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Abstract—Current parallel systems are increasingly hetero-
geneous, mixing devices of different types and computing ca-
pabilities. Exploiting multiple different devices for the same
application continues to be a challenge that ranges from technical
problems related to synchronizing and communicating diverse
devices to problems of load distribution and flexibility to adjust
the computation to the platform resources. In this work, we study
the problem of using and extending a heterogeneous portability
layer to program and adapt HSOpticalFlow to heterogeneous
platforms. HSOpticalFlow is a streaming application to estimate
the apparent movement of objects in a sequence of images. It is a
simple but characteristic example of the structure of applications
based on multilevel ILS (Iterative Loop Stencil), also known as
multi-grid methods, applied to a sequence of inputs. Starting from
the original CUDA reference code, we present a methodology and
programming techniques based on the Controller programming
model to implement it as a pipeline among multiple devices. We
discuss a technique to determine a proper work partition and
mapping for a set of devices. This allows for building very efficient
parallel solutions, using similar devices or taking advantage of
devices with lower computing power, to reduce the load and
increase the productivity of more powerful ones. We present
the results of an experimental study using several GPUs of
different vendors, architectures, and generations, showing that
this solution allows combinations of devices to be efficiently
exploited to improve performance. Specifically, the results include
speedups of 1.91x using two NVIDIA A100 GPUs and 1.21x using
one NVIDIA V100 GPU and one AMD WX9100 GPU, which is
about 3x slower than the NVIDIA GPU for this application.

Index Terms—Heterogeneous programming, Streaming, Paral-
lel pipeline, Optical Flow.

I. INTRODUCTION

It is increasingly common to find parallel systems with
high heterogeneity. In both large computing platforms and
integrated on-chip systems. Although we have an increasing
number of tools and proposals to program and manage hetero-
geneous devices from code with a high level of abstraction (for
example SYCL [1], Controller [2], or OpenH [3]), in many
cases they are not yet mature enough to easily exploit the
full potential of these systems. There are still issues related
to the efficient and transparent movement of data between
devices of different architectures, synchronization, overlapping
computation with data transfers, and an important lack of
load balancing or resource allocation techniques to adjust the
computation to the execution platform. In general, current
models provide us with general-purpose programming tools,

which must be used by the programmer to build their solutions
taking into account the structure of the application and the
target platform.

Streaming or data-flow programs are an interesting and
demanding type of application for exploiting highly hetero-
geneous systems. These applications are characterized by
receiving as input a stream, a channel through which data is
received, generally as multiple instances of a structure of the
same type. For example, the frames of a video stream. These
applications perform a series of tasks on each data instance,
which often have different granularity or computing needs.
Adapting these applications to heterogeneous platforms while
taking advantage of their resources can be complex.

We choose the 2D optical flow method known as Hierarchi-
cal Horn and Schunck (HSOpticalFlow) [4] as motivation and
case study. It is a streaming application to estimate the appar-
ent movement of objects in a sequence of images. It minimizes
an energy function using a finite difference approximation of
the Euler-Lagrange equation corresponding to this problem.
HSOpticalFlow presents a simple but characteristic example of
the structure of applications based on multi-level ILS (Iterative
Loop Stencil), also known as multi-grid methods [5]–[7].
This class encompasses a whole set of scientific applications
based on finite elements to solve partial differential equations
with iterative methods at various levels of granularity. These
applications implement techniques known as V or W cycles,
where the flow of the program goes up and down through
the granularity levels to achieve greater precision with faster
convergence. At each level, the program works with larger and
larger data structures at a finer level of detail. Therefore, the
workload of the tasks depends on the granularity level they
are working on.

In this work, we present the following contributions:
• A programming methodology to build pipeline solutions

for multi-grid streaming applications for heterogeneous
systems. It exploits the potential overlapping of com-
putations and memory movements that are a distinctive
feature of parallel pipelines.

• An implementation of HSOpticalFlow applying this
methodology. We use the Controller model as a portabil-
ity layer to exploit multiple GPUs of the same or different
vendors and architectures. We modify the portability layer



to efficiently support specific texture features of this
application.

• A technique to systematically determine a proper work
partition and mapping for a set of devices.

• An experimental study to show the efficiency of the
proposed solution compared to a reference CUDA version
and its port to SYCL (both from the official CUDA and
oneAPI samples repositories), and our port to OpenCL.
The experiments include several scenarios covering com-
binations of different types of GPU architectures, in three
machines with five different types of NVIDIA and AMD
GPUs.

The results show speedups of, for example, 1.91x using
two NVIDIA A100 GPUs and 1.21x using one NVIDIA
V100 GPU and one AMD WX9100 GPU, which is about
3x slower than the NVIDIA GPU for this application.
All the codes and result data are available at https:
//www.dropbox.com/scl/fi/zv5u8d1put3s1kxo6bt6q/controller.
zip?rlkey=erymxfdq6ytift15avf6h9ybh&st=zfnctse3&dl=0.

The rest of the work is organized as follows. Section 2
discusses related work. Section 3 presents the proposal and
the details of an implementation using HSOpticalFlow as a
case study. Section 4 describes the experimental study and
discusses its results. Section 5 presents the conclusion and
possible future work.

II. BACKGROUND AND RELATED WORK

The multigrid version of the HSOpticalFlow method [6]
improves convergence, especially for large displacements. An
example implementation is developed in CUDA and included
in the domain-specific examples provided with the develop-
ment toolkit [8]. There is also a port using SYCL in the
examples included in the current Intel oneAPI release [9].
There exist also variants with improvements for situations with
object occlusions [10], or for using full-color images [11].
However, these variants do not change the multigrid structure
of the application.

Various proposals exist for high-level heterogeneous parallel
programming models. These models attempt to simplify the
programming of portable applications for different types of
devices or combine several of them. Some proposals use a sin-
gle source code compiled and adapted to different platforms.
For example, proposals such as OpenMP [12], Kokkos [13], or
the SYCL standard [1], which is becoming consolidated thanks
to the evolution of the compilers that implement it, such as
AdaptiveCpp [14] or the DPC++ language integrated into Intel
oneAPI [15]. Execution mechanisms for heterogeneous tasks
that trace dependencies to hide data communications across
devices introduce non-negligible overheads (see e.g. [16]).
Other less well-known or academic proposals for fast synchro-
nization across different types of devices include, for example,
the Controller model [2].

These models provide the necessary tools for general-
purpose programming and support multiple heterogeneous
devices. However, it is the programmer’s responsibility to
analyze the structure of the applications and generate the

appropriate code to distribute and balance the load, adapting it
to the requirements of a system with different types of devices,
especially if they have different computing capabilities.

Some models, such as FastFlow [17] or SkePU [18], focus
on generating code for applications with different parallel
patterns from high-level expressions. Some include patterns
based on the pipeline or the streaming structure. However, load
distribution and balancing for multilevel pipeline structures on
heterogeneous devices of a diverse nature remain problematic.

Some heterogeneous programming models, such as
StarPU [19], Sigmoid [20], OpenH [3], or OpenMP exten-
sions [12], include solutions for load distribution and balancing
integrated into the model or its execution mechanisms. These
generic solutions balance the load by dividing the computation
into subtasks and distributing them dynamically on demand
with a master-worker or task-farm scheme. These solutions
introduce scheduling overheads that are not negligible for
small tasks. For example, it is not recommended to use tasks
smaller than 500 µ-seconds in StarPU [19]. Applications such
as HSOpticalFlow, execute for each pair of frames thousands
of kernels at each level, with kernel loads around 4 mu-
seconds or 12 µ-seconds in the smaller levels (measured
in an NVIDIA A100 GPU). Data migration across devices
forced by dynamic scheduling may also introduce unneeded
costly data movement overheads for small kernels. Multi-
grid streaming applications present pre-established and known
execution structures, dependencies, and locality properties that
can be better exploited with more static solutions.

III. PROPOSAL

This section describes our proposal of a programming
methodology and techniques to exploit multiple heterogeneous
devices for streaming applications where the tasks associated
with the data-flow instances are the stages of an iterative
method, potentially using multiple kernels and iteration lev-
els with different resolutions. The proposed solution can be
extrapolated to other multi-grid methods and stream-based
programs.

A. Case study

We have chosen the HSOpticalFlow application as a case
study and motivation. We use as a reference the implementa-
tion included in the domain-specific samples provided with
the CUDA development toolkit. The listing 1 shows the
pseudocode of the HSOpticalFlow algorithm.

It employs a multilevel strategy, from coarse to fine grain.
It first solves the problem for lower resolution versions of the
images, and it successively upscales the solution to be used
as the starting point in the calculation of the next resolution
level. At each level, the algorithm executes several warp
iterations. Each warp iteration starts with an initial estimate
of the solution. It first applies a warp operator on the target
image and computes the derivatives. Then, it computes a fixed
number of iterations of a Jacobi method, implemented as an
ILS (Iterative Loop Stencil) that computes in parallel the new

https://www.dropbox.com/scl/fi/zv5u8d1put3s1kxo6bt6q/controller.zip?rlkey=erymxfdq6ytift15avf6h9ybh&st=zfnctse3&dl=0
https://www.dropbox.com/scl/fi/zv5u8d1put3s1kxo6bt6q/controller.zip?rlkey=erymxfdq6ytift15avf6h9ybh&st=zfnctse3&dl=0
https://www.dropbox.com/scl/fi/zv5u8d1put3s1kxo6bt6q/controller.zip?rlkey=erymxfdq6ytift15avf6h9ybh&st=zfnctse3&dl=0


Listing 1. Pseudocode of the HSOpticalFlow algorithm. Function calls
represent kernel launches (except swap). Input parameters are colored in blue,
while output ones are red.

/ / C r e a t e lower r e s o l u t i o n v e r s i o n s o f images ( s r c y t g t )
f o r ( l v l = n l v l s − 1 ; l v l > 0 ; l v l −−){

Downscale ( src[lvl], src[lvl-1] ) ;
Downscale ( tgt[lvl], tgt[lvl-1] ) ;

}
/ / I n i t i a l e s t i m a t e ( u , v ) s t a r t s a t 0
f o r ( l v l = 0 ; l v l < n l v l s ; l v l ++){

f o r ( warp = 0 , warp < nwarps ; warp ++){
/ / Warp t a r g e t image a c c o r d i n g t o e s t i m a t e ( u , v )
WarpImage ( tgt[lvl], u[lvl], v[lvl], dist[lvl] ) ;
/ / Compute m a t r i c e s o f t h e e q u a t i o n
C o m p u t e D e r i v a t i v e s ( src[lvl], dist[lvl], Ix[lvl], Iy[lvl], Iz[lvl] ) ;
/ / So lve e q u a t i o n f o r du , dv
f o r ( i = 0 ; i < n s o l v e s ; i ++){

J a c o b i S o l v e ( du0[lvl], dv0[lvl], Ix[lvl], Iy[lvl], Iz[lvl], du1[lvl], dv1[lvl] ) ;
swap ( du0 [ l v l ] , du1 [ l v l ] )
swap ( dv0 [ l v l ] , dv1 [ l v l ] )

}
/ / Update c u r r e n t e s t i m a t e
add ( u[lvl], du0[lvl], u[lvl] ) ;
add ( v[lvl], dv0[lvl], v[lvl] ) ;

}
i f ( l v l < n l v l s − 1){

/ / P r o l o n g a t e s o l u t i o n ( u , v ) f o r t h e n e x t l e v e l
Upsca l e ( u[lvl], u[lvl+1] ) ;
Upsca l e ( v[lvl], v[lvl+1] ) ;

}
}

value of each matrix element with the previous values of the
neighboring elements.

A representation of the task flow for comparing a pair
of frames can be seen in figure 1. The original application
uses five resolution levels, three warp iterations at each level
and 500 Jacobi iterations per warp iteration. The computation
begins at the lowest resolution level (level 0), performing the
selected number of chained warp iterations. A prolongation or
upscale function is used to generate a higher-resolution result
from the output of the last warp iteration of the previous level.
This new estimation is the input for the first warp iteration of
the next level.

In this application, and for UHD image resolutions or
higher, the occupation and use of the resources of a GPU
are practically complete. We have experimentally tested that
using the same GPU to compute multiple pairs of frames
simultaneously, with several processes executing the original
reference application, does not increase the throughput. The
work is serialized. Thus, we focus on the use of more devices
to improve the throughput of the application. In this work, we
study the use of multiple devices in a single node.

B. Pipeline structure

The iterative and multi-level structure of HSOpticalFlow,
when working on a sequence of images, provides opportunities
to distribute the workload in different ways among several
devices. The image sequence creates a continuous data flow or
pipeline. This pipeline structure can be deployed across several
devices, distributing the load for each pair of frames. When a
device finishes its part, it sends the result to the next device
in the pipeline, and it can begin the computation of its part
of the pipeline for the next pair of frames. Tasks mapped to

Fig. 1. HSOpticalFlow’s flow diagram. Each box represents a warp iteration.
The number inside each box represents the identifier of the device executing
the warp iteration, in a hypothetical heterogeneous mapping.

different devices can be executed in parallel. The computation
and data movements between devices can be overlapped using
asynchronous communications. Once the pipeline is full, the
latencies of data movements can be partially or completely
hidden.

An important decision for this approach is choosing the cut-
off points at which the computation of the same pair of images
is continued on another device. There are three main options.
Each one implies increasing implementation complexity to
obtain finer granularity for controlling load balancing between
devices.

1) Partition only between levels.
2) Partition between warp iterations at any level.
3) Partition between Jacobi iterations inside a warp itera-

tion.

Our preliminary experimental tests indicate that distributing
entire levels between devices of different computing capacities
makes the granularity too coarse, preventing the possibility
of creating a good load balance in many situations. On the
other hand, the complexity of programming a device change
between arbitrary Jacobi iterations is high. Thus, for this
work, we decided to study the distribution of complete warp
iterations (the second option), which proves to be a good
balance in terms of implementation complexity and reasonable
control of the load on each device. Figure 1 shows an example
of load distribution by assigning different warp iterations to
each device. Higher-level indexes imply a computation with
higher-resolution images, and thus, a higher workload.

We choose a solution to specify the cut points where the
computation of a pair of frames continues in another device.
In this work, we specify these cut points manually using a
function call. An example is shown in figure 2.



Listing 2. Code to specify the warp iterations to be executed on each device.
The parameters of the AddCutPoint function indicate the last level and warp
iteration executed by a device identifier. The example corresponds to the
assignment in figure 1.

I n i t W o r k P a r t i t i o n ( ) ;
/ / Device − id , L a s t Leve l and Warp
AddCutPoin t ( 0 , 3 , 0 ) ;
AddCutPoin t ( 1 , 3 , 2 ) ;
AddCutPoin t ( 2 , 4 , 2 ) ;

Fig. 2. Diagram of the use of data structures in warp iterations mapped to
the same device, or when the next iteration is mapped to another.

C. Data transfers

Figure 2 shows an example of the data structures and
movements used to compute several warp iterations across
devices. The figure shows three warp iterations of the same
level. Wi indicates the computation of the i-th warp iteration.
Tj indicates the data structure j. The Tj structures on the
top-left side of the box representing each computation are the
input, and the ones in the bottom-right are the output. We use
the same data structure as input and output for warp iterations
of the same level mapped to the same device. When two
consecutive warp iterations are mapped to different devices,
the output data of the first warp iteration should be moved to
another data structure to be used as input for the next warp
iteration in the next device. For a level change within the
same device, the output structure should be different because
the size used on the higher resolution level is different. An
upscale operation is also needed to generate the input of the
next level.

In this application, the computations on each level use the
same logical data structures with different resolutions (see list-
ing 1). The structures for each level can be allocated separately,
or the implementation can reuse the higher resolution ones on
each level, using only part of it. To simplify the programming
of the pipeline, we define an array of pointers for each data
structure. Each one points to a specifically allocated data
structure for that level, or to the highest resolution one to reuse
it. It is a program design decision with no impact on the rest of
the discussion. Common data structures are privately allocated
on all devices, storing the pointer associated with each device
in a two-dimensional array indexed by levels and device
identifiers. Warp iterations are executed on specific devices
determined by the pipeline structure. The results of a warp
iteration could need to be moved across devices if the data
structures between warps or levels are allocated on different
devices. We also extend the idea to arrays with pointers

Listing 3. Pseudocode for processing several frames. In blue are the input
arguments and in red are the output ones.

t g t = loadFrame ( 0 ) ;
f o r ( i = 1 ; i < nFrames ; i ++){

s r c = t g t ;
t g t = loadFrame ( i ) ;
ComputeFlow ( src, tgt, u, v , . . . ) ;
Norm ( u, v ) ;

}

indexed by level and warp iteration. The data structure for
each level and warp is allocated on the proper device, storing
the pointer in as many array positions as needed to reuse it
in as many warp iterations as possible. Using these pointer
arrays when coding the pipeline makes the device mapping
transparent. In figure 2 we include in the computation boxes
the reference of the pointer arrays ptr, for the corresponding
level and warp iteration.

D. Controller implementation

We have chosen the Controller programming model to build
an experimental prototype that can easily work with multiple
heterogeneous devices. This model offers a mechanism to
directly integrate kernels written in the lowest-level program-
ming models supplied by the device vendor, such as CUDA,
OpenCL, Hip for GPUs, and OpenMP for multicore CPUs.
It includes a system to detect dependencies between tasks
at runtime and transparently perform the memory transfers
between devices needed to keep consistency. Its execution
system includes a very efficient mechanism for managing
synchronizations and memory transfers between devices of
different natures. In this section, we describe the improvements
needed and the advantages of using it to simplify the pipeline
implementation.

1) Preparation: We use the original HSOpticalFlow code
provided by NVIDIA in the CUDA development toolkit sam-
ples as a starting point. The reference version extensively
uses single-channel textures due to its benefits related to
(1) The mirror addressing mode that solves problems in the
calculation of derivatives and accesses in the contours; (2)
The bilinear interpolation used in constraint, extension, and
warping operations; and (3) to improve data locality thanks to
texture caches [21]. We have incorporated functionalities into
the Controller programming model to work with this type of
memory.

The original code is prepared to run with only a pair of input
frames. To have a complete streaming application that works
on a sequence of images, we add an external loop to read and
process frames (see the listing 3). To more accurately measure
the working times of the main algorithm, instead of writing
the results to a file, we calculate the norm of the result of
each pair of frames. This also allows checking the correctness
of any version derivated from this code with a good level of
confidence.

2) Porting the kernels: In Controller, a HitTile is a data
type that represents data structures with descriptive metadata,



Listing 4. Snippet of Controller code for the core part of the algorithm.
Controller functions and types are highlighted in brown color.

/ / C r e a t e lower r e s o l u t i o n v e r s i o n s o f images ( s r c y t g t )
. . .
/ / I n i t i a l e s t i m a t e ( u , v ) s t a r t s a t 0
f o r ( l v l = 0 ; l v l < n l v l s ; ++ l v l ) {

f o r ( i n t wi = 0 ; wi < n warps ; ++wi ) {
i n t c i d = Get Cid ( l v l , wi ) ; / / c t r l i d
P C t r l c t r l = C t r l G e t ( c i d ) ;
. . .
/ / Warp t a r g e t image a c c o r d i n g t o c u r r e n t e s t i m a t e
C t r l L a u n c h ( c t r l , Warp , t h r s p a c e [ l v l ] , CTRL BLK DEF ,

p p t g t [ l v l ] [ c i d ] , pp u [ l v l ] [ wi ] , pp v [ l v l ] [ wi ] ,
p tmp [ c i d ] ) ;

/ / Compute m a t r i c e s o f t h e e q u a t i o n t o s o l v e
. . .
/ / So lve e q u a t i o n f o r du , dv ( s t e n c i l )
f o r ( i n t i t e r = 0 ; i t e r < n s o l v e s ; ++ i t e r ) {

C t r l L a u n c h ( c t r l , Solve , t h r s p a c e a u g [ l v l ] ,
CTRL BLK DEF , p du0 [ c i d ] , p dv0 [ c i d ] ,
p Ix [ c i d ] , p Iy [ c i d ] , p I z [ c i d ] ,
a lpha , p du1 [ c i d ] , p dv1 [ c i d ] ) ;

h i t t i l e S w a p ( p du0 [ c i d ] , p du1 [ c i d ] ) ;
h i t t i l e S w a p ( p dv0 [ c i d ] , p dv1 [ c i d ] ) ;

}

/ / Update c u r r e n t e s t i m a t e
C t r l L a u n c h ( c t r l , Add , t h r s p a c e [ l v l ] , CTRL BLK DEF ,

pp u [ l v l ] [ wi ] , p du0 [ c i d ] , pp u [ l v l ] [ wi + 1 ] ) ;
C t r l L a u n c h ( c t r l , Add , t h r s p a c e [ l v l ] , CTRL BLK DEF ,

pp v [ l v l ] [ wi ] , p dv0 [ c i d ] , pp v [ l v l ] [ wi + 1 ] ) ;
}

/ / P r o l o n g a t e s o l u t i o n ( u , v ) f o r use i n t h e n e x t l e v e l
. . .

}

pointers to memory allocations, etc. A HitTile can be allocated
on the host and several devices, with a memory image on each
of them. The metadata also includes information about whether
the memory images on the host and devices have been read or
written. This allows the Controller model to detect the need
for data movements to maintain consistency among different
copies of a HitTile’s memory on the host or across various
devices.

To port a CUDA kernel to the Controller programming
model, we change the array parameters to HitTile types. In
the Controller model, the prototypes of the kernel functions
also include information about the input or output role of a
HitTile parameter to automatically detect the need for data
movements across the host and devices. The array accesses in
the original code are replaced with an equivalent Controller
function for accessing data in HitTile structures. The native
CUDA thread indexes used in the array accesses are replaced
with their Controller counterpart. The use of shared memory,
like in the Jacobi solver kernel, does not need any adjustments.
In general, this results in a slight simplification of the kernel
code, with array sizes being built into HitTiles and global
thread indexes being calculated implicitly by Controller.

3) Porting the host code: A snippet of the Controller host
code for the core part of the algorithm is shown in listing 4.
It shows how kernels are launched in Controller and how
the pointer arrays are used to create the pipeline structure
implicitly.

Controller programs read a configuration file at runtime to

associate devices to device identifiers. The Controller runtime
synchronizes all kernel and host-task execution according to
the data dependencies derived from the input/output roles of
the HitTile parameters. The implicit data movement mech-
anism of the Controller model automatically performs the
needed data moves between devices asynchronously, to allow
overlapping computation and communications efficiently [2],
[22].

We initialize each frame by loading the data from the file
system to the host memory as the first step of the pipeline. At
the end of the pipeline, the norm is computed on the host for
each frame pair. To ensure the frame loading and the norm
operations are independent of each other, and the pipeline
operations can overlap properly, we launch the frame loading
as an asynchronous host task, and the norm calculation as an
asynchronous kernel in a CPU device with a single thread.

IV. EXPERIMENTAL STUDY

This section describes an experimental study carried out to
verify the efficiency of the proposed solution.

A. Experimental environment and design

We design experiments to compare the performance results
of our Controller implementation with reference versions of
the application in CUDA and SYCL for NVIDIA GPUs, and
OpenCL for AMD GPUs. We use as CUDA reference the
original CUDA implementation, adding a loop to work on
a sequence of frames. We have also modified the memory
allocations to use pinned memory for the data structures in the
host. This slightly improves the performance results, leading
to a fair comparison with the Controller version where this
decision is implicitly managed. We have ported this reference
CUDA version to OpenCL to work with AMD GPUs. The
SYCL reference is a port of the original CUDA program
included with the Intel oneAPI samples as a guide to port
CUDA programs to SYCL.

The experiments have been carried out on two heteroge-
neous machines of the Trasgo group research cluster, named
Manticore and Gorgon, and the Leonardo supercomputer at
CINECA. They have the characteristics listed in table I.

The inputs of the programs are sequences of video frames of
different lengths. The video images have 8K resolution (7680×
4320). We measure the execution time of the program section
that computes, for the whole input sequence, the optical flow
between pairs of consecutive frames. We skip allocation and
initialization of data structures.

For each scenario, 30 repetitions are run, to obtain a large
enough sample for the Central Limit Theorem to be considered
applicable. The results presented are the average execution
times for each scenario after eliminating outliers, that is,
results below or above the mean ±1.5 × IQR (interquartile
range).

We consider the following platform selection scenarios. Ref-
erence programs only work on a single device. The scenarios
using multiple devices are designed to test the Controller
program:



TABLE I
SPECIFICATIONS FOR EACH EXPERIMENTAL PLATFORM

System Processor RAM GPUs Software
Manticore 2x Intel Xeon 512 GB DDR4 2x NVIDIA Tesla V100 32 GB HBM2 Rocky Linux 9.3

Platinum 8160 @ 2,10 GHz 2x AMD Vega 10 XT Radeon PRO WX 9100 CUDA 12.6, ROCm 6.1.0
GCC 11.4
oneAPI 2024.2

Gorgon 2x AMD EPYC 512 GB DDR4 1x NVIDIA A100 80 GB HBM2 Rocky Linux 9.3
7713 @ 2,0 GHz 2x NVIDIA RTX 4500 Ada Gen 24 GB GDDR6 CUDA 12.6, ROCm 6.1.0

1x AMD NAVI31 Radeon PRO W7800 GCC 11.4
oneAPI 2024.2

Leonardo 1x Intel Xeon 512 GB DDR4 4x NVIDIA A100-SXM-64GB RedHat 8.7
Platinum 8358 CPU @ 2.60GHz CUDA 12.3

GCC 12.2

• Manticore. 1 device: V100, WX9100. 2 devices: 2 V100,
2 WX9100, WX9100 + V100

• Gorgon. 1 device: A100, RTX4500, W7800. 2 devices: 2
RTX4500, RTX4500 + A100, W7800 + A100, RTX4500
+ W7800. 3 devices: W7800 + RTX4500 + A100

• Leonardo. 1 device: A100. 2 devices: 2 A100. 4 devices:
4 A100

B. Work partition and mapping decisions

In the experiments with multiple devices, we decide the
number of levels and iterations to be executed on each device
with the following guidelines. We execute the program with
the same pair of frames on each device to measure the exe-
cution times of a warp iteration of each level on each device.
Let tl,d be the measured execution time of a warp iteration
wl,i : i ∈ [0, n) of level l ∈ [0,m), on the device d ∈ [0, k).
Let m : (l, i) → [0, k) be the mapping function that associates
a warp iteration wl,i with the device identifier d where it
is executed. Valid mapping functions m divide the space of
level-warp indexes in consecutive sets that are assigned to the
devices: m(l, i) ≤ m(l′, i′) : l < l′ ∨ l = l′, i < i′. When the
pipeline is full and the operations executed by each device are
fully overlapped, the maximum execution time of a pipeline
stage is p:

pd =
∑

tl,m(l,i) : l ∈ [0,m), i ∈ [0, n),m(l, i) = d (1)

p = max( pd : d ∈ [0, k) ) (2)

We obtain the potentially optimal work partition by finding the
mapping function m that minimizes the execution time of the
longest pipeline stage p. Finding the work partitions is cur-
rently done offline with a dynamic programming method. For
our proposed multi-device scenarios, the best work partitions
found using this approach are shown in the top part of table II.

C. Results

In this section, we discuss the results of the experimentation
and our observations.

Figure 3 shows a comparison, using one device, of the
execution times of the reference and the Controller versions
for a single iteration of the algorithm, using only two frames,
in several machines and devices. This experiment shows the
basic efficiency of the coordination and memory management
mechanisms of each version before exploiting multiple devices

with Controller. The results show that the Controller program
is nearly as efficient as the best CUDA reference version using
pinned memory. They also show that the SYCL version is
slower than the references. The main problem is that SYCL
only supports a 4-channel image format, and the code is ad-
justed to mimic the use of the original single-channel textures
with 4-channels textures using padding. For a fair comparison,
the rest of the experimental study uses as a baseline only the
CUDA reference program with pinned memory.

Figure 4 shows plots with execution times of the reference
and Controller programs on each of the devices of the cor-
responding machine and speedups with different scenarios of
device combinations. All the plots represent the number of
frames on the x-axis. Let td be the execution time of the
application for the chosen number of frames when it is fully
mapped to device d. Let tf = min(td : d ∈ [0, k)) be the
execution time of the fastest device in the scenario. Let t
be the execution time of the application mapped to several
devices. We calculate the speedup in a given scenario with
a heterogeneous environment as S = tf/t, the ratio between
the execution time when using the fastest device alone for the
whole computation and the execution time when exploiting
several devices. The speedup plots show S values relative to
the fastest device, whose name is shown in the plot title.

We define the Heterogeneous Expected Speed-up as Se =∑k−1
d=0 tf/td. This metric estimates the best speedup that could

be obtained, with no overheads and a perfect load balance
adapted to the relative computing power of the devices for
this application. We define the Heterogeneous Efficiency as
HE = (S/Se)× 100, the ratio between the measured speedup
and the heterogeneous expected speedup in percentage. The
measured and expected speedups and heterogeneous efficiency
of each scenario are also shown in table II.

The execution time plots on all machines show that the
Controller program in one device is slightly faster than the
CUDA reference in NVIDIA platforms, and nearly as efficient
as the OpenCL reference in the AMD platforms. The slight
improvement over the CUDA reference version comes from
overlapping the main computation with the host tasks, which
are loading the frames and computing the norm.

For some scenarios (e.g. three different devices in Gorgon),
the speedup for a few frames is lower than one because the
pipeline is not filled yet and the time of the slower devices



Cuda Cuda Pin Ctrl Sycl0

1

2

3

4

5

6

7

8

Ti
m

e 
(s

.)
Manticore V100

Cuda Cuda Pin Ctrl Sycl0.0

0.5

1.0

1.5

2.0

2.5

3.0

Ti
m

e 
(s

.)

Gorgon A100

Cuda Cuda Pin Ctrl Sycl0

1

2

3

4

5

6

Ti
m

e 
(s

.)

Gorgon RTX4500

Fig. 3. Execution times of the baseline programs for a single pair of frames.
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TABLE II
TOP: DEVICES AND PARTITIONS SELECTED FOR THE MULTI-DEVICE SCENARIOS. EACH COLUMN PRESENTS THE LIST OF GPUS USED. EACH DEVICE

NAME IS FOLLOWED BY THE INDEXES OF ITS LAST LEVEL AND WARP ITERATION. BOTTOM: MEASURED AND EXPECTED SPEEDUP, AND EFFICIENCY, FOR
40 FRAMES.

Metric Manticore Gorgon Leonardo
V100 4,0 WX9100 4,0 WX9100 3,2 RTX4500 4,0 RTX4500 3,1 W7800 3,1 RTX4500 4,0 W7800 3,0 A100 4,0 A100 3,2
V100 4,2 WX9100 4,2 V100 4,2 RTX4500 4,2 A100 4,2 A100 4,2 W7800 4,2 RTX4500 3,2 A100 4,2 A100 4,0

A100 4,2 A100 4,1
A100 4,2

S 1.85 1.85 1.21 1.87 1.23 1.21 1.70 1.26 1.91 3.48
Se 2.00 2.00 1.37 2.00 1.29 1.25 1.87 1.55 2.00 4.00

%HE 92.5 92.5 88.3 93.5 95.3 96.8 90.9 81.3 95.5 87.0

hinders the performance. Nevertheless, in all the plots we
observe how the speedup grows with the number of frames,
as the pipeline stays full longer.

In scenarios that use two instances of the same type of de-
vice (see e.g. 2x WX9100 devices on Manticore) the speedups
for 40 frames grow to at least 1.85x, with more than 92%
HE. Some scenarios with mixed devices show speedups that
may seem low for the number of devices but have relatively
high HE (more than 90%) as this metric accounts for the
differences in computing power among devices. Nevertheless,
there are three specific scenarios with lower heterogeneous
efficiencies (less than 90%). The first two are the scenario in
Manticore with WX9100 and V100, and the one in Gorgon
with the three devices. The differences in computing power
do not allow proper mapping of warp iterations to create a
better balance. The design of the pipeline structure with a
finer granularity would be better for this scenario, allowing the
selection of the cut points in the Jacobi iterations within the
warp iterations. The third scenario appears in Leonardo using
four identical A100 GPUs. There is some load unbalancing,
but the longer time to fill the pipeline with four devices also
affects the results with up to 40 frames. More frames are
needed to continue improving the speedup. The overhead of
synchronization and communication is less than 8.7% in all
the scenarios considered.

V. CONCLUSION

This work presents a programming methodology to build
pipeline solutions for multi-grid streaming applications, ex-
ploiting multiple heterogeneous devices of different vendors,
architectures, or computing capacities. We use as a case study
the HSOpticalFlow application, which estimates the apparent
movement of objects in a sequence of images. We describe
how to use the Controller heterogeneous programming and
portability model to build a practical implementation. The
Controller execution layer transparently handles data transfers
across devices, deriving them from task dependencies and cre-
ating an efficient overlap of computation and communications.
The resulting application runs as a parallel pipeline across
devices. We introduce a technique to systematically determine
a proper work partition and mapping for a set of devices. We
present an experimental study designed to show the efficiency
of the proposed solution compared to a reference CUDA
version, and its ports to SYCL and OpenCL. The results show
that the proposed solution is close in efficiency to the best

reference versions when executing on a single GPU. When
using combinations of several devices, our implementation
obtains good speedups, with more than 90% of efficiency in
most cases. Situations where efficiency is between 80% and
90% could be improved by using a finer granularity for the
work partition.

In future work, we plan to study the use of the proposed
mechanisms in other applications and contexts, explore their
exploitation with new classes and combinations of heteroge-
neous devices including multi-node scenarios, devise a tuning
algorithm to automatically find the optimal work partition,
and consider the transparent introduction of new levels of
granularity in the mapping to allow higher precision for load
balancing.
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[12] M. Gonzàlez-Tallada and E. Morancho, “Compute units in openmp:
Extensions for heterogeneous parallel programming,” Concurrency and
Computation: Practice and Experience, vol. 36, no. 1, p. e7885, 2024.
[Online]. Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.
7885

[13] C. R. Trott, D. Lebrun-Grandié, D. Arndt, J. Ciesko, V. Dang, and
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