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Static, dynamic and electronic properties of some
trivalent liquid rare earth metals near melting:
ab initio and neural network simulations

Beatriz G. del Rio * and Luis E. González

We report a study on several static and dynamic properties of the early trivalent liquid rare-earth metals

at thermodynamic conditions near their respective melting points. It has been performed by resorting to

machine learning (ML) techniques, in which the associated neural network-based interatomic potentials

were derived from ab initio molecular dynamics simulations within Hubbard-corrected density functional

theory. We report the results obtained for the static structural properties, including an analysis of the

local short-range order. Single-particle and collective dynamic properties have also been obtained, from

which transport coefficients and wavevector-dependent dispersion relations are evaluated. The results

show a quite homogeneous behavior of the structural, dynamic, and transport properties throughout the

series. The electronic properties have been obtained from the ab initio simulations, and show important

discrepancies with respect to the low temperature solids, portraying a more band-like picture of the 4f

states in the liquid.

1 Introduction

The rare-earth (RE) elements form the largest chemically coher-
ent group in the periodic table; it consists of the fifteen
lanthanide elements, with scandium and yttrium sometimes
also included in the family. Their metallurgical, chemical,
catalytic, electrical, magnetic, and optical properties make them
suitable for a range of industrial applications, such as electro-
nics, clean energy, aerospace, automotive (mainly in electric
cars) and defense (for instance, to obtain hard materials for
armoring vehicles). These metals are characterized by a 4fn shell
(where n increases from 0 for Lanthanum to 14 for Lutetium).
The other outer shells are 6s (2 electrons) and 5d (generally 1
electron) and they also contribute to the conduction band.

In the specific case of their molten state and despite their
technological relevance, there is a scarcity of experimental data
concerning their static, dynamic and electronic properties.

The static structure factor, S(q) and the pair distribution
function, g(r), are standard magnitudes used to describe the
structural arrangement of atoms in a disordered system such as
a liquid. In the case of the liquid RE metals considered in this
work, the available experimental structural data were obtained
nearly fifty years ago. In 1975, Bellisent and Tourand1 per-
formed neutron scattering (NS) measurements of the S(q) of
liquid Ce (l-Ce) and l-Pr at a temperature slightly higher than

their respective melting points. However, as indicated by the
authors, their obtained S(q) showed an anomalous behavior
because they exhibited just the main maximum with no addi-
tional oscillations. Shortly after, the NS measurements of
Enderby and Nguyen2 for l-Ce and the X-ray diffraction (XD)
data of Waseda and Tamaki3 for liquid Ce, Pr, Eu, Gd, and Yb at
thermodynamic conditions near their respective melting points,
as well as those of Waseda and Miller4 for Nd, Dy, Ho, Er, and
Lu, yielded structure factors with a main peak followed by
additional oscillations of decreasing amplitude. Ever since, no
additional measurements of the S(q) have been performed for
any of these liquid metals; moreover, their dynamical structure,
as characterized by the dynamic structure factor, has not been
measured yet.

Additional available experimental data for these liquid RE
metals pertain to some transport coefficients only. Specifically,
the isothermal compressibility, sound velocity5 and shear
viscosities6 have been measured for l-Ce and l-Pr only; however,
their diffusion coefficients have not been determined yet.

This dearth of experimental data emphasizes the impor-
tance of resorting to other strategies such as theoretical and
computer simulation methods to extract information about
their structural, dynamical, transport and electronic properties.

Even though the RE elements constitute a large family of
atoms in the periodic table and have quite a few high-
technology and environmental applications, ab initio studies
of their electronic properties are scarce. This may be explained
by the fact that the RE elements involve 4f electrons whose
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strong correlation effects pose specific problems for ab initio
methods.

In the context of density functional theory (DFT), it is known
that the Kohn–Sham (KS) formalism of DFT,7,8 with local
density approximation (LDA) or generalized gradient approxi-
mation (GGA), does not account properly for the electronic
exchange and correlation interactions. Therefore, a usual way
of going beyond the LDA and GGA is by resorting to the DFT+U
method,9 which offers the possibility of a more accurate
description of the properties of highly correlated systems at a
reasonable computational cost.

Most studies have focused on the low-temperature solid phase
and among those we mention the work by Eriksson et al.10,11 who
used the linearized muffin-tin orbital (LMTO) method within the
LDA approximation to study the cohesive energies for some RE and
actinide elements. Also, Delin et al.12 used the DFT theory combined
with both the LDA and GGA approximations to study the equili-
brium volumes, bulk moduli, and cohesive energies of the RE
elements by assuming both the fcc and hcp crystal structures. Their
results showed that GGA approximation improves the results
obtained through LDA for these elements, correcting the overbind-
ing tendencies of the latter approximation. A similar study was
performed by Soderlind et al.13 who, within the context of the DFT
theory evaluated equilibrium volumes, bulk moduli, and magnetic
moments of the RE elements; moreover, they analyzed the influence
on those properties of the exchange–correlation functional, spin–
orbit interaction, and orbital polarization.

Going beyond standard DFT, Strange et al. used self-interaction
corrections to analyze the reasons underlying the change in the
valence number along the lanthanide series at their low-temperature
equilibrium structures, that were ascribed to the evolution in the
position of high-energy f-type bands relative to the Fermi energy.14

More recently, Locht et al.15 have used a combination of the DFT
with the dynamical mean-field theory to study the electronic struc-
ture of the RE elements and analyze the equilibrium volume, bulk
modulus, magnetic and spectral properties.

However, when it comes to the molten state of the RE metals,
we are only aware of the DFT+U simulation study performed by
Siberchicot and Clerouin16 for l-Ce at a somewhat higher
temperature, T = 1320 K. They considered 12 valence electrons
(as in the present calculation) along with a Hubbard U term of
5.4 eV which was taken from a DFT+U study on the g and b
phases of solid Ce.17 They reported results for static properties
(g(r) and S(q)), electrical conductivity, and optical indices.

In this paper we have carried out a comprehensive charac-
terization of some liquid RE metals near their melting tem-
peratures, studying several electronic and ionic properties,
where the latter include the static structure and also dynamic
and transport magnitudes. The calculations have been per-
formed by resorting to machine learning (ML) interatomic
potentials obtained from a database generated by DFT-based
simulations. More specifically, for each metal, we have first
performed a DFT+U simulation calculation in which the liquid
metal has been modeled as an interacting system of ions and
electrons whose associated electronic ground state is evaluated
for any ionic configuration, following the Born–Oppenheimer

approximation, using the DFT+U formalism. The Hellmann–
Feynman theorem delivers the forces on the ions, and these are
used within the Newtonian equations of motions in order to
evolve the atomic positions. This DFT+U simulation method
requires large computational capabilities and imposes severe
limitations concerning the simulation times and size of the
systems under study; nonetheless, these disadvantages are
somewhat balanced by the accuracy of the obtained results.

These restrictions are very important when wavevector-
dependent properties are studied, since the minimum value
attainable in the simulations is inversely proportional to the
cubic root of the number of particles, leading in the case of ab
initio simulations to relatively high values for the minimum
wavevector that hinder the possible extrapolation towards the
hydrodynamic region, which is necessary in order to obtain
several transport properties. Alleviating such problems would
require a large number of atoms/ions (tens of thousands), and
improving the statistics would imply longer simulation times
(B100–1000’s of ns). At present, this is not directly feasible for
ab initio methods, whereas it can be routinely achieved by
resorting to classical MD (CMD) simulations based on inter-
atomic potentials. Such an approach, however, usually has a
negative impact on the accuracy of the results as compared to
first principles data. ML techniques have recently appeared as a
way of addressing the above mentioned problems by enabling
the construction of interatomic potentials which predict the
system energy and forces by numerical interpolation using a
database generated by quantum mechanical (commonly DFT-
based) calculations. These ML-based interatomic potentials
allow to use system sizes and simulation times typical of
CMD simulations but with a quantum mechanical accuracy.

The paper has been structured as follows: the next section
summarizes the basic ideas underlying the DFT+U and ML
simulation methods along with some technical details. Section 3
contains the results obtained in the study and a discussion on them
in comparison with the experimental data available. Section 4
finally summarizes the results drawing some conclusions.

2 Computational method

Table 1 lists the specific RE metals and the corresponding
thermodynamic states for which this simulation study has been
performed. The first step was the generation of a reference
database and this was achieved by means of DFT+U simulations
performed using the DFT-based Quantum-ESPRESSO (QE)
package.18,19 In this part of the calculation, the electronic
exchange and correlation energies were described by the gen-
eralized gradient approximation (GGA) of Perdew–Burke–
Ernzerhof.20 The ion-electron interaction was characterized by
means of projected augmented wave (PAW) pseudopotentials
specifically derived, along with Hubbard U values, by Topsakal
and Wentzcovitch21 to be used in DFT+U calculations for the
RE metals. These were constructed from a scalar-relativistic
calculation which included non-linear core corrections and by
imposing the condition that QE calculations for solid rare-earth
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nitrides using these PAW pseudopotentials yielded total den-
sities of states matching those obtained by an all-electron
calculation.21 In these pseudopotentials the 6s, 5s, 5p, 5d and
4f orbitals are considered as valence states; therefore the
number of electrons explicitly considered in the valence shell
ranged from 12 (Ce) to 18 (Gd) electrons. The present QE-based
simulations were carried out by using a cubic cell containing
100 atoms which implied that the number of electrons expli-
citly considered varied from 1200 to 1800 electrons. The energy
cut-off for the plane-wave expansion of the wavefunction was in
the range 340–530 eV, and the single G point was used for
sampling the Brillouin zone. We notice that the QE simulation
method has already shown its power to describe accurately the
properties of several other liquid metals.22–31

Afterwards, we used the results of the previous DFT+U simula-
tions as a reference database from which deep neural network
potentials (DNNP) were constructed using the SIMPLE-NN
package.32 To transform the atomic coordinates into descriptors
of the atomic environment, we employed Behler-Parrinello Gaus-
sian functions,33,34 using the Gastegger method35 to select the
parameters. Between 21 and 35 Gaussians were employed for each
element. The architecture of the neural networks employed for the
DNNPs ranged from two layers for Sm, to three for Ce, Pm, and Gd,
and four for Pr and Nd. All of them used 50 neurons per layer
except Sm, which employed 100. In all cases, the DNNPs were
trained using a training and validation split of 80 : 20. The
subsequent CMD simulations were performed using the LAMMPS
package.36 Table 1 gives information concerning both the DFT+U
and ML-based simulations along with other technical details. The
configurations obtained from the ML simulations were used for
the evaluation of the static, dynamic, and transport properties of
the corresponding liquid metal.

3 Results and discussion
3.1 Static properties

The static structure factors, S(q), obtained for all the systems
studied are plotted in Fig. 1, where they are compared with the
corresponding experimental data for the cases where the latter

is available. The results for l-Ce, l-Nd, and l-Gd exhibit a fair
agreement with the XD data with respect to the position and
shape of the first peak; however, we obtain some mismatch
concerning the position of the second peak. Fig. 1 also provides
a closer look at the shape of the second peak of the S(q) for
which the ML simulations predict a discernible asymmetric
shape for l-Ce to l-Pm, whereas it becomes more symmetric
for the two other systems. For comparison, we note that the
present S(q) for l-Ce is qualitatively similar to that obtained by
the ab initio simulations of Siberchicot and Clerouin16 which
also showed some asymmetry of the second peak after a
smoothing procedure, that was needed because of a very noisy
result due to the relatively short simulation time. Additionally,
we can stress that the height of the second peak obtained in our
study is more in line with the experimental data than the one
obtained in the previous ab initio study, which was quite higher.

In the ML study the smallest wavevector attainable for all the
RE metals was q E 0.10 Å�1, whereas in the case of the DFT+U
simulations the smallest q-value was always greater than
0.40 Å�1. The smaller value of the ML results allows a more
accurate estimatation of the isothermal compressibility, kT,

Table 1 Thermodynamic input data of the liquid rare earth metals
considered in the present simulation study. r is the total ionic number
density, (taken from ref. 6), T is the temperature, Dt is the ionic timestep,
Zval is the number of valence electrons in the pseudopotential, U (Hubbard
term) and Nc is the total number of generated configurations

Code r (Å�3) T (K) Np Dt (fs) Zval U (eV) Nc

Ce QE 0.0287 1143 100 6.0 12 2.5 9500
ML 6400 1.0 — — 180 000

Pr QE 0.0283 1223 100 6.0 13 4.0 16 000
ML 6400 1.0 — — 180 000

Nd QE 0.0289 1325 100 6.0 14 2.4 14 000
ML 6400 1.0 — — 180 000

Pm QE 0.0287 1350 100 6.0 15 3.4 11 800
ML 6400 1.0 — — 180 000

Sm QE 0.0280 1400 100 6.0 16 3.3 12 000
ML 6400 1.0 — — 180 000

Gd QE 0.0265 1610 100 4.5 18 4.0 12 100
ML 6400 1.0 — — 120 000

Fig. 1 Static structure factor, S(q), of l-Ce, l-Pr, l-Nd, l-Pm, l-Sm and l-Gd.
Continuous line: present ML simulation results. Open circles: XD data from
ref. 3,4,37. The inset shows a closer view of the second maximum.
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related to S(q) by the formula S(0) = rkBTkT where kB is
Boltzmann’s constant. The values of S(q) for q r 0.40 Å�1 were
fitted to the form S(q) = S(0) + bq2, and the obtained results are
also given in Table 2 along with the corresponding isothermal
compressibilities. In the case of l-Ce and l-Pr, McAlister et al.5

used their experimental data for the sound velocity along with
the mass density and an assumption for the ratio of the specific
heats, gE1.03, to obtain an ‘‘experimental’’ estimate for the kT.
For the other RE metals, and because of the lack of experi-
mental data, we have reported the estimates obtained by
resorting to semiempirical expressions which involve measured
and/or estimated values of other thermophysical magnitudes.38

Excepting l-Pr and l-Gd, the present ML calculations show fair
agreement with the experimental/semiempirical data. In the
case of l-Pr, we think that its calculated S(0) is somewhat small
even when compared with the other RE metals considered in
the work.

The pair distribution function, g(r), provides some insight
into the short-range order in the liquid metal and Fig. 2 depicts
the obtained ML simulation results along with the available
experimental data. As it happened with the S(q), we observe a
fair agreement with the available experimental data. In the case
of l-Ce, we note again that our ML results for g(r) compare
better with the experimental data of Waseda et al.3,37 than the
previous ab initio simulations of Siberchicot and Clerouin.16

The average number of nearest neighbors around a given
ion, also known as the coordination number (CN), is given by
the integral of the radial distribution function, 4prr2g(r), up to
its first minimum, rmin. Table 2 lists the results obtained for all
the systems studied, and it is observed that these values are in
line with those corresponding to other simple liquid metals
near melting.39

A more detailed characterization of short-range order in liquid
metals is achieved through the common neighbor analysis (CNA)
method.40–42 This method provides three-dimensional insights
into the local environment of ions surrounding each neighboring
pair. Each pair is described by four indices that differentiate
between various local structures, such as body-centered cubic
(bcc), different close-packed arrangements, and icosahedral
configurations.

For instance, different close-packed structures are asso-
ciated with distinct proportions of 1421 and 1422-type pairs,
while bcc order is characterized by six 1441-type pairs and eight

1661-type pairs. In contrast, a 13-atom icosahedron is composed
of twelve 1551-type pairs. When a bond in the regular 1551-type
structure is broken, it results in 1541 and 1431-type pairs, which
indicate a somewhat distorted icosahedral order. For more
details about the CNA method we refer to ref. 29–31,40–44.

Fig. 3 summarizes the results obtained in this work, also
including the results for l-La obtained previously within the
same scheme followed in the present study.45 The five-fold
symmetry dominates in all these metals because the sum of
perfect and distorted icosahedral structures ranges between
E52% (l-La) and E65% (l-Gd) of the pairs. The amount of local
bcc-type pairs is also significant, varying between E19% (l-Gd)
and E29% (l-Pr) of the pairs. On the other hand, there is an
almost negligible amount of close-packed pairs. These results
for the local environments found in the liquid are in line with
the fact that, even though the low-temperature phases are close-
packed in all the systems considered, all of them melt from a
bcc phase. It may be concluded that the information given by
this CNA method points to a very uniform behavior for all these
RE metals. Similar studies performed for the 3d, 4d and 5d
transition metals29–31,46 have revealed much greater variations

Table 2 Calculated values for rmin (in Å), coordination numbers CN, S(0),
and isothermal compressibilities kT (in 10�11 m2 N�1 units) for the liquid
rare earth metals at the thermodynamic states given in Table 1. The
numbers in parenthesis are experimental data (l-Ce and l-Pr)5 and semi-
empirical estimates38

rmin CN S(0) kT

Ce 4.72 13.4 0.021 � 0.001 4.80 � 0.20 (5.30)
Pr 4.77 13.0 0.014 � 0.002 2.83 � 0.20 (4.17)
Nd 4.73 12.8 0.026 � 0.002 5.00 � 0.20 (4.55)
Pm 4.71 12.5 0.021 � 0.002 4.00 � 0.20
Sm 4.72 12.6 0.027 � 0.002 5.04 � 0.20 (5.27)
Gd 4.80 12.5 0.037 � 0.002 6.28 � 0.20 (4.27)

Fig. 2 Pair distribution function, g(r), of l-Ce, l-Pr, l-Nd, l-Pm, l-Sm and
l-Gd. Continuous line: present ML simulation results. Open circles: XD data
from ref. 3,4,37.
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when moving along the corresponding row of the periodic
table.

3.2 Dynamic properties

Several time correlation functions have been evaluated in order
to obtain information about some dynamical properties. In
those cases where there is a wave-vector q dependence, we have
taken into account the macroscopically isotropic behavior of
the fluid to reduce it to a dependence on q � |q| only.

3.2.1. Single particle dynamics.. The definition of the
(normalized) velocity autocorrelation function (VACF),

Z(t) = hvi(t)�vi(0)i/hvi
2i, (1)

with vi(t) being the velocity of ion i at time t, and the angular
brackets denoting averages over particles and time origins,
shows that this function provides information about the per-
sistence of the velocity vector of a particle after a time lapse.

The obtained ML results for Z(t) are plotted in Fig. 4, where
we observe the usual decaying behavior with a noticeable first
minimum followed by decreasing weak oscillations around
zero. This first minimum is due to the collision of any given
ion with its nearest neighbors, which results in a short-lived
vibrational motion. All the systems have very similar number
densities and masses, and this is reflected in the fact that the
position of this backscattering minimum is located at approxi-
mately the same time. The Fourier Transform (FT) of the Z(t)
into the frequency domain gives the associated power spectra,
Z(o), and these are plotted as insets in Fig. 4.

From the value of Z(o) at o = 0, which coincides with the
time integral of the VACF, one obtains the self-diffusion coeffi-
cient, D. This can also be calculated from the slope of the
atomic mean square displacement. We have checked that both
routes give practically the same results and the values are given
in Table 3.

We are not aware of any experimental self-diffusion data for the
RE metals considered in this work. Nevertheless, for the sake of
comparison, we have included in Table 3 some estimates obtained

from semiempirical expressions based on modified Stokes–
Einstein type formulas which relate the self-diffusion coefficient to
viscosity,6 which is more amenable to measurement.

3.2.2 Collective dynamics. The collective dynamics of den-
sity fluctuations in a liquid is fully described by the intermedi-
ate scattering function, F(q,t), which is defined as

Fðq; tÞ ¼ 1

N

XN
i;j¼1

exp iq � ðRiðtÞ � Rjðt ¼ 0ÞÞ
� �* +

: (2)

Its time FT gives the frequency spectrum, known as the
dynamic structure factor, S(q,o), which can be directly mea-
sured by either inelastic neutron scattering or inelastic X-ray
experiments.

Fig. 5 depicts for l-Sm, the calculated ML results for F(q,t).
The general structure is similar for the other elements considered
in this work, and parallels the behavior of other liquid
metals29–31,43,44 near melting, namely, the strong oscillatory
shape observed at small q gets more and more damped at higher
wavevectors until it eventually disappears near qp, showing a
monotonic decreasing behavior therefrom.

Fig. 3 Variation of the most abundant bonded pairs.

Fig. 4 Normalized ML calculated velocity autocorrelation function of
l-Ce, l-Pr, l-Nd, l-Pm, l-Sm and l-Gd. The inset represents the corres-
ponding power spectrum Z(o).
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A deeper understanding of the microscopic mechanisms
driving the collective dynamics can be gained through a more
detailed analysis of F(q,t). To achieve this, we employed the
generalized Langevin formalism. Specifically, we began by exam-
ining the time evolution of F(q,t) in relation to its second-order
memory function, N(q,t), i.e.

€Fðq; tÞ þ
ðt
0

Nðq; t� t 0Þ _Fðq; t 0Þdt 0 þ oq
2

� �
Fðq; tÞ ¼ 0 (3)

where hoq
2i = kBTq2/(mS(q)), with m being the atomic mass, and

the dots denote time derivatives. In the framework of generalized
hydrodynamics, the memory function N(q,t) is typically modeled
using an analytical expression consisting of two exponentially
decaying components: a slow one, characterized by a slow-
relaxation time, ts(q), and a fast one, characterized by a fast-
relaxation time, tf(q).

N(q,t) = As(q)e�t/ts(q) + Af(q)e�t/tf(q) (4)

From a physical point of view, one relaxation channel is
considered to have a thermal origin and the other one is
associated to the viscoelastic behavior of the liquid.

We utilized the ML simulation results for F(q,t) to compute
its corresponding second-order memory functions N(q,t). These
were then fitted to eqn (4). The fitting results were analyzed to
determine whether the obtained N(q,t) align with either a
generalized hydrodynamic model (featuring a fast viscoelastic

channel and a slow thermal one) or a generalized viscoelastic
model, where the fast channel is thermal.

To explore this further, we evaluated the generalized heat
capacity ratio, g(q), which approaches the thermophysical value
g0 in the q - 0 limit, representing the ratio of specific heats at
constant pressure to constant volume. This quantity was cho-
sen due to its strong sensitivity to the underlying model.

If thermal relaxation occurs through the slow channel, then
its amplitude takes the form As(q) = (gth(q) � 1) hoq

2i and
ts(q) = (gth(q)DT(q))�1. On the other hand, if viscoelastic relaxa-
tion happens along the slow channel, then As(q) = N(q,t = 0) +
(1 � gvis(q)) hoq

2i. Here, gth(q) and gvis(q) represent the values
taken by g(q) when thermal and viscoelastic relaxations, respec-
tively, occur along the slow channel.

Fig. 6 shows, for the liquid RE metals studied in this paper,
the obtained results for gth(q) and gvis(q). Their respective
shapes are quite different and the values of gth(q) are always
smaller than those of gvis(q). The observed general trends of the
gth(q) are as follows: starting from the smallest possible value

Table 3 ML simulation results for the self-diffusion coefficient (D), adiabatic sound velocity (cs) and shear viscosity (Z) of the liquid RE metals at the
thermodynamic states given in Table 1. The numbers in parenthesis are experimental values or estimates from semiempirical expressions based on
modified Stokes–Einstein type formulas

D (Å2 ps�1) cs (m s�1) Z (GPa ps)

Ce 0.340 � 0.020 (0.262)6 1750 � 150 (1693)6 1.85 � 0.20 (3.25)6

Pr 0.200 � 0.020 (0.334)6 2350 � 150 (1925)6 3.70 � 0.25 (2.85)6

Nd 0.272 � 0.020 (0.349)6 1710 � 150 (1873, 2212)6,47,48 2.40 � 0.25 (2.96, 2.88)6

Pm 0.327 � 0.020 (0.378)6 1950 � 150 2.74 � 0.25 (3.22, 2.83)6

Sm 0.295 � 0.020 (0.377)6 1640 � 150 (1422, 1672)6,47,48 2.55 � 0.25 (3.23, 2.51)6

Gd 0.362 � 0.020 (0.365)6 1250 � 150 (1725, 1972, 2041)6,47,48 2.70 � 0.25 (3.49)6

Fig. 5 Intermediate scattering function, F(q,t)/S(q), of l-Sm at T= 1400 K
for several q values.

Fig. 6 Generalized specific heat ratio, g(q), as obtained from the general-
ized hydrodynamic model (grey circles) and the generalized viscoelastic
model (red triangles).
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(q E 0.10 Å�1), it smoothly increases, goes through a max-
imum, and then decreases attaining values close to unity. This
shape of the ML calculated gth(q) is more physically appealing
than the one corresponding to gvis(q), as it is qualitatively
similar to the ‘‘experimental’’ g(q) data for l-Fe near melting,
which was derived by of Hosokawa et al.49 by fitting the
experimental S(q,o) to a model and then applying the
Landau–Placzek relation. Their result showed that the gexp,Fe(q)
starts with a value of E1.40 at q E 0.21 Å�1, it smoothly
increases reaching a value of E1.55 at q E 0.63 Å�1, and then
decreases towards a value of E1.1 at q E 2.00 Å�1 (qp,Fe E
2.98 Å�1). Additionally, we have also observed this behavior in
liquid La.45

There are no experimental data for the g0 of any liquid RE
metals, but extrapolation of the results presented in Fig. 6
yields the following estimates: 1.05 � 0.03 (Ce), 1.04 � 0.03 (Pr),
1.04 � 0.03 (Nd), 1.10 � 0.03 (Pm) and 1.04 � 0.03 (Sm). The
results for l-Ce and l-Pr support the assumption made by
McAlister et al.5 of taking g E 1.03 to obtain an ‘‘experimental’’
estimate for the kT.

Summing up, the above calculation shows that in these rare-
earth metals, the thermal relaxation proceeds along the slow
channel and, more importantly, it provides an estimation for
their respective g(q) along with its thermophysical value
g0 � g(q - 0). On the other hand, the obtained gvis(q) shows
an unphysical behaviour as a result of assuming that the
viscoelastic relaxation is associated to the slow channel.

The associated S(q,o) is plotted in Fig. 7 for the case of
l-Sm, and the most noticeable feature is the existence, up to
q E (3/5)qp, of side-peaks characteristic of collective density
excitations. Then, for greater q-values the S(q,o) display a
monotonic decreasing behavior. This same qualitative trend
is exhibited by all the other RE metals considered in this paper.

We also computed the frequency of the side-peaks as a
function of the wavevector q, denoted as om(q), which corre-
sponds to the dispersion relation of density excitations. In the
hydrodynamic limit (q - 0), the dispersion curve exhibits a
linear slope, characterized by the adiabatic sound velocity, cs.
By defining the phase velocity cs(q) such that om(q) = q�cs(q), we
find that cs is equivalent to cs(q - 0).

Fig. 8 depicts the calculated cs(q) values where we observe
some degree of positive dispersion. Additionally, we have

estimated cs by a linear fitting of the ML simulation data using
the smaller q-values (q r 0.3 Å�1) and the results are given in
Table 3, which also includes, for comparison, the available experi-
mental (l-Ce and l-Pr) and semiempirical (l-Nd, l-Pm, l-Sm and
l-Gd) data. These latter data are estimates obtained from measured
values of other properties such as surface tension, melting tem-
perature and density, using semiempirical formulas.6,47,48 Overall,
we observe a fair agreement between the ML simulation results
and the experimental and/or semiempirical data.

In the study of collective dynamics, another important
quantity is the current associated with the overall motion of
particles, j(q,t), given by

jðq; tÞ ¼
XN
j¼1

vjðtÞ exp½iq � RjðtÞ�; (5)

where it is typically decomposed into longitudinal, jl(q,t) =
( j(q,t)�q)q/q2, and transverse jt(q,t) = j(q,t) � jl(q,t) components.
The longitudinal and transverse current correlation functions
are defined as

CLðq; tÞ ¼
1

N
jlðq; tÞ � j�l ðq; t ¼ 0Þ
� �

(6)

and

CTðq; tÞ ¼
1

2N
jtðq; tÞ � j�t ðq; t ¼ 0Þ
� �

(7)

The time Fourier transforms of these correlation functions
yield the corresponding spectra, CL(q,o) and CT(q,o).

The ML calculated longitudinal spectrum, CL(q,o), exhibits a
peak for any fixed value of q, with the associated frequency,

Fig. 7 Dynamic structure factors, S(q,o)/S(q), of l-Sm at T = 1400 K and
several q values.

Fig. 8 q-Dependent adiabatic sound velocity. The red and grey symbols
are the DFT+U and ML simulation results respectively.
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oL(q), representing the dispersion relation of the longitudinal
modes. These functions are depicted in Fig. 9.

The CT(q,t) decays monotonically with time both in the free
particle limit (q - N) and in the hydrodynamic limit (q - 0).
For intermediate q-values it can show a more complex structure
with oscillations around zero,39,50–52 characteristic of propagat-
ing shear waves, that translate into side peaks in the corres-
ponding spectra, CT(q,o). In the present ML simulations, it is
found that for the lowest attainable q value, namely qmin =
0.10 Å�1, no peaks are visible yet, but when q E 0.15 Å�1 the
CT(q,o) starts displaying a peak which points to the propaga-
tion of shear waves. With increasing q-values, we obtain that
the peak’s frequency, oT(q), increases, goes through a max-
imum at q E (2/3)qp, and then slowly decreases and fades away
at q E 3.0qp when the peaks disappear.

Moroever, the CT(q,o) shows within a much smaller q-range,
located around the position of the main peak of the S(q), a
second, higher frequency, peak that gives rise to another
transverse dispersion branch. This can be observed in Fig. 9
where we have plotted the high and low-frequency dispersion
relations for the transverse modes. In accordance with previous
findings53–57 we observe some correlation between the exis-
tence of a high-frequency peak or shoulder in Z(o) and the
development of a high-frequency branch in the transverse
dispersion relation. Although there is still no self-consistent
theory to explain this possible correlation, we mention that, by
using mode coupling ideas, Gaskell and Miller58–60 developed a

theory of the VACF based on contributions arising from the
coupling of the single particle motion to the collective long-
itudinal and transverse currents.

From the ML simulation results for the CT(q,t), we have also
evaluated the associated shear viscosity coefficient, Z. This has
been achieved by using the memory function representation of
the CT(q,t), which allows to determine a q-dependent shear
viscosity, Z(q).50,51,61,62 In the q - 0 limit, this yields the
shear viscosity coefficient Z � Z(q - 0), which has been
obtained by fitting the ML simulation results to the expression
Z(q) = Z/(1 + a2q2). Table 3 shows the results along with other
experimental (l-Ce and l-Pr) and semiempirical (l-Nd, l-P
m, l-Sm and l-Gd) data. The latter are semiempirical
estimates6 obtained from values of other measured magnitudes
(melting temperature, sound velocity, surface tension and
density). Excepting l-Ce, we observe a fair agreement between
the ML simulation results and the experimental and/or
semiempirical data.

In the context of Brownian motion of a macroscopic particle
with diameter d in a liquid of viscosity Z, the Stokes–Einstein
(SE) relation, ZD = kBT/2pd, establishes a link between the
viscosity Z and the self-diffusion coefficient D. Although origin-
ally not intended for atoms, this relation is often used to
estimate Z (or D) by approximating d with the position of the
main peak in the radial distribution function g(r).

In MD simulations, computing the self-diffusion coefficient
D requires significantly less computational effort than calculat-
ing shear viscosity. As a result, the SE relation is frequently
employed to estimate viscosity. Additionally, this relation is
commonly used in semiempirical formulas that connect shear
viscosity and self-diffusion coefficient in terms of other thermo-
physical properties.

We have used the present ML results to analyze the accuracy
of this relation when applied to several RE liquid metals studied
in this work. The results are plotted in Fig. 10, including the
data corresponding to l-La.45 It shows that the SE relation holds
fairly well excepting l-Nd for which the error is E25%.

Fig. 9 Dispersion relations for several liquid rare-earth metals. Red dia-
monds and blue stars: longitudinal dispersion obtained from the ML
simulation results for the positions of the inelastic peaks in the S(q,o)
and from the maxima in the spectra of the longitudinal current, CL(q,o),
respectively. Open and shaded circles: Transverse dispersion from the
positions of the peaks in the spectra CT(q,o). The green dashed line
represents Z(o) scaled to fit in the graph.

Fig. 10 Stokes–Einstein relation for some liquid RE metals.
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3.3 Electronic properties: density of states

The ML study allows the determination of structural and
dynamic properties of the metals studied, but is not capable,
in the form used here, of delivering electronic properties. These
are however available from the original QE simulations used for
the training. From these, we have calculated the partial and total
electronic density of states, n(E). These have been obtained from
the self-consistently determined eigenvalues, and were averaged
over four ionic configurations well separated in time (E15.0 ps),
sampling the Brillouin zone with eight points.

Fig. 11 shows the obtained results for the electronic partial
and total n(E) associated to the outer valence electrons (the 5s and
5p electrons lie well below the Fermi energy, EF), and Table 4
reports the corresponding occupations of the partial bands.

The f bands behave quite different in the liquid as compared
to the low temperature solids.14 In the latter, they are magne-
tically split into spin up and down f states. Moreover, there are
low lying quasi-localized occupied states well below EF and a
partly occupied f band overlapping and hybridizing with the sd
band, whose position with respect to EF varies as the atomic
number changes within the lanthanide series. From Ce to Sm
the occupation of the low lying states increases from 1 to 5,
whereas the occupation of the upper f band increases from
basically 0 to 0.65 as its energy decreases towards EF,14 leading
to a number of sd electrons that decreases gradually from 3 in
Ce to 2.35 in Sm. In Gd 7 electrons fill the low lying spin up
states, the 4f upper band gets back to higher energy and its
occupation returns to 0, restarting the whole process again with
the spin-down states.

In the liquid, we observe that the f bands overlap completely
with the spd bands in Ce, Nd, Sm, and Gd, that have an even
number of valence electrons. In Pr and Pm, there are some
subbands just below the spd ones and another subband

overlapping with the high-energy part of the spd band that lies
just above EF. Despite this even-odd behavior, it is observed that
the total number of spd electrons show a decreasing trend,
extending also to Gd.

We consider that the factor mostly responsible for this
different behavior is the decrease of the most probable distance
to the first neighbor of a given atom in the liquid. From the
simulation we find that it ranges from the smallest value of 2.90 Å
in l-Ce to a maximum value of 3.12 Å in l-Pr and these values are in
all cases much shorter than in the corresponding low-temperature
solids (where the closest distance ranges from the smallest value of
3.57 Å in hcp-Gd to a maximum value of 3.65 Å in fcc-Ce). This
amounts to a reduction around 15 to 20%, and favors the
interatomic orbital overlap. Note that the most probable first
neighbor distance is different from the maxima of the radial
distribution function (shown in Fig. 2), since the latter corresponds
to the average of the E13 neighbors of the first coordination shell.

4 Conclusions

We have applied ML techniques in order to develop accurate
interatomic potentials for some liquid RE metals; these poten-
tials were derived from a reference database generated by
previously performed DFT+U based simulations. The combi-
nation of both techniques allowed us to study, with ab initio
accuracy, various properties, achieving a very low uncertainty
due to the large size of the systems simulated with ML.

Results have been reported for a range of static, dynamic,
and electronic properties of several liquid RE metals. We stress
that, excepting l-Ce, this is the first ab initio study performed
for these RE metals in the molten state.

Concerning the static structure, the ML results show fair
agreement with the experiment in the case of those metals
(l-Ce, l-Pr, l-Nd, and l-Gd) for which XD data are available.
However, given that the XD data were collected more than fifty
years ago, it would be interesting to perform the comparison
with new experimental data. A more detailed study of the short-
range order, as afforded by the CNA method, has shown a very
similar abundance of different types of local environments in
all these liquid RE metals, dominated by icosahedral structures
with a noticeable contribution of bcc ones as corresponds to
the hot solid from which the systems melt.

The ML dynamic structure factors, S(q,o), show side-peaks
which are indicative of collective density excitations. From the
associated dispersion relation we have evaluated a q-dependent

Fig. 11 Total electronic density of states (black line) for several rare earth
metals. The angular momentum decomposition of the DOS in s (black
dashed line), p (blue dashed line), d (green dashed line), and f (red dashed
line) is also shown.

Table 4 Occupation of the s, p, d and f bands in the liquid RE metals
considered, obtained by integrating the partial densities of states up to the
Fermi energy

Ce Pr Nd Pm Sm Gd

s 0.45 0.56 0.55 0.60 0.65 0.74
p 0.10 0.09 0.09 0.08 0.08 0.06
d 2.40 2.25 1.92 1.94 1.55 1.30
spd 2.95 2.90 2.56 2.62 2.28 2.10
f 0.85 2.10 3.55 4.17 5.75 7.80
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sound velocity from which the adiabatic sound velocity in the
liquid metal has been evaluated.

The ML transverse current correlation functions, CT(q,t),
display oscillations around zero, and their spectra, CT(q,o),
show peaks characteristic of shear waves. Furthermore, the
possible correspondence between the frequency structure of
the spectrum of the VACF and the transverse dispersion rela-
tions is attested for yet another set of liquid systems.

From the previous time correlation functions, we have
evaluated the heat capacity ratio as well as some transport
coefficients, namely the self-diffusion, adiabatic sound velocity
and shear viscosity coefficients. This calculation has been aided
by the capability of the ML simulations to deliver time correla-
tion functions up to very small wavevectors, namely q-values up
to 0.1 Å�1. Taking into account the scarcity of data concerning
most of these coefficients we expect that the present results will
be of some interest. Additionally, by using the previous results
for the shear viscosity and self-diffusion, we have tested the
validity of the Stokes–Einstein relation.

Finally, the DFT+U simulations have provided results for the
electronic structure that in general deviate from the data
corresponding to the low temperature solids, and the possible
reason for this discrepancy has been discussed.
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2016, 28, 107105.
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