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Differential Evolution (DE) [5] with Numerical Integration
(NI) is an ideal target for Custom Computing Machines on
FPGAs, since it produces deep pipelines, requires minimal
external memory bandwidth, and benefits from large memory
bandwidth. DE is a genetic algorithm used for scientific model
optimization. For each candidate solution in a generation, it
involves the following steps: (1) Mutation, where the solution
produces a randomly-altered mutant vector; (2) Crossover,
where some of the solution’s values are exchanged for those of
the mutant; (3) Limiting, where all the values are corrected to
be in a valid range; and (4) Selection, where the new solution
is tested against the original, with the best one surviving.

We propose a generic FPGA-based DE architecture, pa-
rameterized to accommodate to different scientific models. It
supports both non-adaptive and adaptive NI methods. The core
DE engine is programmed in VHDL for high adaptability
and performance, whereas the scientific models and their
NI are programmed in C++ for flexibility and easiness of
development. It comprises the following modules: (1) Control,
which initializes the state, manages the memArrays, and reads
the output results; (2) memArrays, which store the model’s pa-
rameter’s values for each candidate solution, and the solution’s
computed cost; (3) Crossover, which hybridizes candidate
solutions to produce a new one; (4) Limits, which manages
out-of-range values from the previous model; (5) Iteration
Mux, which manages the iterations and inputs of Numerical
Integration; (6) Numerical Integration, which obtains model’s
results from the candidate solutions; and (7) Error Evalua-
tion, which evaluates the obtained results and decides which
candidate solutions survives. Our architecture achieves high
performance by leveraging “Islands of Solutions” [1], [4].

We test our architecture using two particular applications:
The Hodgking-Huxley model [2] with the RK4 NI, and the
Circadian model [3] with the adaptive RKF NI. Both consist
of multiple differential equations, with tens of parameters to
solve. They comprise real-world applications, of higher com-
plexity than previous works in the literature. Our architecture
is able to implement them in a fully pipelined manner.

The compiler reports resource usages orders of magnitude
higher than previous works, with the high-level-coded NI
modules consuming the most part.

We perform an experimental evaluation, comparing our
architecture with a sequential CPU reference, and a high-
performance GPU implementation, running in an NVIDIA
A100 GPU. When targeting a Virtex Ultrascale+ XCVU13P
FPGA, our architecture achieves superior performance than
CPU and GPU for both of the tested applications, with
CPU-relative speedups of up to ×52.6 for Hodgking-Huxley
and ×41.67 for Circadian (with the GPU achieving up to
×24.03 and ×11.76, respectively). Moreover, our proposal is,
on average, ×9.0 (Hodgkin-Huxley) and ×4.11 (Circadian)
more energy efficient than the GPU. Additionally, we observe
that GPU and FPGA performance scale with the amount of
solutions computed each generation, with FPGA scaling being
more pronounced.

The poster associated to this extended abstract, presented at
FCCM 2025, can be found on Researchgate.
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[4] PENAS, D., BANGA, J., GONZÁLEZ, P., AND DOALLO, R. Enhanced
parallel differential evolution algorithm for problems in computational
systems biology. Applied Soft Computing 33 (2015), 86–99.

[5] STORN, R., AND PRICE, K. Differential evolution. A simple and efficient
heuristic for global optimization over continuous spaces. J. of Global
Optimization 11, 4 (1997), 341–359.


