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Abstract
In this paper, we explore when the Betti numbers of the coordinate rings of a projective
monomial curve and one of its affine charts are identical. Given an infinite field k
and a sequence of relatively prime integers a0 = 0 < a1 < · · · < an = d, we
consider the projective monomial curve C ⊂ P

n
k of degree d parametrically defined

by xi = uai vd−ai for all i ∈ {0, . . . , n} and its coordinate ring k[C]. The curve
C1 ⊂ A

n
k with parametric equations xi = tai for i ∈ {1, . . . , n} is an affine chart

of C and we denote by k[C1] its coordinate ring. The main contribution of this paper
is the introduction of a novel (Gröbner-free) combinatorial criterion that provides a
sufficient condition for the equality of the Betti numbers of k[C] and k[C1]. Leveraging
this criterion, we identify infinite families of projective curves satisfying this property.
Also, we use our results to study the so-called shifted family of monomial curves, i.e.,
the family of curves associated to the sequences j + a1 < · · · < j + an for different
values of j ∈ N. In this context, Vu proved that for large enough values of j , one
has an equality between the Betti numbers of the corresponding affine and projective
curves. Using our results, we improve Vu’s upper bound for the least value of j such
that this occurs.
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1 Introduction

Let k be an infinite field, and k[x] := k[x1, . . . , xn] and k[t] := k[t1, . . . , tm] be two
polynomial rings over k. GivenB = {b1, . . . , bn} ⊂ N

m , a set of nonzero vectors, each
element bi = (bi1, . . . , bim) ∈ N

m corresponds to the monomial tbi := tbi11 · · · tbimm ∈
k[t]. The affine toric variety XB ⊂ A

n
k determined by B is the Zariski closure of the

set given parametrically by xi = ubi11 · · · ubimm for all i = 1, . . . , n. Consider

SB := 〈b1, . . . , bn〉 = {α1b1 + · · · + αnbn | α1, . . . , αn ∈ N} ⊂ N
m ,

the affine monoid spanned by B. The toric ideal determined by B is the kernel IB of
the homomorphism of k-algebras ϕB : k[x] −→ k[t] induced by xi �→ tbi . Since k is
infinite, one has that IB is the vanishing ideal of XB; see, e.g., [18, Cor. 8.4.13] and,
hence, the coordinate ring of XB is (isomorphic to) the monomial algebra k[SB] :=
Im(ϕB) � k[x]/IB. The ideal IB is an SB-homogeneous binomial ideal, i.e., if one
sets theSB-degree of amonomial xα ∈ k[x] as degSB (xα) := α1b1+· · ·+αnbn ∈ SB,
then IB is generated by SB-homogeneous binomials. One can thus consider a minimal
SB-graded free resolution of k[SB] as SB-graded k[x]-module,

F : 0 −→ Fp −→ · · · −→ F0 −→ k[SB] −→ 0 .

The projective dimension of k[SB] is pd(k[SB]) = max{i | Fi 	= 0}. The i-th Betti
number of k[SB] is the rank of the free module Fi , i.e., βi (k[SB]) = rank(Fi );
and the Betti sequence of k[SB] is (βi (k[SB]); 0 ≤ i ≤ pd(k[SB])). When
the Krull dimension of k[SB] coincides with its depth as k[x]-module, the ring
k[SB] is said to be Cohen-Macaulay. By the Auslander-Buchsbaum formula, this is
equivalent to pd(k[SB]) = n − dim(k[SB]). When k[SB] is Cohen-Macaulay, its
(Cohen-Macaulay) type is the rank of the last nonzero module in the resolution, i.e.,
type(k[SB]) := βp(k[SB]) where p = pd(k[SB]). One says that k[SB] is Gorenstein
if it is Cohen-Macaulay of type 1. Recall that if IB is a complete intersection, then
k[SB] is Gorenstein.

Now consider an integer d > 0 and a sequence a0 = 0 < a1 < · · · < an = d
of relatively prime integers, i.e., gcd(a1, . . . , an) = 1. Denote by C the projective
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monomial curve C ⊂ P
n
k of degree d parametrically defined by xi = uai vd−ai for all

i ∈ {0, . . . , n}, i.e., C is the Zariski closure of

{(ua0vd−a0 : · · · : uai vd−ai : · · · : uanvd−an ) ∈ P
n
k | (u : v) ∈ P

1
k}.

Taking A = {a0, . . . , an} ⊂ N
2 with ai = (ai , d − ai ) for all i = 0, . . . , n, one has

that IA is the vanishing ideal of C, and the coordinate ring of C is the two-dimensional
ring k[C] = k[x0, . . . , xn]/IA � k[SA], where SA denotes the monoid spanned by
A. The projective monomial curve C is said to be arithmetically Cohen-Macaulay
(resp. Gorenstein) if the ring k[C] is Cohen-Macaulay (resp. Gorenstein).

The projective curve C has two affine charts, C1 = {(ua1, . . . , uan ) ∈ A
n
k | u ∈ k}

and C2 = {(vd−a0 , vd−a1 , . . . , vd−an−1) ∈ A
n
k | v ∈ k}, associated to the sequences

a1 < · · · < an and d − an−1 < · · · < d − a1 < d − a0, respectively. The sec-
ond sequence is sometimes called the dual of the first one. Denote by S1 := SA1

the submonoid of N spanned by A1. Since a1, . . . , an are relatively prime, then
N \ S1 is finite and S1 is called a numerical semigroup. The vanishing ideal of C1
is IA1 ⊂ k[x1, . . . , xn], and hence, its coordinate ring is the one-dimensional ring
k[C1] = k[x1, . . . , xn]/IA1 � k[S1]. Moreover, IA is the homogenization of IA1 with
respect to the variable x0. Similarly, denoting by S2 := SA2 the numerical semigroup
generated by A2 := {d − a0, d − a1, . . . , d − an−1}, the vanishing ideal of C2 is
IA2 ⊂ k[x0, . . . , xn−1], its coordinate ring is k[C2] = k[x0, . . . , xn−1]/IA2 � k[S2],
and IA is the homogenization of IA2 with respect to xn .

One has thatβi (k[C]) ≥ βi (k[C1]) for all i , and the goal of thiswork is to understand
when the Betti sequences of k[C] and k[C1] coincide. A necessary condition is that
k[C] is Cohen-Macaulay. Indeed, affine monomial curves are always arithmetically
Cohen-Macaulay while projective ones may be arithmetically Cohen-Macaulay or
not, and pd(k[C]) = pd(k[C1]) if and only if C is arithmetically Cohen-Macaulay.
The Cohen-Macaulay condition for k[C] is thus necessary for the two Betti sequences
to have the same length (and hence it is necessary for the two Betti sequences to
coincide). In Theorem 3.1, which is the main result of this work, we provide a
combinatorial sufficient condition for having equality between the Betti sequences
of k[C] and k[C1] by means of the poset structures induced by S and S1 on the
Apery sets of both S and S1. In Propositions 3.5 and 3.8, we use our main result to
provide explicit families of curves where βi (k[C]) = βi (k[C1]) for all i . In Sect. 4,
we apply our results to study the shifted family of monomial curves, i.e., the family
of curves associated to the sequences j + a1 < · · · < j + an parametrized by
j ∈ N. In this setting, Vu proved in [19] that the Betti numbers in the shifted family
become periodic in j for j > N for an integer N explicitly given. A key step in his
argument is to prove that for j > N one has equality between the Betti numbers
of the affine and projective curves. Using our results, we substantially improve this
latter bound in Theorem 4.1. Finally, we show in Sect. 5 how to construct arithmeti-
cally Gorenstein projective curves from a symmetric numerical semigroup (Thm. 5.2).

123



I. García-Marco et al.

There are several sources of motivation for this work. In [8] the authors completely
describe the minimal graded free resolution of affine monomial curves defined by an
arithmetic sequence a1 < · · · < an , i.e. ai = a1 + (i − 1)e for some e ∈ Z

+ such that
gcd(a1, e) = 1. In particular, in [8, Thm. 4.7], they deduce that the Cohen-Macaulay
type of these curves, i.e., the last Betti number in the Betti sequence, is given by the
only integer t ∈ {1, . . . , n − 1} such that t ≡ a1 − 1 (mod n − 1). Interestingly, later
in [1, Thm. 2.13], exactly the same result is obtained for projective monomial curves
defined by an arithmetic sequence. Moreover, some computer-assisted experiments
using [6] showed that in some cases the whole Betti sequences coincide, while in
other cases they do not.

Example 1 (a) or 4 < 5 < 6 < 7 < 8, C is arithmetically Cohen-Macaulay and the
Betti sequences of k[C1] and k[C] are both (1, 7, 14, 11, 3).

(b) For 4 < 5 < 6 < 7 < 8 < 9, C is arithmetically Cohen-Macaulay and the
Betti sequence of k[C1] is (1, 8, 21, 25, 14, 3), while the Betti sequence of k[C] is
(1, 12, 25, 25, 14, 3). Observe that, in this example, the Cohen-Macaulay type of
both k[C] and k[C1] is 3, as expected by [8, Thm. 4.7] and [1, Thm. 2.13], but the
two Betti sequences do not coincide.

On the other hand, Vu proves in [19] that given a1 < · · · < an , if one considers
the sequence of positive integers j + a1 < · · · < j + an parametrized by j ∈ N, then
the Betti numbers of the corresponding affine monomial curves become eventually
periodic. One of the key steps in Vu’s argument is to prove that for values of j big
enough, the Betti sequences of the affine and projective monomial curves coincide.
Later, Saha, Sengupta and Srivastava obtain in [15] a sufficient condition in terms of
Gröbner bases to ensure the equality of the Betti sequences.

Finally, Jafari and Zarzuela provide in [12] a combinatorial sufficient condition
for having equality between the Betti sequences of k[C1] and of the coordinate ring
of its corresponding tangent cone G(C1). More precisely, they define homogeneous
numerical semigroups as those whose Apery set with respect to a1 has a graded poset
structure with respect to the partial ordering induced by S1. In [12, Thm. 3.17], they
prove that the Betti sequences of k[C1] and G(C1) coincide when S1 is homogeneous
and G(C1) is Cohen-Macaulay. The spirit of our approach in this paper is similar
although the problems addressed are different as the next examples show.

Example 2 (a) [9, Ex. 5.5] For the sequence 3m < 3m + 1 < 6m + 3 with m ≥ 2,
one has that β1(k[C1]) = 2 and β1(G(C1)) = m + 2. Indeed, IA = (x32 −
x1x3x4, x

2m+1
1 − xm3 xm+1

4 ), and the Betti sequences of k[C1] and k[C] are both
(1, 2, 1), while β1(G(C1)) = m + 2 ≥ 4. Computational experiments in [17]
suggest that in this example, the Betti sequence of G(C1) is (1,m+2, 2m,m−1).

(b) [1, Cor. 3.2] Numerical semigroups defined by a generalized arithmetic sequence,
i.e., S1 = 〈a, ha + e, . . . , ha + (n − 1)e〉 for positive integers h, a, e, n, always
satisfy that the Betti sequences of k[C1] and G(C1) are equal, and hence, G(C1)
is Cohen-Macaulay (see [12, Cor. 3.10]). However, whenever h > 1 and n ≥ 3,
k[C] is not Cohen-Macaulay, so the Betti sequences of k[C1] and k[C] are different.
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When h = 1, i.e., when the sequence is arithmetic, then k[C] is Cohen-Macaulay
but the Betti sequences may also be different as Example 1 (b) shows.

Notations

For a numerical semigroup S ⊂ N, we denote by MSG(S) its minimal system of
generators. If xα ∈ k[x1, . . . , xn] is a monomial, where α = (α1, . . . , αn) ∈ N

n , we
denote its degree by |α| = ∑n

i=1 αi . For a finite set A, |A| is its cardinality. For a finite
subset A ⊂ N and a natural number s ∈ N, s ≥ 1, the s-fold iterated sumset of A is
s A := {a1 + · · · + as | a1, . . . , as ∈ A}. We also denote 0A := {0}.

Along the paper, we consider >, the degree reverse lexicographical order
(degrevlex) on k[x1, . . . , xn] with x1 > x2 > · · · > xn . This means that, for
xα, xβ ∈ k[x1, . . . , xn], xα < xβ if either |α| < |β|, or |α| = |β| and the last nonzero
coordinate of β − α is negative. Note that our results hold if one chooses a degree
reverse lexicographical order on k[x1, . . . , xn]with xn < xi for all i ∈ {1, . . . , n−1}.
For f ∈ k[x1, . . . , xn], in>( f ) denotes the initial term of f , and given an ideal
I ⊂ k[x1, . . . , xn], in>(I ) denotes the initial ideal of I , both with respect to >.

2 Apery sets and their poset structure

Let d ∈ Z
+ and a0 = 0 < a1 < · · · < an = d be a sequence of relatively prime

integers. For each i = 0, . . . , n, set ai := (ai , d−ai ) ∈ N
2, and consider the three sets

A1 = {a1, . . . , an},A2 = {d, d−a1, . . . , d−an−1} andA = {a0, . . . , an} ⊂ N
2. We

denote by C ⊂ P
n
k the projective monomial curve parametrized byA as defined in the

introduction, and by C1 and C2 its affine charts, i.e., the affine monomial curves given
by A1 and A2, respectively. We denote the vanishing ideal of Ci by IAi for i = 1, 2
and the vanishing ideal of C by IA. Consider S1 and S2 the numerical semigroups
generated by A1 and A2 respectively, and S the monoid spanned by A that we call
the homogenization of S1 (with respect to d).

As already mentioned, k[C1] and k[C2] are always Cohen-Macaulay, while k[C]
can be Cohen-Macaulay or not. There are many ways to determine when a projective
monomial curve is arithmeticallyCohen-Macaulay; see, e.g., [4,Cor. 4.2], [5, Lem. 4.3,
Thm. 4.6], [10, Thm. 2.6] or [11, Thm. 2.2].We recall some of them in Proposition 2.1,
but let us previously introduce the notion of Apery set since it is involved in some of
those charaterizations. For i = 1, 2, the Apery set of Si with respect to d is

Api := {y ∈ Si | y − d /∈ Si } .

Since gcd(A1) = 1, we know that Api is a complete set of residues modulo d, i.e.,
Ap1 = {r0 = 0, r1, . . . , rd−1} and Ap2 = {t0 = 0, t1, . . . , td−1} for some positive
integers ri and ti such that ri ≡ ti ≡ i (mod d) for all i = 1, . . . , d − 1. One can also
define the Apery set of S as

APS := {y ∈ S | y − a0 /∈ S, y − an /∈ S} .
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This set is finite and has at least d elements by [7, Lem. 2.5].

Proposition 2.1 The following statements are equivalent:

(a) C is arithmetically Cohen-Macaulay.
(b) APS has exactly d elements.
(c) APS = {(0, 0)} ∪ {(ri , td−i ) | 1 ≤ i < d}.
(d) For all i = 1, . . . , d − 1, (ri , td−i ) ∈ S. In other words, if q1 ∈ Ap1, q2 ∈ Ap2

and q1 + q2 ≡ 0 (mod d), then (q1, q2) ∈ S.
(e) If s ∈ Z

2 satisfies s + a0 ∈ S and s + an ∈ S, then s ∈ S.
(f) The variable xn does not divide any minimal generator of in>(IA1), the initial

ideal of IA1 for the degrevlex order in k[x1, . . . , xn] with x1 > · · · > xn.

For i = 1, 2, one can consider the order relation ≤i in Si given by y ≤i z ⇐⇒
z − y ∈ Si . Similarly, in S one can consider the order relation ≤S defined by
y ≤S z ⇐⇒ z − y ∈ S. In order to compare βi (k[C]) and βi (k[C1]) for all i , we
will relate in Theorem 3.1 the posets (Ap1,≤1) and (APS ,≤S), i.e., the Apery sets
Ap1 ⊂ S1 and APS ⊂ S with the natural poset structure they inherit from (S1,≤1)

and (S,≤S), respectively.

Since S ⊂ S1 × S2, it follows that if (y1, y2) ≤S (z1, z2), then yi ≤i zi for
i = 1, 2. Using Proposition 2.1, one can prove that the poset structure of (APS ,≤S)

is completely determinedby those of (Ap1,≤1) and (Ap2,≤2)whenC is arithmetically
Cohen-Macaulay.

Proposition 2.2 IfC is arithmeticallyCohen-Macaulay, then for all (y1, y2), (z1, z2) ∈
APS ,

(y1, y2) ≤S (z1, z2) ⇐⇒ y1 ≤1 z1 and y2 ≤2 z2.

Proof As observed before stating the proposition, (⇒) always holds. Let us prove
(⇐) when C is arithmetically Cohen-Macaulay. Since (y1, y2), (z1, z2) ∈ APS , one
has that y1, z1 ∈ Ap1, y2, z2 ∈ Ap2 by Proposition 2.1 (c), and y1 + y2 ≡ z1 + z2 ≡
0 (mod d). Assume that y1 ≤1 z1 and y2 ≤2 z2, then s1 := z1 − y1 ∈ S1 and
s2 := z2 − y2 ∈ S2. Moreover, si ∈ Api for i = 1, 2; otherwise, zi /∈ Api . Since
s1 + s2 = z1 + z2 − y1 − y2 ≡ 0 (mod d), then (s1, s2) ∈ S by Proposition 2.1 (d),
and we are done. ��

Let us recall now some notions about posets that will be used in the sequel for the
posets (Ap1,≤1), (Ap2,≤2) and (APS ,≤S).

Definition 1 Let (P,≤) be a finite poset.

(a) For y, z ∈ P , we say that z covers y, and denote it by y ≺ z, if y < z and there
is no w ∈ P such that y < w < z.

(b) We say that P is graded if there exists a function ρ : P → N, called rank function,
such that ρ(z) = ρ(y) + 1 whenever y ≺ z.

The following result shows that the poset (APS ,≤S) is always graded while
(Ap1,≤1) may be graded or not. Observe that, since (Ap1,≤1) has a minimum ele-
ment which is 0, whenever it is graded, the corresponding rank function is completely
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determined by the value of the rank function at 0 that we will fix to be 0. In the follow-
ing proposition, we characterize the covering relation in Ap1 and in APS , and describe
the rank functions of (APS ,≤S), and of (Ap1,≤1) when it is graded.

Proposition 2.3

(a.1) For all y, z ∈ Ap1, y ≺1 z ⇐⇒ z = y + ai for some ai ∈ MSG(S1) \ {an}.
(a.2) Ap1 is graded if and only if, for all y ∈ Ap1, every way of writing y as a sum of

elements in MSG(S1) has the same number of summands. When it is graded,
the rank function ρ1 : Ap1 → N is given by that number of summands.

(b.1) For all y = (y1, y2), z = (z1, z2) ∈ APS , y ≺S z ⇐⇒ z = y + ai for some
i ∈ {1, . . . , n − 1}.

(b.2) APS is graded by the rank function ρ : APS → N defined by ρ(y1, y2) :=
(y1 + y2)/d.

Proof In (a.1) and (b.1), (⇐) is trivial. Let us prove (⇒).

(a.1) Consider y, z ∈ Ap1 such that y ≺1 z. Since z − y ∈ S1, there exists α =
(α1, . . . , αn) ∈ N

n such that z = y+∑n
i=1 αi ai , and αn = 0 because z ∈ Ap1.

If |α| > 1, then there exists j ∈ {1, . . . , n−1} such that α j 	= 0 and y+a j 	= z.
Thus, y + a j ∈ Ap1 because z ∈ Ap1, and y <1 y + a j <1 z, a contradiction
because y ≺1 z, so |α| = 1.

(b.1) Consider y, z ∈ APS such that y ≺S z. Since z − y ∈ S, there exists α =
(α0, . . . , αn) ∈ N

n+1 such that z − y = ∑n
i=0 αiai , and α0 = αn = 0 because

z ∈ APS . Again, if |α| = ∑n−1
i=1 αi > 1, we can choose any α j 	= 0 and

get y <S y + a j <S z (one has that y + a j ∈ APS because z ∈ APS ), a
contradiction because y ≺S z.

Now (a.2) and (b.2) are direct consequences of (a.1) and (b.1), respectively. ��
Remark 1 ByProposition 2.3 (b.2), the fiber of 1 under the rank function ρ is ρ−1(1) =
{ai : 1 ≤ i ≤ n − 1}, and hence |ρ−1(1)| = n − 1. On the other hand, when Ap1 is
graded, the fiber of 1 under ρ1 is ρ−1

1 (1) = MSG(S1) \ {an} by Proposition 2.3 (a.1).
Set A′

1 := MSG(S1) \ {an} and Ap(s)
1 := Ap1 ∩ sA′

1 for each s ∈ N. Since Ap1
is finite, consider N := max{s ∈ N : Ap(s)

1 	= ∅} ∈ N. As a direct consequence of
Proposition 2.3 (a.2), we get a characterization of the graded property for (Ap1,≤1).

Corollary 2.4 (Ap1,≤1) is graded if and only if
∑N

s=0 |Ap(s)
1 | = d.

3 Betti numbers of affine and projectivemonomial curves

Recall that IA1 ⊂ k[x1, . . . , xn] and IA ⊂ k[x0, . . . , xn] are the vanishing ideals of C1
and C respectively. When C is arithmetically Cohen-Macaulay, pd(k[C]) = pd(k[C1]).
Moreover, by Proposition 3.2 (b), in this case, one has that |APS | = |Ap1| = d. The
main result in this section is Theorem 3.1 where we give a sufficient condition in terms
of the poset structures of the Apery sets Ap1 and APS for the Betti sequences of k[C1]
and k[C] to coincide. We postpone the proof after Propositions 3.2 and 3.3.
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Theorem 3.1 If (APS ,≤S) � (Ap1,≤1), then βi (k[C]) = βi (k[C1]) for all i .
Note that the converse of this result is wrong as the following example shows.

Example 3 For the sequence 1 < 2 < 4 < 8, one can check using, e.g., [6], that
both k[C1] and k[C] are complete intersections with Betti sequence (1, 3, 3, 1). How-
ever, the posets (Ap1,≤1) and (APS ,≤S) are not isomorphic since ≤1 is a total
order on Ap1, while ≤S is not. More generally, for a1 = 1 < a2 < · · · < an = d
with ai a divisor of ai+1 for all i ∈ {1, . . . , n − 1}, one has that both k[C1] and
k[C] are complete intersections; see [3, Theorem 5.3]. Thus, both Betti sequences
are (1,

(n−1
1

)
, . . . ,

(n−1
i

)
, . . . ,

(n−1
n−2

)
, 1). However, again the posets (Ap1,≤1) and

(APS ,≤S) are not isomorphic since ≤1 is a total order on Ap1, while ≤S is not.

Proposition 3.2 The following two claims are equivalent:

(a) The posets (Ap1,≤1) and (APS ,≤S) are isomorphic;
(b) k[C] is Cohen-Macaulay, (Ap1,≤1) is graded, and {a1, . . . , an−1} is contained in

the minimal system of generators of S1.

Proof (a) ⇒ (b). If (APS ,≤S) � (Ap1,≤1), then Ap1 and APS have the same num-
ber of elements, and hence k[C] is Cohen-Macaulay by Proposition 2.1 (b). Moreover,
since (APS ,≤S) is graded by Proposition 2.3 (b.2), (Ap1,≤1) is graded. Finally,
|ρ−1

1 (1)| = |ρ−1(1)| so, by Remark 1, |MSG(S1) \ {an}| = n − 1, and hence
{a1, . . . , an−1} ⊂ MSG(S1).

(b) ⇒ (a). If k[C] is Cohen-Macaulay, then |APS | = |Ap1| by Proposition 2.1 (b),
and hence themapϕ : APS → Ap1 defined byϕ(r j , td− j ) = r j for all j = 0, . . . , d−
1, is bijective. Let us prove that it is an isomorphism of posets. By Proposition 2.2, ϕ
is an order-preserving map, so one just has to show that ϕ−1 is also order-preserving.
Consider y1, z1 ∈ Ap1 such that y1 ≺1 z1. Then, there exists i ∈ {1, . . . , n − 1}
such that z1 = y1 + ai by Proposition 2.3 (a.1). Moreover, y2 + d − ai ≥ z2 since
z2 ∈ Ap2 and y2 + d −ai ∈ S2. Note that ρ(y1, y2) = ρ1(y1) (and the same holds for
(z1, z2)). This is because if we write (y1, y2) = ∑n−1

i=1 αi (ai , d−ai ) for some αi ∈ N,
then y1 = ∑n−1

i=1 αi ai is a way of writing y1 as a sum of elements in MSG(S1),
and hence ρ(y1, y2) = ∑n−1

i=1 αi = ρ1(y1) by Proposition 2.3 (a.2) and (b.2). If
z2 < y2 + d − ai , then ρ1(z1) = ρ(z1, z2) ≤ ρ(y1, y2) = ρ1(y1), a contradiction
since y1 ≺1 z1. Therefore, y2 + d − ai = z2 and we are done. ��

Note that Ap1 can be a graded poset even if (Ap1,≤1) and (APS ,≤S) are not
isomorphic as the following example shows.

Example 4 For the sequence a1 = 5 < a2 = 11 < a3 = 13,
the Apery set of the numerical semigroup S1 = 〈a1, a2, a3〉 is Ap1 =
{0, 27, 15, 16, 30, 5, 32, 20, 21, 22, 10, 11, 25}. ThisApery set is gradedwith the rank
function ρ1 : S1 → N defined below (see Fig. 1):

• ρ1(0) = 0,
• ρ1(5) = ρ(11) = 1,
• ρ1(10) = ρ1(16) = ρ1(22) = 2,
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Fig. 1 The posets (Ap1, ≤1) (in blue) and (APS , ≤S ) (in black) for S1 = 〈5, 11, 13〉

• ρ1(15) = ρ1(21) = ρ1(27) = 3,
• ρ1(20) = ρ1(32) = 4,
• ρ1(25) = 5,
• ρ1(30) = 6.

Moreover, since APS has 16 elements, k[C] is not Cohen-Macaulay, and hence
(Ap1,≤1) and (APS ,≤S) are not isomorphic by Proposition 3.2.

We now relate the condition in Proposition 3.2 to the criterion in [15, Thm. 4.1]
that uses Gröbner bases.

Proposition 3.3 Consider the following two claims:

(a) (Ap1,≤1) is graded and {a1, . . . , an−1} is contained in the minimal system of
generators of S1.

(b) The variable xn appears in every non-homogeneous binomial of G>, the reduced
Gröbner basis of IA1 with respect to the degrevlex order with x1 > x2 > · · · > xn.

Then (b) ⇒ (a), and (a) ⇒ (b) holds if k[C] is Cohen-Macaulay.

Proof (a) ⇒ (b) when k[C] is Cohen − Macaulay. Assume that there exists a

non-homogeneous binomial f = xα − xβ ∈ G> with in>( f ) = xα such that xn
does not appear in the support of f , i.e. |α| > |β| and αn = βn = 0, and consider
s = ∑n−1

i=1 αi ai = ∑n−1
i=1 βi ai ∈ S1. Let us prove that s − an /∈ S1. If s − an ∈ S1,

we can write s as s = ∑n
i=1 γi ai + an for some γ = (γ1, . . . , γn) ∈ N

n , and consider
the binomial g = xγ xn − xβ ∈ IA1 . Note that xβ − xγ xn 	= 0 since βn = 0. As
f ∈ G> and G> is reduced, one has that xβ /∈ in>(IA1) and hence in>(g) = xγ xn .
Therefore, xγ xn ∈ in>(IA1) and, by Proposition 2.1 (f), x

γ ∈ in>(IA1). The remain-
der of the division of xγ by G> is a monomial xδ such that xδ /∈ in>(IA1), and one
has that the binomial xβ − xδxn ∈ IA1 is the difference of two binomials that do not
belong to in>(IA1) using again Proposition 2.1 (f), a contradiction. Thus, s−an /∈ S1
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and hence s ∈ Ap1. But s = ∑n−1
i=1 αi ai = ∑n−1

i=1 βi ai ∈ S1 with |α| > |β| so if
{a1, . . . , an−1} ⊂ MSG(S1), one gets by Proposition 2.3 (a.2) that Ap1 is not graded.

(b) ⇒ (a) : If {a1, . . . , an−1} 	⊂ MSG(S1), select i ∈ {2, . . . , n−1} such that ai
is not aminimal generator. Then, there existsα = (α1, . . . , αi−1) ∈ N

i−1 with |α| > 2
such that xi − ∏

j<i x
α j
j ∈ IA1 . Note that any set of generators of IA1 contains an

element of this form. Thus, G> contains a non-homogeneous binomial that does not
involve the variable xn , a contradiction, and hence {a1, . . . , an−1} ⊂ MSG(S1).

If (Ap1,≤1) is not graded, by Proposition 2.3 (a.2), there exists s ∈ Ap1 that
can be written in two different ways using a different number of minimal generators
of S1, i.e. s = ∑n−1

i=1 αi ai = ∑n−1
i=1 βi ai with |α| > |β|. Note that αn = βn = 0

since s ∈ Ap1. We can choose β = (β1, . . . , βn−1) such that |β| > 0 is the least
possible value, and α = (α1, . . . , αn−1) such that, for this election of β, xα is the
smallest possible monomial for the degree reverse lexicographic order. Then f =
xα − xβ ∈ IA1 and in>( f ) = xα . Since xα ∈ in>(IA1), there exists a binomial
h = xλ − xμ ∈ G> such that xλ divides xα . Let us see that h is not homogeneous
and that the variable xn is not involved in h. If h is homogeneous, dividing xα by h,
we get xα = xα−λ(xλ − xμ) + xα−λ+μ. Then, s = ∑

i (αi − λi + μi )ai = ∑
i αi ai

with |α − λ + μ| = |α| and xα−λ+μ < xα , a contradiction with the choice of α,
so h is not homogeneous. On the other hand, since xλ divides xα and αn = 0, if xn
appears in xλ − xμ, it must be in the support of xμ. If we write xμ = xμ′

xn , then
xα = xα−λ(xλ − xμ) + xα−λ+μ′

xn and hence s = ∑
i (αi − λi + μ′

i )ai + an which is
impossible because s ∈ Ap1. Therefore, we have found a non-homogeneous binomial
h = xλ − xμ ∈ G> where the variable xn is not involved, a contradiction. Thus,
(Ap1,≤1) is graded. ��
Note 3.4 In our proof of (a) ⇒ (b), we strongly use that k[C] is Cohen-Macaulay but
we could not find any non-Cohen-Macaulay example where this implication is wrong.

Proof of Theorem 3.1 By Propositions 3.2 and 3.3, the Apery posets (AP,≤S) and
(Ap1,≤1) are isomorphic if and only if the variable xn appears in every non-
homogeneous binomial of G>, the reduced Gröbner basis of IA1 with respect to the
degrevlex order with x1 > x2 > · · · > xn . By applying a recent result of Saha,
Sengupta and Srivastava [15, Thm. 4.1], our result follows. ��

Families of curves where the Betti sequences coincide

In Propositions 3.5 and 3.8 below, we provide sequences a1 < · · · < an for which the
condition in Theorem 3.1 is satisfied.

Let us start with arithmetic sequences, i.e., sequences a1 < · · · < an such that
ai = a1 + (i − 1)e for some positive integer e with gcd(a1, e) = 1. For this family,
we refine [15, Cor. 4.2] that considers a1 > n − 1.

Proposition 3.5 Let a1 < . . . < an = d be an arithmetic sequence of relatively prime
integers, i.e., for all i = 1, . . . , n, ai = a1 + (i − 1)e for some integers a1, e > 0
such that gcd(a1, e) = 1. Then, (APS ,≤S) � (Ap1,≤1) if and only if a1 > n − 2.
Therefore, if a1 > n − 2, the Betti sequences of k[C1] and k[C] coincide.
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Fig. 2 The posets (Ap1, ≤1) (in blue) and (APS , ≤S ) (in black) for S1 = 〈5, 6, 7, 8, 9, 10〉

Proof We use Proposition 3.2 to characterize when (APS ,≤S) and (Ap1,≤1) are
isomorphic. When a1 < · · · < an is an arithmetic sequence, k[C] is always Cohen-
Macaulay by [1, Cor. 2.3]. Moreover, one can easily check that {a1, . . . , an−1} ⊂
MSG(S1) if and only if a1 > n − 2. Therefore, if a1 ≤ n − 2, then (Ap1,≤1) is
not isomorphic to (APS ,≤S). Conversely, if a1 > n − 2, it is sufficient to prove that
(Ap1,≤1) is graded. By [14, Thm. 3.4], the Apery set of S1 is described as follows:
if, for all b ∈ {0, . . . , d − 1}, qb and −rb denote respectively the quotient and the
reminder of the division with negative remainder of b by n−1, i.e., qb = �b/(n − 1)�
and rb = qb(n − 1) − b with 0 ≤ rb ≤ n − 2, then

Ap1 = {qba1 + rbe , 0 ≤ b ≤ d − 1} .

We claim that the grading is given by the function ρ1 : Ap1 → N defined by
ρ1 (qba1 + rbe) = qb. Consider y, z ∈ Ap1 such that y ≺1 z, an let us prove
that ρ1(z) = ρ1(y) + 1. By Proposition 2.3 (a.1), there exist natural numbers
b ∈ {0, . . . , d − 1} and i ∈ {1, . . . , n − 1} such that y = qba1 + rbe and
z = y + ai = (qb + 1)a1 + (rb + i − 1)e. If i ≥ n − rb, then z − d =
qba1 + (rb + i − 1 − (n − 1)) e ∈ S1, contradicting the fact z ∈ Ap1. Hence,
i ≤ n−rb−1. Set b′ := (qb+1)(n−1)−(rb+i−1). As 0 ≤ rb+i−1 ≤ n−2, on the
one hand one has that 0 ≤ b′ ≤ d − 1, on the other qb′ = qb + 1 and rb′ = rb + i − 1.
Therefore z = qb′a1 + rb′e, and hence ρ1(z) = ρ1(y) + 1. ��
Example 5 For the sequence 5 < 6 < 7 < 8 < 9 < 10, one has that a1 = 5 >

4 = n − 2. Therefore, the Apery sets (Ap1,≤1) and (APS ,≤S) are isomorphic by
Proposition 3.5. The Betti sequences of k[C1] and k[C] coincide and one can check,
using, e.g., [6], that both sequences are (1, 11, 30, 35, 19, 4). The isomorphic posets
(Ap1,≤1) and (APS ,≤S) in this example are shown in Fig. 2.

The next family that we now consider are monomial curves defined by an arith-
metic sequence in which we have removed one term. In [2, Sect. 6], the authors
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study the canonical projections of the projective monomial curve C defined by an
arithmetic sequence a1 < · · · < an of relatively prime integers, i.e., the curve πr (C)

obtained as the Zariski closure of the image of C under the r -th canonical projection
πr : P

n
k ��� P

n−1
k , (p0 : · · · : pn) ���� (p0 : · · · : pr−1 : pr+1 : · · · : pn).

We know that πr (C) is the projective monomial curve associated to the sequence
a1 < · · · < ar−1 < ar+1 < · · · < an .

If one removes either the first or the last term from an arithmetic sequence, the
sequence is still arithmetic. Moreover, note that if an arithmetic sequence a1 < · · · <

an satisfies the condition a1 > n − 2 in Proposition 3.5, then the arithmetic sequence
obtained by removing either the first or the last term also satisfies the condition in
Proposition 3.5 because the number of terms in the new sequence is smaller, and its
first term may have increased. Thus, we will only focus here on sequences obtained
from an arithmetic sequence a1 < · · · < an by removing ar for r ∈ {2, . . . , n − 1}.
Set A1 := {a1, . . . , an} \ {ar }, and consider the numerical semigroup S1 = SA1 and
its homogenization S. We characterize in Proposition 3.8 when the posets (Ap1,≤1)

and (APS ,≤S) are isomorphic. Two main ingredients in the proof are the following
two results in [2] that we recall for convenience. The first one is a technical lemma,
while the second describes the Apery set of S1.

Lemma 3.6 ([2, Lemma 2]) Let a1 < · · · < an be an arithmetic sequence of relatively
prime integers with common difference e. Set q := �(a1 − 1)/(n − 1)� ∈ N and

 := a1 − q(n − 1) ∈ {1, . . . , n − 1}. Then,
(a) (q + e)a1 + ai = a
+i + qan , for all i ∈ {1, . . . , n − 
}, and
(b) q + e + 1 = min{m > 0 | ma1 ∈ 〈a2, . . . , an〉}.
Lemma 3.7 ([2, Cor. 4]) Let a1 < · · · < an be an arithmetic sequence of rel-
atively prime integers with common difference e. Denote by A the Apery set of
S̄1 = 〈a1, . . . , an〉 with respect to an, q := �(a1 −1)/(n−1)�, and, for all μ ∈ N, set
vμ := μa1 + a2. Given r ∈ {2, . . . , n − 1}, consider A1 = {a1, . . . , an} \ {ar }, and
the semigroup S1 generated by A1. When a1 ≥ r , the Apery set of S1 with respect to
an is described as follows:

(a) If r = 2,

Ap1 =
{ (

A \ {vμ | 0 ≤ μ ≤ q + e}) ∪ {vμ + an | 0 ≤ μ ≤ q + e}, if n − 1 | a1,(
A \ {vμ | 0 ≤ μ ≤ q + e − 1}) ∪ {vμ + an | 0 ≤ μ ≤ q + e − 1}, otherwise.

(b) If r ∈ {3, . . . , n − 2},
Ap1 = (A\{ar }) ∪ {ar + an}.

(c) If r = n − 1,

Ap1 =
{

(A \ {an−1}) ∪ {an−1 + (q + 1)an}, if n − 1 | a1,
(A \ {an−1}) ∪ {an−1 + qan}, otherwise.
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Proposition 3.8 Consider a1 < . . . < an an arithmetic sequence of relatively prime
integers with n ≥ 4, and take r ∈ {2, . . . , n − 1}. Set A1 := {a1, . . . , an} \ {ar }, and
let S1 be the numerical semigroup generated byA1, and S its homogenization. Then,

(APS ,≤S) � (Ap1,≤1) ⇐⇒

⎧
⎪⎨

⎪⎩

a1 > n − 2 and a1 	= n, if r = 2,

a1 ≥ n and r ≤ a1 − n + 1, if 3 ≤ r ≤ n − 2,

a1 ≥ n − 2, if r = n − 1.

Consequently, if the previous condition holds, then βi (k[C1]) = βi (k[C]), for all i .
Proof Denote by S̄1 the numerical semigroup generated by the whole arithmetic
sequencea1 < · · · < an . Again,we use Proposition 3.2 to characterizewhen the posets
(Ap1,≤1) and (APS ,≤S) are isomorphic. Note that {a1, . . . , an} \ {ar } ⊂ MSG(S1)

if and only if

either r 	= n − 1 and a1 > n − 2, or r = n − 1 and a1 ≥ n − 2. (1)

On the other hand, by [2, Cor. 5], k[C] is Cohen-Macaulay if and only if

r ≤ a1 or r = n − 1. (2)

Finally, by Proposition 2.3 (a.2), (Ap1,≤1) is graded if and only if

∀b ∈ Ap1, b =
∑

i /∈{r ,n}
αr ai =

∑

i /∈{r ,n}
βi ai �⇒

∑

i /∈{r ,n}
αi =

∑

i /∈{r ,n}
βi . (3)

We split the proof into three cases depending on the value of r .

• r = 2.

By (1), if (APS ,≤S) � (Ap1,≤1), then a1 > n − 2. If a1 = n, the element
a3 + an−1 = a2 + an of Ap1 can be written as (2 + e)a1, and hence (Ap1,≤1) is
not graded by (3). Assume now that a1 > n − 2 and a1 	= n, and let us prove that
(Ap1,≤1) is graded in this case. By Lemma 3.7 (a),

Ap1 = (
A\{vμ | 0 ≤ μ ≤ t}) ∪ {vμ + an | 0 ≤ μ ≤ t},

for t ∈ {q + e − 1, q + e}. Every b ∈ A ∩ Ap1 satisfies (3) by Proposition 3.5, so
consider bμ := μa1 + a2 + an = μa1 + a3 + an−1 ∈ Ap1, with 0 ≤ μ ≤ t . Let us
prove that whenever bμ = ∑

i /∈{2,n} αi ai , with αi ∈ N, then
∑

i /∈{2,n} αi = μ + 2.

Using iteratively the relations ai + a j = ai−1 + a j+1 in S̄1, we get that

bμ =
∑

i /∈{2,n}
αi ai = β1a1 + εam + βnan

for some m, 2 ≤ m ≤ n − 1, ε ∈ {0, 1}, and β1, βn ∈ N such that
∑

i /∈{2,n} αi =
β1 + ε + βn .
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If ε = 0 orm 	= 2, thena2 is not involved in the expression bμ = β1a1+εam+βnan ,
so βn = 0 since bμ ∈ Ap1. Thus, bμ = μa1 + a2 + an = β1a1 + εam , and hence

(β1 − μ)a1 = a2 + an − εam . (4)

If ε = 0, a1 divides a2 + an = 2a1 + ne, and hence a1 divides n which is impossible
since a1 ≥ n− 1 and a1 	= n. Now if ε = 1 andm 	= 2, (4) implies that (β1 −μ)a1 =
a2 + an − am = a1 + (n − m + 1)e, and hence a1 | n − m + 1, a contradiction since
a1 ≥ n − 1 > n − m + 1. Thus, ε = 1 and m = 2, i.e., bμ = ∑

i /∈{2,n} αi ai =
μa1 + a2 + an = β1a1 + a2 + βnan .

Note that since β1a1 + a2 cannot be transformed into
∑

i /∈{2,n} αi ai using the rela-

tions ai + a j = ai−1 + a j+1 in S̄1, we have that βn 	= 0. Moreover, (μ − β1)a1 =
(βn−1)an andμ−β1 < q+e+1 sinceμ ≤ t ≤ q+e. By Lemma 3.6 (b), this implies
that μ = β1 and βn = 1, and we have shown that

∑
i /∈{2,n} αi = β1 +βn +1 = μ+2.

• 3 ≤ r ≤ n − 2.

By (1) and (2), the conditions a1 ≥ n − 1 and r ≤ a1 are necessary for (APS ,≤S)

and (Ap1,≤1) to be isomorphic, and by Lemma 3.7 (b), Ap1 = (A \ {ar })∪{ar +an}.
Using Proposition 3.5, we get that (Ap1,≤1) is graded if and only if every way of
writingar+an in terms ofminimal generators ofS1 has the samenumber of summands,
which is two since ar + an = ar+1 + an−1.

Now, if a1 = n−1, then ar+1+an−1 = ea1+a2+ar−1, and if r > a1−n+1, then
ar+1 +an−1 = (2+ e)a1 + (r −a1 +n−2)e = (1+ e)a1 +ar−a1+n−1. Thus, in both
cases (Ap1,≤1) is not graded. Conversely, assume that a1 ≥ n and r ≤ a1 − n + 1. If
ar + an = 2a1 + (n+ r − 2)e can be written using more than 2 minimal generators of
S1, then there exists μ ≥ 3 (the number of minimal generators involved), and m ≥ 0,
such that ar + an = μa1 + me. Then, m ≤ n + r − 3 and a1 divides n + r − 2 − m,
a contradiction since a1 > n + r − 2 ≥ n + r − 2 − m.

• r = n − 1.

By (1) and (2), we only have to show in this case that if a1 ≥ n−2, then (Ap1,≤1)

is graded, i.e., using Lemma 3.7 (c) and Proposition 3.5, that (3) holds for b =
an−1 + (q + 1)an when n − 1 | a1, and b = an−1 + qan otherwise.

Assume that n − 1 does not divide a1, and consider the element b = an−1 + qan in
Ap1.ByLemma3.6 (a), there exists j ∈ {1, . . . , n−2} such thatb = (q+e)a1+a j , and
hence we have to show that whenever b = ∑n−2

i=1 αi ai with αi ∈ N, then
∑n−2

i=1 αi =
q + e+ 1. As in the case r = 2, using iteratively the equalities ai + a j = ai−1 + a j+1
in S̄1, we get that

b =
n−2∑

i=1

αi ai = β1a1 + εam + βnan

for some m, 2 ≤ m ≤ n − 1, ε ∈ {0, 1}, and β1, βn ∈ N such that
∑n−2

i=1 αi =
β1 + ε + βn .

If βn > 0, since b ∈ Ap1, we have that b − an = β1a1 + εam + (βn − 1)an /∈ S1,
and hence ε = 1 and m = n − 1, i.e., b− an = β1a1 + an−1 + (βn − 1)an . But this is
also equal to (β1 −1)a1 +a2 +an−2 + (βn −1)an so β1 = 0 (otherwise b−an ∈ S1).
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Table 1 Betti sequences in
Example 7

r k[πr (C1)] k[πr (C)]
1 (1, 11, 30, 35, 19, 4) (1, 11, 30, 35, 19, 4)

2 (1, 12, 25, 21, 10, 3) (1, 12, 25, 21, 10, 3)

3 (1, 13, 30, 29, 14, 3) (1, 13, 30, 29, 14, 3)

4 (1, 12, 27, 27, 14, 3) (1, 12, 29, 29, 14, 3)

5 (1, 12, 25, 21, 10, 3) (1, 13, 30, 29, 14, 3)

6 (1, 12, 25, 21, 10, 3) (1, 12, 25, 21, 10, 3)

7 (1, 12, 25, 25, 14, 3) (1, 12, 25, 25, 14, 3)

Thus, b = an−1 +βnan that cannot be transformed into
∑n−2

i=1 αi ai using the relations
ai + a j = ai−1 + a j+1 in S̄1, a contradiction. This shows that βn = 0.

Then b = β1a1 + εam = (q + e)a1 + a j . Since {a1, . . . , an−2} ⊂ MSG(S1), we
deduce that ε = 1,m = j , and β1 = q+e. Hence,

∑n−2
i=1 αi = β1+ε+βn = q+e+1,

and we are done in this case.
When n − 1 divides a1, consider b = an−1 + (q + 1)an in Ap1, and the relation

b = (q+e+1)a1+an−1 given by Lemma 3.6 (a), and an analogous argument works.
��

Example 6 For the arithmetic sequence 9 < 10 < 11 < 12 < 13, the parameters are
a1 = 9, e = 1 and n = 5. By Proposition 3.5, the Betti sequences of k[C1] and k[C]
coincide. Indeed, it is (1, 10, 20, 15, 4) for both curves. Now the Betti sequences of
k[πr (C1)] and k[πr (C)] also coincide for all values of r , 1 ≤ r ≤ 5: they coincide for
r = 1 and 5 as observed before Lemma 3.6, and for r = 2, 3, 4 by Proposition 3.8.
One can check that the sequence is (1, 6, 8, 3) for r = 1, (1, 5, 6, 2) for r = 2 and 4,
(1, 8, 12, 5) for r = 3, and (1, 4, 5, 2) for r = 5.

Example 7 Consider the arithmetic sequence 9 < 10 < 11 < 12 < 13 < 14 < 15,
whose parameters area1 = 9, e = 1 and n = 7.ByProposition 3.5, theBetti sequences
of k[C1] and k[C] coincide, and one can check that it is (1, 19, 58, 75, 44, 11, 2) for
both the affine and the projective monomial curves. Now using the notations in Propo-
sition 3.8, one has that Ap1 and APS are isomorphic if and only if r ∈ {2, 3, 6}.
Hence, the Betti sequences of k[πr (C1)] and k[πr (C)] coincide for those values of r
by Theorem 3.1, and also for r = 1 and 7 as observed before Lemma 3.6. On the
other hand, one can check using [6] that the Betti sequences of k[πr (C1)] and k[πr (C)]
do not coincide for r ∈ {4, 5}. Table 1 shows the Betti sequences of k[πr (C1)] and
k[πr (C)] for all r , 1 ≤ r ≤ 7.

4 Improving Vu’s bound for equality of Betti numbers of a projective
monomial curve and its projection

Take a sequence of nonnegative integers 0 = c1 < · · · < cn , not necessarily relatively
prime, and consider, for all j > 0, the shifted set of integersA j

1 = {c1+ j, . . . , cn+ j},
and the semigroup S j

1 generated by the sequence a0 := 0 < a1 := c1 + j <
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· · · < an := cn + j . Herzog and Srinivasan conjectured that the Betti numbers of
k[S j

1 ] eventually become periodic with period cn . In [19], Vu provides a proof of this
conjecture together with an explicit value N such that this periodic behavior occurs
for all j > N . One of the key steps in Vu’s argument is [19, Thm. 5.7] where he proves
that, for all j > N , the Betti numbers of the affine and projective monomial curves
defined by c1 + j < · · · < cn + j coincide. We provide a smaller value of N such
that this occurs.

Theorem 4.1 Let 0 = c1 < · · · < cn be a sequence of nonnegative integers and set
N := (cn − 1)(

∑n−1
i=2 ci ). Then, for all j ≥ N, the affine and projective monomial

curves defined by the sequence a0 = 0 < a1 = c1 + j < · · · < an = cn + j have the
same Betti numbers.

Proof Take j ≥ N . Let G j
> be the reduced Gröbner basis of IA j

1
with respect to the

degrevlex order with x1 > · · · > xn , and consider f = xα − xβ ∈ G j
> with xα > xβ .

If we show that

(a) xn does not divide xα , and
(b) if f is not homogeneous, then xn divides xβ ,

then the result follows from [15, Thm. 4.1]. Note that this result is true even if the
generators of the semigroup are not relatively prime since the defining ideal does not
change when we divide them by a common divisor.

If xn divides xα , then xn does not divide xβ , and hence |α| > |β|. Thus,

N = (cn − 1)(
n−1∑

i=2

ci ) ≤ j ≤ (|α| − |β|) j <

n∑

i=1

(αi − βi ) j +
n∑

i=2

αi ci =
n−1∑

i=2

βi ci .

This implies that there exists i ∈ {2, . . . , n − 1} such that βi ≥ cn . If we consider the

monomial xγ := xβ x
cn−ci
1 x

ci
n

xcni
, then the homogeneous binomial g = xβ − xγ belongs

to IA j
1
because the homogeneous binomial xcni − xcn−ci

1 xcin belongs to IA j
1
. As xn

divides xγ and does not divide xβ , in>(g) = xβ ∈ in>(IA j
1
), a contradiction because

G j
> is reduced and f ∈ G j

>. This shows that that xn does not divide xα , and (a) is proved.

Now assume that f is not homogeneous, i.e., |α| > |β|, and that xn does not divide
xβ . By (a), xn does not divide xα either, and hence

N = (cn − 1)(
n−1∑

i=2

ci ) ≤ j ≤ (|α| − |β|) j <

n−1∑

i=1

(αi − βi ) j +
n−1∑

i=2

αi ci =
n−1∑

i=2

βi ci .

Thus, there exists i ∈ {2, . . . , n − 1} such that βi ≥ cn . Using exactly the same
argument as before for (a), we get a contradiction, and hence (b) is proved. ��
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Corollary 4.2 Let a1 < · · · < an be a sequence of positive integers, and set M :=
an + (an − 1)(

∑n−1
i=1 (an − ai )). Then, for all j ≥ M, the projective monomial curve

defined by the sequence a1 < · · · < an < j is arithmetically Cohen-Macaulay.

Proof Consider the sequence b0 := 0 < b1 := an −an−1 < · · · < bn−1 := an −a1 <

bn := an . By Theorem 4.1, one has that the projective monomial curve defined by
l < l + b1 < · · · < l + bn is arithmetically Cohen-Macaulay for all l ≥ (bn −
1)(

∑n−1
i=1 bi ) = (an − 1)(

∑n−1
i=1 (an − ai )). To finish the proof, it suffices to observe

that the dual sequence of 0 < a1 < · · · < an < l + an is l < l + b1 < · · · < l + bn
and take l + an = j . ��

5 Construction of Gorenstein projective monomial curves

Since βi (k[C]) ≥ max (βi (k[C1]), βi (k[C2])) for all i , whenever k[C] is Gorenstein,
then so are k[C1] and k[C2]. The converse of this statement is false; indeed, it could
happen that C1 and C2 are both arithmetically Gorenstein and that C is not even arith-
metically Cohen-Macaulay, as can be seen in Example 8 (a). Actually, even if k[C] is
Cohen-Macaulay, it may happen that k[C] is not Gorenstein, as Example 8 (b) shows.

Example 8 (a) The affine monomial curve C1 defined by the sequence 4 < 9 < 10
is an (ideal-theoretic) complete intersection and, thus, k[C1] is Gorenstein with
Betti sequence (1, 2, 1). The corresponding projective monomial curve is not
arithmetically Cohen-Macaulay, indeed, the Betti sequence of k[C] is (1, 5, 6, 2).

(a) The affine monomial curve C1 defined by the sequence 10 < 14 < 15 < 21 is
an (ideal-theoretic) complete intersection and, thus, k[C1] is Gorenstein with Betti
sequence (1, 3, 3, 1). The corresponding projective monomial curve is arithmeti-
cally Cohen-Macaulay but not Gorenstein, indeed, the Betti sequence of k[C] is
(1, 4, 5, 2).

A numerical semigroup S1 is symmetric if and only if either b ∈ S1 or F(S1)−b ∈
S1 for all b ∈ N, where F(S1) = max (N \ S1) is the Frobenius number of S1. Kunz
proved in [13] that k[C1] is Gorenstein if and only if S1 is symmetric. In this section
we show how to construct an arithmetically Gorenstein projective monomial curve
from a symmetric numerical semigroup T . We begin with the following result, which
provides a necessary and sufficient condition for C to be arithmetically Gorenstein and
is a consequence of the results in [5].

Proposition 5.1 Let C be the projective monomial curve defined by the sequence a0 =
0 < a1 < · · · < an = d of relatively prime integers. Then, C is arithmetically
Gorenstein if and only if C is arithmetically Cohen-Macaulay, both S1 and S2 are
symmetric, and d divides F(S1) + F(S2).

Proof (⇒) If C is arithmetically Gorenstein, then C is arithmetically Cohen-Macaulay
and both S1 and S2 are symmetric by [5, Lem. 2.6]. Assume now that d does not
divide F(S1)+ F(S2). By Proposition 2.1 (c), there exist y ∈ S1 and z ∈ S2 such that
(F(S1) + d, z) and (y, F(S2) + d) are two different elements of APS . Moreover, by
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Proposition 2.2, they are both maximal in the poset (APS ,≤S), and hence, C is not
arithmetically Gorenstein by [5, Thm. 4.9].

(⇐) If d divides F(S1)+ F(S2), then by Proposition 2.1 (c), (F(S1)+d, F(S2)+
d) ∈ APS and by Proposition 2.2, this element is the maximum of (APS ,≤S). Hence,
C is arithmetically Gorenstein by [5, Thm. 4.9]. ��

Note that in the previous result, one cannot remove the condition of k[C] being
Cohen-Macaulay as Example 9 shows.

Example 9 For the sequence 6 < 7 < 8 < 15 < 16, one has that the numerical semi-
group S1 = 〈6, 7, 8, 15, 16〉 is symmetric, and S2 = N is also symmetric. Moreover,
F(S1) = 17 and F(S2) = −1, so d = 16 divides F(S1) + F(S2). But k[C] is not
Cohen-Macaulay, so it cannot be Gorenstein.

The following example provides a family of arithmetically Gorenstein projective
curves. This example gives some insights on Theorem 5.2, which is the main result of
this section and showshow to construct a projectiveGorenstein curve froma symmetric
numerical semigroup. For a, b ∈ Z with a ≤ b, denote by �a, b� the integer interval
[a, b] ∩ Z.

Example 10 If m > 3 is an odd integer, one has that

S1 = 〈(m + 1)/2, . . . ,m − 1〉 = {0, (m + 1)/2, . . . ,m − 1,m + 1,→}

is a symmetric numerical semigroup with F(S1) = m. Hence the ring k[C1] is
Gorenstein. The sequence m+1

2 < · · · < m − 1 defines a projective curve of
degree d = m − 1 = F(S1) − 1. We claim that k[C] is Gorenstein. Note that
Ap1 = {0} ∪ �m+1

2 ,m − 2� ∪ �m + 1, 3
2 (m − 1)� ∪ {2m − 1}. Since S2 = N, we

have that F(S2) = −1 and Ap2 = �0,m − 1�. By Proposition 5.1, it only remains to
check that k[C] is Cohen-Macaulay. By Proposition 2.1 (d), k[C] is Cohen-Macaulay
because B ⊂ S, where B ⊂ N

2 is the following set with d elements:

{(0, 0)}∪{(a, d−a) | m+1
2 ≤a≤m−2}∪{(d+g, d−g) | 1<g< m+1

2 }∪{(2d+1, d−1)} .

We now generalize this to any symmetric numerical semigroup T such that T 	= N

and T 	= 〈2, a〉 for some a odd or, in other words, such that 2 /∈ T . The idea under
this construction is to consider the projective closure of the affine monomial curve
parametrized by the so-called small elements in the semigroup, that is, all the elements
in the numerical semigroup that are smaller than the Frobenius number. The precise
statement of the result is the following.

Theorem 5.2 Let T ⊆ N be a symmetric numerical semigroup such that 2 /∈ T and
consider T ∩ �0, F(T ) − 1� = {0, a1, . . . , an} with 0 < a1 < · · · < an. Then, the
projective monomial curve defined by the sequence a1 < · · · < an is arithmetically
Gorenstein.

To prove this theorem we use the following two lemmas. We believe that they are
known but since we could not find a precise reference, we decided to include their
proofs.
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Lemma 5.3 Let T ⊂ N be a symmetric numerical semigroup and consider a1 < · · · <

an its minimal set of generators. If 2 /∈ T , then an < F(T ).

Proof We prove that every y ∈ T such that y > F(T ) can be written as y = z1 + z2
with z1, z2 ∈ T \ {0} and, hence, y /∈ MSG(T ).

• For y = F(T ) + 1, we take z1 = a1 ∈ T and z2 = F(T ) − a1 + 1. We have that
z2 ∈ T because F(T ) − z2 = a1 − 1 /∈ T and T is symmetric.

• For y = F(T ) + 2, we take z1 = a1 ∈ T and z2 = F(T ) − a1 + 2. We have that
z2 ∈ T because F(T ) − z2 = a1 − 2 /∈ T (because a1 > 2) and T is symmetric.

• For y = F(T ) + 3, if y/2 ∈ T , we take z1 = z2 = y/2. Otherwise, we observe
that

|�1, y − 1� ∩ T | = |�1, F(T )� ∩ T | + y − F(T ) − 1 = y − F(T ) + 3

2
= y

2
.

Thus, there exists 1 ≤ i < y/2 such that i, y − i ∈ T and we are done.
• For y > F(T ) + 3, we observe that

|�1, y − 1� ∩ T | = |�1, F(T )� ∩ T | + y − F(T ) − 1 = y − F(T ) + 3

2
>

y

2
.

Thus there exists 1 ≤ i ≤ y/2 such that i, y − i ∈ T and we are done.

��
Lemma 5.4 Let S1 = 〈a1, . . . , an〉 � N be a numerical semigroup with a1 < · · · <

an, and set a := min{b ∈ S1 : a1 � b}. If y ∈ N satisfies that y + i /∈ S for all
i ∈ {0, . . . , a − 1} such that a1 � i , then y = 0.

Proof Since y + 1, . . . , y + a1 − 1 /∈ S1, we deduce that a1 divides y, so y ∈ S1.
Moreover, a − a1 is not a multiple of a1, so y + a − a1 /∈ S1 and y + a − a1 ≡ a
(mod a1). Thus, we get that y + a − a1 ≤ a − a1, and hence y = 0. ��
Proof of Theorem 5.2 Since T is symmetric and 2 /∈ T , then by Lemma 5.3 we have
that MSG(T ) ⊂ {a1, . . . , an}. Hence, S1 = T and S1 is symmetric. Moreover, since
1, 2 /∈ S1, then d = an = F(S1) − 1 and an−1 = F(S1) − 2. Thus S2 = N and
we get that F(S2) = −1 and F(S1) + F(S2) = d. By Proposition 5.1, it is enough
to prove that C is arithmetically Cohen-Macaulay to conclude that it is arithmetically
Gorenstein.

One can easily check that Ap1 = {a ∈ S1 | 0 ≤ a < d}∪ {g+d | g /∈ S1, 1 < g <

d} ∪ {2d + 1}, and Ap2 = {0, 1, . . . , d − 1}. Consider now the following set B ⊂ N
2

with d elements:

B ={(0, 0)} ∪ {(a, d − a) | a ∈ S1, 1 < a < d}∪
{(d + g, d − g) | g /∈ S1, 1 < g < d} ∪ {(2d + 1, d − 1)} .

ByProposition 2.1 (d),C is arithmeticallyCohen-Macaulay if andonly if B ⊂ S, and in
this case APS = B. Let us prove that B ⊂ S. Clearly (0, 0) ∈ S and {(a, d − a) | a ∈
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S1, 0 < a < d} = {(ai , d − ai ) | 1 ≤ i < n} ⊂ S, and one has to show that
(d + g, d − g) ∈ S for all g /∈ S1, 1 < g < d and (2d + 1, d − 1) ∈ S. Let a ∈ S1
be the minimum element in S1 which is not a multiple of a1. We distinguish between
two cases.

Case 1: d > g > F(S1) − a = d + 1 − a. We claim that g + 1 ∈ S1. Otherwise,
by the symmetry of S1 one has that F(S1) − g and F(S1) − g − 1 are two
consecutive elements of S1 which are both smaller than a, and this is not possible.
Then, (d − 1, 1), (g + 1, d − g − 1) ∈ S and we get that (d + g, d − g) =
(d − 1, 1) + (g + 1, d − g − 1) ∈ S.
Case 2: 1 < g ≤ F(S1)−a = d+1−a.We claim that there exists j ∈ {0, . . . , a−
1} such that both d + 1− j and g − 1+ j belong to S1. Assume by contradiction
that this statement does not hold. Whenever j ∈ {0, . . . , a−1} is not a multiple of
a1, we have that j /∈ S1 and, by the symmetry of S1, F(S1)− j = d +1− j ∈ S1
and hence g− 1+ j /∈ S1. By Lemma 5.4, this means that g = 1, a contradiction.
Now, we take j ∈ {0, . . . , a−1} such that d+1− j, g−1+ j ∈ S1 (clearly j 	= 0
because d+1 = F(S1) /∈ S1). Then (g−1+ j, d+1−g− j), (d+1− j, j−1) ∈ S
and hence (d + g, d − g) = (g− 1+ j, d + 1− g− j)+ (d + 1− j, j − 1) ∈ S.

Finally, taking any g /∈ S1, 1 < g < d, we have that F(S1) − g = d + 1 − g ∈ S1.
Thus, (2d + 1, d − 1) = (d + g, d − g) + (d + 1 − g, g − 1) ∈ S. ��
Remark 2 By the proof of Theorem 5.2 and [7, Thm. 3.6], it follows that the
Castelnuovo-Mumford regularity of k[C] is reg(k[C]) = 3 for all the Gorenstein
curves that we constructed in Example 10 and Theorem 5.2.

Following the construction in Theorem 5.2, one gets an arithmetically Gorenstein
projective curve C. However, the Betti numbers of k[C1] and k[C] can be very different,
as the following example shows.

Example 11 Consider the symmetric numerical semigroup T = 〈4, 9, 10〉. One
has that the Frobenius number of T is F(T ) = 15 and, hence, T ∩ �0, 14� =
{0, 4, 8, 9, 10, 12, 13, 14}. By Theorem 5.2 we have that the projective monomial
curve defined by the sequence 4 < 8 < 9 < 10 < 12 < 13 < 14 is Gorenstein. A
computation with [6] shows that the Betti sequence of k[C1] is (1, 6, 15, 20, 15, 6, 1),
while the Betti sequence of k[C] is (1, 15, 39, 50, 39, 15, 1).

6 Conclusions / open questions

Let C1 ⊆ A
n
k be an affine monomial curve and consider C ⊆ P

n
k its projective closure.

The Betti numbers of k[C] (the coordinate ring of C) are always greater than or equal to
those of k[C1] (the coordinate ring of C1). We explore when the Betti numbers of both
rings are identical. In Theorem 3.1, which is our main result, we provide a sufficient
condition for this in terms of the poset structure of certain Apery sets. As Example 3
shows, this condition is not necessary. The following natural question remains open.

Open problem 6.1 Characterize when the Betti numbers of the coordinate rings of C1
and C coincide.
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Proposition 3.3 is an intermediate key result to obtain our main one. It translates a
Gröbner-basis condition on the ideal of C1 into a poset flavored combinatorial criterion.
In one of the implications we added the hypothesis that k[C] is Cohen-Macaulay and
our proof relies on this. We wonder if this assumption can be dropped.

We applied Theorem 3.1 to provide families of affine curves whose coordinate
rings have the same Betti numbers as their corresponding homogenizations. Also, we
used our results to study the shifted family of monomial curves, i.e., the family of
curves associated to the sequences j + a1 < · · · < j + an for different values of
j ∈ N. In this context, Vu proved in [19] that for j big enough, one has an equality
between the Betti numbers of the corresponding affine and projective curves. Using
our results, we improve Vu’s threshold in Corollary 4.2. Vu also showed that the Betti
numbers become periodic in the shifted family for j > N , being N an explicit value.
Computational experiments suggest that the value of N can be optimized. Hence, we
propose the following problem.

Open problem 6.2 Improve Vu’s bound on the least value of j such that the Betti
numbers of the shifted family become periodic.

A partial solution to this problem can be found in [16], where the author finds a
better estimate when S1 is a three generated numerical semigroup.

Consider the projective monomial curve C ⊂ P
n
k given parametrically by xi =

uai vd−ai for all i ∈ {0, . . . , n}, with 0 = a0 < a1 < . . . < an = d a sequence
of relatively prime integers. One can associate to C the numerical semigroup SC =
〈a1, . . . , an〉. It is known that whenever C is arithmetically Gorenstein, then SC is
symmetric. In the fourth section we prove a sort of converse to this statement. More
precisely, in Theorem 5.2, for a symmetric numerical semigroup T we construct an
arithmetically Gorenstein projective monomial curve C such that T = SC . In view of
our result, we wonder if the answer to the following question could be positive:

Open problem 6.3 For a numerical semigroup T of type t > 1, does there exist an
arithmetically Cohen-Macaulay curve C of type t such that SC = T ?
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