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Abstract
Outliers are known to be detrimental towidely used clustering techniques. Robust clus-
tering alternatives have been introduced to better resist outlying observations. Among
these, robust clustering methods based on trimming have proven effective by allowing
the removal of a fraction of observations where outliers are likely to be found, with
TCLUST being one of the most popular for handling elliptically contoured clusters.
The algorithm for applying TCLUST can be seen as an extension of the concentra-
tion steps used in the fast-MCD algorithm for computing the Minimum Covariance
Determinant. However, obtaining good initializations for these concentration steps in
TCLUST is more complex than in MCD. This initialization task is particularly chal-
lenging unless both the number of clusters and the dimensionality are small. To address
this, a new ensemble initialization procedure for TCLUST will be presented, which
takes advantage of partially correct information from all iterated random initializa-
tions rather than focusing solely on the best individual one found. Initial experiments
suggest that this methodology could improve the computational performance of the
standard TCLUST algorithm.
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1 Introduction

Modifying a small proportion of observations can severely affect the result of many
clustering methods. Consequently, the clustering results may be negatively affected
by including a certain fraction of anomalous or incorrect measurements. Accordingly,
several robust clustering approaches have been proposed trying to make the clustering
results less affected by outliers (García-Escudero et al. 2010; Banerjee and Dave 2012;
Ritter 2014; García-Escudero et al. 2016; García-Escudero and Mayo-Iscar 2024). In
this work, we focus exclusively on a single trimming-based approach, specifically the
TCLUST method introduced in García-Escudero et al. (2008). TCLUST employs an
“impartial” trimming approach, where the term impartial means that the dataset itself
determines which observations to trim.

Robust clustering methods based on impartial trimming provide a partition of the
n observations into G clusters but allowing a fraction α ∈ [0, 1) of observations to
be left unassigned or, in other words, trimmed. The idea was firstly introduced in
Cuesta-Albertos et al. (1997), through the trimmed k-means as a trimmed extension
of the classical k-means. However, trimmed k-means inherits from classical k-means
its preference for spherical and equally scattered clusters. TCLUST is an extension of
trimmed k-meanswhich uses a trimmed classification likelihood approachwhere, apart
from discarding a fixed fraction α of observations,Gmultivariate normally distributed
components are assumed. Consequently, given a sample {x1, . . . , xn} ⊂ R

p, TCLUST
seeks location vectors m1, . . . ,mG in Rp, symmetric positive definite p× p matrices
S1, . . . , SG , weights p1, . . . , pG with

∑G
g�1 pg � 1, and a partition {R0, R1, . . . , RG}

with #R0 � [nα], aiming to maximize

G∑

g�1

∑

i∈Rg

log(pgφ(xi ;mg, Sg)), (1)

where φ(·;μ,�) is the density function of a p-variate normal with location vector μ

and scatter matrix �. Another important aspect of TCLUST is the restriction on the
scatter matrices S1, . . . , SG to ensure that the constrained maximization of (1) is a
mathematically well-defined problem and to avoid detecting uninteresting or spuri-
ous components with scatter matrices whose determinants |Sg| are close to 0. These
restrictions are expressed in terms of constraining the relative size of the eigenvalues
of the scatter matrices as follows: if {λ j (Sg)}pj�1 denote the p eigenvalues of the scatter

matrix Sg , then it is enforced that

maxg�1,...,G; j�1,...,p λ j (�g)

ming�1,...,G; j�1,...,p λ j (�g)
≤ c, (2)

for a fixed tuning constant c ≥ 1. These spurious components can be seen as another
source of lack of robustness (Ingrassia and Rocci 2007; García-Escudero et al. 2018).
Some appealing robustness properties of TCLUST have been demonstrated in Ruwet
et al. (2012) and Ruwet et al. (2013). The target function in (1) can be modified to deal
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with trimmed mixture likelihoods (Neykov et al. 2007; García-Escudero et al. 2014).
Additionally, more sophisticated types of constraints could also be imposed, such as
those introduced in García-Escudero et al. (2022).

From a computational perspective, the TCLUST problem involves solving a com-
plex combinatorial problem because, in principle, all possible partitions of the n
observations intoG+1 subsets are considered, with one of these subsets containing the
[nα] observations to be trimmed. Like other robust (impartial) trimming-based meth-
ods, the algorithm for applying TCLUST relies on so-called “concentration steps”,
which must be properly initialized to effectively explore the parameter space. These
initializations are commonly obtained from small subsamples drawn from the dataset.
In this work, we propose a new procedure for generating useful initializations for
TCLUST based on a novel ensemble initialization approach. This procedure takes
advantage of partially correct information from multiple iterated random initializa-
tions rather than focusing solely on the best individual iteration. To the best of our
knowledge, these ensemble initialization concepts have never been applied within this
framework of robust methods relying on random initializations, nor specifically in the
context of TCLUST.

The outline of the manuscript is as follows. Section 2 briefly reviews the basics of
the algorithm used for the implementation of TCLUST and describes the challenges
in achieving proper initialization within that algorithm, particularly as the dimension
p or the number of clustersG increases. Section 3 introduces the new ensemble initial-
ization proposal to assist with this task. An illustrative example of the proposal and a
simulation study are presented in Sect. 4. The possibility of combining subsampling
and ensemble initialization methods will be discussed in Sect. 5. The effectiveness
of the ensemble initialization strategy in achieving higher values in the constrained
maximization of (1) is demonstrated with a real dataset in Sect. 6. Finally, Sect. 7
concludes the manuscript and briefly summarizes some open research directions.

2 Computational issues in TCLUST

The impartial trimming principles mentioned in Sect. 1 are also found in widely used
robust procedures such as LTS (Least Trimmed Squares) andMCD (MinimumCovari-
ance Determinant) (Rousseeuw and Leroy 1987), where “concentration steps” are
central to the algorithms used for their implementation (Rousseeuw and van Driessen
1999, 2000). These concentration steps are somewhat analogous to the iterative steps
in Lloyd’s classical k-means clustering algorithm (Lloyd 1982), which aims to identify
regions of the sample space where observations are “concentrated” to locate the opti-
mal k-means centers. Similarly, it could be said that the classification EM algorithm
(Celeux and Govaert 1992), which includes the k-means method as a special case, also
relies on concentration steps.

Therefore, it makes sense to combine impartial trimming techniqueswith classifica-
tion EM-type algorithms at a computational level. Building on this idea, an algorithm
for implementing TCLUST was proposed in García-Escudero et al. (2008) and later
improved in Fritz et al. (2013) through a more efficient application of the eigenvalue
ratio constraints.
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The basic algorithm for TCLUST can be described as follows:

1. Consider nstart random initializations, where each initialization is obtained by
selecting G × (p + 1) random observations from x1, . . . , xn to define G initial
location vectors m0

1, . . . ,m
0
G and G initial scatter matrices S01 , . . . , S

0
G (details

provided later). Random weights p01, . . . , p
0
G are chosen, summing to 1 (these

weights can initially be set as p01 � . . . � p0G � 1/G). These scatter matrices

S01 , . . . , S
0
G do not necessarily satisfy the eigenvalue ratio constraints, but these

constraints can be imposed in later steps.

1.1 From the location vectors {ml−1
g }Gg�1, the scatter matrices {Sl−1

g }Gg�1, and the

weights {pl−1
g }Gg�1 from the previous step, compute

di � max
g�1,...,G

pl−1
g φ(xi ;m

l−1
g , Sl−1

g ),

and sort them as d(1) ≤ d(2) ≤ . . . ≤ d(n) to define H � {i : di ≥ d([nα]+1)}.
This subset H of indices is then partitioned into H � H1 ∪ . . . ∪ HG , where

Hg � {i ∈ H such that pl−1
g φ(xi ;m

l−1
g , Sl−1

g ) � max
g�1,...,G

pl−1
g φ(xi ;m

l−1
g , Sl−1

g )}.

1.2 Parameters are updated with plg � ng/(n − [nα])] to update weights, where

ng is the number of observations with indices in Hg , with the sample mean
of the observations with indices in Hg to update the locations in ml

g and with

the sample covariance of the observations with indices in Hg to update the
scattermatrices in Slg . The required constraints on the new Slg matrices are also

imposed in this step using the “eigenvalue truncation operator” introduced in
Fritz et al. (2013).

1.3 Step 1.1 and 1.2 are alternated for niter times (l � 1, . . . ,niter) or until
a stopping criterion is met (for instance, by monitoring changes in the target
function (1)).

2. Return as output from the algorithm the weights, location, and scatter matrices
corresponding to the maximum value found for the target function (1) among all
the iterated nstart initializations.

The algorithmmonotonically increases the value of the target function (1) at each iter-
ation while maintaining the eigenvalue-ratio constraint to identify local constrained
maxima. However, achieving the global constrained maximum requires multiple ran-
dom initializations due to the presence of numerous local extrema (maxima) in the
target function, similar to simpler methods such as MCD or k-means. Therefore, the
key components of the TCLUST algorithm are the random initializations and the
iterative concentration steps. We use the notation nstart to denote the number of
random initializations and niter to indicate the maximum number of iterative con-
centration steps considered for each random initialization. This algorithm has led to
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the tclust package in R (Fritz et al. 2012) and the implementation of TCLUST in
the FSDA Matlab toolbox (Riani et al. 2012).

As mentioned in Step 1 of this algorithm, the random initializations are obtained
by randomly selecting G × (p + 1) observations from the available dataset. In robust
statistical literature, a subset containing theminimumnumber of observations required
to initialize parameters is often referred to as an “elemental set”. Specifically, p + 1
observations in general position are needed to define a scatter matrix, so sets of size
p + 1 were used as elemental sets in the fast-MCD algorithm described in Rousseeuw
and van Driessen (1999). The mean of these p + 1 observations also serves as the
initialization for the location vector. Since G location vectors and G scatter matrices
are needed in TCLUST, at least G × (p + 1) random observations must be considered
to initialize TCLUST’s concentration steps.

The TCLUSTbasic algorithmworks quitewell for problemswith lower dimensions
and when searching for a relatively small number of clusters G. For instance, in
our experience, using nstart=500 and niter=20 is generally effective for most
examples we have tested with dimensions p less than or equal to 5 or 6, and with G
less than 3 or 4. Unfortunately, its performance clearly deteriorates as either p or G
increases, necessitating larger values of nstart and niter. Note that the TCLUST
algorithm reduces to the fast-MCD algorithmwhenG � 1 (with a very large value of c
chosen in (2)), and it is known that the number nstart of random initializations (each
based on elemental sets with p + 1 observations) required for a successful application
of the fast-MCD algorithm increases with dimension p. In fact, Hubert et al. (2012)
demonstrated that nstart=500 is insufficient at high levels of contaminationwhen p
exceeds 10, regardless of n. It is therefore reasonable to expect even greater challenges
in achieving good initializations for TCLUST when G > 1.

It is reasonable to assume that the TCLUST algorithm is more likely to find the
constrained global maximum of (1) by selecting G × (p + 1) observations without
outliers. Furthermore, it would be clearly beneficial if these G × (p + 1) observations
were ordered such that the first p + 1 observations belong to one of the underlying
cluster components, the next p + 1 observations to another cluster component, and so
on. This specific ordering of the G × (p +1) randomly selected observations becomes
increasingly unlikely as p or G grows.

Given the challenge of obtaining good initializations asG or p increases, it may not
be practical to iterate through all nstart initializations. A more effective strategy
could be to fully iterate only the most “promising” initializations while exploring a
larger number of initializations nstart. Therefore, it is advisable to use a higher
nstart but with a minimal number of concentration steps for each, denoted as
niter1 (e.g., niter1 could be set to 3 or 5). Among these minimally iterated ini-
tializations, we should focus on a small proportion that shows the best preliminary
results based on their associated target function values. These promising initializa-
tions are then fully iterated until convergence or until reaching a maximum number
of concentration steps, niter2. This approach was originally considered in the
fast-MCD algorithm Rousseeuw and van Driessen (1999) and has been incorpo-
rated into the tclust package since version 2.0-1. Similarly, the “small EM” strategy
described in Biernacki et al. (2003) could be adapted for this purpose. Another valu-
able strategy could be to complement random initializations with carefully selected
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initializations derived from simpler yet robust clustering methods, such as trimmed
k-means. This approach aligns with the philosophy behind the “deterministic-MCD”
method described in Hubert et al. (2012). Instead of exploring these strategies in more
detail, the remainder of this manuscript will focus on an “ensemble initialization”
approach, which has shown promising results in our preliminary experiments.

3 Ensemble initialization

The standard final output of the algorithm presented in Sect. 2 is the TCLUST partition
corresponding to the “best” iterated random initialization, i.e. the iterated solutionwith
the largest value for (1). However, this approach implies that all “partially correct”
information from other concentration steps, which do not conduct to this best value
found in the target function, is completely neglected.

Different “ensemble clustering” approaches are quite popular in Cluster Analysis
nowadays. To name a few, we refer to proposals in Fred and Jain (2002); Strehl and
Ghosh (2002); Fred and Jain (2005) or Lipor et al. (2021). The main idea behind
these approaches is that combining information from different clustering partitions
can often lead to improved partitions of the data. In this work, we start with the same
principle and extend it to the initialization of robust clustering procedures, particularly
the TCLUST algorithm. We consider that the combination (ensemble) of all iterated
random initializations could be useful for defining a new ensemble-type initialization
to be further refined. This approach aims to leverage the partially correct information
resulting from the concentration steps of all nstart random initializations.

To be more precise, the proposal is as follows, outlined in steps A.1 to A.5:

A.1 Consider {Cb}nstartb�1 , which represents the nstart partitions of the indices
{1, 2, . . . , n} obtained after niter1 iterations (steps 1.1 to 1.3 of the algorithm
in Sect. 2) from nstart random initializations of the TCLUST algorithm (Step
1 of this algorithm), withG clusters and an α trimming level. For the b-th random
initialization, the resulting partition after these niter1 iterations is denoted as

Cb � {Hb
0 , Hb

1 , . . . , Hb
G},

where

Hb
0 ∪ Hb

1 ∪ . . . ∪ Hb
G � {1, 2, . . . , n}, Hb

g ∩ Hb
g′ � ∅ for g �� g′, and #{Hb

0 } � [nα].

Here, Hb
1 , . . . , Hb

G are the indices of the G clusters obtained, and Hb
0 represents

the indices of the trimmed observations, resulting from the iterated b-th random
initialization.

A.2 Obtain an affinity matrix A (n × n) with terms defined as

Aii ′ � 1

nstart
#{b : xi and xi ′ are co-clustered (and not trimmed) in Cb}.

123



Improving the computational performance of TCLUST...

In other words,

Aii ′ � 1

nstart
#{b : {i, i ′} ⊂ Hb

g for any Hb
g with g �� 0}.

A.3 Compute

Ai �
n∑

i ′�1

Aii ′ for i � 1, . . . , n, (3)

and sort these Ai values in increasing order A(1) ≤ A(2) ≤ · · · ≤ A(n). For the
ensemble initialization, we initially considered as trimmed observations those xi
with i ∈ H0, where H0 � {i : A(i) ≤ A([αn])}, and the non-trimmed observations
are those with indices H � {1, 2, . . . , n} \ H0.

A.4 A hierarchical clustering algorithm is applied to the n − [nα] observations
{xi : i ∈ H}. In thiswork,we propose using the “Ward criterion”with dissimilar-
ities for observation xi and xi ′ given by 1− Aii ′ . The resulting dendrogram is cut
into G clusters. Other hierarchical clustering approaches could have been simi-
larly considered, or even “spectral clustering” methods starting from the affinity
matrix A. Ward’s hierarchical clustering produces a partition of the indices in H
as H � H1∪. . .∪HG . The partition of {1, 2, . . . , n} given by H0∪H1∪. . .∪HG

is used as the “ensemble initialization”.
A.5 Starting from the result of Step A.4, further niter2 concentration steps are

applied beginning with Step 1.2 in Sect. 2 by using the {Hg}Gg�1 sets from the

obtained ensemble initialization. The desired constraints on the eigenvalue-ratio
are enforced during these niter2 additional concentration steps.

By defining the terms Aii ′ in the affinity matrix A in this manner, we assign higher
affinities Aii ′ to pairs of observations xi and xi ′ that in more iterated random initial-
izations end up in the same cluster (even if they do not always end up co-clustered
together). On the other hand, outlying observations are less likely to be co-clustered
with non-outlying ones, as they will be trimmed in several random initializations. This
results in outliers being associated with lower values in Aii ′ and, consequently, with
smaller values in Ai in (3).

In cases where the ensemble initialization process does not increase the value of
the target function compared to the best of the individual initializations, of course, it
makes sense to simply return the best iterated result from the individual initializations.

For simplicity, wewill use the exact steps A.1-A.5 described above in the remaining
material. However, there aremany other open possibilities to explore, which are briefly
outlined here as remarks:

Remark 1 One possibility to explore is using a different number of clusters, G0, than
G when generating the partitions {Cb}nstartb�1 for computing the Aii ′ terms (i.e., by
obtaining nstart partitions Cb � {Hb

0 , Hb
1 , . . . , Hb

G0} in Step A.1). It is important

to note that we still recover the desired number of clusters G by cutting the resulting
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dendrogram into G clusters in Step A.4. Additionally, during the niter2 final con-
centration steps in Step A.5, we reapply the initial TCLUST parameters c, G, and α.
We could experiment with differentG0 values, apply the niter2 concentration steps
to the different ensemble initializations (one for each G0), and finally select the one
corresponding to the G0 resulting in the highest value of (1). Considering an initially
larger number of clusters, G0 > G, is not a new concept in ensemble clustering, as
evidenced by the references cited earlier. This idea will be briefly examined in the real
data example presented in Sect. 6.

Remark 2 Although we simply suggest usingWard’s criterion, other hierarchical clus-
tering techniques could be applied. In fact, several ensemble initializations can be
derived from the matrix A by adopting different clustering strategies, and all of them
could subsequently be iterated through Step A.5. In this case, the final output of our
TCLUST algorithm would be the one that achieves the highest value of (1) after the
final niter2 iterations. Additionally, robust hierarchical clustering techniques based
on the affinity matrix A could be explored. Some relevant approaches include those
proposed by Li et al. (2007) and Balcan et al. (2014). Spectral clustering methods with
appropriate thresholding (Lipor et al. 2021) could also be a viable option for extracting
information from the Amatrix. Finally, another approach would be to return clustering
results directly obtained from the matrix A without applying Step A.5. This might be
useful in cases where deviations from normal distribution assumptions occur andmore
general clustering structures are required. However, this option is not considered in
this work, as the concentration steps in Step A.5 are designed to increase the target
function (1), aligning with our goal of implementing TCLUST to achieve the highest
possible target function value.

Remark 3 The ensemble initializationmethod can become problematic when n is large
because the matrix A contains n(n + 1)/2 elements that need to be stored in memory.
Additionally, applying hierarchical clustering techniques to a large number of obser-
vations, n− [nα], can be problematic when n is large. However, this difficulty may be
mitigated by using subsampling. Specifically, we can consider a random subsample
of size n0, with n0 < n, to derive an ensemble initialization from this smaller sub-
sample, which can then be refined using the full dataset in a modified Step A.5. This
approach aligns with the “nested extensions” suggested in Section 3.3 of Rousseeuw
and van Driessen (1999) and with more sophisticated methods like those described
in De Ketelaere et al. (2020) for applying MCD to large sample sizes. Section 5 pro-
vides an example of how combining subsampling and ensemble initialization can be
effective in situations where the sample size n is moderately large.

4 Illustrative example and simulation study

4.1 Illustrative example

We begin by demonstrating the potential benefits of the proposed ensemble initializa-
tion approach with an illustrative example. This example uses n � 400 observations
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in p � 10 dimensions, with G � 6 elliptical clusters and 10% contamination added
(more details on how the dataset is generated will be provided in Sect. 4.2). The rele-
vant information about clusters and contamination is included in the first two variables.
Figure 1 shows a pairwise plot of the first four variables out of the 10 variables.

The TCLUST algorithm described in Sect. 2 is first applied using the correct param-
eter values G � 6, α � 0.1, and c � 81, with nstart=100 random initializations
and niter=20 concentration steps. Figure 2 shows the values of the target function
(1) resulting from the concentration steps applied to the nstart random initializa-
tions. The highest value of the target function found is −6381.048, marked with a red
point.

The partition associated with that “best” initialization is represented in Fig. 3,
showing only the first two variables. We see that this solution is deficient, with a

Fig. 1 The first 4 of the 10 variables for the dataset used in the illustrative example, with different colors
representing the 6 clusters and black representing the contaminating observations (color figure online)

Fig. 2 Values of the target function from nstart=100 random initializations and niter=20 concentra-
tion steps, marking in red the highest value found (color figure online)
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Fig. 3 Partition associated with that best initialization in the first two variables

misclassification rate of 20.75% since, for instance, two clear differentiated clusters
are mixed together. Perhaps nstart=100 was not a sufficient number of initializa-
tions for the complexity of the problem (p and G). The computational time spent in
performing these initializations and concentration steps was 1.518 s.

Figure 4 shows the results after niter=20 concentration steps for the first 4
random initializations (out of the nstart=100 tried). As expected, none of them
is perfect, but all four exhibit some “partial success” in detecting parts of the cluster
structure and much of the contamination. This partially correct information is exactly
what we aim to exploit through the ensemble initialization proposal.

The partially correct information in the nstart=100 iterated random initializa-
tion with niter=20 is being gathered in the affinity matrix A by following the
procedure described in Sect. 3, represented in the heatmap graph in Fig. 5. We can see

Fig. 4 Result of the concentration steps for the first 4 random initializations tried in the first two variables
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Fig. 5 Heatmap of the affinity matrix A obtained from the nstart=100 random initializations

there that, near the diagonal, a structure of 6 boxes associated with higher affinities are
clearly seen. In fact, the Amatrix is in clear correspondence with the underlying clus-
ters structure (no reordering of rows and columns has been done in the heatmap and
the data generation process has followed the clusters sequential order). Figure 5 also
displays several small Aii ′ affinities in its upper and right sections, which correspond
to the portion of the dataset with the 10% added contamination.

The steps A.3 to A.5 described in Sect. 3 are applied with niter2=10, by starting
from this matrix A. We obtain the robust clustering partition shown in Fig. 6 (only
the first two variables shown). We can see that the obtained results are now more
satisfactory, with an improved classification error rate 5.5% and the value of the target
function has risen to−6352.729. The additional time required to achieve this improved
solution is approximately 0.324 s.
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Fig. 6 Partition resulting from applying ensemble initialization (only the first two variables are shown)

4.2 Simulation study

The proposed simulation study is based on generating n � n random observations
(n �200, 500 or 1000) by following three different types of scenarios (scenario�1,
2 or 3) withG � G clusters (G � 3 or 6) and including a fixed fraction 10% of contam-
inating observations. These contaminating observations are uniformly distributed in
the range for the non-outlying part of the data in a “symmetric” type of contamination
(symmetry=1) or more concentrated in one corner of the dataset in an “asymmetric”
type of contamination (symmetry=2). The datasets are generated in dimension p �
p (p � 4 and 10), but only the first two variables include relevant information about
clusters and outliers while the remaining p−2 variables are “noise” variables each
following independent standard normal distributions.

In scenario=1, we generate G spherically and equally scattered clusters with
fairly close location vectors. scenario=2 corresponds to G elliptical clusters with
different orientations and some overlap between clusters. Finally, scenario=3
corresponds to a case analogous to scenario=1 but with three more distant
locations vectors. The three scenarios have been generated with normal com-
ponents whose maximal eigenvalues-ratio for their scatter matrices satisfies the
eigenvalues restriction in (2) for c � 1 in the scenario=1 and scenario=3,
and c � 92 � 81 for scenario=2. We considered a balanced=1 case that
generates groups with the same sizes (all clusters including 30% of the observa-
tions for G=3 and all clusters including 15% of the observations for G=6). The
balanced=2 case creates groups of different sizes (groups of sizes 25%, 30%
and 35% for G=3 and two groups with the 12.5%, two with 15% and two with
17.5% for G=6). The specific generation of these data sets follows from the applica-
tion of a simula_tclust(n,p,G,scenario,balanced,symmetry)
function which is provided in the supplementary material file.
The dataset in Sect. 4.1 was the result of the application of
simula_tclust(n=400,p=10,G=6,scenario=2,balanced=1,symmetry=1).
Figure 7 shows some examples of the generated data sets when n=400 in the three
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Fig. 7 Examples of the generated datasets in the simulation study, for different combinations of parameters
(rows and columns) in the balanced=1 case when p=2. Datasets have been standardized to make their
scalesmore comparable. Different colors are used for the clusters, with black representing the contamination
(color figure online)

scenarios and the two types of contamination for different numbers of clusters only
in the balanced=1 case when p=2.

For the simulation study, we have considered 100 random realizations of
simula_tclust() for all possible parameter combinations. For each of these
generated data sets, we apply the following three implementations of the TCLUST
with appropriateG, α and c parameters (i.e., coinciding with the ones when generating
the datasets):

Method 1 The use of the TCLUST algorithm in Sect. 2 with nstart random ini-
tializations (equal to 100 and 400) and niter=20.

Method 2 The ensemble initialization procedure in Sect. 3, starting from the same
iterated nstart random initializations, and using niter2=20 in Step
A.5.

Method 3 The use of the TCLUST algorithm in Sect. 2 with 5×nstart random
initializations and niter=20, where nstart is the number of random
initializations considered forMethod 1 and Method 2.

Figure 8 shows boxplots for the TCLUST target values (the larger the better), Fig. 9
shows boxplots for the misclassifications rates (the smaller the better) and Fig. 10 the
values of the computing times (the smaller the better) in a logarithmic scale. Only
the results when balance=1 and symmetry=1, i.e. the balanced and symmetric
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Fig. 8 Target function values for different combinations of parameters in the simulation study in the
balance=1 and symmetry=1 case.Method 2 (green color) shows the results for the proposed ensemble
initialization and Method 3 (blue color) the results when using Method 1 (red color) with four times more
random initializations. To better illustrate these values, horizontal dashed lines are plotted at the median of
the target values obtained forMethod 2. s=1, s=2 and s=3 refer to the 3 scenarios (scenario=1, 2 and
3) (color figure online)

contamination case, are shown in these figures but the results are analogous in the
other cases. The results for other values of balance and symmetry are given in
the supplementary material file.

The boxplots in Fig. 8 show improvements in the target function in (1) for the
proposed Method 2 (in green) compared to Method 1 (in red) and even Method 3 (in
blue). We have highlighted these improvements by adding horizontal dashed lines at
the median target function values obtained for Method 2, aiming to make it easier to
see the advantage provided by the ensemble initialization approach. In fact, it can be
observed that the number of times that the ensemble initialization inMethod 2 results
in higher target function values than Method 1 is almost 100% or extremely close to
100% in all the situations considered in this simulation study. This advantage, in this
particular case, translates into a reduction in misclassification rates, as shown in Fig. 9.
The misclassification rate is considered as the fraction of non-trimmed observations
that are not correctly assigned to their respective clusters (a reordering of cluster labels
can be applied to address label switching issues), and a misclassified observation is
also counted if a contaminating data point is wrongly assigned to any cluster. The
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Fig. 9 Misclassification rates for different combinations of parameters in the simulation study in the
balance=1 and symmetry=1 case.Method 2 (green color) shows the results for the proposed ensemble
initialization and Method 3 the results when using Method 1 with four times more random initializations
(color figure online)

advantages of Method 2 in terms of target function values and misclassification rates
are not due to a significant increase in computing times, as shown in Fig. 10. The
computing times never exceed those of using four times more random initializations,
as done inMethod 3, even though those four times more random initializations do not
manage to significantly improve the target function values and misclassification rates
as much as the proposed Method 2.

5 Combining subsampling and ensemble initialization

Asmentioned inRemark3, large sample sizesn could pose a challenge for the proposed
ensemble initialization approach due to the large size (n × n) of the affinity matrix
A. However, we have identified a very simple yet seemingly effective approach based
on “subsampling” in such cases. The idea is to randomly extract a subsample of size
n0, with n0 < n but such that n0 × n0 is not an issue for applying an ensemble
initialization approach. Let {i1, . . . , in0} be a random subsample of {1, . . . , n} and
apply stepsA.1 toA.4 to the subsample {xi1 , . . . , xin0 } to get the ensemble initialization
H0 ∪ H1 ∪ · · · ∪ HG for that subsample. However, the final concentration steps in A.5
are performed to the “whole” data set {x1, . . . , xn}where initial parameters (instead of
one initial partition) for these final concentration steps are computed from the sample
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Fig. 10 Computing times in seconds (in logarithmical scale) for different combinations of parameters in the
simulation study in the balance=1 and symmetry=1 case.Method 2 (green color) shows the results for
the proposed ensemble initialization and Method 3 the results when using Method 1 with four times more
random initializations (color figure online)

means and the sample covariances of the observations in each Hg , g � 1, . . . ,G, and
weights initialized as #Hg/(n0 − [n0α]).

We have found that this simple approach works quite well in pre-
liminary experiments. For instance, consider 100 datasets generated by
simula_tclust(n=50000,p,G,scenario,balanced=1,symmetry=1)
using the same values for G, p and scenario as in the simulation study in Sect. 4.2.
Note that we are generating relatively large datasets, each with n � 50000 obser-
vations. We apply the described subsampling strategy with n0 � 400(<< 50000)
and niter2=20 for two different values of nstart (100 and 400). The results, in
terms of target values and computing times (on a logarithmic scale), are presented
in Fig. 11 and compared with the results of applying Method 1 and Method 3, as
introduced in Sect. 4.2, to these larger datasets.

We can clearly see that this combination of subsampling with ensemble initializa-
tions (Method 2 sub) produces the highest values for the target function. On the other
hand, the computing time is significantly reduced compared to directly handling the
dataset with n � 50000 using Method 1. This reduction in computing time is even
more pronounced when 5×nstart random initializations are considered inMethod
3, which does not significantly increase the target function values but results in highly
demanding computing times.
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Fig. 11 Target values in (a) and computing times (on logarithmic scale) in (b) when comparing the subsam-
pling combinedwith ensemble initialization (denoted asMethod2 sub) described inSect. 5with subsampling
size n0 � 400 (green color) with respect Method 1 (in red color) and Method 3 (blue color) for simulated
datasets of size n � 50000 (color figure online)
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Another example with an even larger sample size, n � 200000, is provided in the
supplementary materials file.

6 Real data example: olive oil data

In this example, we will see the benefits, in terms of achieving higher values in the
target function, when using the proposed ensemble initialization methodology on a
well-known real dataset while applying TCLUST for different combinations ofG and
α. With that purpose, we use the “olive oil” dataset (Forina et al. 1983), which is
available, for instance, from the pgmm package at CRAN (McNicholas et al. 2015)
and contains p � 8 chemical measurements on the acid components of n � 572 olive
oil specimen produced in various regions in Italy. We apply TCLUST with G � 7
and G � 9 (the “true” number of regions is 9, but G � 7 has been also considered in
the literature as can be seen in Cerioli et al. 2018), α � 0.05 and α � 0.1, and when
c � 15 is fixed. The following three methods are considered:

Method 1 The TCLUST algorithm in Sect. 2 is used with nstart=1000 and dif-
ferent values for niter1.

Method 2 The proposed ensemble initialization procedure described in Sect. 3, start-
ing from the same number of random initializations nstart=1000 and
the same number of initial concentration steps niter1.

Method 3 The use of theTCLUSTalgorithmas inMethod 1 butwith nstart=5000
(i.e., four times more random initializations than Method 1).

Figure 12 shows boxplots corresponding to the values achieved in the target function
(the larger the better) after running 100 timesMethod 1with same values of niter1,
equal to 5, 10, 20 and 50.

We can see how, in this example, the ensemble initialization strategy in Method
2 consistently yield larger values in the target function values than Method 1 and
Method 3.Moreover, the values attained in the target functionwhen using the ensemble
initialization approach seem to exhibit less variability and lower dependence on the
particular choice of niter1. Due to the fact that n � 572 is not particularly large, the
extra computing time to compute the affinity matrix and performing the hierarchical
clustering never exceeded 5% of the total computing time.

We also take advantage of this example to briefly investigate the possibility of con-
sidering different values ofG0, not necessarily equal toG, when computing the affinity
matrix A, as mentioned in Remark 1. In this example, we focus on the application of
TCLUST when G � 9, α � 0.05 and c � 15 by consideringMethod 1,Method 2 and
Method 3, again, applied 100 times with different values of niter1 (5, 10, 20 and
50). However, when applying Method 2, we have considered different values of G0

for obtaining the partitions {Cb}nstartb�1 with Cb � {Hb
0 , Hb

1 , . . . , Hb
G0} in Step A.1.

Apart from G0 � G � 9, we have considered a value of G0 � 7, smaller than 9, and
values G0 � 12, 18 and 24, larger than 9. Recall, that after applying steps A.3, A.4
and A.5 of the proposal, we still return a TCLUST-type partition with G � 9 clusters
and an α � 0.05 fraction of trimmed observations, regardless of the value G0 used to
define the affinity matrix.
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Fig. 12 Boxplots for the target function values achieved in 100 applications ofMethod 1 (red color),Method
2 (green color) andMethod 3 (blue color), as described in Sect. 6, when applying TCLUST for G � 7 and
9 and α � 0.05 and 0.1 with c � 15 in the olive oil dataset. Different values of niter1 are considered
(color figure online)

Figure 13 shows the boxplots for the target function values achieved. We see that
sometimes better values in the target function can be attained with G0 values larger
thanG � 9. Anywhere, we also see that larger values of the target functions, combined
with less variability, seems to be consistently attained in this example regardless of
the choice of G0 through ensemble initialization.

It is important to note that a higher value of the target function (1) does not nec-
essarily guarantee a smaller misclassification rate when a “true” labeling is available.
Figure 14 shows boxplots for the misclassification rates associated to the results of
the three methods (Method 1, Method 2 and Method 3) displayed in Fig. 13. These
misclassification rates are computed for the non-trimmed observations based on their
assignments to the 9 “true” regions, after the best possible permutation of the cluster
labels. Note that, in this specific example, higher values of G0 sometimes appear to
perform better in terms of misclassification rates. However, we cannot rely on the
supposedly unknown “true” labels to determine the appropriate G0. Once again, we
emphasize that achieving a higher value of (1), depending on the chosen c, is our sole
criterion when using TCLUST for fixed values of the parameters G, α, and c.

Similar experiments have been conducted for other values of c, as shown in the
supplementary material file. We observe that higher values of the target function are
consistently obtained when using this ensemble initialization approach, but its effect
on the misclassification rate is more difficult to evaluate, in this particular case, at least
for the values of G and α considered.
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Fig. 13 Boxplots for the target function values achieved in 100 applications ofMethod 1 (red color),Method
2 (green color) and Method 3 (blue color), with different values of niter1, when applying TCLUST for
G � 9 and α � 0.05 with c � 15 in the olive oil dataset. Different numbers of clusters G0 in the partitions
in Step A.1 are considered (color figure online)

Fig. 14 Boxplots for the misclassification rates associated to the results of the three methods displayed in
Fig. 13
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7 Conclusion and open research lines

TCLUST is a robust clusteringmethodbasedon trimming,which involves an algorithm
that requires random initializations and concentration steps for its implementation.
While the algorithm can be successfully applied in low dimensions p and with a small
number of clusters G, its performance deteriorates as these conditions change if an
extremely large number of random initializations is not considered. A novel partial
remedy for this drawback has been introduced in this work, based on a new ensemble
initialization approach. The initial experiments have shown promise, and we are con-
fident that this type of ensemble initialization, or suitable modifications of it, can be
genuinely helpful in practice. Of course, this proposal does not attempt to completely
overlook the significant challenges associated with implementing TCLUST in cases
with very high values of p or G.

The need for correct initializations is a common requirement for many other meth-
ods in robust clustering, such as trimmed k-means, the robust linear grouping algorithm
(García-Escudero et al. 2009), OTRIMLE (Coretto and Hennig 2016), trimmed like-
lihoods (Neykov et al. 2007), and possibly other methods mentioned in the references
provided in Sect. 1. We believe that an ensemble-type initialization approach, or
tailored adaptations of it, could also be beneficial for these other robust clustering
methods.

We have assumed in this work that G, α and c are known parameters for TCLUST.
Admittedly, in most of the cases, we deal with unknown parameters to be determined
from the dataset at hand and from the user’s ultimate goals. Anyway, being able
to apply TCLUST for fixed G and α in a computationally efficient way is clearly
a first step towards the derivation of sensible parameter values. All the procedures
already available in the literature to guide the user in determining input parameters in
TCLUST require the careful monitoring of changes due to different combinations of
parameter values (García-Escudero et al. 2011; Dotto et al. 2018; Cerioli et al. 2018).
Furthermore, relevant information extracted from the affinity matrix A could result in
new useful tools to choose parameter values in TCLUST.

The material presented here clearly warrants further research. In this work, we
have made a simple and not overly elaborate use of the ideas behind the ensemble
initialization proposal. Despite this initial application, we have observed noticeable
advantages in achieving higher values in the constrained maximization that TCLUST
aims to perform. We expect that more careful and refined approaches will likely yield
even better results. Several open research directions and potential functionalities to
explore are outlined in the remarks in Sect. 3. Once tested, our ultimate goal is to
incorporate them into ready-to-use software.
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