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Introduction
• Differential Evolution (DE) is a genetic algorithm that, when combined with Numerical Integration of scientific model on application-specific hardware:

– Produces deep floating-point pipelines
– Requires minimal external memory bandwidth
– Benefits from large internal memory bandwidth

• Proposal: Generic architecture for Diferential Evolution with Numerical Integration methods
– Evaluated with 2 scientific models: Hodgking-Huxley (with non-adaptive 4th order Runge-Kutta) and Circadian (with adaptive Runge-Kutta-Fehlberg)

FPGA’s strong points!

Differential Evolution
1. Mutation:

Alter each solution’s parameters, using the others (with randomness)
mi,G+1 = sr1,G + F · (sr2,G − sr3,G)

2. Crossover:
New candidate solution, hybrid from original solution and mutant

3. Limiting:
Ensure all parameter values are in valid range

4. Selection:
Compute cost function of new candidate; keep solution with lower cost

Architecture overview
• Generic: Adjustable via meta-parameters (number of variables to optimize,
number of solutions to consider...)

• Modular design, for ease of adaptation

• Fully pipelined, high pipeline utilizaion through Islands of Solutions

• Numerial integration coded with HLS ⇒ ease of development, hassle-free FP
computations

• Other modules coded in VHDL ⇒ high control and performance
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× Control : Initializes state, manages memArrays, reads results

× memArray : Stores parameters values and solution cost; one per solution

× Crossover : Hybridizes solutions (Mutation and Crossover steps)

× Limits: Manages out-of-range values from Crossover (Limiting step)

× Iteration Mux : Manages iterations of Numerical Integration

× Numerical Integration: Obtains models’ results from candidate solutions

× Error Evaluation: compares results against observed data (Selection step)

Scientific models used for assessment
• Hodgking-Huxley: action potentials in neuron axons

– Multiple non-linear differential equations
– Always converges with non-adaptive RK4
– 11 unknown parameters per solution

• Circadian: biological clock of plants

– Multiple coupled stiff differential equations
– Requires adaptive numerical integration: RKF
– 27 unknown parameters per solution

× Complex, real-world models, not tackled previously in the literature in a
fully-pipelined way

Resource usage
• Synthesized for Virtex Ultrascale+ XCVU13P

LUT FF BRAM DSP
Hodgkin-Huxley 220 123 (13%) 230 438 (7%) 114 (4%) 2 272 (18%)

Circadian 648 976 (38%) 659 083 (12%) 293 (11%) 4250 (37%)

• More than ×10 LUT, BRAM; ×100 FF, DSP than previous works

Performance
• Tested: Multiple number of candidate solutions, multiple amount of numerical integration iterations
• Speedup with respect to single-threaded CPU implementation, executed in an AMD EPYC 7713 @ 3.67 GHz, compiled with gcc and -O3 optimizations
• Comparison against NVIDIA A100 GPU, using a GPU-optimized high-performance implementation: One thread per candidate solution
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Speed-up vs CPU for the Hodgkin-Huxley Model
Total number of solutions ranges from 200 to 500
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Total number of solutions ranges from 200 to 800

• FPGA and GPU performance scale with the
number of candidate solutions

– FPGA scaling is more linear

• Average energy savings vs GPU:

– Hodgkin-Huxley:
×9.0more energy efficient (11.04% the
energy consumption of the GPU)

– Circadian:
×4.11 more energy efficient (24.33%
the energy consumption of the GPU)

Conclusion and future work
• Differential Evolution with Numerical Integration is well suited for FPGA-based CCMs:
Parallelism, independent memory accesses, deep floating-point pipelines

• We present a generic, parameterized, modular architecture for Differential Evolution
• Our architecture presents superior performance to GPU-based high performance solutions
• Future work: optimizing engine performance and resource usage, investigating new fitness functions,
and comparing against multicore CPU implementations
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