3.13)

and∫ ∞

1

σ(ys)

s2 + 1
ds = κσ(y)−

∫ ∞

1

(
1

s2
− 1

s2 + 1

)
σ(ys)ds ≤ κσ(y)− σ(y)

(
1− π

4

)
.

(3.14)
From (3.12), (3.13), (3.14) and (3.9) we deduce that

Pσ(iy) ≤
2

π

(π
2
σ(y) + κσ(y)− σ(y)

)
≤ κσ(y).
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The key condition for weight sequences that will allow us to construct optimal
flat functions appeared in a work of M. Langenbruch [41].

Definition 3.2.12. Let M be a weight sequence such that M̂ satisfies (nq), so
that PωM

is well-defined. We say that the sequence satisfies the Langenbruch’s
condition if there exists a constant C > 0 such that for all y ≥ 0 we have

PωM
(iy) ≤ ωM (Cy) + C. (3.15)

We can characterize the previous condition in terms of the index γ(M). This
connection has very recently appeared for the first time in a work of D. N. Nen-
ning, A. Rainer and G. Schindl [51]. Although the additional hypothesis of (dc)
appears in their (indirect) arguments, it can be removed as long as the sequence
satisfies (snq), as we now show. Observe that, by Lemma 3.2.1, the condition (snq)
(equivalently, γ(M) > 0) is necessary for surjectivity, so it is not a restriction for
our aim.

Proposition 3.2.13. Let M be a weight sequence. The following are equivalent:

(i) γ(M ) > 0, M̂ satisfies (nq) and M satisfies Langenbruch’s condition.

(ii) γ(M ) > 1.

Proof. First, from (1.15) we deduce that for all r ≥ 0 and B ≥ 0,

ωM (eBr) =

∫ eBr

0

νm(u)

u
du = ωM (r)+

∫ eBr

r

νm(u)

u
du ≥ ωM (r)+Bνm(r). (3.16)

The last inequality is a consequence of the monotonicity of νm.
(i)⇒(ii) By taking into account (3.8) and (3.11), we deduce

ωM (y) + κνm(y) ≤ PωM
(iy) + πPνm(iy) = PωM+πνm(iy), y ≥ 0.

Thanks to (3.16) and the monotonicity of the harmonic extension with respect to
the argument function we get from above

ωM (y) + κνm(y) ≤ PωM (eπ ·)(y) = PωM
(ieπy) ≤ ωM (Ceπy) + C, y ≥ 0.

Next, by using the integral expression (1.15) and the monotonicity of νm we have
that

κνm(y) ≤ ωM (Ceπy)− ωM (y) + C

=

∫ Ceπy

y

νm(u)

u
du+ C ≤ ln(Ceπ)νm(Ceπy) + C, y ≥ 0.
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Finally, by Lemma 1.1.32, we deduce that

κνm(y) ≤ Dνm(y) +D, y ≥ 0,

for suitable D > 0. This is condition (ωsnq) for νm and, by Lemma 1.1.32, we may
conclude that γ(M) > 1.

(ii)⇒(i) Condition γ(M ) > 1 implies that γ(M) > 0, and amounts to condi-

tion (γ1) for m (see (1.4)), so that M̂ clearly satisfies (nq). By Lemma 1.1.32, the
condition γ(M) > 1 is equivalent to the existence of a constant C > 0 such that

κνm(y) ≤ Cνm(y) + C, y ≥ 0. (3.17)

Then, from (3.11), (3.10) and the above inequality we deduce that

PωM
(iy) ≤ κωM

(y) = ωM (y) + κνm(y) ≤ ωM (y) + Cνm(y) + C, y ≥ 0.

By (3.16), we have from above that

PωM
(iy) ≤ ωM (eCy) + C, y ≥ 0,

which completes the proof.

Remark 3.2.14. The condition γ(M ) > 1 is the same as γ(M̂) > 0, or equiva-

lently, (snq) for M̂ (even if M̂ might not satisfy (lc), we can apply [34, Corollary
3.13] to obtain this equivalence). So, for a weight sequence M satisfying (snq),

Langenbruch’s condition allows to pass from (nq) to (snq) for M̂ .

Observe also that, by [34, Lemma 3.20], the condition (nq) for M̂ implies that

the index ω(M̂ ), introduced in [68] and studied in detail in [34], is nonnegative,

and so ω(M ) = ω(M̂ )+1 ≥ 1. As one only knows that γ(M) ≤ ω(M ) in general,
and these indices can perfectly be different, one may better understand the effect
of Langenbruch’s condition.

Remark 3.2.15. On the one hand, as said before, for a weight sequence M the
condition γ(M ) > 1 amounts to the condition (γ1) for m, and it is well-known
(see [38, Prop. 4.4]) that then ωM satisfies (ωsnq). As it can be deduced from [48,
Prop. 1.7], this last fact is, in its turn, equivalent to the existence of a constant
C > 0 such that

PωM
(iy) ≤ CωM (y) + C, y ≥ 0.

On the other hand, in [38, Prop. 3.6] the condition (mg) for a weight sequence M
is shown to be equivalent to the fact that 2ωM (y) ≤ ωM (Dy) + D for all y ≥ 0
and suitable D > 0. Gathering these estimates, we conclude that if M is strongly
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regular then γ(M) > 1 if, and only if, M satisfies Langenbruch’s condition. This
was basically the reasoning that allowed V. Thilliez to obtain optimal {M}-flat
functions, in the very same way as we are doing in the next result, but dropping
now the moderate growth condition by means of Proposition 3.2.13.

Thanks to the previous result, we will construct optimal {M}-flat functions in
the right half plane as long as γ(M ) > 1.

Proposition 3.2.16. Let M be a weight sequence. If γ(M ) > 1, then the function

G(z) = exp(−PωM
(i/z)− iQωM

(i/z))

is an optimal {M}-flat function in the halfplane S1, where QωM
is the harmonic

conjugate of PωM
in the upper half plane.

Proof. It is clear that the function G is holomorphic in S1. On the one hand, by
taking into account (3.8), for z ∈ S1 we have that

|G(z)| = exp(−PωM
(i/z)) ≤ exp(−ωM (1/|z|)) = hM (|z|).

On the other hand, the condition γ(M ) > 1 implies, by Proposition 3.2.13, that
there exists C > 0 such that PωM

(ix) ≤ ωM (Cx) + C for every x > 0. Since one
can easily check that QωM

(i/x) = 0, we have that

G(x) = exp(−PωM
(i/x)) ≥ exp(−ωM (C/x)− C) = exp(−C)hM (x/C),

as desired.

By a ramification of the variable we can extend this method to an arbitrary
weight sequence with γ(M ) > 0 and any sector whose opening is less than πγ(M ).

Proposition 3.2.17. Let M be a weight sequence with γ(M ) > 0. Then, for any
0 < γ < γ(M ) there exists an optimal {M}-flat function in Sγ.

Proof. Let s > 0 be such that γ < 1/s < γ(M). Then, by [34, Th. 3.10, Prop.
3.6] we have that γ(M s) = sγ(M) > 1, where M s := (M s

p )p∈N0 is again a
weight sequence. We apply the last result to the sequence M s, so there exist an
optimal {M s}-flat function G in S1. It is important to note that the bounds for
G appearing in Definition 3.2.3 will be in terms of hMs , instead of hM . Moreover,
the following relation between the functions ωMs and ωM is straightforward:

ωM (t1/s) =
1

s
ωMs(t), t ≥ 0. (3.18)
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Now, let us prove that the function F (z) = (G(zs))1/s, z ∈ Sγ, is an optimal
{M}-flat function in Sγ. From the fact that G is an optimal {M s}-flat function,
(1.13) and (3.18), we get

F (x) = (G(xs))1/s ≥ K
1/s
1 exp(−s−1ωMs(1/(K2x

s)))

≥ K
1/s
1 exp(−ωM (1/(K

1/s
2 x))) = K

1/s
1 hM (K

1/s
2 x), x > 0,

for suitable constants K1, K2 > 0. Moreover, we have that

|F (z)| ≤ K
1/s
3 exp(−s−1ωMs(1/(K4|z|s)))

≤ K
1/s
3 exp(−ωM (1/(K

1/s
4 |z|))) = K

1/s
3 hM (K

1/s
4 |z|), z ∈ Sγ,

for suitable constants K3, K4 > 0, and we are done.

3.2.2 Surjectivity of the Borel map for regular sequences

We will describe next how, by means of an optimal flat function, one can obtain
extension operators, right inverses for the Borel map, for ultraholomorphic classes
defined by regular sequences.

If G is an optimal {M}-flat function in Ãu
{M}(S), we define the kernel function

e : S → C given by

e(z) := G

(
1

z

)
, z ∈ S.

It is obvious that e(x) > 0 for all x > 0, and there exist K1, K2, K3, K4 > 0 such
that

K1hM

(
K2

x

)
≤ e(x), x > 0, and |e(z)| ≤ K3hM

(
K4

|z|

)
, z ∈ S.

(3.19)
For every p ∈ N0 we define the p-th moment of the function e(z), given by

µ(p) :=

∫ ∞

0

tpe(t) dt.

Note that the positive value µ(0) need not be equal to 1.
The following result is crucial for our aim.

Proposition 3.2.18. Suppose M is a weight sequence with γ(M) > 0, and G is

an optimal {M}-flat function in Ãu
{M}(S) for some unbounded sector S. Consider

the sequence of moments µ := (µ(p))p∈N0 associated with the kernel function e(z) =
G(1/z). Then, M satisfies (dc) if, and only if, there exist B1, B2 > 0 such that

µ(0)Bp
1Mp ≤ µ(p) ≤ µ(0)Bp

2Mp, p ∈ N0. (3.20)

In other words, M and µ are equivalent.
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Proof. First, we suppose that M has (dc), and therefore M̂ is a regular sequence.
Observe that we only need to reason for p ∈ N. On the one hand, because of the
right-hand inequalities in (3.19) and Lemma 1.1.28.(ii), for every p ∈ N and s > 0
we may write

µ(p) =

∫ s

0

tpe(t) dt+

∫ ∞

s

1

t2
tp+2e(t) dt

≤ K3

∫ s

0

tp dt+K3 sup
t>0

tp+2hM

(
K4

t

)∫ ∞

s

1

t2
dt

= K3
sp+1

p+ 1
+K3

1

s
Kp+2

4 Mp+2 ≤ K3

(
sp+1

p+ 1
+

(K4D)p+2Mp

s

)
.

Note that in the last equality we have used (1.9), and then we have applied (dc)
with a suitable constant D > 0. Since s > 0 was arbitrary, we finally get

µ(p) ≤ inf
s>0

K3

(
sp+1

p+ 1
+

(K4D)p+2Mp

s

)
= K3

p+ 2

p+ 1
(K4D)p+1(Mp)

(p+1)/(p+2)

≤ µ(0)Bp
2Mp,

for a suitably enlarged constant B2 > 0 (observe that p ≥ 1 and that, eventually,
Mp ≥ 1).

On the other hand, by the left-hand inequalities in (3.19) and Lemma 1.1.28.(i),
for every p ∈ N and s > 0 we may estimate

µ(p) ≥
∫ s

0

tpe(t) dt ≥ K1

∫ s

0

tphM

(
K2

t

)
dt ≥ K1hM

(
K2

s

)
sp+1

p+ 1
.

Then, again by (1.9), we deduce that

µ(p) ≥ K1

p+ 1
sup
s>0

hM

(
K2

s

)
sp+1 =

K1

p+ 1
Kp+1

2 Mp+1 ≥ µ(0)Bp
1Mp

for a suitable constant B1 > 0 (note that M is eventually nondecreasing).
Now, suppose that M and µ are equivalent and therefore (3.20) holds for

suitable B1, B2 > 0. The above estimate (first inequality) shows for every p ∈ N
that

Mp+1 ≤
p+ 1

K1

(
1

K2

)p+1

µ(p) ≤︸︷︷︸
(3.20)

µ(0)

K1

(
2B2

K2

)p+1

Mp,

and so M has (dc). 2

We can already state the following main result. The forthcoming implication
(ii) ⇒ (v) for strongly regular sequences M was first obtained by V. Thilliez [80,
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Th. 3.2.1], and the proof heavily rested on the moderate growth condition, both
for the construction [80, Th. 2.3.1] of optimal {M}-flat functions in sectors Sγ for
every γ > 0 such that γ < γ(M ), and for the subsequent use of Whitney exten-
sion results in the ultradifferentiable setting. In [42] the implication (ii) ⇒ (iii)
was proved again for strongly regular sequences, but with a completely different
technique, and it is this approach which allows here for the weakening of condition
(mg) into (dc).

Theorem 3.2.19. Let M̂ be a regular sequence (that is, M is a weight sequence
and satisfies (dc)) with γ(M ) > 0, and let γ > 0 be given. Each of the following
statements implies the next one:

(i) γ < γ(M).

(ii) There exists an optimal {M}-flat function in Ãu
{M}(Sγ).

(iii) There exists c > 0 such that for every h > 0 there exists a linear continuous

map TM ,h : C[[z]]M ,h → Ãu
M ,ch(Sγ) such that B̃ ◦ TM ,h is the identity map in

C[[z]]M ,h (i.e., TM ,h is an extension operator, right inverse for B̃).

(iv) The Borel map B̃ : Ãu
{M}(Sγ) → C[[z]]{M} is surjective. In other words,

(0, γ] ⊂ S̃u
{M}.

(v) (0, γ) ⊂ S{M̂}.

(vi) γ ≤ γ(M).

Proof. (i) ⇒ (ii) See Proposition 3.2.17, valid for any weight sequence M .

(ii) ⇒ (iii) Let h > 0 and f̂ =
∑∞

p=0 apz
p ∈ C[[z]]M ,h be given. Let (µ(p))p∈N0

be the sequence of moments associated to the function e(z) = G(1/z), where G

is an optimal {M}-flat function in Ãu
{M}(Sγ). By the definition of the norm in

C[[z]]M ,h (see (3.3)), we have

|ap| ≤ |f̂ |M ,hh
pMp, p ∈ N0.

From the left-hand inequalities in (3.20), we deduce that∣∣∣∣ apµ(p)

∣∣∣∣ ≤ |f̂ |M ,h

µ(0)

(
h

B1

)p

, p ∈ N0. (3.21)

Hence, the formal Borel-like transform of f̂ ,

ĝ =
∞∑
p=0

ap
µ(p)

zp,
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is convergent in the disc D(0, R) for R = B1/h > 0, and it defines a holomorphic
function g there. Choose R0 := B1/(2h) < R, and define

TM ,h(f̂ )(z) :=
1

z

∫ R0

0

e
(u
z

)
g(u) du, z ∈ Sγ,

which is a truncated Laplace-like transform of g with kernel e. By virtue of Leib-
niz’s theorem for parametric integrals and the properties of e, we deduce that this
function, denoted by f for the sake of brevity, is holomorphic in Sγ. We will prove

that f ∼u
{M} f̂ uniformly in Sγ, and that the map f̂ 7→ f , which is obviously linear,

is also continuous from C[[z]]M ,h into Ãu
M ,ch(Sγ) for suitable c > 0 independent

from h.

Let p ∈ N0 and z ∈ Sγ. We have

f(z)−
p−1∑
n=0

anz
n = f(z)−

p−1∑
n=0

an
µ(n)

µ(n)zn

=
1

z

∫ R0

0

e
(u
z

) ∞∑
n=0

an
µ(n)

un du−
p−1∑
n=0

an
µ(n)

∫ ∞

0

vne(v) dv zn.

After a change of variable u = zv in the last integral, one may use Cauchy’s
residue theorem and the right-hand estimates in (3.19) in order to rotate the path
of integration and obtain

zn
∫ ∞

0

vne(v)dv =
1

z

∫ ∞

0

une
(u
z

)
du.

So, we can write the preceding difference as

1

z

(∫ R0

0

e
(u
z

) ∞∑
n=p

an
µ(n)

un du−
∫ ∞

R0

e
(u
z

) p−1∑
n=0

an
µ(n)

un du

)
.

Then, we have ∣∣∣∣∣f(z)−
p−1∑
n=0

anz
n

∣∣∣∣∣ ≤ 1

|z|
(f1(z) + f2(z)), (3.22)

where

f1(z) =

∣∣∣∣∣
∫ R0

0

e
(u
z

) ∞∑
n=p

an
µ(n)

un du

∣∣∣∣∣ , f2(z) =

∣∣∣∣∣
∫ ∞

R0

e
(u
z

) p−1∑
n=0

an
µ(n)

un du

∣∣∣∣∣ .
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We now estimate f1(z) and f2(z). Observe that for every u ∈ (0, R0] we have
0 < hu/B1 ≤ 1/2. So, from (3.21) we get

∞∑
n=p

|an|
µ(n)

un ≤ |f̂ |M ,h

µ(0)

∞∑
n=p

(
hu

B1

)n

≤ 2|f̂ |M ,h

µ(0)

(
h

B1

)p

up.

Hence,

f1(z) ≤
2|f̂ |M ,h

µ(0)

(
h

B1

)p ∫ R0

0

∣∣∣e(u
z

)∣∣∣up du. (3.23)

Regarding f2(z), for u ≥ R0 and 0 ≤ n ≤ p − 1 we have (u/R0)
n ≤ (u/R0)

p, so
un ≤ Rn

0u
p/Rp

0. Again by (3.21), and taking into account the value of R0, we may
write

p−1∑
n=0

|an|
µ(n)

un ≤ |f̂ |M ,h

µ(0)

up

Rp
0

p−1∑
n=0

(
hR0

B1

)n

≤ |f̂ |M ,h

µ(0)

(
2h

B1

)p

up.

Then, we get

f2(z) ≤
|f̂ |M ,h

µ(0)

(
2h

B1

)p ∫ ∞

R0

∣∣∣e(u
z

)∣∣∣up du. (3.24)

In order to conclude, note that the second inequality in (3.19), followed by the first
one, and the fact that e(x) > 0 for x > 0, together imply that for every z ∈ Sγ

and every u > 0 we have

|e(u/z)| ≤ K3hM

(
K4

|z|
u

)
≤ K3

K1

e

(
K2u

K4|z|

)
.

We use this fact, a simple change of variable and the right-hand estimates in (3.20),
and obtain that∫ ∞

0

∣∣∣e(u
z

)∣∣∣up du ≤
∫ ∞

0

K3

K1

e

(
K2u

K4|z|

)
up du

=
K3

K1

(
K4|z|
K2

)p+1

µ(p) ≤ µ(0)K3K4

K1K2

(
K4B2

K2

)p

Mp|z|p+1.

This estimate can be taken into both (3.23) and (3.24), and from (3.22) we easily
get that for every p ∈ N0,∣∣∣∣∣f(z)−

p−1∑
n=0

anz
n

∣∣∣∣∣ ≤ 3K3K4

K1K2

|f̂ |M ,h

(
2K4B2h

K2B1

)p

Mp|z|p, z ∈ Sγ,

and so f admits f̂ as its uniform {M}-asymptotic expansion in Sγ. Moreover,
recalling the definition (3.2) of the norm in these spaces with uniform asymptotics
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and fixed type, if we put c := 2K4B2/(K2B1) > 0, we see that f ∈ Ãu
M ,ch(Sγ) and

∥f∥
M ,ch,

∼
u
≤ 3K3K4

K1K2

|f̂ |M ,h,

what proves the continuity of the linear map TM ,h.
(iii) ⇒ (iv) Immediate for any weight sequence M .
(iv) ⇒ (v) It follows from (3.4), again valid for any weight sequence.
(v) ⇒ (vi) This statement is a consequence of Theorem 3.2.2. 2

We note that the condition (dc) is only used in the implications (ii) ⇒ (iii)
and (v) ⇒ (vi).

Remark 3.2.20. The facts in Theorem 3.2.19.(iii) and Proposition 3.1.4.(ii) to-
gether guarantee that for every δ ∈ (0, γ) there exists c′ > 0 such that for every
h > 0 there exists a linear and continuous extension operator from C[[z]]M ,h into
AM̂ ,c′h(Sδ). In fact, V. Thilliez stated his main result in this regard [80, Th. 3.2.1]
in terms of the existence of such extension operators for every δ < γ(M ) and M
a strongly regular sequence.

The following three corollaries become now clear.

Corollary 3.2.21. Let M̂ be a regular sequence, and γ > 0. The following are
equivalent:

(i) γ(M ) > γ,

(ii) There exists γ1 > γ such that the space Ãu
{M}(Sγ1) contains optimal {M}-flat

functions.

(iii) There exists γ1 > γ such that the Borel map B̃ : Ãu
{M}(Sγ1) → C[[z]]{M} is

surjective., i.e., γ1 ∈ S̃u
{M}.

Proof. (ii) ⇒ (iii) and (iii) ⇒ (i) are respectively contained in Theorem 3.2.19
and Theorem 3.2.2, under weaker hypotheses. (i) ⇒ (ii) is immediately deduced
from Proposition 3.2.17. 2

As a consequence of Proposition 1.1.23 and Theorem 3.2.19 we get the following
result.

Corollary 3.2.22. Let M̂ be a regular sequence. The following are equivalent:

(i) M satisfies (snq).

(ii) There exists γ > 0 such that the space Ãu
{M}(Sγ) contains optimal {M}-flat

functions.
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(iii) There exists γ > 0 such that the Borel map B̃ : Ãu
{M}(Sγ) → C[[z]]{M} is

surjective. In other words, S̃u
{M} ̸= ∅.

Note that, according to Proposition 3.1.4, in the previous items (ii) and (iii)

one could change Ãu
{M}(Sγ) and S̃

u
{M} into A{M̂}(Sγ) and S{M̂}, respectively.

Corollary 3.2.23. Let M̂ be a regular sequence, and γ > 0. The following are
equivalent:

(i) γ(M ) > γ,

(ii) There exists γ1 > γ such that the space A{M̂}(Sγ1) contains optimal {M}-flat
functions,

(iii) There exists γ1 > γ such that B̃ : A{M̂}(Sγ1) → C[[z]]{M} is surjective, i.e.,
γ1 ∈ S{M̂}.

3.2.3 Optimal flat functions and strongly regular sequences

Under the moderate growth condition, the implication (ii) ⇒ (i) in the version
of Corollary 3.2.22 for the space A{M̂}(Sγ) can be shown independently by using

a result from J. Bruna [9], where a precise formula for nontrivial flat functions in
Carleman-Roumieu ultradifferentiable classes, appearing in a work of T. Bang [3],
is exploited. For the sake of completeness, we will present this proof below.

Theorem 3.2.24. Let M be a weight sequence satisfying (mg). If there exists γ >
0 such that A{M̂}(Sγ) contains optimal {M}-flat functions, then M is strongly
regular.

The proof requires two auxiliary results which we state and prove now.
First, given a weight sequence M , the sequence of quotients m = (mp)p∈N0 is

nondecreasing and tends to infinity, but it can happen that it remains constant on
large intervals [p0, p1] of indices, so that the counting function νm defined in (1.10)
yields νm(mp0) = νm(mp1) = p1 + 1. However, in some applications or proofs it
would be convenient to have νm(mp) = p + 1 for all p ≥ 0. This can be assumed
without loss of generality by the following result.

Lemma 3.2.25. Let a = (ap)p≥1 be a nondecreasing sequence of positive real
numbers satisfying limp→+∞ ap = +∞ (it suffices that ap−1 < ap holds true for
infinitely many indices p). Then there exists a sequence b = (bp)p≥1 of positive real
numbers such that p 7→ bp is strictly increasing and satisfies

0 < inf
p≥1

bp
ap

≤ sup
p≥1

bp
ap

< +∞.
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So, in the language of weight sequences, we prove that for any weight sequence
M there exists a strongly equivalent weight sequence L (and so M ≈ L) such
that νℓ(ℓp) = p+1 for all p ∈ N0. Note that equivalent weight sequences define the
same Carleman-Roumieu ultraholomorphic classes and associated weighted classes
of formal power series.

Proof. Since a is nondecreasing and limp→+∞ ap = +∞ there exists a sequence
(pj)j≥1 of indices such that apj−1 < apj = · · · = apj+1−1 < apj+1

for all j ≥ 1 (and
so p1 ≥ 2). For all j ≥ 1 we have now apj/(apj−1) > 1 + εj for a sequence (εj)j≥1

with possibly small strictly positive numbers εj. Finally we put p0 := 1.

We take some arbitrary A > 1 and choose δj > 0 small enough so as to have
(1 + δj)

pj+1−pj−1 ≤ min{A, 1 + εj+1}. Then the sequence (δj)j≥0 satisfies

(1 + δj)
pj+1−pj−1 ≤ 1 + εj+1 <

apj+1

apj+1−1

, (1 + δj)
pj+1−pj−1 ≤ A, j ≥ 0. (3.25)

We define now b as follows:

bq := aq if q = pj, j ≥ 0, bq := (1 + δj)bq−1 if 1 + pj ≤ q ≤ pj+1 − 1, j ≥ 0.
(3.26)

So we have by iteration bq = (1+δj)
q−pjbpj = (1+δj)

q−pjapj = (1+δj)
q−pjaq > aq

for all q with 1 + pj ≤ q ≤ pj+1 − 1, j ≥ 0. On each such interval of indices the
mapping q 7→ bq is now clearly strictly increasing since 1 + δj > 1 for all j.
Moreover, by the first half in (3.25), we have bpj+1−1 = (1+ δj)

pj+1−pj−1apj < bpj+1
.

Hence the sequence q 7→ bq is strictly increasing.

By definition (3.26) we have bq = aq for all q = pj, j ≥ 0, and bq > aq otherwise.
We conclude if we show that bq ≤ Aaq for all q with 1 + pj ≤ q ≤ pj+1 − 1, j ≥ 0.
For this, since q 7→ bq is strictly increasing, it suffices to observe that, thanks to
the second half in (3.25), we have bpj+1−1 = (1+δj)

pj+1−pj−1apj ≤ Aapj = Aapj+1−1.
2

The second result is the following.

Lemma 3.2.26. Let M be a weight sequence. Then M satisfies (mg) if and only
if ωM (t) = O(νm(t)) as t→ +∞.

Proof. The condition (mg) for M is equivalent to mn ≤ A(Mn)
1/n for some

A ≥ 1 and all n ∈ N (e.g., see [61, Lemma 2.2]). It is also known that ωM (mn) =
log (mn

n/Mn) for n ∈ N (see [46, Chapitre I]). So, if mn−1 ≤ t < mn for some n ≥ 1,
we get

ωM (t) ≤ ωM (mn) = n log

(
mn

M
1/n
n

)
≤ n log(A) = log(A)νm(t),
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that is, ωM (t) = O(νm(t)) as t→ +∞.

Conversely, suppose that there exists A ≥ 1 such that ωM (t) ≤ Aνm(t) for all
t ≥ m0. By [61, Lemma 2.2], (mg) for M holds true if and only if there exists
H ≥ 1 such that for all t large enough one has 2νm(t) ≤ νm(Ht) + H, and this
we will prove. Take H ≥ exp(2A) and t ≥ m0. Using (1.15), and since νm is
nondecreasing, we estimate

νm(Ht) ≥ A−1ωM (Ht) = A−1

∫ Ht

m0

νm(λ)

λ
dλ ≥ A−1

∫ Ht

t

νm(λ)

λ
dλ

≥ A−1νm(t)

∫ Ht

t

1

λ
dλ = A−1 log(H)νm(t) ≥ 2νm(t),

as desired.
We mention that an alternative, more abstract proof can be based in the theory

of O-regular variation and Matuszewska indices for functions. By [34, Th. 4.4] we
have that the lower Matuszewska indices of νm and ωM agree, that is, β(νm) =
β(ωM ), and by [34, Cor.2.17 and Cor. 4.2] we know M has (mg) if and only if

β(νm) > 0. So, if β(νm) > 0, by [34, Th. 4.3] we have that lim inft→∞
νm(t)
ωM (t)

> 0,

and we deduce that ωM (t) = O(νm(t)) as t → +∞. Conversely, if ωM (t) =

O(νm(t)) as t→ +∞, then lim inft→∞
νm(t)
ωM (t)

> 0, so by [34, Th. 4.3] we have that

β(ωM ) > 0, and we are done. 2

Proof of Theorem 3.2.24. We follow the proof of necessity for [9, Th. 2.2].
By Lemma 3.2.25 and the remark following it, we can assume without loss of
generality that m is strictly increasing.

Let G be an optimal {M}-flat function in A{M̂}(Sγ) for some γ > 0. So, there
exists some h > 0 such that

pM ,h(G) := sup
n∈N0,x∈(0,+∞)

|G(n)(x)|
hnn!Mn

< +∞.

This shows that the Carleman-Roumieu ultradifferentiable class E{M̂}((−ε,+∞)),

consisting of all smooth complex-valued functions g defined on the interval (−ε,∞)
for some ε > 0, and such that

sup
n∈N0,x∈(−ε,+∞)

|g(n)(x)|
Hnn!Mn

< +∞

for suitable H > 0, contains nontrivial flat functions (it suffices to extend G by 0
for x ∈ (−ε, 0]). Then, the well-known Denjoy-Carleman theorem (e.g., see [25,
Th. 1.3.8]) yields that M satisfies (nq).
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Let now

Rn :=
∑
k≥n

1

(k + 1)mk

< +∞, n ∈ N0,

and let the function F be defined by F (t) := n if Rn+1 < t ≤ Rn, n ∈ N0.

By [3, (14), p. 142] we obtain that

G(x) = |G(x)| ≤ pM ,h(G) exp (−F (hex)) , x ∈ (0,+∞).

Combining this with (3.5), with (1.13) and setting C := pM ,h(G), we get

exp (F (hex)) ≤ C

G(x)
≤ CK−1

1 exp(ωM (1/(K2x))), x > 0.

If we put t = hex and B := he/K2, we obtain that for every t > 0,

F (t) ≤ log(CK−1
1 ) + ωM (B/t). (3.27)

By Lemma 3.2.26, there exists C1 ≥ 1 such that ωM (s) ≤ C1νm(s)+C1 for s > 0.
Choosing t = B/mn in (3.27), we see that

F (B/mn) ≤ log(CK−1
1 ) + ωM (mn) ≤ log(CK−1

1 ) + C1νm(mn) + C1

= log(CK−1
1 ) + C1(n+ 1) + C1,

since m is strictly increasing. Hence, F (B/mn) ≤ C2(n+ 1) for some C2 ∈ N and
all n ∈ N0. By definition of F , we get RC2(n+1)+1 ≤ B/mn, i.e.,

mn

∑
k≥C2(n+1)+1

1

(k + 1)mk

≤ B, n ∈ N0.

Finally,

mn

∑
k≥n

1

(k + 1)mk

= mn

∑
k≥C2(n+1)+1

1

(k + 1)mk

+mn

C2(n+1)∑
k=n

1

(k + 1)mk

≤ B +mn
n(C2 − 1) + C2 + 1

(n+ 1)mn

≤ B + 2C2,

which is (snq) for M . 2
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3.3. CONSTRUCTION OF OPTIMAL FLAT FUNCTIONS FOR A FAMILY OF NON

STRONGLY REGULAR SEQUENCES

3.3 Construction of optimal flat functions for a

family of non strongly regular sequences

As deduced in Theorem 3.2.19, the construction of optimal {M}-flat functions in
sectors within an ultraholomorphic class, given by a regular sequence M̂ , provides
extension operators and surjectivity results. Although such general construction
has been shown in Proposition 3.2.17, we wish to present here a family of (non
strongly) regular sequences for which an alternative, more explicit technique works.

We recall that, for logarithmically convex sequences (Mp)p∈N0 , the condition
(dc) is equivalent to the condition log(Mp) = O(p2), p→ ∞ (see [46, Ch. 6]). On
the other hand, the condition (mg) implies that the sequence is below some Gevrey
order (there exists α > 0 such that Mp = O(p!α) as p→ ∞; see e.g. [47, 80]).

We will work, for q > 1 and 1 < σ ≤ 2, with the sequences M q,σ := (qp
σ
)p∈N0 .

They are clearly weight sequences and, by (1.5), it is immediate that γ(M q,σ) = ∞,
so they satisfy (snq) (see (1.1.23)). According to the previous comments, they

satisfy (dc) but not (mg). So, M̂ q,σ is regular, but M q,σ is not strongly regular.
The case σ = 2 is well-known, as it corresponds to the so-called q-Gevrey

sequences, appearing in the study of formal and analytic solutions for q-difference
equations, see for example [4, 17] and the references therein.

First, we will construct a holomorphic function on C \ (−∞, 0] which will
provide, by restriction, an optimal {M q,σ}-flat function in any unbounded sector
Sγ with 0 < γ < 2. Subsequently, we will obtain such functions on general sectors
of the Riemann surface R of the logarithm by ramification. This, according to
Theorems 3.2.2 and 3.2.19, agrees with the fact that γ(M q,σ) = ∞.

3.3.1 Flatness in the class given by M q,σ

It will be convenient to note that for a fixed σ ∈ (1, 2], there exists a unique s ≥ 2
such that σ = s/(s− 1).

We start by suitably estimating the function

ωMq,σ(t) = sup
p∈N0

ln

(
tp

qpσ

)
= sup

p∈N0

(p ln(t)− ps/(s−1) ln(q)), t > 0.

Due to the fact that ωMq,σ(t) = 0 for t ≤ 1 (since m0 =M1/M0 =M1 = q > 1 and
by (1.15)), we will restrict our attention to the case t > 1. Obviously, ωMq,σ(t) is
bounded above by the supremum of x ln(t)−xs/(s−1) ln(q) when x runs over (0,∞),
which is easily obtained by elementary calculus and occurs at the point

x0 =

(
(s− 1) ln(t)

s ln(q)

)s−1

.
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If we put

bq,s :=
1

s

(
s− 1

s ln(q)

)s−1

, (3.28)

then

ωMq,σ(t) ≤
(
(s− 1) ln(t)

s ln(q)

)s−1

ln(t)−
(
(s− 1) ln(t)

s ln(q)

)s

ln(q) = bq,s ln
s(t), t > 1.

(3.29)
On the other hand, for t > qs/(s−1) (what amounts to x0 > 1) we also have that
ωMq,σ(t) is at least the value of x ln(t)− xs/(s−1) ln(q) at x = ⌊x0⌋, that is,

ωMq,σ(t) ≥

⌊(
(s− 1) ln(t)

s ln(q)

)s−1
⌋
ln(t)−

⌊(
(s− 1) ln(t)

s ln(q)

)s−1
⌋s/(s−1)

ln(q)

≥

((
(s− 1) ln(t)

s ln(q)

)s−1

− 1

)
ln(t)−

(
(s− 1) ln(t)

s ln(q)

)s

ln(q)

= bq,s ln
s(t)− ln(t). (3.30)

Lemma 3.3.1. For every t ≥ q2s/(s−1) it holds

bq,s ln
s(t)− ln(t) ≥ bq,s ln

s

(
t

qs/(s−1)

)
− ln

(
qs/(s−1)

)
. (3.31)

Proof. Observe that every t ≥ q2s/(s−1) may be written as t = qys/(s−1) for some
y ≥ 2. Then, we have that

bq,s ln
s(t)−bq,s lns

(
t

qs/(s−1)

)
= bq,s

(
s ln(q)

s− 1

)s (
ys−(y−1)s

)
=

ln(q)

s− 1

(
ys−(y−1)s

)
.

By the mean value theorem, ys− (y−1)s > s(y−1)s−1, and since s ≥ 2 and y ≥ 2,
we have (y − 1)s−1 ≥ y − 1. So we deduce that

ln(q)

s− 1

(
ys − (y − 1)s

)
>
s ln(q)

s− 1
(y − 1) = ln(t)− ln

(
qs/(s−1)

)
,

as desired. 2

Combining (3.29) with (3.30) and (3.31), and using (1.13), we get

exp

(
−bq,s lns

(
1

t

))
≤ hMq,σ(t) ≤ qs/(s−1) exp

(
−bq,s lns

(
1

qs/(s−1)t

))
, (3.32)

for all 0 < t ≤ q−2s/(s−1), and therefore we can say that these estimates express
optimal {M q,σ}-flatness.
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3.3.2 Optimal {M q,σ}-flat function in S2

The estimates in (3.32) suggest considering the function exp
(
− bq,s log

s
(
1/z
))
,

with, say, principal branches, as a candidate for providing optimal flat functions.
However, its analyticity in wide sectors is not guaranteed. Moreover, even in small
sectors around the direction d = 0, its behaviour at ∞ might not be as desired:
For example, when s = 2 it tends to 0 as 0 < x→ ∞, what excludes the possibility
of proving the inequality in (3.5).

Because of these reasons, we will first define a suitably modified function in the
sector S2 = C \ (−∞, 0], prove its flatness there, and then turn to general sectors
by composing it with an appropriate ramification.

We define

Gq,s
2 (z) := exp

(
−bq,s logs

(
1 +

1

z

))
, z ∈ S2, (3.33)

where the principal branch of the logarithm is chosen for both log and the power
w 7→ ws = exp(s log(w)) involved. Observe that if z ∈ S2, then 1 + 1/z ∈
C \ (−∞, 1], and so log(1 + 1/z) = ln(|1 + 1/z|) + i arg(1 + 1/z) /∈ (−∞, 0]. This
ensures that the map

z 7→ logs
(
1 +

1

z

)
= exp

(
s log

(
log(1 +

1

z
)

))
is also holomorphic in S2, and so is Gq,s

2 .
In order that Gq,s

2 is an optimal {M q,σ}-flat function in S2, we are only left
with proving the estimates (3.5) and (3.6). It turns out to be more convenient to
work with the associated kernel

e2(z) := Gq,s
2 (1/z) = exp(−bq,s logs(1 + z)), z ∈ S2,

and verify the following result.

Lemma 3.3.2. There exist positive constants C1, C2 such that

|e2(z)| ≤ C1e2(C2|z|), z ∈ S2.

Proof. In the first place, we observe that for every z ∈ S2,

ℜ(logs(z + 1)) = | logs(z + 1)| cos(arg(logs(z + 1))) (3.34)

= | log(z + 1)|s cos(s arg(log(z + 1))).

Now,

s| arg(log(z + 1))| = s

∣∣∣∣arctan(arg(z + 1)

ln |z + 1|

)∣∣∣∣ ≤ s

∣∣∣∣arctan( π

ln |z + 1|

)∣∣∣∣ . (3.35)
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Hence, setting

R0 := 1 + exp

(
π

tan (π/(2s))

)
≥ 2,

we get that |z| > R0 implies that |z+1| > R0 − 1 ≥ 1, and therefore ln |z+1| > 0
and

π

ln |z + 1|
< tan

( π
2s

)
.

From this and (3.35) we deduce that cos(s arg(log(z + 1))) > 0. Then, continuing
with (3.34),

ℜ(logs(z + 1)) ≥ |ℜ(log(z + 1))|s cos(s arg(log(z + 1)))

= lns |z + 1| − lns |z + 1| sin2(s arg(log(z + 1)))

1 + cos(s arg(log(z + 1)))
. (3.36)

Now, from the equality in (3.35) we see that s arg(log(z + 1)) → 0 as z → ∞ in
S2, and moreover

lim
z→∞
z∈S2

[(
sin2(s arg(log(z + 1)))

1 + cos(s arg(log(z + 1)))

)/(s2 arg2(z + 1)

2 ln2 |z + 1|

)]
= 1.

Therefore, there exist R1 ≥ R0 and C > 0 such that

sin2(s arg(log(z + 1)))

1 + cos(s arg(log(z + 1)))
≤ C

1

ln2 |z + 1|
, |z| > R1.

We deduce from (3.36) that for z ∈ S2 with |z| > R1,

ℜ(logs(z+1)) ≥ lns |z+1|−C lns−2 |z+1| ≥ lns(|z|−1)−C lns−2(|z|+1). (3.37)

We would be almost done if we obtain, for the right-hand side in (3.37), a lower
bound in terms of, say, lns(1 + |z|/2) for |z| sufficiently large.

This is easy in case s = 2, for it suffices to take |z| > 4 in order to have
3 < 1 + |z|/2 < |z| − 1, and so if |z| ≥ R2 := max{R1, 4} we have

ℜ(logs(z + 1)) ≥ lns(|z| − 1)− C ≥ lns

(
1 +

|z|
2

)
− C.

In case s > 2, it is not difficult to check that

lim
x→+∞

(
lns(x− 1)− C lns−2(x+ 1)− lns

(
1 +

x

2

))
= +∞,

so that, according to (3.37), there exists R2 ≥ R1 such that for z ∈ S2 with
|z| ≥ R2 one has

ℜ(logs(z + 1)) ≥ lns

(
1 +

|z|
2

)
.
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In any case, we can deduce an upper estimate of the form

|e2(z)| = exp
(
− bq,sℜ(logs(z + 1))

)
≤ eC exp

(
−bq,s lns

(
1 +

|z|
2

))
= eCe2

(
|z|
2

)
, z ∈ S2, |z| > R2.

Finally, since the function |e2(z)| stays bounded and bounded away from 0 for
bounded |z| (in particular, it tends to 1 when z tends to 0 in S2), the previous
estimate can be extended to the whole of S2 by suitably enlarging the constant C.
2

We are ready for the main objective of this section.

Theorem 3.3.3. The function Gq,s
2 defined in (3.33) is an optimal {M q,σ}-flat

function in S2.

Proof. The previous lemma ensures that there exist positive constants C1, C2

such that

|Gq,s
2 (z)| ≤ C1 exp

(
−bq,s lns

(
1 +

C2

|z|

))
, z ∈ S2. (3.38)

Observe that this inequality guarantees that |Gq,s
2 (z)| is bounded. As the same is

true for hMq,σ(t) for every t ≥ t0 and any fixed t0 > 0 (see Lemma 1.1.28), we only
need to check the estimate (3.6) for small enough |z|.

For |z| ≤ C2 it is clear that ln(1 +C2/|z|) > ln(C2/|z|) ≥ 0. Then, from (3.32)
we have that

|Gq,s
2 (z)| ≤ C1 exp

(
−bq,s lns

(
1 +

C2

|z|

))
≤ C1 exp

(
−bq,s lns

(
C2

|z|

))
≤ C1hMq,σ

(
|z|
C2

)
, |z| ≤ C2q

−2s/(s−1),

and we have proved (3.6).
Now, let us note that Gq,s

2 (x) is bounded away from 0 as soon as x ≥ r for any
fixed r > 0, since then

exp (−bq,s lns (1 + 1/r)) ≤ Gq,s
2 (x).

Again, we only need to check the estimate (3.5) for small enough x. Indeed, we
have for x > 0 that

Gq,s
2 (x) = exp

(
−bq,s lns

(
1

x

))
exp

(
−bq,s

[
lns

(
1 +

1

x

)
− lns

(
1

x

)])
.
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The mean value theorem gives that lns(1+ 1/x)− lns(1/x) tends to zero if x↘ 0,
and we deduce that there exists L such that

Gq,s
2 (x) ≥ L exp

(
−bq,s lns

(
1

x

))
, x ≤ q−s/(s−1).

The second inequality in (3.32) implies now that, as long as x ≤ q−s/(s−1), we have

Gq,s
2 (x) ≥ Lq−s/(s−1)hMq,σ

(
x

qs/(s−1)

)
,

and so (3.5) holds. 2

3.3.3 Optimal {M q,σ}-flat function in arbitrary sectors

Let us consider a sector Sγ ⊂ R with γ > 2, and define the function

Gq,s
γ (z) := exp

(
−bq,s

(γ
2

)s
logs

(
1 + z−2/γ

))
=
(
Gq,s

2 (z2/γ)
)(γ/2)s

, z ∈ Sγ.

(3.39)
The map z 7→ z2/γ is holomorphic from Sγ into S2, and so Gq,s

γ is holomorphic in
Sγ. We will prove that this function is an optimal {M q,σ}-flat function in this
sector.

As before, we consider the kernel

eγ(z) := Gq,s
γ (1/z) = exp

(
−bq,s

(γ
2

)s
logs

(
1 + z2/γ

))
=
(
e2(z

2/γ)
)(γ/2)s

, z ∈ Sγ.

Lemma 3.3.4. There exist constants B1, B2 > 0 such that

|eγ(z)| ≤ B1e2(B2|z|), z ∈ Sγ. (3.40)

Proof. According to the definition of eγ and by applying Lemma 3.3.2, there exist
constants C1, C2 > 0 such that for every z ∈ Sγ one has

|eγ(z)| =
∣∣e2(z2/γ)∣∣(γ/2)s ≤ (C1e2(C2|z|2/γ)

)(γ/2)s
.

We recall that the function |e2(z)| stays bounded for bounded |z|; from the previous
estimates, the same can be said about |eγ(z)|, and so we can prove (3.40) by
restricting our considerations to large enough values of |z| and well chosen B2 > 0,
and then suitably enlarging the constant B1 > 0 involved. Let us observe that(

e2(C2|z|2/γ)
)(γ/2)s

= exp
(
−bq,s lns

[
(1 + C2|z|2/γ)γ/2

])
,

e2(B2|z|) = exp (−bq,s lns(1 +B2|z|)) .
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So, we will be done if we see that

lns(1 +B2|z|)− lns[(1 + C2|z|2/γ)γ/2],

admits an upper bound for large enough |z| and suitably chosen B2 > 0. But this
follows from the clear fact that

lns(1+B2|z|)−lns
[(
1 + C2|z|2/γ

)γ/2] ∼ −s ln

(
C

γ/2
2

B2

)
lns−1(1+B2|z|), |z| → ∞,

where ∼ means that the quotient of both expressions tends to 1. Indeed, in view
of this equivalence it suffices to choose any B2 < C

γ/2
2 in order to have the desired

estimation for suitably large B1 and |z|. 2

Corollary 3.3.5. The function Gq,s
γ defined in (3.39) is an optimal {M q,σ}-flat

function in Sγ.

Proof. By the previous lemma, there exist B1, B2 > 0 such that

|Gq,s
γ (z)| ≤ B1 exp

(
−bq,s lns

(
1 +

B2

|z|

))
, z ∈ Sγ.

Note that this estimate is essentially that in (3.38), and so the conclusion follows
in exactly the same way as in the proof of Theorem 3.3.3. 2

Remark 3.3.6. We mention that a similar approach has been followed in the
preprint [27], by A. Lastra and J. Jiménez-Garrido and J. Sanz, in order to con-
struct extension operators for the ultraholomorphic classes associated with the
sequences M τ,σ = (pτp

σ
)p∈N0 , for τ > 0 and σ ∈ (1, 2). These sequences have

appeared in a series of papers by S. Pilipović, N. Teofanov and F. Tomić [53, 54,
55, 56], inducing ultradifferentiable spaces of so-called extended Gevrey regular-
ity. However, in that case the construction of suitable kernels for our technique
involves the Lambert function, whose handling is not so convenient. This fact has
caused our results to be available only in sectors strictly contained in S2, in spite
of the fact that γ(M τ,σ) = ∞, what would in principle allow for such extension
operators to exist in sectors of arbitrary opening.

3.4 Convolved sequences, flat functions and ex-

tension results

We show in this section that whenever two weight sequences are given and there
exist optimal flat functions in the respectively associated classes, then optimal flat



CHAPTER 3. BOREL-RITT THEOREMS AND EXTENSION OPERATORS 111

functions exist in the class defined by the so-called convolved sequence as well
(given by the point-wise product). Moreover, the extension technique works if one
of the convolved sequences satisfies (dc).

On the one hand the abstract statement is a straight-forward consequence of
a result by H. Komatsu, see Remark 3.4.1 for more details. On the other hand
this approach can be useful for constructing (counter-)examples. In general even
for nice sequences the convolved sequence can behave in a complicated way, see
Sect. 3.4.3, and so a direct explicit construction of optimal flat functions in the
class defined by the convolved sequence will be challenging.

3.4.1 Convolved sequences

Let M 1 = (M1
p )p∈N0 , M

2 = (M2
p )p∈N0 be two sequences of positive real numbers,

then the convolved sequence L := M 1 ⋆M 2 is (Lp)p∈N0 given by

Lp := min
0≤q≤p

M1
qM

2
p−q, p ∈ N0,

see [38, (3.15)]. Hence, obviously M 1 ⋆M 2 = M 2 ⋆M 1.
For all p ∈ N0 we have Lp ≤ min{M1

0M
2
p ,M

2
0M

1
p}. So, if in addition M1

0 =
M2

0 = 1, then we get L0 = 1 and

Lp ≤ min{M1
p ,M

2
p}, p ∈ N0. (3.41)

Given M = (Mp)p∈N0 with M0 = 1, put L = (Lp)p∈N0 = M ⋆ M . The
condition (mg) states precisely that there exists A > 0 such that Mp ≤ ApLp for
every p ∈ N0; according to (3.41), M satisfies (mg) if and only if M and M ⋆M
are equivalent.

Remark 3.4.1. Let M ,M 1,M 2 be weight sequences.

(i) In [38, Lemma 3.5] the following facts are shown: M 1 ⋆M 2 is again a weight
sequence. The corresponding quotient sequence m1 ⋆m2 is obtained when
rearranging resp. ordering the sequences m1 and m2 in the order of growth.
This yields, by definition of the counting function (see (6)), that for all t ≥ 0
one has

νm1⋆m2(t) = νm1(t) + νm2(t);

so, by (7) we get

ωM1⋆M2(t) = ωM1(t) + ωM2(t), t ≥ 0,

and by (4) we obtain

hM1⋆M2(t) = hM1(t)hM2(t), t > 0. (3.42)
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(ii) If either M 1 or M 2 has (dc), then M 1 ⋆M 2 as well: As said before, for se-
quences (Mp)p∈N0 satisfying (lc), the condition (dc) amounts to the condition
log(Mp) = O(p2), p→ ∞. Then, it suffices to apply (3.41).

(iii) As seen in item (i), for every t ≥ 0 we have

2ωM (t) = ωM⋆M (t).

Since M satisfies (mg) if and only if there exists H ≥ 1 such that

2ωM (t) ≤ ωM (Ht) +H, t ≥ 0

(see [38, Prop. 3.6]), it turns out that (mg) amounts to the fact that

ωM⋆M (t) ≤ ωM (Ht) +H, t ≥ 0,

for some H ≥ 1, or in other words,

hM (t) ≤ eHhM⋆M (Ht), t > 0.

3.4.2 Optimal flat functions and extension procedure

Let M 1 and M 2 be weight sequences such that optimal flat functions GM1 and
GM2 exist in the corresponding classes with uniform asymptotic expansion in a
given sector S. Then, we claim that GM1⋆M2 := GM1 · GM2 is an optimal flat
function (on the same sector S) in the class associated with the sequenceM 1⋆M 2.
Suppose Km and Jm, m = 1, 2, 3, 4, are the constants appearing in (3.5) and (3.6)
for GM1 and GM2 , respectively. By (3.42) we get that, for all z ∈ S,

|GM1(z) ·GM2(z)| ≤ K3hM1(K4|z|)J3hM2(J4|z|)
≤ K3J3hM1(D|z|)hM2(D|z|) = ChM1⋆M2(D|z|),

with C := K3J3 and D := max{K4, J4}, since each function hM is nondecreasing.
Similarly, for x > 0 we can estimate

GM1(x) ·GM2(x) ≥ K1hM1(K2x)J1hM2(J2x)

≥ K1J1hM1(D1x)hM2(D1x) = C1hM1⋆M2(D1x),

with C1 := K1J1 and D1 := min{K2, J2}, and the conclusion follows.
In case at least one of the sequences M 1 and M 2 satisfies (dc), M 1 ⋆ M 2

does so, and the extension operators from Theorem 3.2.19 will be available for the
convolved sequence.
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3.4.3 Some examples

Fix q > 1 and σ ∈ (1, 2]. Let us put Lq,σ := M q,σ ⋆M q,σ, Lq,σ = (Lp)p∈N0 . It is
not difficult to check that

L2p = q2p
σ

, L2p+1 = qp
σ+(p+1)σ , p ∈ N0.

Observe that 2pσ = 21−σ(2p)σ, so that L2p equals the 2p-th term of the sequence
M q21−σ ,σ. Regarding the odd terms, it is a consequence of Taylor’s formula at
x = 0 for the functions of the form x 7→ (1 + x)α, α > 0, that

pσ + (p+ 1)σ − 21−σ(2p+ 1)σ = O(pσ−2), p→ ∞.

Since σ ∈ (1, 2], we deduce that Lq,σ is equivalent to M q21−σ ,σ.
According to Subsection 3.4.2, an optimal flat function in the class associated

with Lq,σ in, say, the sector S2 is the function

G(z) := Gq,s
2 (z)Gq,s

2 (z) = exp

(
−2bq,s log

s

(
1 +

1

z

))
, z ∈ S2.

It is not a surprise that, from the definition (3.28) of bq,s and the relation between

σ and s, one obtains bq21−σ
,s = 2bq,s, and so G is precisely Gq2

1−σ
,s

2 , what agrees
with the aforementioned equivalence of sequences.

If we consider instead 1 < σ < 2 and J := M q,σ ⋆M q,2, J = (Jp)p∈N0 , the
computation of the terms Jp is no longer possible in closed form, since their values
depend for general p on the position of σ within the interval (1, 2). However, the
previous subsection shows that, for s associated with σ as usual, the function

G(z) := Gq,s
2 (z)Gq,2

2 (z) = exp

(
−bq,s logs

(
1 +

1

z

)
− bq,2 log

2

(
1 +

1

z

))
, z ∈ S2,

is an optimal flat function in the class associated with J in S2. Note that s is not
equal to 2, hence the very aspect of the exponent in this function, and the fact that
the restriction G|(0,∞) is closely related to the function hJ (see Definition 3.2.3),
shows that J is not equivalent to any of the sequences M q,σ. Since the sequence
J does satisfy (dc), the extension procedure described in this paper is available
for the classes associated with J .

Observe that these examples of optimal flat functions can also be provided in
general sectors Sγ, γ > 2, by using the functions Gq,s

γ introduced in (3.39).

3.5 An improved Borel-Ritt theorem in the Rou-

mieu case

We describe next a new condition on a weight sequence M , which, as long as
γ(M ) > 0, will amount to the equivalence of the sequence M shifted one position
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to the left with the sequence of Stieltjes moments of a suitable kernel function
defined from an optimal flat function. This fact motivates the terminology, and
will be extremely important for deducing an improved Borel-Ritt theorem, as this
condition is much weaker than (dc).

3.5.1 The condition of shifted moments

We start with the definition.

Definition 3.5.1. Let M be a sequence. We say that M has shifted moments,
denoted by (sm), if there exist some constants C0 > 0 and H > 1 such that

log(mp+1/mp) ≤ C0H
p+1, p ∈ N0.

Remark 3.5.2. Property (sm) is generally kept when going from M to M̂ or

from M to M̂ ; while this statement is well-known for (dc) and (mg), the one for
the, up to our knowledge, new condition (sm) stems from the inequalities

log

(
mp+1

mp

)
≤ log

(
mp+1

mp

)
+log

(
p+ 2

p+ 1

)
= log

(
m̂p+1

m̂p

)
≤ log

(
mp+1

mp

)
+log(2),

(when applied to M or to M̂ ).

The next lemma shows that this condition is weaker than (dc).

Lemma 3.5.3. Let M be a sequence such that a0 := infp∈N0 mp > 0 (in particular,
this holds if M is (lc)). Then, (dc) implies (sm).

Proof. Since mp ≤ C0H
p+1 and p+ 1 ≤ 2p for every p ∈ N0 and some C0 > 0 and

H > 1, one has

log

(
mp+1

mp

)
≤ log(mp+1)− log(a0) ≤ log(C0/a0) + (p+ 2) log(H) ≤ C1H

p+1
1

for every p ∈ N0, with the choices C1 = log(HC
1/2
0 /a

1/2
0 ) > 0 (note that a0 ≤

C0H < C0H
2) and H1 = 2.

It is straightforward that (dc) and (mg) are stable under equivalence for general
sequences, and the same can be deduced for (nq) and (snq) for weight sequences
by indirect methods, as these two last conditions characterize the non injectivity
and the surjectivity, respectively, of the Borel map in Carleman ultradifferentiable
classes, by the classical Denjoy-Carleman theorem (see, for example, [67]) and the
results of H.-J. Petzsche [52, Cor. 3.2] (see [34, Cor. 3.14] for a direct proof of a
more general statement about the stability of (snq)). We prove that (sm) is stable
under equivalence for general sequences.
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Lemma 3.5.4. The property (sm) is preserved under equivalence of sequences.

Proof. Suppose M satisfies (sm), and consider L = (Lp)p such that M ≈ L.
There exists C > 1 such that C−p−1Lp ≤ Mp ≤ Cp+1Lp, p ∈ N0. Consequently,
for all p ∈ N0 one has

lp =
Lp+1

Lp

≤ Cp+2Cp+1Mp+1

Mp

= C2p+3mp, lp ≥
Mp+1

Cp+2Cp+1Mp

= C−2p−3mp.

So, taking into account that p+ 1 ≤ 2p for every p, we have

log

(
lp+1

lp

)
≤ log

(
C4p+8mp+1

mp

)
≤ (4p+ 8) log(C) + C0H

p+1

≤ 4 log(C) + 2 log(C)2p+1 + C0H
p+1 ≤ C1H

p+1
1

for the choices C1 = 4 log(C) + C0 > 0 and H1 = max{2, H} > 1, so that L also
satisfies (sm).

Moreover, it is clear that M satisfies (sm) if, and only if, M r := (M r
p )p does

for some/every r > 0. Now, we present some examples, compare with the previous
ones given in 1.1.7.

Examples 3.5.5. (i) The sequences M q,σ = (qp
σ
)p (q > 1, 0 < σ ≤ 2) and

M = (pτp
σ
)p (τ > 0, 1 < σ < 2) are such that M̂ is regular, and therefore

they have (sm). In particular, the q-Gevrey sequences M q,2 = (qp
2
)p (q > 1)

appear in the study of q-difference equations.

(ii) The weight sequences M q,σ = (qp
σ
)p (q > 1, σ > 2) and M = (pτp

σ
)p

(τ > 0, σ ≥ 2) do not satisfy (dc), so that M̂ is not regular, but they still
satisfy (sm). The sequences of the family {(pτpσ)p}σ>1 have appeared as the
defining sequences for some generalized ultradifferentiable classes “beyond
Gevrey regularity”, deeply studied in a series of papers by S. Pilipović, N.
Teofanov and F. Tomić [53, 54, 55, 56, 78], J. Jiménez-Garrido, A. Lastra
and J. Sanz [27] and J. Jiménez-Garrido, D. N. Nenning and G. Schindl [31].

(iii) The rapidly growing weight sequences M = (qp
p
)p (q > 1; M0 := 1) are

weight sequences which do not satisfy (sm). As it will be seen, they are the
only ones in the list to which the results in the following sections cannot be
applied.
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3.5.2 A new Borel-Ritt theorem in the Roumieu case

In this section we present an improvement in the Borel-Ritt-Gevrey theorem (see
Theorem 3.2.19), where the condition (dc) is changed into the much weaker con-
dition (sm). First, we characterize this new condition in terms of the equivalence
already announced.

Proposition 3.5.6. Suppose M is a weight sequence with γ(M) > 0, and G is an

optimal {M}-flat function in Ãu
{M}(S), where S is an unbounded sector bisected by

the positive real line. Consider the sequence of moments µ := (µ(p))p∈N0 associated
with the kernel function e(z) = G(1/z). Then, M satisfies (sm) if, and only if,
M+1 := (Mp+1)p∈N0 and µ are equivalent.

Proof. Suppose M satisfies (sm). On the one hand, because of the right-hand
inequalities in (3.19) and the definition of hM , we have

tpe(t) ≤ K3K
p
4Mp, p ∈ N0, t > 0.

So, we may write

µ(p) =

∫ K4mp

0

tpe(t) dt+

∫ K4mp+1

K4mp

tpe(t) dt+

∫ ∞

K4mp+1

1

t2
tp+2e(t) dt

≤ K3K4mpK
p
4Mp +K3

∫ K4mp+1

K4mp

tphM

(
K4

t

)
dt+K3K

p+2
4 Mp+2

1

K4mp+1

= 2K3K
p+1
4 Mp+1 +K3K

p+1
4 Mp+1 log

(
mp+1

mp

)
,

where in the last equality we have used (1.8). Since there exists C0 > 0 and H > 1
such that log(mp+1/mp) ≤ C0H

p+1 for every p, we get

µ(p) ≤ K3K
p+1
4 Mp+1(2 + C0H

p+1) ≤ K3K4(2 + C0H)(K4H)pMp+1,

and so µ ≾ M+1.
On the other hand, by the left-hand inequalities in (3.19), for every p ∈ N0 we

may estimate

µ(p) ≥
∫ s

0

tpe(t) dt ≥ K1

∫ s

0

tphM

(
K2

t

)
dt ≥ K1hM

(
K2

s

)
sp+1

p+ 1
.

Then, by (1.9) we deduce that

µ(p) ≥ K1

p+ 1
sup
s>0

hM

(
K2

s

)
sp+1 =

K1

p+ 1
Kp+1

2 Mp+1 ≥ K1K2

(
K2

2

)p

Mp+1,
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and so M+1 ≾ µ, as desired.
Conversely, suppose M+1 ≈ µ. In particular, there exist C, h > 0 such that

µ(p) ≤ ChpMp+1 for p ∈ N0. By the left-hand inequalities in (3.19), we may
estimate

µ(p) ≥
∫ K2mp+1

K2mp

tpe(t) dt ≥ K1

∫ K2mp+1

K2mp

tphM

(
K2

t

)
dt

= K1K
p+1
2 Mp+1 log

(
mp+1

mp

)
, p ∈ N0.

Therefore,

K1K
p+1
2 Mp+1 log

(
mp+1

mp

)
≤ ChpMp+1, p ∈ N0,

and M satisfies (sm).

We can already state the following main result, whose proof is an adaptation
of the one for Theorem 3.2.19. Regrettably, we are not able to deduce γ ≤ γ(M )
from the surjectivity of the Borel map in classes on sectors Sγ under this weaker
condition (sm).

Theorem 3.5.7. Let M be a weight sequence satisfying (sm) and with γ(M ) > 0,
and let γ > 0 be given. Then, each of the following statements implies the next
one:

(i) γ < γ(M ).

(ii) There exists c > 0 such that for every h > 0 there exists an extension operator

from C[[z]]M ,h into Ãu
M ,ch(Sγ).

(iii) The Borel map B̃ : Ãu
{M}(Sγ) → C[[z]]{M} is surjective. In other words,

(0, γ] ⊂ S̃u
{M}.

(iv) (0, γ) ⊂ S{M̂}.

In particular, one has (0, γ(M)) ⊂ S{M̂} ⊂ S̃u
{M}.

Proof. (i) ⇒ (ii) By Proposition 3.2.17, valid for any weight sequence M with

γ(M) > 0, we can consider an optimal {M}-flat function G in Ãu
{M}(Sγ). Let

(µ(p))p∈N0 be the sequence of moments associated with the function e(z) = G(1/z).

Given h > 0 and f̂ =
∑∞

p=0 apz
p ∈ C[[z]]M ,h, by the definition of the norm in

C[[z]]M ,h (see (3.3)), we have

|ap| ≤ |f̂ |M ,hh
pMp, p ∈ N0.
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Because of Proposition 3.5.6, there exist h1, h2 > 0 such that

hp+1
1 Mp+1 ≤ µ(p) ≤ hp+1

2 Mp+1, p ∈ N0. (3.43)

So, we deduce that ∣∣∣∣ap+1

µ(p)

∣∣∣∣ ≤ |f̂ |M ,h

(
h

h1

)p+1

, p ∈ N0. (3.44)

Hence, the formal Borel-like transform of f̂ − a0, defined as

ĝ =
∞∑
p=0

ap+1

µ(p)
zp,

is convergent in the disc D(0, R) for R = h1/h > 0, and it defines a holomorphic
function g there. Choose R0 := h1/(2h) < R, and define

IM ,h(f̂ )(z) :=

∫ R0

0

e
(u
z

)
g(u) du, z ∈ Sγ,

which is a truncated Laplace-like transform of g with kernel e. By Leibniz’s theo-
rem for parametric integrals and the properties of e, this function is holomorphic
in Sγ. We will prove that IM ,h(f̂ ) ∼u

{M} f̂ − a0 uniformly in Sγ.
Let p ∈ N and z ∈ Sγ. We have

IM ,h(f̂ )(z)−
p−1∑
n=1

anz
n = IM ,h(f̂ )(z)−

p−1∑
n=1

an
µ(n− 1)

µ(n− 1)zn

=

∫ R0

0

e
(u
z

) ∞∑
n=1

an
µ(n− 1)

un−1 du

−
p−1∑
n=1

an
µ(n− 1)

∫ ∞

0

vn−1e(v) dv zn.

A change of variables u = zv in the last integral, Cauchy’s residue theorem and
the right-hand estimates in (3.19) allow us to rotate the path of integration and
obtain

zn
∫ ∞

0

vn−1e(v)dv =

∫ ∞

0

un−1e
(u
z

)
du.

So, the preceding difference can be written as∫ R0

0

e
(u
z

) ∞∑
n=p

an
µ(n− 1)

un−1 du−
∫ ∞

R0

e
(u
z

) p−1∑
n=1

an
µ(n− 1)

un−1 du.
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Then, we have ∣∣∣∣∣IM ,h(f̂ )(z)−
p−1∑
n=1

anz
n

∣∣∣∣∣ ≤ I1,p(z) + I2,p(z), (3.45)

where

I1,p(z) =

∣∣∣∣∣
∫ R0

0

e
(u
z

) ∞∑
n=p

an
µ(n− 1)

un−1 du

∣∣∣∣∣ ,
I2,p(z) =

∣∣∣∣∣
∫ ∞

R0

e
(u
z

) p−1∑
n=1

an
µ(n− 1)

un−1 du

∣∣∣∣∣ .
We first estimate I1,p(z). Since for every u ∈ (0, R0] we have 0 < hu/h1 ≤ 1/2,
from (3.44) we get

∞∑
n=p

|an|
µ(n− 1)

un−1 ≤ |f̂ |M ,h
h

h1

∞∑
n=p

(
hu

h1

)n−1

≤ 2|f̂ |M ,h

(
h

h1

)p

up−1.

Hence,

I1,p(z) ≤ 2|f̂ |M ,h

(
h

h1

)p ∫ R0

0

∣∣∣e(u
z

)∣∣∣up−1 du. (3.46)

Regarding I2,p(z), for u ≥ R0 and 1 ≤ n ≤ p− 1 we have (u/R0)
n−1 ≤ (u/R0)

p−1,
so un−1 ≤ Rn−1

0 up−1/Rp−1
0 . Again by (3.44), and taking into account that R0 =

h1/(2h), we may write

p−1∑
n=1

|an|
µ(n− 1)

un−1 ≤ |f̂ |M ,h
hup−1

h1R
p−1
0

p−1∑
n=1

(
hR0

h1

)n−1

≤ 2|f̂ |M ,h
h

h1R
p−1
0

up−1 = |f̂ |M ,h

(
2h

h1

)p

up−1.

Then,

I2,p(z) ≤ |f̂ |M ,h

(
2h

h1

)p ∫ ∞

R0

∣∣∣e(u
z

)∣∣∣up−1 du,

and together with (3.45) and (3.46) we deduce∣∣∣∣∣IM ,h(f̂ )(z)−
p−1∑
n=1

anz
n

∣∣∣∣∣ ≤ |f̂ |M ,h

(
2h

h1

)p ∫ ∞

0

∣∣∣e(u
z

)∣∣∣up−1 du.

We estimate the last integral using first the second inequality in (3.19), then the
first one, and the fact that e(x) > 0 for x > 0, so that for every z ∈ Sγ and every
u > 0 we have ∣∣∣e(u

z

)∣∣∣ ≤ K3hM

(
K4

|z|
u

)
≤ K3

K1

e

(
K2u

K4|z|

)
.
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A change of variables and the right-hand estimates in (3.43) lead to∫ ∞

0

∣∣∣e(u
z

)∣∣∣up−1 du ≤
∫ ∞

0

K3

K1

e

(
K2u

K4|z|

)
up−1 du

=
K3

K1

(
K4|z|
K2

)p

µ(p− 1) ≤ K3

K1

(
K4h2
K2

)p

Mp|z|p.

So, for every p ∈ N0 we have∣∣∣∣∣IM ,h(f̂ )(z)−
p−1∑
n=1

anz
n

∣∣∣∣∣ ≤ K3|f̂ |M ,h

K1

(
2K4h2h

K2h1

)p

Mp|z|p, z ∈ Sγ,

and IM ,h(f̂ ) admits f̂ − a0 as its uniform {M}-asymptotic expansion in Sγ. We
consider the map TM ,h defined in C[[z]]M ,h as

TM ,h(f̂ )(z) := IM ,h(f̂ )(z) + a0, z ∈ Sγ,

which is obviously linear. Moreover, if we set c := 2K4h2/(K2h1) > 0,∣∣∣∣∣TM ,h(f̂ )(z)−
p−1∑
n=0

anz
n

∣∣∣∣∣ =
∣∣∣∣∣IM ,h(f̂ )(z)−

p−1∑
n=1

anz
n

∣∣∣∣∣
≤ K3|f̂ |M ,h

K1

(ch)pMp|z|p, z ∈ Sγ,

which proves that TM ,h(f̂ ) ∈ Ãu
M ,ch(Sγ) and, according to (3.2),

∥TM ,h(f̂ )(z)∥M ,ch,
∼
u
≤ K3

K1

|f̂ |M ,h, f̂ ∈ C[[z]]M ,h,

so that the continuity of TM ,h : C[[z]]M ,h → Ãu
M ,ch(Sγ) is obtained.

(ii) ⇒ (iii) Immediate for any weight sequence M .
(iii) ⇒ (iv) It follows from (3.4), again valid for any weight sequence.

Remark 3.5.8. Theorem 3.5.7 and Proposition 3.1.4.(ii) together guarantee that
for every γ ∈ (0, γ(M)) there exists a > 0 such that for every h > 0 there exists
a local extension operator from C[[z]]M ,h into AM̂ ,ah(Sγ).

3.6 New surjectivity results in the Beurling Case

In this last section we collect some results on surjectivity and existence of right
inverses for the asymptotic Borel maps for Beurling ultraholomorphic classes. We
split the results into two subsections according to the condition imposed on the
sequence, (dc) or (sm).
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3.6.1 Continuous right inverses under derivation closed-
ness

A first result on the length of the interval S(M̂) was already provided by J. Schmets

and M. Valdivia [74, Theorems 4.4 and 4.6], and it can be rephrased as follows.
Here ⌊x⌋ stands for the greatest integer which is less than or equal to the real
number x.

Theorem 3.6.1. Let M̂ be a regular sequence and r > 0. If there is a global
extension operator UM : C[[z]](M) → A(M̂)(Sr), then γ(M ) > ⌊r⌋.

Later on, and regarding strongly regular sequences, the aforementioned re-
sult of V. Thilliez [80, Corollary 3.4.1] showed that (0, γ(M )) ⊂ S(M̂), and A.

Debrouwere [15, Corollary 1.3] has recently proved that surjectivity comes with
global extension operators. It is worth noting that [15, Theorem 1.2] gives a com-
plete solution to the Borel-Ritt problem in non-uniform Beurling classes (which
are not treated in this paper) defined by strongly regular sequences.

Going back to results without assuming the condition (mg), we first mention
that the hypotheses in Theorem 3.6.1 can be improved by using some techniques
included in [74], and Proposition 4.3 therein, in the same line of ideas that inspired
the proof of a similar statement [33, Theorem 4.14(i)] in the Roumieu case. Note
that we will exchange the existence of the extension operator into just the surjec-
tivity of the Borel map, and that A(M̂)(Sr) ⊂ Ãu

(M)(Sr), what again weakens the
forthcoming assumption.

Theorem 3.6.2. Let M̂ be a regular sequence. If r > 0 is such that B̃ : Ãu
(M)(Sr) →

C[[z]](M) is surjective, then γ(M ) > ⌊r⌋.

We include the proof for the reader’s convenience. First, for r ∈ N we need
to introduce the space Nr,(M)([0,∞)) consisting of the functions f ∈ C∞([0,∞))
such that:

(a) f (pr+j)(0) = 0 for every p ∈ N0 and j ∈ {1, . . . , r− 1} (this condition is empty
when r = 1),

(b) for every h > 0 one has

sup
p∈N0, x∈[0,∞)

|f (pr)(x)|
hpMp

<∞.

We recall the following crucial result.
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Proposition 3.6.3 ([74], Prop. 4.3). Let r ∈ N and M be a weight sequence. If
the map Br : Nr,(M)([0,∞)) −→ C[[z]]

(M̂)
sending f to the formal power series∑∞

p=0(f
(pr)(0)/p!)zp is surjective, then the sequence m satisfies the condition (γr)

or, in other words, γ(M ) > r.

Proof of Theorem 3.6.2. If r ∈ (0, 1), then it suffices to observe that S̃u
(M) is not

empty in order to conclude, by Lemma 3.2.1, that γ(M ) > 0 = ⌊r⌋ (note that
(dc) has not been used in this case).

Suppose now that r ≥ 1 and put r0 = ⌊r⌋ ∈ N. We will show that Br0 :
Nr0,(M)([0,∞)) −→ C[[z]]

(M̂)
is surjective, and then γ(M ) > r0 = ⌊r⌋ by Propo-

sition 3.6.3, as desired.
Given ĝ =

∑∞
p=0 apz

p ∈ C[[z]]
(M̂)

, we write bp := app! for all p ∈ N0, and for

every h > 0 there exists C1 > 0 such that

|bp| ≤ C1h
pp!M̂p = C1h

pMp, p ∈ N0. (3.47)

Consider the formal power series f̂ =
∑∞

p=0(−1)pr0bpz
p ∈ C[[z]](M). By hypothesis,

there exists ψ ∈ Ãu
(M̂)

(Sr) such that B̃(ψ) = f̂ , and so there exists C2 > 0 such

that for every p ∈ N0 one has

∣∣∣ψ(z)− p−1∑
k=0

(−1)kr0bkz
k
∣∣∣ ≤ C2h

pMp|z|p, z ∈ Sr. (3.48)

The function φ : Sr/r0 → C given by φ(w) = ψ(w−r0) − b0, is well defined and
holomorphic in Sr/r0 ⊇ S1. Moreover, according to (3.48) for p = 1, for every
w ∈ S1 one has ∣∣∣∣φ(w)w

∣∣∣∣ = 1

|w|
|ψ(w−r0)− b0| ≤

C2hM1

|w|r0+1
. (3.49)

So, the function f : R → C given by

f(t) =
1

2πi

∫ 1+∞ i

1−∞ i

etu
φ(u)

u
du

is well defined and continuous on R. By the classical Hankel formula for the
reciprocal Gamma function, for every natural number p ≥ 2 and every t ∈ R we
may write

f(t)−
p−1∑
k=1

(−1)kr0bk
tkr0

(kr0)!
=

1

2πi

∫ 1+∞ i

1−∞ i

etu

(
φ(u)

u
−

p−1∑
k=1

(−1)kr0bk
ukr0+1

)
du. (3.50)
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Since, again by (3.48), we have∣∣∣∣∣φ(u)u −
p−1∑
k=1

(−1)kr0bk
1

ukr0+1

∣∣∣∣∣ = 1

|u|

∣∣∣∣∣ψ(u−r0)−
p−1∑
k=0

(−1)kr0bk(u
−r0)k

∣∣∣∣∣ ≤ C2h
pMp

|u|pr0+1
,

(3.51)
for every u ∈ S1, we can apply Leibniz’s theorem for parametric integrals and
deduce that the function

f(t)−
p−1∑
k=1

(−1)kr0bk
tkr0

(kr0)!
,

belongs to Cpr0−1(R). Moreover, all of its derivatives of order m ≤ pr0− 1 at t = 0
vanish, see the proof of [33, Theorem 4.14(i)].

As p is arbitrary, we have that f ∈ C∞(R) and, moreover,

f (m)(0) =

{
(−1)pr0bp if m = pr0 for some p ≥ 1,

0 otherwise.

Finally, we define the function

F (t) = b0 + f(−t), t ≥ 0.

Obviously, F ∈ C∞([0,∞)) and F (pr0)(0) = bp, p ∈ N0; F
(m)(0) = 0 otherwise. In

order to conclude, we estimate the derivatives of F of order pr0 for some p ∈ N0.
For p = 0 and t ≥ 0, we take into account (3.47) and (3.49) in order to obtain that

|F (0)(t)| ≤ |b0|+
1

2π

∫ ∞

−∞
e−t C2hM1

|1 + yi|r0+1
dy ≤ C1+

C2hM1

2π

∫ ∞

−∞

1

(1 + y2)(r0+1)/2
dy,

(3.52)
and so F is bounded. For p ≥ 1 we may write formula (3.50) evaluated at −t as

f(−t)−
p∑

k=1

bk
tkr0

(kr0)!
=

1

2πi

∫ 1+∞ i

1−∞ i

e−tz

(
φ(z)

z
−

p∑
k=1

(−1)kr0bk
zkr0+1

)
dz.

Then,

F (pr0)(t) = bp +

(
f(−t)−

p∑
k=1

bk
tkr0

(kr0)!

)(pr0)

(t)

= bp +
1

2πi

∫ 1+∞ i

1−∞ i

e−tz(−z)pr0
(
φ(z)

z
−

p∑
k=1

(−1)kr0bk
zkr0+1

)
dz,
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and we may apply (3.47), and (3.51) in order to obtain

|F (pr0)(t)| ≤ C1h
pMp +

C2h
p+1Mp+1

2π

∫ ∞

−∞

1

(1 + y2)(r0+1)/2
dy. (3.53)

From (3.52) and (3.53), and since M satisfies (dc), we deduce that there exist
C3, C4 > 0 and H > 1 such that for every p ∈ N0 one has

|F (pr0)(t)| ≤ C1h
pMp + C3(Hh)

pMp ≤ C4(Hh)
pMp, t ≥ 0.

Since h is arbitrary and H does not depend on it, we see F ∈ Nr0,(M)([0,∞)) and
Br0(F ) = ĝ, and so Br0 is surjective.

In a recent work, A. Debrouwere [14] characterized the surjectivity of the
asymptotic Borel map in the right half-plane for regular sequences in the terms of
the gamma index associated with this sequence.

Theorem 3.6.4 ([14], Theorem. 7.4). Suppose M̂ is a regular sequence. The
following are equivalent:

(i) The Borel map B̃ : A(M̂)(S1) → C[[z]](M) is surjective.

(ii) There exists a global extension operator UM : C[[z]](M) → A(M̂)(S1).

(iii) γ(M) > 1.

Note that the implication (ii) ⇒ (iii) corresponds to Theorem 3.6.1 for r = 1,
and that (iii) ⇒ (i) was obtained by V. Thilliez, as already mentioned. Also,
the implication (i) ⇒ (iii) is slightly weaker than our previous result applied for
r = 1. However, the full equivalence is a powerful result, as (ii) is deduced from
any of the other two conditions.

As it occurs in the Roumieu case, see [37], this information can be taken into
the case of Beurling classes in a general sector by applying general Laplace and
Borel integral transforms of order α > 0, which basically arise from the classical
transforms (inverse of each other) combined with ramifications of exponent α. We
sketch the information needed, as the details can be found in Sections 5.5 and 5.6
of [1].

For 0 < α < 2, to the Laplace kernel function

eα(z) :=
1

α
z1/α exp(−z1/α), z ∈ Sα,

there corresponds the moment function

mα(λ) :=

∫ ∞

0

tλ−1eα(t)dt = Γ(1 + αλ), ℜ(λ) ≥ 0,
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and the Borel kernel function

Eα(z) :=
∞∑
p=0

zp

mα(p)
=

∞∑
p=0

zp

Γ(1 + αp)
, z ∈ C,

which is the classical Mittag-Leffler function of order α.
Given a function f holomorphic in a sector S = S(d, β) := {z ∈ R : |arg(z)−

d| < βπ/2} (for some β > 0 and d ∈ R) with suitable growth, the α-Laplace
transform of f in a direction τ in S (i. e. τ ∈ R and |τ − d| < βπ/2) is defined as

(Lα,τf)(z) :=

∫ ∞(τ)

0

eα(u/z)f(u)
du

u
, | arg(z)− τ | < απ/2, |z| small enough,

where integration is along the half-line parameterized by t ∈ (0,∞) 7→ teiτ . The
family {Lα,τf}τ inS defines, by analytic continuation, a function Lαf named the
α-Laplace transform of f , which is holomorphic in a sectorial region (see [1] for
details) bisected by d of opening π(β + α).

Now, let S = S(d, β, r) := {z ∈ S(d, β) : |z| < r} be a sector with β > α,
and f : S → C be holomorphic in S and continuous at 0 (that is, the limit of f
at 0 exists when z tends to 0 in every proper subsector of S). For τ ∈ R such
that |τ − d| < (β − α)π/2 we consider a path δα(τ) in S consisting of a segment
from the origin to a point z0 with arg(z0) = τ + α(π + ε)/2 (for some suitably
small ε ∈ (0, π)), then the circular arc |z| = |z0| from z0 to the point z1 on the ray
arg(z) = τ − α(π + ε)/2 (traversed clockwise), and finally the segment from z1 to
the origin. The α-Borel transform of f in direction τ is defined as

(Bα,τf)(u) :=
−1

2πi

∫
δα(τ)

Eα(u/z)f(z)
dz

z
, u ∈ S(τ, ε0), ε0 small enough.

The family {Bα,τf}τ defines the α-Borel transform of f , holomorphic in the sector
S(d, β − α) and denoted by Bαf .

In case α ≥ 2, Lαf and Bαf are defined by combining suitable ramification
operators with the previous ones, see again [1].

The formal α-Laplace and α-Borel transforms, defined from C[[z]] into C[[z]],
are respectively given by

L̂α

( ∞∑
p=0

apz
p
)
:=

∞∑
p=0

Γ(1 + αp)apz
p, B̂α

( ∞∑
p=0

apz
p
)
:=

∞∑
p=0

ap
Γ(1 + αp)

zp.

The following result for the Roumieu case appeared in [37, Theorem 3.5]. The
fact that the constants C and c, appearing in the next items, do not depend on the
value of h, makes the result valid also for the Beurling case in a straightforward
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way, and its proof is therefore omitted. Recall that we use the notation M · Γα,
respectively M/Γα, for the sequences which are termwise product, resp. quotient,
of M and Γα = (Γ(1 + αp))p.

Theorem 3.6.5. Suppose M is an arbitrary sequence, and α, γ > 0. Let f ∈
Ãu

[M ](Sγ) and f ∼u
[M ] f̂ . Then, the following hold:

(i) For every β with 0 < β < γ one has

Lαf ∈ Ãu
[M ·Γα](Sβ+α) and Lαf ∼u

[M ·Γα] L̂αf̂ .

Moreover, there exist C, c > 0, depending only on α, β and γ, such that for
every h > 0 and every f ∈ Ãu

M ,h(Sγ) one has ∥Lαf∥M ·Γα,ch,
∼
u
≤ C∥f∥

M ,h,
∼
u
,

and therefore the maps Lα : Ãu
M ,h(Sγ) → Ãu

M ·Γα,ch
(Sβ+α) and Lα : Ãu

[M ](Sγ) →
Ãu

[M ·Γα]
(Sβ+α) are continuous.

(ii) Suppose γ > α. For every β with α < β < γ one has

Bαf ∈ Ãu
[M/Γα](Sβ−α) and Bαf ∼u

[M/Γα] B̂αf̂ .

Moreover, there exist C, c > 0, depending only on α, β and γ, such that for
every h > 0 and every f ∈ Ãu

M ,h(Sγ) one has ∥Bαf∥M/Γα,ch,
∼
u
≤ C∥f∥

M ,h,
∼
u
,

and therefore the maps Bα : Ãu
M ,h(Sγ) → Ãu

M/Γα,ch
(Sβ−α) and Bα : Ãu

[M ](Sγ) →
Ãu

[M/Γα]
(Sβ−α) are continuous.

Note that the formal Laplace and Borel transforms, L̂α and B̂α, are topo-
logical isomorphisms between the space C[[z]](M) and C[[z]](M ·Γα), respectively
C[[z]](M/Γα), for an arbitrary sequence M .

The use of Laplace and Borel transforms of arbitrary positive order allows
us to generalize Theorem 3.6.4 for arbitrary sectors. The idea of proof for the
Roumieu case [37, Th. 4.2] applies to the Beurling case, we include it for the sake of
completeness. We note that this result may also be deduced from the results in [15]
about classes with non-uniform asymptotics, but we think it interesting to provide
an argument contained in our framework. This procedure makes Theorem 3.6.2
necessary.

Theorem 3.6.6. Suppose M̂ is a regular sequence, and let r > 0. Each of the
following statements implies the next one:

(i) r < γ(M).

(ii) There exists a global extension operator UM ,r : C[[z]](M) → Ãu
(M)(Sr).
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(iii) The Borel map B̃ : Ãu
(M)(Sr) → C[[z]](M) is surjective.

(iv) r ≤ γ(M ).

Proof. (i)⇒(ii) We consider two cases:

(a.1) Suppose r > 1, and take a real number r′ with r < r′ < γ(M ). The sequence

P 1 := M̂/Γr′ satisfies (dc) and thanks to (1.7), γ(P 1) = γ(M )− r′+1 > 1.
By Lemma 1.1.25, there exists a weight sequence P such that p ≃ m/gr′−1,
satisfies (dc) and γ(P ) = γ(M ) + 1 − r′ > 1. Since the classes associated
with P and M/Γr′−1 agree, Theorem 3.6.4 provides an extension operator

U : C[[z]](M/Γr′−1)
→ A(M̂/Γr′−1)

(S1).

By Proposition 3.1.4.(i), we have that A(M̂/Γr′−1)
(S1) ↪→ Ãu

(M/Γr′−1)
(S1),

and therefore this induces an extension operator

Ũ : C[[z]](M/Γr′−1)
→ Ãu

(M/Γr′−1)
(S1).

Theorem 3.6.5.(i) implies that the composition

Lr′−1 ◦ Ũ ◦ B̂r′−1 : C[[z]](M) → Ãu
(M)(Sρ), 0 < ρ < r′ = 1 + (r′ − 1),

will be an extension operator. Thanks to the fact that r < r′, the restriction
of the elements of this last space to Sr provides the extension operator

UM ,r : C[[z]](M) → Ãu
(M)(Sr)

that we were looking for.

(a.2) If r ≤ 1, consider α such that α+r > 1, and take r′ with r < r′ < γ(M ). The
weight sequenceM ·Γα satisfies (dc) and γ(M ·Γα) = γ(M )+α > r′+α > 1.
By item (a.1), there exists an extension operator

U : C[[z]](M ·Γα) → Ãu
(M ·Γα)(Sr′+α).

Again Theorem 3.6.5.(ii) implies that

Bα ◦ Ũ ◦ L̂α : C[[z]](M) → Ãu
(M)(Sρ), 0 < ρ < r′,

will be an extension operator, and the restriction of the elements of this
space to Sr provides the desired extension operator as before.
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(ii)⇒(iii) The existence of UM ,r implies that the corresponding Borel map B̃ :

Ãu
(M)(Sr) → C[[z]](M) is surjective in Sr.

(iii)⇒(iv) Let us see that r ≤ γ(M). We again have different cases:

(b.1) If 0 < r < 1, consider positive real numbers α, r′ with 1 − α < r′ < r.

By applying the Laplace transform Lα : Ãu
(M)(Sr) → Ãu

(M ·Γα)
(Sr′+α), Theo-

rem 3.6.5.(i) shows that the map

Ãu
(M ·Γα)(Sr′+α) → C[[z]](M ·Γα),

is surjective. Observe that r′ + α > 1, so we deduce by restriction to the
half-plane S1 that, according to Proposition 3.1.4.(ii), also the map

A(M̂ ·Γα)
(S1) → C[[z]](M ·Γα),

is surjective. Theorem 3.6.4 implies then that γ(M ·Γα) > 1 or, equivalently
by (1.6), γ(M) > 1 − α. Since α can be chosen arbitrarily while keeping
1− α < r, we deduce γ(M) ≥ r.

(b.2) If r ∈ N, we know that γ(M ) > r by Theorem 3.6.2.

(b.3) If r ∈ (1,∞)\N, again by Theorem 3.6.2 we deduce that γ(M ) > ⌊r⌋, so that
the sequence P 1 := M̂/Γ⌊γ⌋ is such that γ(P 1) > 1 by using the properties
of gamma index. Hence, by Lemma 1.1.25 there exists a weight sequence P
such that P ≈ M/Γ⌊γ⌋, γ(P ) = γ(M) − ⌊γ⌋ and P will also satisfy (dc).
Consider a value r′ with ⌊r⌋ < r′ < r. By applying the Borel transform

B⌊r⌋ : Ãu
(M)(Sr) → Ãu

(M/Γ⌊r⌋)
(Sr′−⌊r⌋), Theorem 3.6.5.(ii) shows that the map

Ãu
(M/Γ⌊r⌋)

(Sr′−⌊r⌋) → C[[z]](M/Γ⌊r⌋),

is surjective, or equivalently, thanks to the equivalence P ≈ M/Γ⌊γ⌋, the
map

Ãu
(P )(Sr′−⌊r⌋) → C[[z]](P ),

is also surjective. Since r′ − ⌊r⌋ ∈ (0, 1), we may invoke item (b.1) and
deduce that γ(P ) ≥ r′ − ⌊r⌋, what amounts to γ(M ) ≥ r′. We conclude by
making r′ tend to r.
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3.6.2 Surjectivity for Beurling classes under condition (sm)

We end by proving a surjectivity result for Beurling classes when their defining
weight sequence satisfies our new condition (sm). The technique used by V. Thilliez
in [80, Th. 3.4.1] will be followed, and we first need to recall two auxiliary results
from the work of J. Chaumat and A.-M. Chollet [11].

Lemma 3.6.7 ([11], Lemma 14). Let L = (Lp)p be a sequence of nonnegative real
numbers and M = (Mp)p be a sequence of positive real numbers. The following
conditions are equivalent:

(i) For all h > 0, there exists a constant C(h) > 0 such that Lp ≤ C(h)hpMp

for every p ∈ N0.

(ii) lim
p→∞

(
Lp

Mp

)1/p

= 0.

(iii) There exists a sequence ε = (εp)p∈N0 of positive real numbers tending to zero
such that Lp ≤ ε0ε1 · · · εp−1Mp, p ∈ N.

Moreover, if (i) or (ii) are satisfied, then (iii) holds true for a nonincreasing se-
quence ε.
Lemma 3.6.8 ([11], Lemma 16). Let A = (Ap)p be a sequence of nonnegative real
numbers such that

∑∞
p=0Ap is convergent, and let B = (Bp)p and D = (Dp)p be

sequences of positive real numbers such that limp→∞Bp = 0, and D is nonincreas-
ing and limp→∞Dp = 0. Then, there exists a nondecreasing sequence E = (Ep)p
of positive real numbers such that:

(i) limp→∞Ep = ∞.

(ii)
∑∞

p=q EpAp ≤ 8Eq

∑∞
p=q Ap, q ∈ N0.

(iii) The sequence E ·D = (EpDp)p is nonincreasing.

(iv) limp→∞EpBp = 0.

The next result is an adaptation of a similar result, [11, Prop. 17], in which
the condition (mg) has now been substituted by (sm).

Theorem 3.6.9. Let L = (Lp)p be a weight sequence satisfying (snq) and (sm).
If A = (Ap)p is a sequence of nonnegative real numbers such that for all h > 0
there exists C(h) > 0 such that Ap ≤ C(h)hpLp for every p ∈ N0, then there exists
a weight sequence K = (Kp)p which satisfies (snq), (sm) and such that:

i) There exists a constant D > 0 such that Ap ≤ DKp, for all p ∈ N0.



130 3.6. NEW SURJECTIVITY RESULTS IN THE BEURLING CASE

ii) For all h > 0, there exists C ′(h) > 0 such that Kp ≤ C ′(h)hpLp, p ∈ N0.

Proof. By Lemma 3.6.7, there exist a nonincreasing sequence ε = (εp)p∈N0 which
tends to zero, and such that

Ap ≤ ε0ε1 · · · εp−1Lp, p ∈ N. (3.54)

Consider the sequence {up}p∈N0 defined as

up =
1

(p+ 1)ℓp
,

where (ℓp)∈N0 is the sequence of quotients of L. {up}p∈N0 is nonincreasing and
tends to zero, and since L satisfies (snq), there exists some constant A > 0 with

∞∑
p=q

up ≤ A(q + 1)uq, q ∈ N0. (3.55)

As ((p + 1)up}p∈N0 is nonincreasing and tends zero, we can apply Lemma 3.6.8
with

Ap = up, Bp = max{εp, (p+ 1)up}, Dp = (p+ 1)up, p ∈ N0.

So, there exists a nondecreasing sequence E which tends to ∞, and such that:

∞∑
p=q

upEp ≤ 8Eq

∞∑
p=q

up, q ∈ N0. (3.56)

The sequence ((p+ 1)upEp)p∈N0 is nonincreasing. (3.57)

lim
p→∞

εpEp = 0, lim
p→∞

(p+ 1)upEp = 0. (3.58)

Let us consider the sequence (kp)p∈N0 defined as

kp =
ℓp
Ep

=
1

(p+ 1)upEp

, p ∈ N0.

Then, from (3.55) and (3.56) we deduce that

∞∑
p=q

1

(p+ 1)kp
=

∞∑
p=q

upEp ≤ 8Eq

∞∑
p=q

up ≤ 8A(q + 1)uqEq = 8A
1

kq
, q ∈ N0.

Therefore, the sequence K defined as

K0 = 1, Kp = k0k1 · · · kp−1, p ∈ N,
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satisfies (snq). Moreover, the sequence K is a weight sequence due to (3.57) and
(3.58). Now, since E is nondecreasing we deduce that

kp+1

kp
=
ℓp+1Ep

ℓpEp+1

≤ ℓp+1

ℓp
, p ∈ N0,

and so K satisfies (sm) too (with the same constants as L). Taking into account
that

Kp =
1

E0 . . . Ep−1

Lp, p ∈ N, (3.59)

we deduce from (3.54) that

Ap ≤ ε0ε1 · · · εp−1Lp = ε0E0ε1E1 · · · εp−1Ep−1Kp, p ∈ N.

We observe in (3.58) that the sequence (εpEp)p∈N0 tends to zero and, therefore,
Lemma 3.6.7 provides for all t > 0 a constant D(t) > 0 such that Ap ≤ D(t)tpKp

for every p ∈ N0 and, in particular, for t = 1 we obtain that Ap ≤ D(1)Kp. Finally,
from (3.59) and the fact that (1/Ep)p∈N0 tends to zero, we can apply again Lemma
3.6.7 and we deduce that for all h > 0 there exists some constant C ′(h) > 0 such
that Kp ≤ C ′(h)hpLp for every p ∈ N0.

We are ready for the proof of our last result.

Theorem 3.6.10. Let M be a weight sequence with γ(M ) > 0 and that satisfies

(sm), and let 0 < r < γ(M) be given. Then, the Borel map B̃ : Ãu
(M)(Sr) →

C[[z]](M) is surjective. So, (0, γ(M )) ⊂ S̃u
(M).

Proof. Let f̂ =
∑∞

p=0 apz
p ∈ C[[z]](M) be given. By the definition of C[[z]](M) (see

also (3.3)), for every h > 0 there exists C(h) > 0 such that

|ap| ≤ C(h)hpMp, p ∈ N0. (3.60)

On the one hand, by the properties of the gamma index we have that γ(M 1/r) =
γ(M)/r > 1, and Lemma 1.1.25 provides a weight sequence L = (Lp)p such that

γ(L̂) > 1 and there exists a > 0 such that a−1(ℓp(p + 1)) ≤ m
1/r
p ≤ a(ℓp(p + 1))

for all p ∈ N0. In particular, we have that γ(L) > 0, and so L satisfies (snq).

Moreover, it is clear that a−pp!Lp ≤M
1/r
p ≤ app!Lp for every p, and so M ≈ (L̂)r,

what implies that the classes defined by both sequences coincide. Because of the
stability properties of (sm) described in Subsection 3.5.1, L inherits (sm) from M .

On the other hand, from (3.60) we obtain

|ap|1/r

p!
≤ C(h)1/r(ah1/r)pLp, p ∈ N0,
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and so we are in a position to apply Theorem 3.6.9 to the sequencesA = (|ap|1/r/p!)p
and L. Hence, there exists a weight sequence K = (Kp)p which satisfies (snq) (i.
e., γ(K) > 0) and (sm), such that there exists D > 0 with |ap|1/r/p! ≤ DKp for
all p ∈ N0, and such that for all h > 0, there exists C ′(h) > 0 such that

Kp ≤ C ′(h)hpLp, p ∈ N0. (3.61)

The first estimates state that |ap| ≤ Dr(p!Kp)
r, and so f̂ ∈ C[[z]]{N} for the

weight sequence N := (K̂)r. Again N inherits (sm) from K, and moreover
γ(N ) = r(γ(K) + 1) > r. So, we can apply Theorem 3.5.7 to deduce that

B̃ : Ãu
{N}(Sr) → C[[z]]{N} is surjective. Hence, there exists f ∈ Ãu

{N}(Sr) such

that B̃(f) = f̂ . Finally, observe that from (3.61) we get

Np = (p!Kp)
r ≤ C ′(h)r(hr)p(L̂p)

r, p ∈ N0,

and so Ãu
{N}(Sr) ⊂ Ãu

((L̂)r)
(Sr) = Ãu

(M)(Sr), from where the conclusion follows.



Chapter 4

A new Stieltjes moment problem
in Gelfand-Shilov spaces defined
by weight sequences with shifted
moments

This final chapter of the dissertation deals with a modified Stieltjes moment prob-
lem whose consideration is motivated by the condition (sm) of shifted moments. It
turns out that, in the framework of Gelfand-Shilov spaces of Roumieu type defined
by weight sequences, one can extend the classical target space of the Stieltjes mo-
ment mapping as long as (dc) is substituted by (sm), and then study the injectivity
and surjectivity of this mapping in this new context.

4.1 Preliminaries

In this section we introduce the classes that we are going to use in this chapter,
specially Gelfand-Shilov spaces. Moreover, we define the Fourier and Laplace
transform, and we analyze the effect of these transformation over Gelfand-Shilov
spaces.

For a given open set Ω in the complex plane C, we denote by H(Ω) the space of
holomorphic functions in Ω. In particular, we writeH for the open upper half-plane
of C, and consider, as in Chapter 2, the ultraholomorphic class

A{M}(H) =
⋃
h>0

AM ,h(H),

133
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where AM ,h(H) is the space consisting of all f ∈ H(H) such that

∥f∥M ,h := sup
p∈N0

sup
z∈H

|f (p)(z)|
hpMp

<∞.

The following result follows from the fact that the elements ofAM ,h(H) together
with all their derivatives are Lipschitz on H.

Lemma 4.1.1. Let M be a sequence and let f ∈ AM ,h(H) for some h > 0. Then,

fp(x) = lim
z∈H,z→x

f (p)(z) ∈ C

exists for all x ∈ R and p ∈ N0. Moreover, f0 ∈ C∞(R), f (p)
0 = fp for all p ∈ N,

and

sup
p∈N0

sup
x∈R

|f (p)
0 (x)|
hpMp

<∞.

In the sequel, we shall frequently write f(x) = limz∈H,z→x f(z) for x ∈ R, and
so f and all its derivatives can be considered to be continuous on H and satisfy the
same global estimates there. Now, we present the space of sequences that admit a
control in terms of a given sequence M .

Definition 4.1.2. Let M be a sequence and h > 0. We define ΛM ,h as the space
consisting of all sequences (cp)p ∈ CN0 such that

|(cp)p|M ,h := sup
p∈N0

|cp|
hpMp

<∞.

(ΛM ,h, | · |M ,h) is a Banach space, and

Λ{M} :=
⋃
h>0

ΛM ,h

is the corresponding (LB) space.

The asymptotic Borel mapping may be defined as

B : A{M}(H) → Λ{M}, f 7→ (f (p)(0))p,

by Lemma 4.1.1. Since |B(f)|M ,h ≤ ∥f∥M ,h for every f ∈ AM ,h(H), it is linear
and continuous both between AM ,h(H) and ΛM ,h for every h > 0, and between
A{M}(H) and Λ{M}. As already indicated, an updated account on the injectivity
and surjectivity of the asymptotic Borel mapping on various ultraholomorphic
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classes defined on arbitrary sectors may be found in the works of J. Jiménez-
Garrido, J. Sanz and G. Schindl [33, 37] and in the previous chapter, a part of
which is already published [28] or in preparation [30]. There, two indices γ(M )
(see section 1.1.3) and ω(M ), associated to the sequenceM , play a prominent role.
In [26, Ch. 2] and [34, Sect. 3], the connections between these indices, the growth
properties usually imposed on sequences, and the theory of O-regular variation,
have been thoroughly studied.

Thanks to the gamma index, the surjectivity of the asymptotic Borel mapping
in a half-plane can be characterized as follows. Note that the condition γ(M) > 1

amounts, in view of (1.4) and the easy equality γ(M̂) = γ(M) + 1 (see (1.6)),

to the fact that M̂ satisfies (γ2), which is the condition appearing in [14, Thm.
7.4.(b)].

Theorem 4.1.3 ([14], Theorem 7.4.(b)). Let M be a weight sequence and satisfy
(dc). The following are equivalent:

(i) B : A{M}(H) → Λ{M} is surjective.

(ii) γ(M) > 2.

For the study of the injectivity of the asymptotic Borel map, J. Sanz [68]
introduced the growth index ω(M).

Definition 4.1.4. Let M be a sequence. We define the ω(M ) index by

ω(M ) := lim inf
p→∞

log(mp)

log(p)
∈ [0,∞].

Moreover, it turns out that

ω(M) = sup{µ > 0 |
∞∑
p=0

1

(mp)1/µ
<∞}

= sup{µ > 0 |
∞∑
p=0

1

((p+ 1)mp)1/(µ+1)
<∞}.

Concerning the injectivity of the asymptotic Borel mapping, we have the next
result.

Theorem 4.1.5. ([64, Thm. 12], [33, Thm. 3.4]) Let M be a weight sequence.
Then, B : A{M}(H) → Λ{M} is injective if and only if

∞∑
p=0

1

m
1/2
p

= ∞,

which in turn implies that ω(M) ≤ 2.
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Finally, we mention that if M is a weight sequence, the asymptotic Borel
mapping B : A{M}(H) → Λ{M} is not bijective [33, Thm. 3.17].

4.1.1 Gelfand-Shilov spaces and the Fourier transform

In this section, we introduce briefly the Gelfand-Shilov spaces, as a subclass of
functions that are infinitely differentiable. After that, we discuss the behavior of
the Fourier transform over these spaces.

Definition 4.1.6. Let M and A be sequences of positive real numbers. For h > 0
we define SA,h

M ,h(R) as the space consisting of all φ ∈ C∞(R) such that

sA,h
M ,h(φ) := sup

p,q∈N0

sup
x∈R

|xpφ(q)(x)|
hp+qMpAq

<∞.

(SA,h
M ,h(R), s

A,h
M ,h) is a Banach space. In addition, we set

S{A}
{M}(R) =

⋃
h>0

SA,h
M ,h(R),

which is an (LB) space.

If M
1/p
p → ∞ as p → ∞, and in particular if M is a weight sequence, notice

that φ ∈ C∞(R) belongs to SA,h
M ,h(R) if and only if

sup
q∈N0

sup
x∈R

|φ(q)(x)|eωM (|x|/h)

hqAq

<∞

or, in other words, for every q ∈ N0 one has

|φ(q)(x)| ≤ sA,h
M ,h(φ)h

qAqe
−ωM (|x|/h) = sA,h

M ,h(φ)h
qAqhM (h/|x|), x ∈ R. (4.1)

Analogously, we define the spaces SM ,h(R), for h > 0 and S{M}(R).

Definition 4.1.7. Let M be a sequence and h > 0. We define SM ,h(R), as the
space consisting of all φ ∈ C∞(R) such that, for all q ∈ N0,

sqM ,h(φ) := sup
p∈N0

sup
x∈R

|xpφ(q)(x)|
hpMp

<∞;

sqM ,h is a seminorm and therefore (SM ,h(R), (sqM ,h)q∈N0) is a Fréchet space. More-
over, we set

S{M}(R) =
⋃
h>0

SM ,h(R),

endowed with its natural (LF ) space structure.



CHAPTER 4. A NEW MOMENT PROBLEM IN GELFAND-SHILOV SPACES 137

We also define

S{A}
{M}(0,∞) := {φ ∈ S{A}

{M}(R) | suppφ ⊆ [0,∞)}

and
S{M}(0,∞) := {φ ∈ S{M}(R) | suppφ ⊆ [0,∞)},

whose relative topologies from their ambient spaces coincide, as long as M is
a weight sequence, with the corresponding (LB) and (LF ) structures obtained
from the similarly defined Banach subspaces SA,h

M ,h(0,∞) or Fréchet subspaces
SM ,h(0,∞), see [14, Lemma 3.3 and page 24].

Remark 4.1.8. Observe that S{A}
{M}(R) ⊂ S{M}(R) and S{A}

{M}(0,∞) ⊂ S{M}(0,∞).

If A satisfies (lc), then S{A}
{M}(0,∞) is non-trivial (i. e., it contains non identically

zero functions) if and only if
∑∞

p=0 1/ap <∞, as follows from the Denjoy-Carleman
theorem.

In the remainder of this subsection we investigate the image of the spaces
S{A}
{M}(R) and S{A}

{M}(0,∞) under the Fourier transform (cf. [24, Sect. IV.6]), which
we define as follows:

Definition 4.1.9. We define the Fourier transform of an integrable function, φ ∈
L1(R), as

F(φ)(ξ) = φ̂(ξ) =

∫ ∞

−∞
φ(x)eixξdx.

With this definition it is well-known that the inverse Fourier transform is de-
fined as

F−1(φ)(ξ) =
1

2π
F(φ)(−ξ), φ ∈ S(R), ξ ∈ R, (4.2)

where S(R) is the Schwartz space of rapid decreasing functions.
In our next statements, the sequence

M+1 := (Mp+1)p∈N0

will play a prominent role. Note that its first term M1 will not be generally equal
to 1.

Proposition 4.1.10. Let M be a weight sequence satisfying (sm), and A be either

an almost increasing sequence, or a sequence such that lim infp→∞A
1/p
p > 0 and Â

satisfies (lc). Then:

(i) There exists a > 0 such that for every h ≥ 1 one has F(SÂ,h
M ,h(R)) ⊂

SM+1,ah

Â,ah
(R), and F : SÂ,h

M ,h(R) → SM+1,ah

Â,ah
(R) is continuous.
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(ii) F(S{Â}
{M}(R)) ⊂ S{M+1}

{Â}
(R) and F : S{Â}

{M}(R) → S{M+1}
{Â}

(R) is continuous.

(iii) The two previous statements are valid when replacing F by F−1.

Proof. The statements about F−1 will be valid if the ones about F are, due to (4.2).

(ii) is immediate from (i), which we prove now. Let h ≥ 1 and φ ∈ SÂ,h
M ,h(R) be

arbitrary. Then,

sup
x∈R

|xpφ(q)(x)| ≤ sÂ,h
M ,h(φ)h

p+qMpq!Aq, p, q ∈ N0. (4.3)

After applying Leibniz’s theorem for parametric integrals and integration by parts,
we get

sup
ξ∈R

|ξqφ̂(p)(ξ)| ≤
min{p,q}∑

j=0

(
q

j

)
p!

(p− j)!

∫ ∞

−∞
|xp−jφ(q−j)(x)|dx. (4.4)

We split each of the integrals into five intervals, and use (4.3) in order to estimate
the first of them:∫ −hmp+1−j

−∞
|xp+2−jφ(q−j)(x)|dx

x2
≤ sÂ,h

M ,h(φ)h
p+q+2−2jMp+2−j(q − j)!Aq−j

1

hmp+1−j

= sÂ,h
M ,h(φ)h

p+q+1−2jMp+1−j(q − j)!Aq−j. (4.5)

One can proceed similarly for the integral over (hmp+1−j,∞). On the interval
(hmp−j, hmp+1−j) one uses (4.1), then (1.8) and finally (sm) to obtain∫ hmp+1−j

hmp−j

xp−j|φ(q−j)(x)|dx ≤ sÂ,h
M ,h(φ)h

q−j(q − j)!Aq−j

∫ hmp+1−j

hmp−j

xp−jhM (h/x)dx

= sÂ,h
M ,h(φ)h

q−j(q − j)!Aq−j

∫ hmp+1−j

hmp−j

xp−j h
p+1−jMp+1−j

xp+1−j
dx

= sÂ,h
M ,h(φ)h

p+q+1−2jMp+1−j(q − j)!Aq−j log(
mp+1−j

mp−j

)

≤ C0s
Â,h
M ,h(φ)H

p+1−jhp+q+1−2jMp+1−j(q − j)!Aq−j.

(4.6)

The integral on the interval (−hmp+1−j,−hmp−j) is treated analogously. Finally,
again (4.3) provides∫ hmp−j

−hmp−j

|xp−jφ(q−j)(x)|dx ≤ 2hmp−js
Â,h
M ,h(φ)h

p+q−2jMp−j(q − j)!Aq−j

= 2sÂ,h
M ,h(φ)h

p+q+1−2jMp+1−j(q − j)!Aq−j. (4.7)
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Taking (4.5), (4.6) and (4.7) into (4.4), we obtain

sup
ξ∈R

|ξqφ̂(p)(ξ)|≤
min{p,q}∑

j=0

(
q

j

)(
p

j

)
j!2sÂ,h

M ,h(φ)h
p+q+1−2jMp+1−j(q−j)!Aq−j(2+C0H

p+1−j).

(4.8)
Every weight sequence is almost increasing. In case A also is, there exists D ≥ 1
such that Aj ≤ DAp and Mj ≤ DMp for all j ≤ p. This fact, together with the
elementary inequalities j!(q − j)! ≤ q! and

(
q
j

)
≤ 2q for every 0 ≤ j ≤ q, allow us

to write

sup
ξ∈R

|ξqφ̂(p)(ξ)| ≤ 2sÂ,h
M ,h(φ)D

2hp+q+12qMp+1q!Aq(2 + C0H)

p∑
j=0

(
p

j

)
h−2jHp−j

= 2(2 + C0H)D2hsÂ,h
M ,h(φ)

(
1

h2
+H

)p

2qhp+qMp+1q!Aq

≤ 2(2 + C0H)D2hsÂ,h
M ,h(φ) (2(1 +H)h)p+qMp+1q!Aq

for all p, q ∈ N0.
In case Â satisfies (lc), we use Lemma 1.1.6 (vi) for Â, so (q − j)!Aq−j ≤

q!Aq/(j!Aj) for 0 ≤ j ≤ q. If moreover lim infp→∞A
1/p
p > 0, there exists c > 0

such that Ap ≥ cp for every p, and going back to (4.8), we get

sup
ξ∈R

|ξqφ̂(p)(ξ)| ≤ 2sÂ,h
M ,h(φ)Dh

p+q+12qMp+1q!Aq(2 + C0H)

p∑
j=0

(
p

j

)
h−2jc−jHp−j

= 2(2 + C0H)DhsÂ,h
M ,h(φ)

(
1

ch2
+H

)p

2qhp+qMp+1q!Aq

≤ 2(2 + C0H)DhsÂ,h
M ,h(φ)

(
2
(1
c
+H

)
h

)p+q

Mp+1q!Aq

for all p, q ∈ N0. Hence, we have proved the first statement with a = 2(H + 1) in
the first case, and a = 2(H + 1/c) in the second one.

Resting on Proposition 4.1.10, the next result can be shown in a similar way
as the corresponding implication in [12, Prop. 2.1].

Proposition 4.1.11. Let M be a weight sequence satisfying (sm), and A be either

an almost increasing sequence, or a sequence such that lim infp→∞A
1/p
p > 0 and Â

satisfies (lc). If ψ ∈ S{M+1}
{Â}

(R) and there is Ψ : H → C satisfying the following

conditions:

(i) Ψ|R = ψ.
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(ii) Ψ is continuous on H and analytic on H.

(iii) limζ∈H,ζ→∞ Ψ(ζ) = 0,

then ψ ∈ F(S{Â}
{M}(0,∞)).

4.1.2 The Laplace transform

In order to introduce the second integral transformation, the Laplace transform,
we need an auxiliary space. More precisely:

Definition 4.1.12. Let M be a sequence. We define CM ,h(0,∞) as the space
consisting of all φ ∈ C((0,∞)) such that

s0M ,h(φ) = sup
p∈N0

sup
x∈(0,∞)

xp|φ(x)|
hpMp

<∞.

Note that, (CM ,h(0,∞), s0M ,h) is a Banach space. Moreover, we set

C{M}(0,∞) =
⋃
h>0

CM ,h(0,∞),

and endow it with its natural (LB) space structure.

If M is a weight sequence and φ ∈ CM ,h(0,∞), this amounts to having

|φ(x)| ≤ s0M ,h(φ)e
−ωM (|x|/h) = s0M ,h(φ)hM (h/|x|), x > 0, (4.9)

as in (4.1).

Definition 4.1.13. We define the Laplace transform of φ ∈ C{M}(0,∞) as

L(φ)(ζ) =
∫ ∞

0

φ(x)eixζdx, ζ ∈ H.

Remark 4.1.14. Let M and A be sequences. We have that S{A}
{M}(0,∞) ⊂

S{M}(0,∞) ⊂ C{M}(0,∞) with continuous inclusions, since clearly SA,h
M ,h(0,∞) ⊂

SM ,h(0,∞) ⊂ CM ,h(0,∞) for every h > 0, the norm in CM ,h(0,∞) enters the
family of seminorms defining the topology of SM ,h(0,∞), and

sqM ,h(φ) ≤ hqAqs
A,h
M ,h(φ), φ ∈ SA,h

M ,h(0,∞), q ∈ N0.

Note that L(φ)|R = φ̂ for all φ ∈ S{A}
{M}(0,∞).
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Lemma 4.1.15. Let M be a weight sequence satisfying (sm). Then, for every
h > 0 one has L(CM ,h(0,∞)) ⊂ AM+1,Hh(H), where H > 1 is the constant
appearing in (sm), and L : CM ,h(0,∞) → AM+1,Hh(H) is continuous. So, the
mapping L : C{M}(0,∞) → A{M+1}(H) is well-defined and continuous, and it is
moreover injective.

Proof. Suppose φ ∈ C{M}(0,∞), and choose h > 0 such that (4.9) holds. Given
ζ ∈ H and p ∈ N0, since ℜ(ixζ) = −xℑ(ζ) < 0 for every x > 0 (where ℑ denotes
the imaginary part), we have

|(L(φ))(p)(ζ)| ≤
∫ ∞

0

xp|φ(x)|dx (4.10)

≤
∫ hmp

0

xp|φ(x)|dx+ s0M ,h(φ)

∫ hmp+1

hmp

xp
hp+1Mp+1

xp+1
dx

+

∫ ∞

hmp+1

1

x2
xp+2|φ(x)|dx

≤ s0M ,h(φ)

(
hmph

pMp + hp+1Mp+1 log

(
mp+1

mp

)
+ hp+2Mp+2

1

hmp+1

)
≤ s0M ,h(φ)h

p+1Mp+1

(
2 + C0H

p+1
)
≤ (2 + C0H)hs0M ,h(φ)(Hh)

pMp+1,

where in the next-to-last inequality (sm) has been applied. Hence, L is well-defined
and continuous from CM ,h(0,∞) into AM+1,hH(H).

The proof of injectivity can be found in [16, Lemma 2.10].

Remark 4.1.16. If we suppose that M satisfies the stronger condition (dc) in-
stead of (sm), then the Laplace transform L sends C{M}(0,∞) into A{M}(H).
This is easily seen by splitting the integral in (4.10) into only two subintervals,
(0, hmp) and (hmp,∞) and estimating similarly.

4.2 A new Stieltjes moment problem in Gelfand-

Shilov spaces

In this section we present the main results. Firstly, the use of optimal flat func-
tions in ultraholomorphic classes (see Proposition 3.2.17), allows to determine the
appropriate target space in the moment problem according to whether (dc) or
(sm) is satisfied. After some auxiliary results, Theorem 4.2.6 characterizes the
injectivity of the Stieltjes moment mapping under condition (sm) for M . Finally,
Theorem 4.2.7 studies the surjectivity problem and its connection to the existence
of local right inverses for M with a uniform scaling of the parameter defining the
Banach spaces under consideration.
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We recall the following definition of the p-th moment associated with a function
in C{M}(0,∞).

Definition 4.2.1. Let M be a weight sequence. The p-th moment, p ∈ N0, of an
element φ ∈ C{M}(0,∞) is defined as

µp(φ) :=

∫ ∞

0

xpφ(x)dx.

The formula

L(φ)(p)(0) = ipµp(φ), φ ∈ C{M}(0,∞), p ∈ N0,

guarantees, according to Lemma 4.1.15, that whenever M satisfies (sm) the Stielt-
jes moment mapping

M : C{M}(0,∞) → Λ{M+1}; φ 7→ (µp(φ))p

is well-defined and continuous. Indeed, for every h > 0 and φ ∈ CM ,h(0,∞) one
has

|M(φ)|M+1,Hh ≤ (2 + C0H)hs0M ,h(φ).

However, if M satisfies (dc), Remark 4.1.16 shows that M sends C{M}(0,∞)
into Λ{M}. This latter situation was studied in [16], while the former one is our
objective now. In order to stress the relevance of conditions (dc) and (sm) for the
Stieltjes moment problem, we need to consider optimal flat functions (see section
3.2).

We recall (see section 3.2.2) that if G is an optimal {M}-flat function in Sγ,
we define the kernel function e : Sγ → C given by

e(z) := G

(
1

z

)
, z ∈ Sγ.

Because of (3.5) and (3.6), we have that

K1hM

(
K2

x

)
≤ e(x) ≤ K3hM

(
K4

x

)
, x > 0, (4.11)

and according to (4.9), we see that (the restriction to (0,∞) of) e belongs to
C{M}(0,∞).

The following result, partially obtained in Proposition 3.2.18, shows the key role
of such kernel functions. We include the whole proof for the reader’s convenience.

Proposition 4.2.2. Suppose M is a weight sequence with γ(M ) > 0. Then,
M(C{M}(0,∞)) ⊂ Λ{M} if, and only if, M satisfies (dc).
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Proof. As indicated in Remark 4.1.16, the condition is sufficient. Conversely, sup-
pose now that M(C{M}(0,∞)) ⊂ Λ{M}. Consider an optimal {M}-flat function
G in a suitably narrow sector S bisected by the positive real axis, and let e be the
corresponding kernel function. Since (the restriction to (0,∞) of) e ∈ C{M}(0,∞),
there exists C, h > 0 such that µp(e) ≤ ChpMp for every p ∈ N0. On the other
hand, by the left-hand inequalities in (4.11) and the monotonicity of hM , for every
p ∈ N0 and s > 0 we may estimate

µp(e) ≥
∫ s

0

tpe(t) dt ≥ K1

∫ s

0

tphM

(
K2

t

)
dt ≥ K1hM

(
K2

s

)
sp+1

p+ 1
.

Then, by (1.9) we deduce that

µp(e) ≥
K1

p+ 1
sup
s>0

hM

(
K2

s

)
sp+1 =

K1

p+ 1
Kp+1

2 Mp+1 ≥ K1K2

(
K2

2

)p

Mp+1.

From the estimates for µp(e) from above and below we deduce that (dc) is satisfied.

Similarly, we have the following characterization, which was again partially
included in Proposition 3.5.6.

Proposition 4.2.3. Suppose M is a weight sequence with γ(M ) > 0. Then,
M(C{M}(0,∞)) ⊂ Λ{M+1} if, and only if, M satisfies (sm).

Proof. As previously said, Lemma 4.1.15 implies the condition is sufficient. Sup-
pose now that M(C{M}(0,∞)) ⊂ Λ{M+1}, and consider e ∈ C{M}(0,∞) as before,
so that there exist C, h > 0 such that µp(e) ≤ ChpMp+1 for every p ∈ N0. On the
other hand, by the left-hand inequalities in (4.11), for every p ∈ N0 we have that

µp(e) ≥
∫ K2mp+1

K2mp

tpe(t) dt ≥ K1

∫ K2mp+1

K2mp

tphM

(
K2

t

)
dt

= K1K
p+1
2 Mp+1 log

(
mp+1

mp

)
,

where the last equality is a consequence of (1.8). Again the estimates for µp(e)
from above and below imply that (sm) is satisfied.

We will reduce, via the Laplace transform, the study of the injectivity and sur-
jectivity of the Stieltjes moment mapping in this new setting to their counterparts
for the asymptotic Borel mapping (Theorems 4.1.5 and 4.1.3), as it was already
done by A. L. Durán and R. Estrada in [19], and later on by several authors
[12, 43, 44, 16].

The next lemma provides an auxiliary function, already appearing in the work
[19] and later adapted to our needs, see [16]. We set H−1 = {z ∈ C | ℑ z > −1}.
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Lemma 4.2.4. ([16, Lemma 3.1]) Let A be a sequence satisfying (nq), and such

that Â is a weight sequence. Then, there is G ∈ H(H−1) satisfying the following
conditions:

(i) G does not vanish on H−1.

(ii) sup
z∈H−1

|G(z)|eωÂ
(|z|) <∞.

(iii) sup
p∈N

sup
x∈R

|G(p)(x)|eωÂ
(|x|/2)

2pp!
<∞.

Proposition 4.1.11 and Lemma 4.2.4 imply the following general result. A sim-
ilar proof for classical Gelfand-Shilov spaces (i. e., when M is a Gevrey sequence
(p!α)p with α > 1) can be found in [43, Prop. 4.13], and a similar statement for
strongly regular sequencesM with γ(M) > 1 was included in [44, Prop. 6.6] with-
out proof. Another version, disregarding continuity and under stronger conditions
than the ones imposed here, appeared in [16, Lemma 3.3].

Lemma 4.2.5. Let M be a sequence satisfying (lc) and such that (p!)p ≾ M

(equivalently, lim infp→∞ M̂
1/p

p > 0), and let A be a sequence satisfying (nq) and

such that Â is a weight sequence. Consider the function G from Lemma 4.2.4.
Then, there exists a > 0 such that for every h ≥ 1 and for every f ∈ AM+1,h(H) one

has (fG)|R ∈ SM+1,ah

Â,ah
(R), and the map so defined is continuous from AM+1,h(H)

into SM+1,ah

Â,ah
(R).

Moreover, if M satisfies also (sm), then (fG)|R ∈ F(S{Â}
{M}(0,∞)) for every f ∈

A{M+1}(H).

Proof. According to Lemma 4.2.4.(iii), (1.13) and the definition of hÂ, there exists
C > 0 such that for every p, j ∈ N0 and x ∈ R one has

|G(j)(x)| ≤ C2jj!hÂ(2/|x|) ≤ C2jj!Âp

(
2

|x|

)p

.

Hence, for h ≥ 1, f ∈ AM+1,h(H), x ∈ R and p, q ∈ N0 we get

|xp(fG)(q)(x)| =

∣∣∣∣∣xp
q∑

k=0

(
q

k

)
f (k)(x)G(q−k)(x)

∣∣∣∣∣
≤ C∥f∥M+1,h2

pÂp

q∑
k=0

(
q

k

)
hkMk+12

q−k(q − k)!.
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We apply now Lemma (1.1.6)(vi) for M . Also, by hypothesis there exists B > 0
such that Mp ≥ Bpp! for every p ∈ N0, so

|xp(fG)(q)(x)| ≤ C∥f∥M+1,h2
pÂpMq+1

q∑
k=0

(
q

k

)
hk2q−k (q − k)!

Mq−k

≤ C∥f∥M+1,h2
pÂpMq+1

q∑
k=0

(
q

k

)
hk
(
2

B

)q−k

≤ C∥f∥M+1,h (2(1 + 2/B)h)p+q ÂpMq+1.

Hence, the first statement is proved with a = 2(1 + 2/B). The second assertion
stems directly from Proposition 4.1.11.

We are ready to study the injectivity and surjectivity of the Stieltjes moment
mapping.

Theorem 4.2.6. Let M be a weight sequence satisfying (sm) and (p!)p ≾ M , and

let A be a sequence satisfying (nq) and such that Â is a weight sequence. Then,
the following statements are equivalent:

(i)
∞∑
p=0

1

m
1/2
p

= ∞.

(ii) B : A{M+1}(H) → Λ{M+1} is injective.

(iii) M : C{M}(0,∞) → Λ{M+1} is injective.

(iv) M : S{M}(0,∞) → Λ{M+1} is injective.

(v) M : S{Â}
{M}(0,∞) → Λ{M+1} is injective.

Proof. (i) ⇒ (ii): By Theorem 4.1.5.

(ii) ⇒ (iii): Let φ ∈ C{M}(0,∞) be such that µp(φ) = 0 for all p ∈ N0. By
Lemma 4.1.15 we have that L(φ) ∈ A{M+1}(H). Moreover, L(φ)(p)(0) = ipµp(φ) =
0 for all p ∈ N0 and, thus, L(φ) ≡ 0. Since L is injective (Lemma 4.1.15), we obtain
that φ ≡ 0.

(iii) ⇒ (iv) ⇒ (v): Obvious.

(v) ⇒ (i): In view of Theorem 4.1.5 it suffices to show that B : A{M+1}(H) →
Λ{M+1} is injective. Let f ∈ A{M+1}(H) be such that f (p)(0) = 0 for all p ∈
N0. Consider the function G from Lemma 4.2.4. By Lemma 4.2.5 we have that
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(fG)|R = φ̂ for some φ ∈ S{Â}
{M}(0,∞). Observe that

µp(φ) = (−i)pφ̂(p)(0) = (−i)p(fG)(p)(0)

= (−i)p
p∑

j=0

(
p

j

)
f (j)(0)G(p−j)(0) = 0, p ∈ N0.

Hence, φ ≡ 0 and, thus, fG ≡ 0. Since G does not vanish (Lemma 4.2.4(i)),
we obtain that f ≡ 0.

In the case of surjectivity, it will frequently come with local extension operators,
right inverses for the Borel, respectively, the moment mapping, with a uniform
scaling of the constant h determining the Banach spaces under consideration.

Theorem 4.2.7. Let M be a weight sequence satisfying (sm), and let A be a

sequence satisfying (nq) and such that Â is a weight sequence. Then:
(I) Each of the following statements implies the next one:

(i) There exists a > 0 such that for every h ≥ 1 there exists a linear and

continuous operator Rh : ΛM+1,h → SÂ,ah
M ,ah(0,∞) such that M ◦ Rh is the

identity map in ΛM+1,h.

(ii) There exists a > 0 such that for every h ≥ 1 there exists a linear and
continuous operator Th : ΛM+1,h → SM ,ah(0,∞) such that M ◦ Th is the
identity map in ΛM+1,h.

(iii) There exists a > 0 such that for every h ≥ 1 there exists a linear and
continuous operator Uh : ΛM+1,h → CM ,ah(0,∞) such that M ◦ Uh is the
identity map in ΛM+1,h.

(iv) There exists a > 0 such that for every h ≥ 1 there exists a linear and
continuous operator Vh : ΛM+1,h → AM+1,ah(H) such that B◦Vh is the identity
map in ΛM+1,h.

The following statements are equivalent:

(i′) M : S{Â}
{M}(0,∞) → Λ{M+1} is surjective.

(ii′) M : S{M}(0,∞) → Λ{M+1} is surjective.

(iii′) M : C{M}(0,∞) → Λ{M+1} is surjective.

(iv′) B : A{M+1}(H) → Λ{M+1} is surjective.
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Any of the statements from (i) to (iv) implies all the conditions from (i’) to (iv’).
Moreover, the condition

(v′) γ(M ) > 2.

implies (iv).
(II) If A satisfies in addition the condition (sm), then (iv) implies:

(v) There exists a > 0 such that for every h ≥ 1 there exists a linear and

continuous operator Wh : ΛM+1,h → S(Â)+1,ah
M+1,ah

(0,∞) such that M◦Wh is the
identity map in ΛM+1,h.

(III) If M satisfies in addition the condition (dc), then we can substitute M+1 by
M in all its appearances, and (iv’) implies (v’). So, the six conditions (i’)-(v’)
and (iv) are equivalent.
(IV) If M and A satisfy in addition (dc), then we can substitute M+1 by M and

(Â)+1 by Â in all their appearances, and all the ten previous statements (i)-(v),
(i’)-(v’) are equivalent.

In the proof of Theorem 4.2.7 we shall use the following lemma, inspired by
[19].

Lemma 4.2.8. ([16, Lemma 3.6]) Let (cp)p ∈ CN and let G ∈ C∞((−δ, δ)), for
some δ > 0, such that G(0) ̸= 0. Set

bp =

p∑
j=0

(
p

j

)
cj

(
1

G

)(p−j)

(0), p ∈ N0.

Then,
p∑

j=0

(
p

j

)
bjG

(p−j)(0) = cp, p ∈ N0.

Proof of Theorem 4.2.7. (I) (i) ⇒ (ii) ⇒ (iii): Remark 4.1.14 makes these impli-
cations obvious.

(iii) ⇒ (iv): The map J0 sending every (cp)p ∈ ΛM+1,h into ((−i)pcp)p is a
topological isomorphism on ΛM+1,h, h > 0. Then it suffices to consider Vh :=
L ◦ Uh ◦ J0, which, according to Lemma 4.1.15, is linear and continuous from
ΛM+1,h into AM+1,bh(H) for some b > 0 independent from h ≥ 1. Moreover,
µp(Uh(J0((cp)p))) = (−i)pcp, and so (Vh((cp)p))

(p)(0) = ipµp(Uh(J0((cp)p))) = cp
for all p ∈ N0, as desired.

(i′) ⇒ (ii′) ⇒ (iii′) Obvious by the corresponding contentions.
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(iii′) ⇒ (iv′): Given (cp)p ∈ Λ{M+1}, pick φ ∈ C{M}(0,∞) such that µp(φ) =
(−i)pcp for every p. Then, f := L(φ) ∈ A{M+1}(H) by Lemma 4.1.15, and f (p)(0) =
ipµp(φ) = cp for all p ∈ N0.

(iv′) ⇒ (i′): We first note that (iv′) implies that γ(M ) > 1 and, by Lemma
1.1.24, we deduce (p!)p ≾ M . To see this, observe that, as indicated in Lemma 4.1.1,
a function f ∈ A{M+1}(H) can be extended to H and its restriction to [−1, 1] pro-
vides a function f0 such that:

(a) f
(p)
0 (0) = f (p)(0) for every p ∈ N0, and

(b) f0 ∈ E{M+1}([−1, 1]), the space of functions φ ∈ C∞([−1, 1]) such that

sup
x∈[−1,1], p∈N0

|φ(p)(x)|
hpMp+1

<∞

for suitable h > 0.

Hence, by (iv′) the Borel map B : E{M+1}([−1, 1]) → Λ{M+1} will also be surjective,
and a classical result of H.-J. Petzsche [52, Th. 3.5] (see also [33, Th. 4.4]) proves
that M+1 satisfies (γ1). By (1.4), we have γ(M) = γ(M+1) > 1.
Consider now the function G from Lemma 4.2.4, and define the linear map J
sending every (cp)p ∈ ΛM+1,h, for some h ≥ 1, into the sequence (bp)p given by

bp =

p∑
j=0

(
p

j

)
ijcj

(
1

G

)(p−j)

(0), p ∈ N0.

Since this fact will be useful later, we now prove that J is continuous from ΛM+1,h

into ΛM+1,bh for some b > 0 independent from h. The function 1/G is holomorphic
on a disk with center at 0 and radius larger than 1/2, so there is C ′ > 0 such that
|(1/G)(p)(0)| ≤ C ′2pp! for all p ∈ N0. Hence,

|bp| ≤ C ′|(cp)p|M+1,h

p∑
j=0

(
p

j

)
hjMj+12

p−j(p− j)!.

Since M is (lc), we can use Lemma 1.1.6 (vi). Also, by the previous argument
there exists B > 0 such that Mp ≥ Bpp! for every p ∈ N0. So,

|bp| ≤ C ′|(cp)p|M+1,h

p∑
j=0

(
p

j

)
hj2p−j (p− j)!Mp+1

Mp−j

≤ C ′|(cp)p|M+1,h

((
1 +

2

B

)
h

)p

Mp+1, p ∈ N0,
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and we are done with b = 1 + 2/B. By assumption, there exists f ∈ A{M+1}(H)
such that f (p)(0) = bp for all p ∈ N0. Lemma 4.2.5 guarantees that (fG)|R = φ̂

for some φ ∈ S{Â}
{M}(0,∞), and Lemma 4.2.8 implies that for each p ∈ N0, we have

that

µp(φ) = (−i)pφ̂(p)(0) = (−i)p(fG)(p)(0) = (−i)p
p∑

j=0

(
p

j

)
bjG

(p−j)(0) = cp,

so we are done.
It is evident that any of the first four statements (∗) implies the correspond-

ing (∗′), and so any of the statements from (i) to (iv) implies all the equivalent
conditions from (i’) to (iv’).

(v′) ⇒ (iv) Note that (v′) amounts to γ(M+1) > 2, and this fact implies

in particular (see Lemma 1.1.25) that M+1 ≈ N̂ for a weight sequence N with
γ(N ) = γ(M+1)−1 > 1. Since the condition (sm) is stable under equivalence and

also under passing from N̂ to N , it turns out that N satisfies (sm) as well, and

we can apply Remark 3.5.8 and deduce (iv) for the spaces defined in terms of N̂ .
Since the equivalence of sequences preserves the spaces of functions or sequences
defined by them, this means that (iv) holds as stated.

(II) Observe first that (iv) implies (iv′), and as shown in (iv′) ⇒ (i′), we then
have (p!)p ≾ M . Since A satisfies (sm), we consider the function G, and the
operator J , sending (cp)p ∈ ΛM+1,h, for some h ≥ 1, into the sequence (bp)p as
before. By hypothesis, f := Vh◦J((cp)p) ∈ A{M+1}(H) is such that f (p)(0) = bp for
all p ∈ N0. Now we set Tf := (fG)|R, and defineWh := F−1◦T ◦Vh◦J . According
to the behavior described in Lemma 4.2.5 and Proposition 4.1.10 (the hypotheses
of the later are easily checked, as M+1 is almost increasing), the map Wh is linear

and continuous from ΛM+1,h into S(Â)+1,ah
M+1,ah

(0,∞) for some a > 0 independent from
h, and M◦Wh is the identity map in ΛM+1,h by arguing as in (iv′) ⇒ (i′).

(III) Since (dc) for the weight sequence M amounts to M+1 ≈ M , the sub-
stitution keeps the considered spaces unchanged. Then, it suffices to apply Theo-
rem 4.1.3 to see that (iv′) ⇒ (v′).

(IV) If bothM andA satisfy (dc), we have M+1 ≈ M and (Â)+1 ≈ Â, and so
the statements (i) and (v) are equivalent. This fact and the previous implications
allow for the conclusion.

Remark 4.2.9. The equivalence of the five conditions (i′) − (v′) when M is
strongly regular (and so also M+1 ≈ M ) was already shown in [16, Th. 3.5], while
the case when M is (dc) is deduced in [14, Th. 6.1.(b) and Th. 7.2.(b)]. The
novelty in this situation consists in the equivalence with (iv). One should also note
that in [14] the Stieltjes moment problem is also solved for Beurling-like classes,
and the existence of global right inverses in both the Roumieu and Beurling classes
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is characterized. However, the techniques used there seem to heavily depend on the
condition (dc) (see, for example, Lemmas 3.6.(b) and 3.7.(b) and Proposition 5.1
in [14]), so they are not available under the weaker condition (sm). Nevertheless,
(sm) allows for the construction of the local extension operators Vh in (iv), and
this has been the motivation for this new insight. Note that, when M and A are
(dc), the construction of local right inverses for M as the ones in (i)− (iii), with
a uniform scaling of the parameter h entering the definition of the corresponding
Banach spaces, is new, although (ii) was previously obtained in [44] when M is
strongly regular.



Conclusiones y trabajo futuro

La tesis ha tratado varios problemas relevantes relacionados con clases de fun-
ciones complejas, ya sea holomorfas en sectores no acotados de la superficie de
Riemann del logaritmo, o indefinidamente derivables en la recta real y con soporte
en [0,∞), cuyas derivadas están sujetas a cierta restricción en su crecimiento dada
en términos de algún tipo de peso, bien una sucesión, una función o una matriz.

El primer objetivo, que se logró satisfactoriamente, fue caracterizar varias
propiedades de estabilidad, como el cierre por inversas o por composición, para
clases ultraholomorfas de funciones en sectores no acotados de la superficie de Rie-
mann del logaritmo, de tipo Roumieu y definidas en términos de una matriz peso.
Los resultados previamente conocidos a este respecto se debieron a J. Siddiqi y M.
Ider [76] en 1987, y solo consideraron clases definidas por sucesiones peso y en sec-
tores no más amplios que un semiplano. Nuestros resultados ampĺıan y completan
los suyos, ya que el trabajo con matrices peso abarca el caso de las sucesiones peso,
y hemos resuelto el problema para sectores con apertura arbitraria. Una herra-
mienta clave, que puede resultar útil en otros contextos, ha sido la construcción,
bajo hipótesis suficientemente generales, de funciones caracteŕısticas, que tienen
una naturaleza maximal muy concreta dentro de estas clases. Como subproducto,
también obtenemos nuevos resultados de estabilidad cuando el control del creci-
miento en estas clases se expresa en términos de una función peso en el sentido de
Braun-Meise-Taylor. Por supuesto, se pueden formular y estudiar algunas otras
propiedades de estabilidad, pero todav́ıa no hemos considerado otros problemas
similares.

Hasta donde sabemos, los resultados de estabilidad para las clases de Beurling
no se han estudiado previamente en la literatura. Hemos podido hacerlo aqúı,
aunque sólo para sectores que no sean más amplios que un semiplano. Esta limi-
tación se debe a la falta de funciones caracteŕısticas en este contexto para sectores
generales, y nos ha obligado a aplicar una técnica completamente diferente, basada
en la teoŕıa de las álgebras de Fréchet multiplicativamente convexas. Una posible
tarea futura es la extensión de estos resultados a sectores de apertura arbitraria.
Esto podŕıa necesitar un nuevo enfoque, ya que parece dif́ıcil obtener una familia,
que juegue el papel de las exponenciales, que tenga un comportamiento similar en
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sectores arbitrariamente amplios.

Se puede realizar una aproximación diferente a las clases ultraholomorfas, cam-
biando las estimaciones de las derivadas por las correspondientes para los restos
que aparecen en el desarrollo asintótico en el vértice, como se hizo en el ter-
cer caṕıtulo. Se pueden considerar las propiedades de estabilidad en este nuevo
marco, y en la literatura se conocen algunos resultados para las clases de Gevrey.
Ya hemos obtenido información parcial sobre la estabilidad bajo composición en
clases definidas por una sucesión peso general, pero aún queda trabajo por hacer
para presentar un resultado satisfactorio para el caso de matrices peso, ya que
surgen algunas complejidades debidas al cambio en la estructura de peso.

El segundo logro importante de la disertación es la construcción de funciones
planas óptimas en sectores de apertura adecuada para clases ultraholomorfas
definidas en términos de una sucesión peso general. Consideramos que estas fun-
ciones podŕıan desempeñar un papel en muchos otros contextos donde aparecen
estructuras ponderadas. Han sido extremadamente útiles para nuestro objetivo
de mejorar los resultados conocidos de tipo Borel-Ritt, que tratan de la sobreyec-
tividad de la aplicación de Borel asintótica en clases ultraholomorfas de Carleman
asociadas a sucesiones peso fuertemente no casianaĺıticas generales. Mediante
ddichas funciones, se pueden definir transformadas formales tipo Borel y transfor-
madas tipo Laplace truncadas adecuadas, que permiten diseñar un procedimiento
constructivo general para obtener operadores de extensión lineal continua, inversas
por la derecha de la aplicación de Borel, para el caso de sucesiones peso regulares
en el sentido de Dyn’kin, es decir, aquellas que satisfacen la condición de cierre
por derivación. Más aún, la longitud del intervalo de sobreyectividad ha sido
determinada para sucesiones peso que satisfacen (dc).

Además, se ha demostrado que una condición mucho más débil para la sucesión
peso, la de tener momentos desplazados, es suficiente para obtener estos resultados
de extensión. De esta manera, para todas las sucesiones que aparecen en las
aplicaciones tenemos resultados satisfactorios de sobreyectividad y extensión en
sectores cuya apertura es menor que un valor bien determinado, que depende de
un ı́ndice de O-variación regular asociado con la sucesión.

Sin embargo, aún quedan algunos problemas pendientes por resolver en este
sentido:

• Aunque sólo algunas sucesiones de crecimiento muy rápido quedan fuera de
nuestras consideraciones, como por ejemplo (qp

p
)p, nos gustaŕıa obtener resul-

tados generales sobre la sobreyectividad para clases ultraholomorfas definidas
por sucesiones peso completamente arbitrarias.

• La longitud del intervalo de sobreyectividad, es decir, el conjunto de valores
positivos γ tales que la aplicación de Borel es sobreyectiva para la clase
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definida en el sector de apertura πγ, no está determinada para sucesiones
peso que no satisfagan (dc). En otras palabras, no tenemos pruebas de que la
sobreyectividad implique γ ≤ γ(M ), como sabemos bajo la condición (dc).
La única información para sucesiones peso generales se puede encontrar en
el art́ıculo [33], donde se muestra que dicha longitud será como máximo la
parte entera de γ(M ) más 1. Este es un problema interesante que estamos
estudiando actualmente.

• Incluso cuando se sabe que la longitud del intervalo de sobreyectividad es
γ(M ), o sea, para sucesiones regulares, la situación para la apertura del
sector igual a πγ(M ) no está resuelta en muchos casos. Por ejemplo, queda
pendiente el caso en que M es fuertemente regular y γ(M ) es un número
irracional, a menos que la sucesión peso admita un orden aproximado no
nulo, cuando sabemos que la aplicación de Borel no es sobreyectiva para esa
apertura. Está resuelta (también en sentido negativo) la situación en que
M es fuertemente regular y γ(M ) es un número racional, o si M satisface
(dc) y γ(M) es un número natural, pero no se sabe que se cumpla ninguna
otra afirmación general.

• Parecen ser necesarias nuevas técnicas para demostrar la sobreyectividad de
la aplicación de Borel en sectores estrechos si no se cumple la condición
(sm), ya que la herramienta de las transformadas de Borel y Laplace ya no
es aplicable.

• La existencia de operadores de extensión globales (inversos por la derecha
para la aplicación de Borel) en el caso de las clases de Roumieu en un semi-
plano ha sido completamente resuelta por A. Debrouwere bajo la condición
(dc), ver [14], y J. Jiménez-Garrido, J. Sanz y G. Schindl dieron una ex-
tensión satisfactoria del resultado para sectores arbitrarios en [37]. Sin em-
bargo, esta pregunta está abierta en ausencia de (dc), y nos gustaŕıa obtener
alguna respuesta al menos cuando se cumpla la condición (sm). Por supuesto,
se puede deducir fácilmente alguna información a partir de la necesidad de
la condición (β2) de H.-J. Petzsche [52] para la existencia de tales operadores
en el marco ultradiferenciable, pero el argumento inverso no está disponible
actualmente.

En cuanto a las clases de Beurling, hemos podido mejorar ligeramente un re-
sultado clásico de J. Schmets y M. Valdivia bajo cierre por derivación. Bajo esta
condición, observamos que los resultados de A. Debrouwere [15] resuelven comple-
tamente el problema para clases de funciones con desarrollo asintótico no uniforme,
tanto en el sentido de la sobreyectividad como en lo que respecta a los operadores
de extensión. Sus resultados, sin embargo, dependen en gran medida del uso de
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(dc). Aunque la nueva condición (sm) nos ha permitido demostrar la sobreyectivi-
dad de la aplicación de Borel en sectores adecuadamente estrechos, nuestra técnica
(adaptada del trabajo de V. Thilliez y basada en las ideas de J. Chaumat y A.-M.
Chollet) no proporciona una pista ni para determinar la longitud del intervalo de
sobreyectividad ni para la existencia de operadores de extensión. Éste es un intere-
sante problema abierto en el contexto Beurling, y consideramos que una prueba
más constructiva de la sobreyectividad podŕıa ayudar en su solución.

Otro problema abierto que no ha sido tratado en esta disertación, pero que entró
en nuestros planes iniciales, es el estudio de la inyectividad y sobreyectividad de
la aplicación de Borel para clases ultraholomorfas definidas mediante el control de
las derivadas en regiones más generales que sectores. S. Mandelbrojt [46] ha dado
una solución muy elegante al problema de inyectividad para el caso de desarrollos
asintóticos uniformes, pero sólo se han obtenido algunos resultados parciales en el
marco antes mencionado por parte de autores de la escuela rusa, ver los trabajos
de R. S. Yulmukhametov [84], K. V. Trunov y R. S. Yulmukhametov [82] y R. A.
Gaisin [23]. La dificultad de esta tarea merece un esfuerzo mayor en un futuro
próximo.

Con respecto a los temas tratados en los caṕıtulos segundo y tercero, nos gus-
taŕıa mencionar que parece haber una estrecha conexión entre la existencia de
funciones planas óptimas en una clase y para un sector dado Sγ, y la existencia
de funciones caracteŕısticas en la misma clase (es decir, la definida por la misma
estructura de peso) pero en el sector Sγ+2. Este punto merece una aclaración y
también será estudiado.

Finalmente, la condición de momentos desplazados ha permitido dar un nuevo
enfoque al considerar el problema del momento de Stieltjes dentro de los espa-
cios generales de Gelfand-Shilov definidos mediante sucesiones peso. La novedad
consiste en la posibilidad de recubrir un espacio de llegada naturalmente mayor
mediante la aplicación de momentos, que env́ıa una función a su sucesión de mo-
mentos de Stieltjes. Se ha estudiado y, en algunos casos, se ha caracterizado la
inyectividad y sobreyectividad de la aplicación de momentos en este nuevo esce-
nario.

Es natural preguntarse cuál es el espacio de llegada natural para dicha apli-
cación cuando el espacio de Gelfand-Shilov del que partimos está definido por una
sucesión peso totalmente general, y estudiar la inyectividad y la sobreyectividad
en este marco. Otro tema a considerar en un futuro muy cercano es el tratamiento
general de los mismos problemas para el caso de espacios tipo Beurling, especial-
mente cuando se supone que se cumple la condición (sm). Es probable que este caso
pueda incluirse en la versión de este trabajo que enviaremos para su publicación.
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The dissertation has treated several relevant problems dealing with classes of com-
plex functions, either holomorphic in unbounded sectors of the Riemann surface of
the logarithm or smooth in the real line and with support in [0,∞), whose deriva-
tives are subject to certain restriction on their growth given in terms of some kind
of weight, either a sequence, or a function, or a matrix.

The first aim, which has been satisfactorily accomplished, was to characterize
several stability properties, such as inverse or composition closedness, for ultra-
holomorphic function classes in unbounded sectors of the Riemann surface of the
logarithm of Roumieu type defined in terms of a weight matrix. The previously
known results in this respect were due to J. Siddiqi and M. Ider [76] in 1987,
and they only considered classes defined by weight sequences and in sectors not
wider than a half-plane. Our results extend and complete theirs, as the work with
weight matrices encompasses the weight sequence framework, and we have solved
the problem for sectors with arbitrary opening. A key tool, which can be useful
in other respects, has been the construction, under fairly general hypotheses, of
characteristic functions, which have a precise maximal nature within these classes.
As a by-product, we obtain also new stability results when the growth control in
these classes is expressed in terms of a weight function in the sense of Braun-Meise-
Taylor. Of course, some other stability properties can be formulated and studied,
but we have not considered yet any other such problem.

Up to our knowledge, the stability results for Beurling classes have not been
studied previously in the literature. We have been able to do so, although only
for sectors not wider than a half-plane. This limitation is due to the lack of
characteristic functions in this context for general sectors, and has forced us to
apply a completely different technique, resting on the theory of multiplicatively
convex Fréchet algebras. One possible future task is the extension of these results
to sectors of arbitrary opening. This might need a new technique, since it seems
difficult to obtain a family, playing the role of the exponentials, that has a similar
behavior in arbitrarily wide sectors.

A different approach to ultraholomorphic classes can be made by changing
the estimates for the derivatives into the corresponding ones for the remainders
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appearing in the asymptotic expansion at the vertex, as it has been done in the
third chapter. One can consider stability properties in this new framework, and
some results are known in the literature for Gevrey classes. We have already
obtained some partial information regarding stability under composition in classes
defined by a general weight sequence, but still some work has to be done in order
to present a satisfactory result for the case of weight matrices, as some intricacies
arise as the weight structure is changed.

The second important achievement of the dissertation is the construction of
optimal flat functions in sectors of suitable opening for ultraholomorphic classes
defined in terms of a general weight sequence. We consider that these functions
could play a role in many other contexts where weighted structures appear. They
have been extremely useful for our objective of improving known results of Borel-
Ritt-type, which deal with the surjectivity of the asymptotic Borel mapping in
Carleman ultraholomorphic classes associated to general strongly nonquasiana-
lytic weight sequences. By means of them, one can define suitable formal Borel-like
transforms, and truncated Laplace-like transforms, which allow for the design of a
general constructive procedure in order to obtain linear continuous extension oper-
ators, right inverses of the Borel mapping, for the case of regular weight sequences
in the sense of Dyn’kin, i. e., those satisfying derivation closedness. Moreover,
the length of the surjectivity interval has been determined for weight sequences
satisfying (dc).

Furthermore, a much weaker condition for the weight sequence, that of having
shifted moments, is shown to be sufficient to obtain these extension results. In
this way, for every sequence appearing in applications we have now satisfactory
surjectivity and extension results on sectors whose opening is smaller than a well-
determined value depending on an index of O-regular variation associated with
the sequence.

However, there are still some pending problems to be solved in this regard:

• Although only some very fast growing sequences fall apart from our consid-
erations, like e. g. (qp

p
)p, we would like to obtain a general results about

surjectivity for ultraholomorphic classes defined by completely unrestricted
weight sequences.

• The length of the surjectivity interval, i. e., the set of positive values γ
such that the Borel mapping is surjective for the class defined on the sector
of opening πγ, is not determined for weight sequences not satisfying (dc).
In other words, we have no proof that surjectivity implies γ ≤ γ(M ), as
we know under condition (dc). The only information for general weight
sequences can be found in the paper [33], where it is shown that such length
will be at most the integer part of γ(M ) plus 1. This is a very interesting
problem we are currently studying.
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• Even when the length of the surjectivity interval is known to be γ(M), i.
e., for regular sequences, the situation for the opening of the sector equal
to πγ(M ) is not solved in many instances. For example, the case when M
is strongly regular and γ(M ) is an irrational number is pending, unless the
weight sequence admits a nonzero proximate order, when we know the Borel
mapping is not surjective for that opening. The answer is known (again in
the negative) if M is strongly regular and γ(M ) is a rational number, or
if M satisfies (dc) and γ(M) is a natural number, but no other general
statement is known to hold.

• New techniques seem to be necessary in order to prove surjectivity of the
Borel mapping in narrow sectors if condition (sm) is not satisfied, since the
Borel and Laplace transforms’ technique is no longer applicable.

• The existence of global extension operators (right inverses for the Borel map-
ping) in the case of Roumieu classes in a half-plane has been completely
solved by A. Debrouwere under condition (dc), see [14], and a satisfactory
extension of the result for arbitrary sectors was given by J. Jiménez-Garrido,
J. Sanz and G. Schindl in [37]. However, this question is open in the absence
of (dc), and we would like to obtain some answer at least when condition
(sm) is satisfied. Of course, some implication can be easily deduced from the
necessity of the condition (β2) of H.-J. Petzsche [52] for the existence of such
operators in the ultradifferentiable framework, but the converse argument is
not currently available.

Regarding Beurling classes, we have been able to slightly improve a classical
result of J. Schmets and M. Valdivia under derivation closedness. Under this
condition, we note that the results of A. Debrouwere [15] completely solve the
problem for non-uniform asymptotics, both in the sense of surjectivity and as far
as extension operators are concerned. His results, however, depend heavily on the
use of (dc). Although the new condition (sm) has allowed us to prove surjectivity
of the Borel mapping in suitably narrow sectors, our technique (adapted from the
work of V. Thilliez and resting on the ideas of J. Chaumat and A.-M. Chollet) does
not provide a clue either for determining the length of the surjectivity interval, or
for the existence of extension operators. This is an interesting open problem in the
Beurling setting, and we consider that a more constructive proof of surjectivity
could help in its solution.

Another open problem which has not been treated in this dissertation, but
entered our initial plans, is the study of injectivity and surjectivity of the Borel
mapping for ultraholomorphic classes defined by the control of the derivatives in
regions more general than sectors. S. Mandelbrojt [46] has given a very elegant
solution to the injectivity problem for the case of uniform asymptotic expansions,



158

but only some partial results have been obtained in the aforementioned framework
by authors form the Russian school, see the works of R. S. Yulmukhametov [84],
K. V. Trunov and R. S. Yulmukhametov [82] and R. A. Gaisin [23]. The difficulty
of this task deserves a bigger effort in the near future.

With respect to the topics treated in the second and third chapters, we would
like to mention that there seems to be a close connection between the existence
of optimal flat functions in a class and for a given sector Sγ, and the existence of
characteristic functions in the same class (i. e., the one defined by the same weight
structure) but in the sector Sγ+2. This point deserves clarification and it will also
be studied.

Finally, the condition of shifted moments allows for a new framework when
considering the Stieltjes moment problem within the general Gelfand-Shilov spaces
defined via weight sequences. The novelty consists of the possibility of covering a
naturally larger target space for the moment mapping, which sends a function to
its sequence of Stieltjes moments. The injectivity and surjectivity of the moment
mapping in this new setting is studied and, in some cases, characterized.

It is natural to ask which is the natural target space for the moment mapping
when the Gelfand-Shilov space we depart from is defined by a general, unrestricted
weight sequence, and study the injectivity and surjectivity in this framework in
full generality. Another topic to consider in the very near future is the general
treatment of the same problems for the Beurling setting, specially when the con-
dition (sm) is assumed to hold. It is likely that this case can be included in the
version of this work that we will submit for publication.
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