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Abstract

Scheduling for speculative parallelization is a problem
that remained unsolved despite its importance. Simple
methods such as Fixed-Size Chunking (FSC) need several
‘dry-runs’ before an acceptable chunk size is found. Other
traditional scheduling methods were originally designed for
loops with no dependences, so they are primarily focused in
the problem of load balancing. In general, all these meth-
ods perform poorly when used for speculative paralleliza-
tion, where loops may present unexpected dependences that
adversely affect performance.

In this work we address the problem of scheduling loops
with and without dependences for speculative execution. We
have found that a trade-off between minimizing the number
of re-executions and reducing overheads can be found if the
size of the scheduled block of iterations is calculated at run-
time. We introduce here a scheduling method called Just-In-
Time (JIT) scheduling that uses the information available
during the execution of the loop in order to dynamically
compute the size of the next block to be scheduled. The
results show a 10% to 26% speedup improvement in real
applications with dependences with respect to a carefully-
tuned FSC strategy, and a 9% to 39% speedup improve-
ment in real applications without dependences. With our
proposal, the number of dependence violations that lead to
squashes can be reduced by up to 62%. Moreover, in appli-
cations where the cost of dependence violations is too high
to obtain speedups with FSC, our runtime scheduling mech-
anism avoids performance degradation.

Keywords: Speculative parallelization, loop-based spec-
ulation, speculative multithreading, scheduling.

1. Introduction

Speculative parallelization (also called thread-level
speculation) is the most promising technique for automatic
extraction of parallelism of irregular loops. With specula-

tive parallelization, loops that can not be analyzed at com-
pile time are optimistically executed in parallel. Hardware
or software mechanisms ensure that all threads access the
shared data according to sequential semantics. A depen-
dence violation appears when one thread incorrectly con-
sumes a datum that has not been generated by a predecessor
yet. In the presence of such a violation, earlier software-
only speculative solutions (see, e.g. [12, 14]) interrupt the
speculative execution and re-execute the loop serially. More
recent approaches [4, 6, 15] squash only the offender thread
and its successors, re-starting them with the correct data val-
ues.

It is easy to understand that frequent squashes adversely
affect speculation performance. One way to reduce the cost
of a squash is to assign smaller subsets (called chunks) of
iterations to each thread, reducing the amount of work be-
ing discarded in the case of a squash. A correct choice
of the chunk sizes is critical for speculation performance.
However, smaller chunks also imply more frequent commit
operations and a higher scheduling overhead. Most of the
scheduling methods proposed so far in the literature deal
with independent iterations, and do not take into account
the cost of re-executing threads.

In this work we address the problem of scheduling for
speculative execution of loops with and without depen-
dences. We have found that a trade-off between minimizing
the number of re-executions and reducing overheads can be
found if the size of the scheduled block of iterations is cal-
culated at runtime. We introduce here a scheduling method
called Just-In-Time (JIT) scheduling. This method uses the
information available during the execution of the loop in or-
der to dynamically compute the size of the next block to be
scheduled.

The rest of the paper is organized as follows. Section 2
reviews the existent scheduling alternatives currently used
with speculative parallelization. Section 3 shows that the in-
formation available at run time allows to issue chunks of an
appropriate size, and introduces JIT scheduling. Section 4
explores two different design options for JIT scheduling,
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Figure 1. Scheduling methods used so far
with speculative parallelization.

analyzing their advantages and drawbacks. Section 5 shows
an experimental evaluation of our scheduling mechanism in
the execution of real applications with and without depen-
dences. Finally, Section 6 concludes the paper.

2. Review of scheduling alternatives for specu-
lative execution

The problem of scheduling independent iterations of
loops among different processors in a parallel system has
been extensively studied in the literature. Most of the pro-
posed scheduling methods were designed in a context of
independent iterations, and their main goal was to balance
the workload among processors (see [7, 8, 9, 13, 17, 18]).
To do so, most of the functions that compute chunk sizes is-
sue chunks of decreasing size. However, these mechanisms
perform poorly in the context of speculative parallelization,
where loops may present dependences among iterations and
the costs associated to them are higher than those due to
load imbalance [11].

To the best of our knowledge, only two scheduling meth-
ods have been used until now in real executions of loops
that may present dependences among iterations: Fixed Size
Chunking (FSC) and MESETA.

The method called Fixed Size Chunking (FSC), proposed
by Kruskal and Weiss [9], consists of choosing a chunk size
and assigning a block of iterations with that size to each
processor. The efficiency of this scheme heavily depends
on the choice of an appropriate value for the chunk size, a
difficult task for both programmers and compilers. Kruskal
and Weiss give the following formula for the optimal value
of the chunk size, Kopt:

Kopt =

( √
2Nh

σP
√

log P

)2/3

,

where σ is the variance of the iteration time, h the schedul-
ing overhead, N the number of iterations and P the number
of processors. The first three values are unknown at the
beginning of the loop, making it difficult to determine the

optimal (or at least adequate) chunk size in practice. There-
fore, the only way to accurately choose the chunk size for
a particular application, even with no dependences, is by
experimentation. Despite these limitations, its simplicity
made FSC the default choice for speculative parallelization.
Figure 1(a) shows the shape of the FSC function.

In speculative parallelization loops may present depen-
dences among iterations, making even more difficult to find
a good scheduling mechanism. A Read-after-write (RAW)
dependence violation appears when a thread speculatively
reads a value and, later, a predecessor modifies the same
value. If a dependence violation occurs during the paral-
lel execution of the loop, the offending thread and all of its
sucessors are squashed and restarted in order to consume
the correct values.

It is difficult to choose an “optimal”, fixed chunk size in
this context. In general, big chunk sizes increase the time
spent on re-executions, while smaller chunks increase the
overhead time [11]. Therefore, a good strategy for spec-
ulative parallelization is to issue big chunks of iterations
on portions of the loop where fewer dependences are ex-
pected, and smaller chunks on portions where we expect
to find many dependences. The problem here is how to
determine where more dependences will appear, since the
particular dependency pattern for a loop depends on both
the algorithm and its input set. This makes a given chunk
size acceptable for a particular combination of both but sub-
optimal for a different one.

MESETA [10, 11] is a scheduling mechanism designed
for the speculative execution of randomized incremental al-
gorithms, where the dependence profile is known before-
hand. MESETA assigns chunks with different sizes as the
execution proceeds. The behavior of MESETA (Spanish
word for tableland) divides the parallel execution in three
stages. Small chunks of growing size are scheduled at the
beginning, since most of the dependences that appear in
randomized incremental algorithms happen at the first it-
erations of the loop. At a certain point, growth stops and
MESETA behaves like FSC. Finally, chunk sizes decrease
in order to balance the load among processors. Figure 1(b)
shows the shape of the MESETA function.

MESETA takes advantage of the fact that most depen-
dence violations in randomized incremental algorithms oc-
cur while executing the first iterations. However, this so-
lution is not valid for applications where the dependence
pattern is not known beforehand. Besides this, the fixed
chunk size for the stable part of MESETA should also be
determined by experimentation, and it depends not only on
the particular algorithm being parallelized, but also on the
input set considered.

Despite its importance, the general problem of schedul-
ing for speculative parallelization remained unsolved.
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Figure 2. Runtime scheduling in loops with
and without dependences.
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Figure 3. JIT scheduling, conservative ap-
proach. The first time chunk 10 is executed,
its size is calculated using the JIT scheduling
function and its execution counter is set to 1.
The size will be preserved regardless of the
number of re-executions of chunk 10.

3. Just-In-Time scheduling

As we saw in the previous section, no known schedul-
ing method tries to solve the general problem of scheduling
loops with dependences. Either they do not take into ac-
count dependences between iterations, have to be carefully
tuned through experimentation, and/or fit a particular type
of algorithms. In this section we propose a new scheduling
mechanism that deals with this situation.

In order to decide the size for the next chunk of iterations
to be scheduled, let e(t) be the total number of times the pre-
vious t chunks were executed, including the number of re-
executions due to mispeculation (for simplicity, we consider
all iterations of equal size). If no dependence violations
among threads have arisen, e(t) = t, since each chunk has
been executed exactly once. Using as a general guidance
the average number of executions per chunk e(t) = e(t)

t ,
a scheduling mechanism may issue larger chunks if no de-
pendence violations have arisen lately, while issuing smaller
chunks if the last chunks had to be squashed and re-executed
several times.

The number of re-executions needed for each chunk is
not known at compile time, but can be easily obtained at
runtime, just by maintaining a set of execution counters,
one for each chunk scheduled. A thread that starts the ex-
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Figure 4. JIT scheduling, aggressive ap-
proach. (a) Size of chunk 10 is calculated us-
ing the JIT scheduling function. (b) Chunk 9
issues a squash operation. (c) Squashed
threads recalculate in program order the size
of the chunk to be executed, using the new
value of the execution counters.

ecution of the following chunk can use e(t) to compute its
own chunk size.

The runtime value of the execution counters is not the
only source of information that can be used to calculate the
following chunk size. An important datum that should be
taken into account is the total number of iterations, N . This
value allows to compute a chunk size dependent on the size
of the entire loop, since issuing chunks of one thousand it-
erations may be acceptable for a loop composed by one mil-
lion iterations, but will lead to a severe load imbalance if the
loop has only, for example, 5 234 iterations and we are ded-
icating eight processors to this task. In a similar way, is im-
portant to take into account the index i of the first iteration
of the chunk to be scheduled. Since the dependency pattern
of the loop being scheduled is unknown, it is reasonable to
start with small chunks and adjust their size using the run-
time information as execution proceeds. It is ongoing work
in this topic to obtain a JIT mechanism with a smaller de-
pendence on i and with a similar performance gain as the
one described here.

The scheduling method proposed in this paper takes into
account all three values e(t), N and i. The thread com-
missioned to execute the following chunk will calculate the
chunk size C taking into account these values, making the
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chunk size dependent on N and i and inversely proportional
to e(t). We propose in this paper a general scheduling func-
tion based in these values to calculate the chunk size. The
formula is

C =
⌈

ln(i) · ln(N)
e(t)

⌉
(1)

If no dependences have arisen during the execution of
the last t chunks, the last t execution counters will be one,
and e(t) will also be one. In this case, the function will
have the shape depicted in Fig. 2(a). On the other hand, if
some of the last t chunks have been squashed, their execu-
tion counters will be greater than one. This will make e(t)
also greater than one, and the size of the following chunk
size will not be as big as if no dependences have arisen. Af-
ter some chunks the situation will hopefully be stable again,
and consequently the scheduling function will present some
“potholes”, as shown in Fig. 2(b). The value of t can be
fixed or can change with the number of processors. We pro-
pose a value for t proportional to the number of processors
in the system. Finally, the logarithmic function smooths the
increasement in the chunk size as N and i grow.

Note that, if no dependences arise, Eq. 1 leads to big-
ger chunk sizes as execution proceeds. This fact conflicts
with the desire of obtaining a good load balancing towards
the end of the loop, but, as we said in Sect. 2, to avoid the
performance degradation due to mispeculation is more im-
portant for speculation performance.

The function given by Eq. 1 delivers small chunk sizes,
a situation desirable if the loop has up to a few thousands of
iterations. For example, in a loop composed by 3 000 iter-
ations and with no dependences, the maximum chunk size
attainable at the end of the loop (say, at iteration 2 900) is
C = dln(2 900). ln(3 000)e = 64 iterations. If the loop has
one million iterations, the maximum value of C will be just
190 iterations. Delivering such small chunks in loops with
many iterations increases the execution overheads. There-
fore, for such loops it is desirable to let C grow faster:

C =
⌈

ln(i)2 · ln(N)
e(t)

⌉
(2)

As an example, the maximum value for C returned by
Eq. 2 in a loop with one million iterations is 2637 iterations,
thus reducing the execution overheads. As we will see in
our experiments, we use bigger powers of ln(i) to produce
bigger chunk sizes, while preserving the general philosophy
of the JIT scheduling function.

Finally, it is interesting to note that any base for the log-
arithmic function used in Eqs. 1 and 2 will lead to a simi-
lar behavior than the use of ln(x). In our experiments we
have used ln(x) because the cost of its calculation was small
enough, representing less than 0.01% of the experiments’

execution time. This time might be reduced further using
base-2 logarithms.

4. Design space of Just-In-Time scheduling

The scheduling function proposed above lets each thread
calculate its chunk size just before starting the execution of
that chunk. At this moment, the thread that starts the exe-
cution of a new chunk will be the most speculative, and it
will be able to read the execution counters of all its prede-
cessors. The most-speculative thread will then calculate the
chunk size, set to one its own execution counter, and begin
the execution of its chunk of iterations, starting with the last
iteration of the preceding chunk plus one. To avoid race
conditions with other threads, the reads and updates of the
execution counters are performed inside a critical section.
Figure 3 shows the process in more detail.

But what happened if our thread is squashed? This
means that a predecessor has detected a dependence vio-
lation and issued a squash event to all its successors. In
this case we have two options. The first one is to keep
the chunk size already calculated for this thread. Since the
chunk size calculations are carried out inside a critical sec-
tion, to keep the value already calculated has the advantage
of reducing execution overheads. Note that this solution
makes unnecessary to take into account the value of the ex-
ecution counter of our thread in the calculations, because
each chunk size will be calculated only once, and at that
moment the value of our execution counter will always be
one, thus not giving any useful information.

This behavior, while simple, has the drawback of not
taking into account the change of the situation due to an
eventual squash operation. If a given thread issues a squash
operation, only threads that start for the first time the exe-
cution of a new chunk ahead of the most-speculative chunk
squashed will use the updated values of the execution coun-
ters. Squashed threads, however, will remain unnoticed.

Therefore, it makes sense to recalculate the chunk size
of all squashed threads to take into account the changes in
the execution counters. Figure 4 shows this behavior. Note
that now we examine t + 1 execution counters, since the
execution counter associated to the current chunk should be
also taken into account. As we will see in the following
section, this second option delivers the best performance,
while incurring in negligible overheads.

5. Experimental results

A state-of-the-art, software-only speculative paralleliza-
tion engine [3, 4] was used to execute in parallel five differ-
ent applications that present non-analyzable loops with and
without dependences among iterations.
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Algorithm Input set description Loop Loop time Spec data Iterations % of Cost of FSC chunk
parallelized as % of size in KB per dependence squashing size used

total time invocation violations iter. i (iterations)
TREE Off-axis parab. collision accel 10 94 < 0.1 4 096 0 n/a 2
MDG Reference input set interf 1000’ 86 13 343 0 n/a 2

WUPWISE Reference input set muldeo 200’, 41 12 000 8 000 0 n/a 2
muldoe 200’

2D-Hull Square, 10M points Main loop 99 13 9 999 997 2.00 O(log i) 5 000
2D-Hull Disc, 10M points Main loop 99 86 9 999 997 15.48 O( 3√i) 2 500
2D-SEC Disc, 10M points Main loop 99 < 0.1 10 000 000 < 0.01 O(i) 1 000

Table 1. Characteristics of the algorithms and input sizes used.
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Figure 5. Speedups obtained in the execution of different applications with no dependences.

5.1. Applications considered

We consider in total five different applications. The
first three applications have non-analyzable loops that
do not suffer from dependence violations. The applica-
tions chosen were TREE from [1], MDG from the PER-
FECT Club benchmark suite [2] and WUPWISE from
SPECfp2000 [16]. These applications are representative
of legacy as well as recent sequential scientific programs.
They spend a large fraction of their sequential execution
time on loops that can not be automatically parallelized
by state-of-the-art compilers because they have dependence
structures that are either too complicated to be analyzed at
compile time or dependent on the input data.

We consider two additional applications that present
loops with dependences. Both applications implement solu-
tions to well-known geometrical problems. As we will see,
changes in the size or shape of the input set will allow us to
change the expected number of dependences.

The first application with dependences, called 2-
Dimensional Convex Hull (2D-Hull), is due to Clarkson et
al. [5]. The algorithm computes the convex hull (smallest
enclosing polygon) of a set of points in the plane. The con-
vex hull is widely used in Computer Graphics, Motion Plan-
ning, Robotics or Computed Vision. The input of Clark-
son’s algorithm is a set of x-y point coordinates. The algo-
rithm proceeds in an incremental way, computing at itera-
tion i the convex hull of the first i points in the set. This way,

if N points are distributed uniformly on a disk, the i-th itera-
tion presents a dependency with probability in O(

√
i/i). On

the other hand, if points lie uniformly on a square, the prob-
ability of a dependence violation is in O(log(i)/i). When
a dependence is found, the convex hull has to be updated.
The amount of work needed to do this is in O(log i) in both
cases. We generated two input sets of 10 million points (on
a disk and a square). We have shuffled the input sets to guar-
antee the randomized order in which they are processed.

The second application, called 2-Dimensional Smallest
Enclosing Circle (2D-SEC), is due to Welzl [19]. The algo-
rithm finds the smallest enclosing circle containing a given
set of points in the plane. This algorithm has been deeply
studied in areas such as Computational Geometry, Opti-
mization and Operations Research. The input of this algo-
rithm is also a set of x-y point coordinates, while the output
is a set of points (two or three, depending on their relative
position) anchoring the circle, together with the center and
radius of the smallest enclosing circle. The construction is
also incremental and the ball enclosing the first i points is
found at the i-th iteration. In this case, a dependence viola-
tion forces not only an update of the actual solution, but the
recalculation of the entire enclosing ball. This computation
takes linear time in the number of points already included.
As we will see, this fact produces devastating effects in the
performance of the speculative parallelization version.

Table 1 summarizes the characteristics of each applica-
tion considered.
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5.2. Environment setup

The experiments were performed on a Sun Fire
15K symmetric multiprocessor (SMP), equipped with
900MHz UltraSparc-III processors, each one with a pri-
vate 64 KByte, 4-way set-associative L1 cache, a pri-
vate 8 MByte, direct-mapped L2 cache, and 1 GByte
of shared memory per processor. The system runs
SunOS 5.9. The application was compiled with
the Forte Developer 7 Fortran 95 compiler using the
highest optimization settings for our execution envi-
ronment: -O3 -xchip=ultra3 -xarch=v8plusb
-cache=64/32/4:8192/64/1. Times shown in the
following sections represent the time spent in the execution
of the main loop of the application. The time needed to read
the input set and the time needed to output the results have
not been taken into account. The application had exclusive
use of the processors during the entire execution and we use
wall-clock time in our measurements.

5.3. Performance of applications with no
dependences

Figure 5 shows the relative performance of TREE,
MDG and WUPWISE loops when executed with the same
software-based speculation engine [4] and two different
scheduling mechanisms: JIT scheduling using Eq. 1 and
Fixed-Size Chunking (FSC). No special tuning of JIT was
needed, while for FSC we had to determine a good chunk
size by experimentation, trying with several values and run-
ning them with different numbers of processors. In Eq. 1
we have used a value for t equal to two times the number of
processors.

The results show a speedup gain of 17.82% for TREE, a
gain of 9.20% for MDG and a gain of 39.41% for WUP-
WISE. Note that JIT scheduling also avoids the perfor-
mance degradation due to an increment in the number of
processors: the most relevant example is the 117.82% gain
for TREE when comparing the 32-processors performance
with respect to FSC.

For these applications, both the conservative and the ag-
gressive JIT mechanisms discussed in Sect. 4 are equiva-
lent, since no squashes are issued and therefore the chunk
size for these applications is calculated only once for each
chunk.

5.4. Performance of the 2D Convex Hull

As we saw in Sect. 5.1, we have used two different in-
put sets with the 2D Convex Hull algorithm in order to
test the sensitivity of our proposal with respect to the num-
ber of dependences. The two plots on the left side of
Fig. 6 show the speedups obtained while processing the

disc-shaped and square-shaped input sets of 2D-Hull using
three different scheduling alternatives. The mechanisms im-
plemented were conservative JIT scheduling (where chunk
sizes are calculated only once), aggressive JIT scheduling
(where chunk sizes are re-calculated each time a thread is
squashed), and the classic FSC mechanism.

As expected, the higher the number of dependences,
the better the aggressive JIT scheduling performs with re-
spect to its conservative counterpart. Results for the disc-
shaped input set show a 26.00% performance improvement
of the aggressive JIT scheduling with respect to FSC, and a
15.50% for the more conservative implementation. Regard-
ing the square-shaped input set, where less dependences ap-
pear, results show a 15.98% performance improvement of
the aggressive JIT scheduling with respect to FSC, and a
10.37% for the more conservative implementation.

The right column of Fig. 6 helps to understand the real
effect of reducing at runtime the block size. The two plots
show the number of dependence violations among different
threads issued during the execution of the experiments. As
can be seen, FSC raises much more dependences than our
JIT scheduling mechanisms, due to the fact that FSC chunks
are fixed-sized and many of them need to be recomputed
several times until results follow sequential semantics. JIT
mechanisms perform better, reducing the number of depen-
dence violations that lead to squashes by up to 62%. The
reason is that to issue smaller chunks in a context rich in
dependence violations facilitates the commitment of partial
results and avoids the production of further squashes.

To complete our analysis, Fig. 7 shows an execution
time breakdown comparison for the three scheduling mech-
anisms considered. For this figure we can draw the follow-
ing observations:

• The “busy” time, representing the time spent comput-
ing instructions present in the original application, is in
general bigger for FSC, since the higher number of re-
executions affect the time spent in these instructions.

• The “contention” time, representing the time the
threads wait for access to the critical section used for
scheduling threads, is much bigger for the disc in-
put set, since squashes occur more frequently. As ex-
pected, contention is slightly higher for the aggressive
JIT mechanism, due to the recalculation of the chunk
size each time a thread is squashed. Despite this big-
ger contention time, overall speedups are better for the
more aggressive JIT mechanism.

5.5. Performance of the 2D Smallest Enclos-
ing Circle

As we stated in Sect. 5.1, Welzl’s Smallest Enclosing
Circle algorithm presents a comparatively high cost for
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Figure 6. Speedups and number of dependence violations during the execution of the Randomized
Incremental 2D-Hull algorithm.

solving each dependence violation. Each time a point is
located outside the enclosing circle, all preceding points
should be re-processed in order to obtain the new solution.
This makes the cost of a dependence violation to be in O(i),
serializing in practice any attempt to parallelize the applica-
tion, even by hand.

Figure 8 shows the speedups and number of dependence
violations that arise while working with this algorithm.
Welzl’s algorithm runs in expected linear time, and since
the cost of a dependence violation is also linear, it is not
surprising that the maximum speedup obtained is 1.09. As
expected, increasing the number of processors has a very
negative impact on FSC performance, since the overhead
grows with the number of processors but we are still un-
able to extract any parallelism of the application. However,
both versions of the JIT scheduling mechanism curve the
performance degradation. The reason is that the high num-
ber of re-executions makes JIT issuing very small blocks of
iterations, thus performing frequent commits of processed
chunks and letting the parallel execution progress.

It is interesting to note that both versions of JIT lead to
more dependence violations than FSC for this particular al-
gorithm. However, the overall total number of violations is
quite small, and the more efficient scheduling generated by
JIT makes this effect negligible.

6. Conclusions

In this work we address the problem of scheduling for
speculative execution of loops with and without depen-
dences. We have found that a trade-off between minimiz-
ing the number of re-executions and reducing overheads
can be found if the size of the scheduled block of iterations
is calculated at runtime. We have introduced a scheduling
method called Just-In-Time (JIT) scheduling that uses the
information available during the execution of the loop in
order to dynamically compute the size of the next block
to be scheduled. We explored the design space of this
solution, from conservative positions like maintaining the
block size chosen even if a dependence violation appears,
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Figure 7. Execution time breakdowns for the 2-Dimensional Convex Hull.

to more aggressive choices like recalculating the best block
size each time the thread is squashed. Results show a 10%
to 26% speedup improvement in real applications with de-
pendences with respect to a carefully-tuned FSC strategy,
and a 9% to 39% speedup improvement in real applications
without dependences, while the number of dependence vi-
olations that lead to squashes are reduced by up to 62%.
We have also shown that JIT scheduling helps to avoid the
performance degradation in applications where the cost of
dependence violations is too high to obtain speedups.
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