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The aggregate demand flexibility of a set of residential thermostatically controlled loads (TCLs) can be represented by a virtual
battery (VB) in order to manage their participation in the electricity markets. For this purpose, it is necessary to know in advance
and with a high level of reliability the maximum power that can be supplied by the aggregation of TCLs. A probability function of
the power that can be supplied by a VB is introduced in this paper. This probability function is used to predict the demand
flexibility using a rigorous experimental probabilistic method based on a combination of Monte Carlo simulation and extremum
search by bisection (MC&ESB) algorithm. As a result, the maximum flexibility power that a VB can provide is obtained. MC&ESB
performs the demand flexibility prediction with a given confidence level and taking into account TCLs and users’ real-time
constraints, which is a novel contribution. The performance and validity of the proposed method are demonstrated and discussed
in three different case studies where a VB bids its aggregate power in the Spanish electricity balancing markets (SEBMs).

Keywords: demand flexibility prediction; electricity balance markets; Monte Carlo simulation; thermostatically controlled loads;
virtual batteries

1. Introduction

Electricity systems are undergoing a huge transformation
due to the need to switch from fossil energy sources to vari-
able renewable energy sources (RESs). At the same time,
increasing energy prices are challenging the current structure
of electricity markets. The need to adapt the demand curve to
mitigate price peaks requires managing demand flexibility.
To achieve the desired transformation of the energy system,
net metering and self-consumption must be encouraged, and
regulation is beginning to change accordingly [1, 2]. At the
same time, demand is allowed to participate in new power

markets and others traditionally reserved for generation
[3, 4].

In the residential sector, heating and cooling account for
a large percentage of energy demand [5, 6]. Most of the
appliances used for these purposes have a thermal inertia
providing flexibility, that is, their electricity demand can be
shifted over time without loss of utility. This is the case for
thermostatically controlled loads (TCLs), such as refrigera-
tors, electric water heaters, and heat pumps. The aggregation
of demand flexibility provided by many TCLs exhibits prop-
erties that resemble those of batteries, hence, this aggregation
is referred to as a virtual battery (VB). They have been exten-
sively studied [7–9].
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VBs can be used to provide ancillary services [10] and to
participate in appropriate electricity markets [11]. This
requires accurate aggregate demand flexibility forecasting
mechanisms. Several approaches have been proposed to fore-
cast demand flexibility. In [12], an evolutionary particle
swarm optimization combined with support vector data
description is used to find feasible trajectories for residential
loads. In [13], a combinatorial optimization is proposed for
flexibility prediction using nonintrusive load monitoring in
the residential sector. Artificial neural networks are the main
method employed in [14–16]. In [17], a genetic-based heu-
ristic is used to predict energy demand and flexibility from
data centers for participation in demand response programs.
A method utilizing a radial basis function neural network to
predict flexibility is proposed in [18]. In [19], a temporal
convolution network was applied to predict the flexibility
of electric vehicle and domestic hot water systems. Further-
more, the use of regression models based on machine learn-
ing is discussed in [20]. Finally, a comprehensive review of
flexibility prediction methodologies is given in [21, 22].

Most of the approaches found in the literature do not
take into account the actual state of the loads when predict-
ing the flexibility they can provide as a whole, which can lead
to inaccurate predictions. In addition, physical and user-
imposed constraints must also be taken into account to
improve the accuracy of predictions.

The primary contribution of this work is the develop-
ment of a novel probabilistic method that combines Monte
Carlo simulation and extremum search by bisection
(MC&ESB) method to accurately predict the flexibility
potential of a TCL aggregation modeled as a VB. The cor-
nerstone of this method is Theorem 1, which provides a
framework to estimate the probability of successfully deliv-
ering a given constant power demand response with a speci-
fied confidence level. This contribution addresses a critical
gap with respect to other demand flexibility prediction meth-
ods by providing a reliable measure of probabilistic confi-
dence. Moreover, it is compatible with load controllers that
do take into account user constraints and the real-time status
of flexible loads. These are the characteristics of the method
for controlling VBs and the variability of their behavior that
is also studied in this work. To validate the effectiveness of
the proposed methods, the Spanish electricity balancing
markets (SEBMs) are used as a test bed, demonstrating the
potential for demand flexibility aggregators to leverage the
MC&ESB for making competitive market offers.

To enable precise flexibility prediction, the work intro-
duces a flexibility function that quantifies the probability of a
VB meeting a specified power demand over a time period.
This function is estimated and optimized through MC&ESB.
A key innovation of the approach is determining the mini-
mum number of Monte Carlo trials required to achieve a
probabilistic guarantee for the power that can be delivered.

The paper is organized as follows: Section 2 explains the
materials an methods, specifically the TCLs and VBs models
and their management and control methodology. Besides,
the electrical markets and the necessary requirements for
demand participation are also explained. Additionally in

this section, the flexibility prediction is characterized by
introducing a probability function of the supply power of a
VB. The probability of successfully supplying a given con-
stant power during a demand response event with a measure
of confidence is obtained by applying the key result stated by
Theorem 1. Based on this theoretical result, the MC&ESB
method is developed, which can be easily applied by aggre-
gators and energy service providers based on demand response
to make energy bids in the electricity market with high confi-
dence in their supply. In Section 3, three case studies are dis-
cussed: the first one estimates the likelihood function of a
sample VB, the second one tests the MC&ESBmethod in three
different scenarios in which VBs could participate in SEBM,
and the third one evaluates the response of the VB controller to
a requested power signal based on the SEBM results. Finally,
Section 4 concludes the paper.

2. Materials and Methods

The aggregate flexibility of a set of TCLs can be represented
by a VB. The management of the VB is enabled by the exis-
tence of a demand flexibility control system that manages the
operation of each of the TCLs in the aggregation. In this
work, the models and controller reported in [9] are used
due to the accuracy with which they are able to satisfy the
power requirements of the system operator by measuring the
current state of the appliances in real time. But, as explained
below, some improvements have been implemented in the
control system that allow better demand prediction and
more flexibility in the aggregation response. The monitoring
and communication system between TCLs and the controller
is done using the architecture proposed in [23].

2.1. The TCL Model. A TCL refers to a device or system that,
through a thermostat, automatically adjusts its operation
based on temperature changes. The purpose of such a load
is to regulate and maintain a desired temperature within a
specific range. TCLs are commonly used in heating, ventila-
tion, and air conditioning (HVAC) systems, as well as vari-
ous appliances and industrial processes, such as refrigerators
and chemical reactors.

In the context of electrical systems, aggregations of TCLs
can play a significant role in optimizing energy consumption,
demand response, and grid stability. They can provide regu-
lation services and mitigate power imbalances resulting from
fluctuating distributed renewable generation.

A simple discrete-time model of a TCL is given by
Equations (1) and (2). They describe the time evolution of
the internal temperature θki , which depends on its binary
status uki (ON, OFF), the forecast ambient temperature bθkai ,
and the disturbance ωk

i . The parameters of the model are: the
thermal resistance Rthi , the thermal capacity Cthi , the nomi-
nal power Pi, and the performance coefficient ηi.

θkþ1
i ¼ gi ⋅ θki þ 1 − gið Þ ⋅ bθkai − uki ⋅ θgi

� �
þ ωk

i ; ð1Þ

where

gi ¼ e−1=Rthi
⋅Cthi ;  θgi ¼ Rthi ⋅ Pi ⋅ ηi: ð2Þ
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The average power that each TCL is expected to demand
Pk
0i
is calculated using Equation (3).

Pk
0i
¼
bθkai − θsi
ηi ⋅ Rthi

; ð3Þ

where θsi is the set point temperature of the TCL. The set
point temperature, θsi , and the band width Δi define the
comfort band or safety band, which is the range of tempera-
tures where the TCL must work and confers flexibility to the
TCL, as described in Equation (4).

θsi − Δi ≤ θki ≤ θsi þ Δi: ð4Þ

The larger the safety band, the more flexibility the TCL
will provide.

The model must also include several constraints that
affect TCLs, such as short-cycling prevention and availabil-
ity. Short-cycling prevention avoids the TCL to change its
status too frequently, which could cause damage in the
device components. The minimum status changing fre-
quency is specified by τi. In addition, availability prevents
the TCL from leaving the safety band and ensures that the
TCL does not operate when the ambient temperature is
above the safety band in heating appliances or below the
safety band in cooling appliances.

2.2. The VB Model. A VB models the aggregated demand
flexibility of a set of TCLs at each time instant k. The charg-
ing and discharging processes have different dynamics. Con-
sequently, two different variables are introduced in the
model for the evolution of energy and power magnitudes.
Charging magnitudes are considered positive, while dischar-
ging magnitudes are considered negative.

Letmkþ (respectively,mk
−) denote the maximum charging

power (respectively, discharging power) that can be provided
by the VB at each instant. These variables measure whether a
given flexible power demand can be supplied by the TCL
aggregation. They are given by Equations (5) and (6), respec-
tively.

mkþ1
þ ¼ ∑

N

i¼1
1 − 2ϕið Þ ⋅ Pi − Pk

0i

� �
− Pkþ; ð5Þ

mkþ1
− ¼ ∑

N

i¼1
1 − 2ϕið Þ ⋅ Pk

0i
− Pk

−; ð6Þ

where ϕi is the device type and Pkþ and Pk
− are the sum of

power of the TCLs which are unavailable for charging or
discharging, respectively. See [9] for a more detailed expla-
nation of the VB model and its applications.

2.3. The Demand Flexibility Control. The demand flexibility
control developed for a VB operates in a cyclic process with
two basic operations: aggregation of TCLs and priority-based
dissagregation, as shown in Figure 1. The controller operates
with a time step h. As stated before, this control system is

used in this paper because of its precision, checking the status
of TCLs in real time.

At aggregation of TCLs, all the variables describing the
current situation of all TCLs are calculated, preventing their
inner temperature from leaving the comfort band. Then, all
the information of TCLs is gathered. As a result, a deviation
power signal βk is obtained, which is the difference between
the power consumed by the VB, its expected base consump-
tion and the amount of power to be switched on or off in the
next time instant because of TCLs constraints. Then, βk is
compared with the system operator power signal rk, which
sets the power requirement. This calculates the regulation
power signal ek.

The priority-based dissagregation decides which TCLs
must change their status from on to off, or vice versa, in
order to cope with the regulation power signal ek. The
TCLs chosen first are the available ones that are far in time
from being switched on or off due to device constraints.

Additional improvements in the demand flexibility con-
troller of Martín-Crespo, Saludes-Rodil, and Baeyens [9] have
been included in this article. First, the absolute error when
tracking rk is reduced, as the power difference between
switching on or off the last TCL selected in priority-based
dissagregation is checked. In addition, the number of uki
changes are examined, and thus, the activations of the
short-cycle prevention constraint are reduced. Second, the
controller allows to configure periods of time without demand
management, which means that only aggregation of TCLs
step is executed. This is the case when no rk is required.

2.4. Demand-Side Participation in SEBM. Several European
countries have opened their markets to consumers participa-
tion, such us United Kingdom, Belgium, Germany, or Swe-
den [3, 24]. Here, we focus on SEBM, managed by Red
Eléctrica de España (REE). In these markets, active power
bids can be either upward or downward (from the generation
point of view). This is equivalent to a VB discharging, reduc-
ing consumption (negative flexibility) or charging, demand-
ing more power (positive flexibility), respectively.

There are currently three SEBM: secondary regulation
(SR), tertiary regulation (TR), and replacement reserves
(RR) [25].

SR is an optional ancillary service whose purpose is to
maintain the balance between generation and demand, cor-
recting the unintentional deviations. Its temporal working
horizon ranges from 30 s to 15min.

TR is an optional ancillary service that, if subscribed to, is
accompanied by the obligation to bid and is managed and
compensated by market mechanisms. Its objective is to
resolve the deviations between generation and consumption

Aggregation
of TCLs

Priority-based
disaggregation

βk ek
rk

+
–

FIGURE 1: VB controller diagram [9].
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and the restitution of the secondary control reserve which
has been used.

RR is an optional service managed and remunerated by
market mechanisms. The objective is to resolve the devia-
tions between generation and demand which could appear in
the period between the end of one intraday market and the
beginning of the next intraday market horizon.

All of them focus on maintaining the balance between
generation and demand and operate in 15-min periods. The
bids submitted to the markets consist mainly of the active
power offered, the price, and some possible complex con-
straints, such as indivisibility. Once the bids are submitted, a
matching algorithm is executed. The SEBM comply with the
European Commission Regulation [26] and ENTSO-E [27]
nomenclature. The main characteristics of the three SEBM
are given in Table 1.

All the requirements that demand aggregators need to
participate in SEBM are gathered in [29]. According to this,
the minimum power bid must be 1MW.

The method developed in this paper encourages demand-
side participation because it provides demand aggregators
with a rigourous tool to calculate howmuch power they could
offer in electricity markets.

2.5. The VB Power Supply Probability Function. The control
strategy explained previously allows a one-step ahead predic-
tion of the VB parameters, asmkþ andmk

− are obtained before
rk. However, this forecasting horizon is not enough for
sophisticated demand flexibility management, including par-
ticipation in electricity balancing markets, where the demand
flexibility must be accurately predicted before the actual pro-
vision of the service and for longer prediction horizons. The
novel MC&ESB method presented in this paper solves this
issue, as the predictions of the method can be calculated
several hours in advance.

Predicting the flexibility of VBs requires studying how
the temperatures of TCLs are expected to change over time.
However, this is not an easy task. The evolution of TCL
temperatures is influenced by errors in ambient temperature
forecasting, model inaccuracy, and other disturbances
related to the operation of the devices (e.g., when a refriger-
ator is opened). Representing these inaccuracies and pertur-
bations requires the use of random models. The TCLs used
in this work encapsulate all of this uncertainty in the pertur-
bation parameter ωk

i . Usually, ω
k
i is considered to be distributed

as a Gaussian random variable of zero expectation and constant
variance σ2 [30].

The randomness in the temperature evolution of TCLs is
a consequence of random disturbances and uncertainty in
the knowledge of the initial conditions. Consequently, the
ability of a VB to respond to a given flexibility demand,
that is, to satisfy a given power deviation from the reference
consumption during a given period of time t, is a random
variable characterized by a given probability distribution.

The VB is composed of a set of TCLs. The number of
elements in this set, NTCL, is considered large enough to
achieve generality and reduce the influence of ωk

i .
Let x be a real-valued variable representing a candidate

deviation power that the VB could provide during a given
time period t. In order to characterize the capability of VB to
provide a power deviation during certain time period, a
power supply probability function ΦðxÞ : is defined.

Let S be a binary random variable representing whether a
constant power can be successfully provided by the VB for a
certain period of time. The binary random variable takes the
value S¼ 1 if the VB successfully provides the demanded
power. Otherwise, S¼ 0.

Let ΦðxÞ: be the probability that the VB can successfully
supply a constant power of value x during a time horizon t.
The functionΦðxÞ : is a likelihood function and is given by the
conditional probability:

Φ xð Þ ¼ P S¼ 1∣x½ � : ð7Þ

In spite of the random nature of the VBs system behav-
ior, we can assume that the probability function ΦðxÞ: is
monotonic when the number of TCLs in the VB is large.
In other words, the larger the absolute value of the demanded
power to a VB for a given duration, the lower the probability
of actually supplying it.

2.6. The MC&ESB Method for Estimating a VB Power Supply
Probability Function. The monotonicity property of the
power supply probability function ΦðxÞ : can be used to esti-
mate the maximum power (positive or negative) that a given
VB could supply to an aggregator or other market actor with
a probabilistic guarantee measure. This estimate is a predic-
tion of the demand flexibility that can be provided by a TCL
aggregate that is modeled as a VB.

TABLE 1: SEBM characteristics [25, 28].

Market name Secondary regulation (SR) Tertiary regulation (TR)
Replacement reserves

(RR)

ENTSO-E nomenclature
Automatic frequency restoration

reserves (aFRR)
Manual frequency restoration

reserves (mFRR)
Replacement reserves

(RR)
European platform PICASSO MARI TERRE
Mode of activation Automatic Manual Manual
Maximum ramping period Real-time 15min 30min
Minimum time in advance for
submission of bids

16:00 D-1 25min 55min

4 International Journal of Energy Research
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To find the maximum flexible demand power that a VB
can supply, a new method, named MC&ESB, is designed in
this paper. It is based on the combination of Monte Carlo
simulation techniques and extremum search using the bisec-
tion algorithm.

Monte Carlo simulation is a probabilistic method useful
for estimating a value under uncertainty, especially for com-
plex systems [31]. It consists of evaluating a function a large
number of times, so it finally converges to the most probable
solution (the mean value) despite of the existing uncertainty
[32]. The accuracy of the method increases as the number of
evaluations of the function increases [33].

We consider that a VB can provide the requested flexi-
bility when the probability of supplying the aggregate power
target for a given time period t is equal to 1 with a certain
accuracy ε and confidence δ. A VB supplies the power target
whenever jrkj : is less than or equal to jmkþj: for positive flexi-
bility or jmk

−j : for negative flexibility.
Let p be the probability that the VB provides a power

target of value x, then, ΦðxÞ : ¼P½S¼ 1jx� : ¼ p. This probabil-
ity p is constant but unknown, but can be estimated by
performing a sequence of experiments. The confidence mea-
sure of the estimate can also be obtained from experiments
using Bayesian inference.

Before any trial is performed, our belief about the prob-
ability p is modeled by a uniform distribution in the unit
interval p ∼ U ½0; 1� :. Each trial j determines whether or not
the VB can supply power x under random initial conditions
for each individual TCL in the VB. Thus, the outcome of
each trial is a binary random variable Ξj that takes the value
1, if the power deviation x is supplied during the demand
response event duration t, and 0 otherwise. The experiments
are statistically independent of each other, that is, they are
Bernouilli’s trials. Given a sequence of N Bernouilli’s trials
fΞj∣j¼ 1;…;Ng :, the random variable Ξ¼∑N

j¼1Ξj is distrib-
uted according to a binomial distribution BðN; pÞ : with con-
ditional probability function:

P Ξ ¼ n∣pð Þ ¼ N
n

m

 !
npn 1 − pð ÞN−n;   p 2 0; 1½ � : ð8Þ

The conditional probability PðΞ¼ n∣pÞ : is called the likeli-
hood function and is a function of p, that is, LðpÞ: ¼PðΞ¼
n∣pÞ :.

The probability of p conditioned on the outcome of the
experimentation process is called a posteriori probability and
can be obtained by applying Bayes’ theorem:

f p∣Ξ ¼ nð Þ ¼ P Ξ ¼ n∣pð Þf pð Þ
P Ξ ¼ nð Þ

¼
N n

m

� �
npn 1 − pð ÞN−n

P Ξ ¼ nð Þ
¼ 1

c n;Nð Þ p
n 1 − pð ÞN−n;

ð9Þ

where cðn;NÞ : ¼ R 10 pnð1 − pÞN−ndp.

The estimate of the probability p can be obtained from
the a posteriori probability density function as:

bp ¼ arg max
p2 0;1½ �

f p ∣ Ξ ¼ nð Þ ; ð10Þ

which is

bp ¼ n
N

; ð11Þ

and a confidence measure of this estimate also is obtained
using the a posteriori probability density funcion of p:

P
n
N
− ε1 ≤ p ≤

n
N
þ ε2

n o
¼ 1
c n;Nð Þ

Z n
Nþε2

n
N−ε1

pn 1 − pð ÞN−ndp;

ð12Þ

where cðn;NÞ : ¼ R 10pnð1 − pÞN−ndp.
Using the above expression, we are interested in obtain-

ing the number of trials to estimate the interval of power
range ½xmin; xmax� : that can be supplied during the demand
response event of duration t with a given confidence.

Theorem 1. Let ε and δ be scalars in the open unit interval
ð0; 1Þ:, then,

P p ≥ 1 − ε ∣ Ξ ¼ Nð Þ ≥ 1 − δ : ð13Þ

whenever

N ≥
ln 1=δð Þ

ln 1= 1 − εð Þð Þ − 1 : ð14Þ

Proof. If Ξ¼N , then, the a posteriori density function of p is
given by f ðp ∣ Ξ¼NÞ : ¼ðN þ 1Þ :pN . Then,

P p ≥ 1 − ε ∣ Ξ ¼ Nð Þ ¼
Z

1

1−ε
f p ∣ Ξ ¼ Nð Þdp

¼
Z

1

1−ε
pNdp

¼ N þ 1ð Þ pNþ1

Nþ1

h i
1

1−ε

¼ 1 − 1 − εð ÞNþ1:

Since, N ≥ lnð1=δÞ
lnð1=ð1−εÞÞ − 1 is equivalent to 1− ð1 − εÞNþ1 ≥ 1−

δ, the result is proved. □

The above theorem allows us to estimate the probability
of successfully supplying a given constant power during the
demand response event with a measure of confidence. Let
xmax be the maximum value of x, such that Ξ¼N , then, p≥
1− ε with probability greater that 1− δ if no trial fails for a

number of trials satisfying N ≥ lnð1=δÞ
lnð1=ð1−εÞÞ − 1. In a similar

way, let xmin be the minimum value of X such that Ξ¼N ,

International Journal of Energy Research 5
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then, p≥ 1− ε with probability greater that 1− δ if no trial

fails for a number of trial satisfying N ≥ lnð1=δÞ
lnð1=ð1−εÞÞ − 1.

In the Monte Carlo simulation stage of the MC&ESB
method, the time evolution of the VB is simulated for each
candidate value of power x. An estimate of the probability p is
given by Equation (11), whereN is obtained using Equation (14).

A schematic graphical description of the method is shown
in Figure 2. The stage of the extremum search using the bisec-
tion algorithm in the MC&ESB method consists of searching
for the maximum value of the power x in absolute value that
the VB can supply with probability 1. The method starts by
defining a search interval, which must be between ½0; þ1� :,
when searching for flexibility in charging and between ½−1;
0� :, when searching for flexibility in discharging. Next, the
bisection algorithm computes a first value of x and the esti-
mate of the probability p is computed by Equation (11). The
bisection interval bounds a and b are updated at each itera-
tion. The bisection algorithm terminates when ja− bj :<γ,
with γ being a given tolerance. The solution found x is the
maximum flexible demand power that the VB can supply with
probability greater than 1− ε and confidence 1− δ.

In this paper, the TCL and VB modeling and control,
presented in Section 2, has been used as evaluation function
for MC&ESB, but any other could be used as long as the
effect of TCLs disturbances are considered.

3. Results

This section discusses three case studies. The first case esti-
mates the power supply probability function describing the

behavior of a VB composed of a set of TCLs. The second case
tests the performance of the MC&ESB method for partici-
pating in SEBM in different scenarios. The third case shows
how the control of a VB manages the aggregated set of TCLs
to supply the power needed to bid in SEBM.

3.1. Case Study 1: Estimation of VB Supply Probability
Function. In this case study, the power supply probability
function Φ is experimentally estimated along with confi-
dence intervals for a certain VB composed of 3000 TCLs.

The TCLs participating in the VB are 1000 refrigerators,
1000 electric water heaters, and 1000 reversible heat pumps,
which are considered as heating pumps in winter and cooling
pumps in summer. Their characteristics are shown in Table 2.
The location of the VB is Madrid, in Spain, and the season is
summer. Thus, the forecast ambient temperature of every
device i, bθkai , is considered constant and equal to 24°C for
refrigerators and electric water heaters, whereas for reversible
heat pumps is the temperature of August 10th at 15:00 UTC
of the typical meteorological year, obtained with PVGIS [36].

The VB aims to modulate its consumption with a con-
stant rk, and the demand response event t is equal to 15min,
which is the time period in which SEBM operates.

The initial status of each devices, u0i , has been random-
ized, the variance, σ2, is set to 0:05, the minimum status
changing frequency, τi, is 1, and the control time step, h, is
1min (1/60 h).

The accuracy and confidence parameters ε and δ have
been set to 0.02 and 0.005, respectively. Then, applying The-
orem 1, the number of trials is N ¼ 262. The MC&ESB
method is applied to obtain xmin and xmax, where xmin
(respectively, xmax) is the minimum (respectively, maxi-
mum) value of power that the VB can always supply for
N ¼ 262 experiments. Therefore, the probability of supplying
power x for any x2 ½xmin; xmax�: is greater that 0:98 with
confidence at least of 0:995. For this VB, xmin ¼ − 1138:3
kW and xmax ¼ 5841:8 kW. By analogy, the MC&ESB
method is also applied to obtain xmin0 and xmax0, where
xmin0 (respectively, xmax0) is the limit value of power such that
if x≤ xmin0 (respectively, x≥ xmax0), the VB can never supply
the power x for N ¼ 262 experiments. Therefore, the proba-
bility of not supplying power x for any x ∉ ½xmin0; xmax0� : is
greater that 0:98 with confidence at least of 0:995. For this VB,
xmin0 ¼ − 1296:2 kW and xmax0 ¼ 5992:6 kW. For x2 ½xmin0;
xmin� : (respectively, x2 ½xmax; xmax0� :), the probability function
Φ and their bounds for a confidence of at least 0:995 are
depicted in Figure 3. The curves have been obtained for 50
equally spaced supply powers x. At each power x, the proba-
bility is estimated as bp¼ n=N , where n is the number of
experiments where the power x is successfully supplied and
N ¼ 262. The lower and upper bounds, bp − ε1 and bpþ ε2,
have been obtained using Equation (12), such that P½bp −
ε1 ≤ p≤bpþ ε2� : ¼ 1− δ¼ 0:995. The bounds ε1 and ε2 have
been selected to be equal, whenever possible. However, this is
not possible when bp approaches 0 or 1. Consequently, non-
symmetric bounds are considered for these cases. The esti-
mated demand probability function Φ and its confidence
bounds can be used to characterize the capability of a VB. For

MC&ESB set-up

x = (a + b)/2

Trial evaluation

Is p̂  = 1?

a = x b = x

Is |a − b| < γ?

x

Yes No

Yes

No

FIGURE 2: MC&ESB method diagram [9].
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example, for the VB of this study, we can state that it can
supply a power x2 ½− 1138:3; 5841:8� : during 15min with
probability greater than 0:98 and confidence 0:995.Moreover,
we can also state from the data represented in Figure 3 that the
VB can supply a power x¼ 5900 kW during 15min with
probability p2 ½0:7021; 0:8322� : and confidence 0:995. Thus,
the knowledge of the power supply probability functionΦ for
a given VB is crucial to decide about participating in electrical
markets.

3.2. Case Study 2: Demand Flexibility Prediction. The second
case study aims to forecast the maximum flexibility power
that the same VB of Case 1 can supply at different times of the
year to participate in the different SEBM markets using the
MC&ESB method. Three scenarios have been considered. In
all of them, the simulation is divided into two periods.

The duration of the first period is the sum of the time
taken by the algorithm to calculate the prediction (e.g., 5min)
and the minimum time required for the submission of bids in
the corresponding SEBM. The duration of the second period
corresponds to the demand management horizon, t equal to
15min. The first period simulates the TCL evolution without
any requested rk power signal, while in the second period
demand management is activated.

The MC&ESB method is configured to search for the
maximum flexibility power with probability greater than
0:98 and confidence 0:995, as explained in Section 2.6. The
remaining variables, parameters, and VB characteristics, if
not mentioned below, are the same as in case study 1.

In Scenario 1, the aggregator wants the VB to participate
in SR from 01:00 to 01:15 UTC on 7th February. At those

hours, only refrigerators and electric water heaters operate.
The requested flexibility power is positive because low power
consumption is expected at night. The ambient temperaturebθkai is considered constant and equal to 22°C. The bounds of
the bisection algorithm a and b are 0 and 5000, respectively.

Scenario 2 takes place in a summer afternoon. The VB is
expected to participate in TR from 16:00 to 16:15 UTC on
19th July. In this case, all the reversible heat pumps operate as
cooling pumps. The requested flexibility power is negative to
achieve peak saving, as the power consumption on the grid is
expected to be high. The ambient temperature bθkai is consid-
ered constant and equal to 24 °C for refrigerators and electric
water heaters, while that of the cooling pumps is obtained
from the typical PVGIS weather year. The bounds of the
bisection algorithm a and b are 0 and − 3500, respectively.

Finally, Scenario 3 considers the morning of a winter day.
TheVB is intended to participate in RR from 10:00 to 10:15UTC
on 5th January. The requested flexibility power is negative, as in
Scenario 2. The ambient temperature bθkai is considered constant
and equal to 22 °C for refrigerators and electric water heaters,
while for heating pumps it is obtained from the typical PVGIS
weather year. The bounds a and b are 0 and − 3500, respectively.

The resulting flexibility power at each scenario is showed in
Table 3. The highest amount of power flexibility is obtained in
Scenario 1, followed by Scenario 2 and Scenario 3. Usually, the

TABLE 2: Range of values for the parameters of residential TCLs [34] (pump set-points from [35]).

TCL type Rth (°C/kW) Cth (kWh/°C) P (kW) η θs (°C) Δ (°C)
Heating pumps 2 2:0 − 5:6 3:5 22:0 0:5
Cooling pumps 2 2:0 5:6 2:5 24:0 0:5
Electric water heater 120 0:4 − 4:5 1:0 48:5 3:0
Refrigerator 90 0:6 0:3 2:0 2:5 1:5

1.0
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ab
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ty
, p

0.8

0.6

0.4

0.2

0.0

1.0

0.8

0.6

0.4

0.2

0.0

–1300 –1250 –1200
Power demand, x (kW)

–1150 5850 5900 5950
Power demand, x (kW)

6000

FIGURE 3: Estimated demand flexibility probability function ΦðxÞ : and its confidence bounds for the VB of Case Study 1.

TABLE 3: Flexibility power available at each scenario (kW).

Scenario 1 Scenario 2 Scenario 3

3608.0 −1482.9 −1250.1
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VB can provide more positive than negative power flexibility
because TCLs take longer to increase or decrease their temper-
ature when this change is not caused by an electromechanical
element [9]. All calculated powers are above 1MW in absolute
value, which allows the aggregator to make bids in the SEBMs.
These results demonstrate that the MC&ESB method is useful
to calculate the availability of flexible power to participate in
SEBMs and other similar markets in a short period of time,
depending on the computational capabilities.

3.3. Case Study 3: Demand Flexibility Control. This case study
shows how flexibility is managed once the aggregator’s offer
has been accepted in the market and it is time to supply the
energy. The flexibility power obtained in Scenario 2 of the
previous case study (− 1482:9 kW) must now be supplied to
the grid. For this purpose, the demand flexibility control
system discussed in Section 2.3 is activated. The VB has been
simulated with the same conditions as in Scenario 2 during
45min. During the first 30min, the TCLs are not managed
by the controller, while in the last 15min the controller
comes into operation to supply the requested power. The
operation is shown in Figures 4 and 5.

The VB tracks the rk power signal as soon as the control-
ler is activated, that is, from the 30th min onwards. Before
that, the TCLs consume the electrical power they need
to satisfy the users’ comfort needs without any restriction.

This comfort band is also maintained at all times during the
15min of controller operation, but the coordination in the
state of the TCLs makes it possible to supply the requested
power flexibility. The VB consumption during the first 30
min was higher than the expected baseline consumption. For
this reason, βk is greater than 0 during this period. Deviations
from the consumption baseline could occur in real time, so it
is important to know the current state of the devices when
managing flexibility.

Two aspects are worth noting. The first one is that βk is
always between mkþ and mk

− during controller operation,
which means that the VB responds appropriately to the con-
trol signal rk. The second one is illustrated in Figure 5 and
refers to the fact that the absolute error of the controller is
never larger than half of the maximum Pi of the TCLs par-
ticipating in the VB, provided that rk is always feasible.

4. Conclusion

Demand-side participation in the electricity system is key to
reducing the use of fossil fuels and increasing the penetration
of renewables in the system. In this paper, a new method for
predicting demand flexibility, called MC&ESB, has been
developed. The predictability provided by MC&ESB allows
an aggregator to participate in electricity markets where
demand flexibility can be traded. The method obtains accu-
rate predictions as it can be used with a controller which
takes into account the actual state of the loads, as in this
paper. Nevertheless, any other control system could be uti-
lized, provided that load disturbances are taken into consid-
eration. The results of demand management with the newly
developed approach have been illustrated in three case stud-
ies in the Spanish ancillary services electricity market. As a
result, the flexibility power above 1MW has been predicted
and the control of the VBs has been simulated.

The VBs used in this work are composed of TCLs, but
other sources of residential flexibility, such as electric vehi-
cles and household batteries, could be considered. In addi-
tion, the VBs are not limited to residential loads. The
MC&ESB method could be used in the industrial sector.
Future work will focus on improving the TCL models and
testing the methodology in a real environment.

Nomenclature

βk: Deviation power signal (kW)
δ: Probability confidence
Δi: Temperature dead band of i ( °C)
ε; ε1;
ε2:

Probability bounds

ηi: Coefficient of performance of i
γ: Tolerance of the bisection search algorithm (kW)bθkai : Forecast ambient temperature of i at k ( °C)
ωk
i : Disturbance of i at k ( °C)

Φ; bΦ: Supply power probability function and its estimate
ϕi: Device type of i (0: cooling, 1: heating)
σ2: Variance of Gaussian disturbance ( °C)
τi: Minimum status changing frequency of i (h)
θki : Internal temperature of i at k ( °C)
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FIGURE 4: VB deviation power. At minute 30, the demand flexibility
control starts to actuate.
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FIGURE 5: Absolute error of the VB controller.
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θsi : Set point temperature ( °C)
Ξ: Sum of Ξj
Ξj: Result of j (0: no, 1: yes)
a; b: Bounds of the bisection search algorithm (kW)
Cthi : Thermal capacitance of i (kWh/ °C)
ek: Regulation power signal (kW)
h: Control time step (h)
i: A thermostatically controlled load
j: A Bernouilli trial
k: A time instant (h)
Lð⋅Þ :: Likelihood function
mkþ: Maximum available charging power at k (kW)
mk

−: Maximum available discharging power at k (kW)
N : Number of Bernouilli trials
n: Number of successful Bernouilli trials
NTCL: Number of aggregated thermostatically controlled

load
p;bp: Supply power probability value and its estimate
Pi: Nominal power of i (þ : cooling, − : heating) (kW)
Pkþ: Power unavailable for charging at k (kW)
Pk
−: Power unavailable for discharging at k (kW)

Pk
0i
: Average expected demanded power of i at k (kW)

rk: System operator power signal (kW)
Rthi : Thermal resistance of i ( °C/kW)
S: Capability to supply certain power (0: no, 1: yes)
t: Demand management event duration (h)
uki : Status of i at k (0: off, 1: on)
x: A value of supply power (kW)
xmax0: Maximum power with nonzero probability (kW)
xmin0: Minimum power with nonzero probability (kW)
xmax: Maximum power with guaranteed probability (kW)
xmin: Minimum power with guaranteed probability (kW).
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