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Abstract Microbial conversion of cheap and prob-
lematic carbon sources, like  CO2 and CO, into fine 
chemicals offers a promising green alternative to 
numerous traditionally fossil fuel-based industries 
such as steel, cement, and pharmaceuticals produc-
tion. Purple phototrophic bacteria (PPB) are emerg-
ing as versatile key players in carbon–neutral systems 

due to their anoxygenic photosynthesis and diverse 
metabolic capabilities, enabling the transformation 
of carbon and nutrients into a wide range of valua-
ble products. Traditionally positioned to treat organic 
carbon and produce medium-value products like bio-
plastics and biomass, PPB also exhibit autotrophic 
capabilities, enabling the valorization of waste gases, 
such as  CO2 and CO. A key strength of PPB is their 
metabolic and ecological diversity, including spe-
cies inhabiting saline environments. Halophilic bac-
teria are known producers of valuable chemicals 
for pharmaceutical and medical applications, such 
as osmolytes (ectoine, hydroxyectoine), pigments, 
amino acids (proline) and natural coenzymes (ubiqui-
none), yet halophilic PPB remain underexplored 
in green upcycling processes. This study identified 
halophilic PPB capable of transforming waste gases 
into health and wellness products. Through a compre-
hensive literature review, we compiled a list of halo-
philic PPB and mined their genomes for genes linked 
to CO₂/CO utilization as carbon sources. Further 
genomic search revealed genes encoding enzymes 
for ectoine/hydroxyectoine, proline, ubiquinone, and 
carotenoids (lycopene, β-carotene, spirilloxanthin, 
and spheroidene). We identified 276 genomes of PPB 
with the genomic potential to valorise CO₂/CO into 
health-promoting ingredients, highlighting 22 spe-
cies capable of producing three or more chemicals 
simultaneously. These findings highlight the untapped 
potential of halophilic PPB as bio-platforms for sus-
tainable pharmaceutical production.
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1 Introduction

The pharmaceutical industries generate more waste 
per unit product and byproduct than the oil refining, 
bulk, and fine chemical industries (Kar et  al. 2022), 
while the iron and steel, and cement sectors gener-
ate significantly higher waste products such as  CO2 
and CO than even the pharmaceutical industries, 

accounting for 7% and 5–8% of anthropogenic global 
 CO2, respectively (An et al. 2018; Kajaste and Hurme 
2016; Nidheesh and Kumar 2019). These industries´ 
production output is set to rise over the next few 
years: the global pharmaceutical industry grows at 
10% per annum (Gao et  al. 2019; IQVIA (Statista), 
2024; ), while global cement, and steel production are 
set to increase by 50% and 30%, respectively, by 2050 
(Monteiro et al. 2017; Yoro and Daramola 2020). As 
such, these industries face growing demands to mini-
mize their environmental footprint and waste gen-
eration by adopting more sustainable practices. The 
pharmaceutical industry creates myriad, high market 
value products which can be used in diverse sectors 
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such as cosmetics, medicines, traditional pharmaceu-
ticals, and nutraceuticals. Although these products 
are industrially produced through unique pathways 
and technologies, they share some overarching simi-
larities. The manufacturing of synthetic chemicals 
involves the use of costly and harmful aliphatic and 
aromatic compounds, includes a series of stepwise 
reactions to ensure their correct three-dimensional 
arrangement, and requires extensive purification 
steps that generate toxic waste and contribute to high 
greenhouse gas (GHG) emissions. Consequently, the 
production of synthetic chemicals fails to adhere to 
sustainability principles and is cost- and time-inten-
sive. In response, the global market of green chem-
istry is increasing exponentially yearly and concerns 
about the effects and safety of synthetic substances 
for human consumption, along with green practices, 
drive demand for naturally sourced pharmaceuti-
cal and cosmetic ingredients (Mussagy et  al. 2019; 
Ratti 2020). When considering industrial production 
of naturally sourced fine chemicals, some of them—
such as lycopene or ubiquinone—rely on extrac-
tion from animal and plant tissues (Ciriminna et  al. 
2016). This approach involves ethical issues related 
to animal welfare, competition with the food market, 
and land scarcity due to large areas needed for crop 
cultivation (Li et  al. 2020; Olufemi et  al. 2009; Wu 
and Tsai 2013). Furthermore, the process waste gen-
erated requires treatment, which also results in high 
final costs (Vallecilla-Yepez and Ciftci 2018). In this 
context, microbial fermentation using specialized 
microorganisms emerges as a greener and poten-
tially more commercially viable production process 
for these compounds (Alloun and Calvio 2024). It 
enables the sustainable production of high-purity, 
natural compounds without intensive consumption 
of natural resources (Li et  al. 2020). This process 
is scalable, controllable, and can be sustained using 
widely available and cheap raw materials, ensuring 
consistent quality and yield (Ha et  al. 2007; Hülsen 
et al. 2022; Wu and Tsai 2013). Microbial fermenta-
tion often uses mild operating conditions and simple 
reactors, compared to the more extreme operating 
conditions and multi-step process of chemical synthe-
sis, to produce target compounds, and at times copro-
duce multiple compounds from the same carbon stock 
(Chen et  al. 2024; Hara et  al. 2014). In this regard, 
the capital and operating expenditure (CAPEX and 
OPEX), along with land requirement for this part of 

the process, could be reduced. It must be noted that 
downstream processes (e.g., product extraction, pack-
aging and delivery) would still contribute to overall 
land area, production cost, and emissions. The eco-
nomic feasibility of the process ultimately depends 
on the microbial production capacity and the market 
value of the product.

Microorganisms can generate numerous interest-
ing health and wellness ingredients, including: carot-
enoids, such as beta-carotene, lycopene, spirillox-
anthin, spheroidene; enzymes like ubiquinone 
(Coenzyme Q10); amino acids such as proline; and 
the compatible solutes ectoine and hydroxyectoine 
(Table  1). Table  1 lists bacteria which are currently 
employed in industry to produce specific valuable 
products and their role in nature and industrial uses.

Table 1 shows that some of these potentially valua-
ble products, such as spheroidene and spirilloxanthin, 
still do not command an industry, much less one with 
microbial fermentation. This highlights a clear gap in 
the market, with Cahoon et  al. (2012) showing that 
spirilloxanthin has higher antioxidant capacity than 
beta-carotene, and equals that of lycopene, which 
are both marketed as antioxidants. Nevertheless, the 
few current production processes for fine chemicals 
(via microbial fermentation) which do have an indus-
try, rely on carbon sources such as glucose (or other 
sugars, yeasts, peptones). This dependency is costly, 
competes with the food market, and contributes to 
 CO2 emissions. Thus, to improve the competitiveness 
of industrial biotechnology in the health and wellness 
industries, it is essential to promote the development 
of novel circular economy systems. In this scenario, 
anaerobic biotechnology that harness green carbon 
and energy sources such as  CO2 and CO obtained 
from sectors such as cement and steel production, 
appear as an advantageous tool to promote valuable 
chemical production in a green way compared to syn-
thetic processes. Furthermore, anaerobic processes 
can be more attractive than some aerobic processes, 
as they can treat compounds which are recalcitrant 
under aerobic conditions, and consume less energy 
(Shi et al. 2017; Xiao and Roberts 2010). Moreover, 
if these organisms grow under extremophilic condi-
tions (e.g., high salinity), they would offer an extra 
advantage, requiring less freshwater and reducing the 
risk of contamination. Generally, saline wastewater 
has been observed to be inhibitory for conventional 
anaerobic treatment, however, anaerobic halophiles 
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are well documented (Xiao and Roberts 2010). Pho-
toautotrophic halophilic bacteria, in particular, hold 
promise due to their natural ability to synthesize pig-
ments, osmolytes, and unique amino acids, thriving 
on  CO2 and inexpensive energy sources like CO and 
IR light. This approach reduces the carbon footprint 
and costs associated with traditional fermentation, 
promoting a greener, circular model for producing 
pharmaceuticals, medical products, and cosmetics.

2  Halophilic purple phototrophic bacteria 
as sustainable platforms to produce valuable 
products

Ecologically, halophilic microorganisms inhabit dif-
ferent ecosystems characterized by a salinity higher 
than seawater, i.e., 3.5% NaCl. They are physiologi-
cally diverse, appearing in a wide range of environ-
ments using different metabolisms; phototrophic, 
chemoorganotrophic and chemolithoautotrophic 
(Ventosa et al. 2011). Furthermore, they can be con-
sidered advantageous due to their low nutritional 

Table 1  Bacteria currently used in industrial processes for the production of valuable compounds and their uses

Compound Role in nature Industrial Use Market 

price* 

(USD kg-1)

Market 

size* 

(USD)

Current industrial production References

Bacteria Carbon & 

Energy source

ß-carotene � Provitamin A 

(Vitamin A precursor) 

� Food/feed industry:

Additive, colorant.

� Cosmetic industry:

Skincare agent, creams, 

UV protection, anti-aging 

effects

� Medical industry:

Antioxidant, cardio-

vascular, cataracts, 

anticancer

� Health & nutraceuticals:

Health benefits (e.g., 

prostate, mammary, & lung 

cancer, cardiovascular 

diseases)

400 – 2000 532M

(CAGR+

of 6.7%)

Bacteria not 

used: mostly 

fungi &

microalgae

Glucose (fungi)

CO2 + light

(microalgae)

(Abu-Rezq et al., 

2010; Grabowska 

et al., 2019;  Viana 

et al., 2024)

� Photosynthesis

� Photoprotection

� Pigmentation

Lycopene 6000 145M

(CAGR 

of 5.5%)

Escherichia 

coli (E.coli)

Glucose (and/or 

other sugars)

(Nandeshwar et 

al., 2024;

Olempska-Beer, 

2006; Sun et al., 

2014; Vílchez et 

al., 2011)

Spheroidene - - No industry 

yet

Organic acid, 

sugar + light

(Rodriguez-

Concepcion et al., 

2018)

Spirilloxanthin - - No industry 

yet

Organic acids, 

sugars, alcohols, 

fatty acids + light

(Cahoon et al., 

2012)

Ubiquinone � Electron transport 

chain

� Scavenges free oxygen 

radicals

� Health & nutraceuticals:

Combat Parkinson’s, 

Alzheimer’s etc.

� Cosmetic industry:

Skincare 

500-600 473.6M

(CAGR 

of 4.8%)

E. coli,

S. cerevisiae

Glucose 

(or other sugars)

(Allied Market 

Research, 2024; 

Capson-Tojo et 

al., 2020; He et al., 

2021; Wu and 

Tsai, 2013)

Proline � Osmo-protectant

� Stabilise proteins &

boost enzyme activity

� Food/feed industry:

Additive, colourant.

� Skincare agent

200-1000 330M

(CAGR 

of 5.2%)

C.glutamicum

E. coli

Glucose (at times 

with sucrose)

(Business 

Research Insights, 

2024; Zhang et al., 

2020)

Ectoine � Osmo/thermo-

protectant

� Enzyme, DNA-protein 

nucleic acid stabilizer. 

� Cosmetic industry:

Skincare agent 

� Pharmaceutical industry:

enhanced drug delivery

1000 10-20M

(CAGR 

of 6.7%)

H. elongata Glucose, sodium 

glutamate

(Kunte et al., 

2014; Pérez et al., 

2022;Verified 

Market Research, 

2024)

Hydroxyectoine � Stress protection (pH 

& oxidation)

� Skincare agent

� Enhanced thermoplastic 

>1000 - No industry

yet

(Pastor et al., 

2010; Sauer and 

Galinski, 1998)

*Market data and price is for the current industry as some industries using bacteria do not currently exist or are dwarfed by those 
using microalgae. +Compound annual growth rates (CAGR) reported by market bodies
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requirements, unlikely contamination under moder-
ately aseptic conditions and genetic machinery. One 
of their mechanisms of halo-adaptation is based on 
the intracellular storage of unique biomolecules, 
extremolytes, which counteract the osmotic pressure 
of the external environment given by the high salin-
ity (Bremer and Krämer 2019). Their useful proper-
ties have prompted extensive testing in recent years 
on human DNA, cells, and tissues, where they have 
demonstrated significant protective effects and poten-
tial medical and pharmaceutical applications. As a 
result, halophiles have gained recognition as valuable 
sources of bioactive compounds, specialized chemi-
cals, and enzymes, positioning them as promising 
contributors to innovation in the health and wellness 
industries. Some of the most interesting extremolytes 
for the production of health and wellness chemicals 
with halophiles are ectoine, hydroxyectoine and pro-
line, for which salinity is the main trigger for the 
expression of genes involved in their biosynthesis 
pathway (Argandoña et al. 2021). Halophiles in saline 
conditions are also shown to enhance their metabolite 
production as part of their broader stress response, 
regulated by environmental sensing pathways. Hence, 
high salinity may trigger carotenoid production in 
halophilic microorganisms as a protective mechanism 
against oxidative stress, UV and visible radiation, and 
osmotic pressure, while also stabilizing cell struc-
tures (de Lourdes Moreno et al. 2012). It is interest-
ing to note, however, that the typical microbes used 
in industrial proline and carotenoid production are not 
halophilic. Replacing these microbes with halophilic 
bacteria could prove an efficient way to increase pro-
duction capacity and reduce contamination, thereby 
improving chemical purity and lowering costs and 
resource consumption (Daoud and Ben Ali 2020). In 
this scenario, halophilic purple phototrophic bacteria 
(PPB) could be used to create a sustainable biorefin-
ery using cheap carbon sources in the form of  CO2, 
and energy sources such as sunlight,  H2 or CO. PPB 
are a diverse group of anoxygenic phototrophs that 
harness solar light as an energy source (Hülsen et al. 
2014). PPB’s demonstrated benefits confirm their 
distinctive potential as promising candidates for cell 
platforms. These advantages include their widespread 
presence across varied and, at times, extreme eco-
systems, ranging from soil, freshwater, wastewaters, 
and saline and marine environments, which facili-
tate synthetization of a diverse array of bioproducts, 

holding significant market potential across various 
industries (Capson-Tojo et  al. 2020). This versatil-
ity is enhanced by their taxonomic diversity, as PPB 
encompass a polyphyletic set of microorganisms—at 
around 50 known genera of anoxygenic PPB and 75 
known PPB genera in total—belonging to multiple 
lineages within the phylum Proteobacteria (Madigan 
and Jung 2009). Their unique light absorption char-
acteristics, specifically in the near-infrared spectrum 
(> 805 and > 1000  nm) through bacteriochlorophylls 
(BChls) and in the visible range (400–600 nm) via a 
varied array of carotenoids, negates competition with 
other phototrophs, reduces costs (Seto et  al. 2020), 
and can have a 1:1 substrate-to-biomass conversion 
(Alloul et  al. 2019). Their anoxygenic metabolism 
negates the need of aeration which could reduce the 
OPEX (Capson-Tojo et al. 2021).

Within their spectrum of metabolic pathways, 
several PPBs can grow purely autotrophically, 
using  CO2 as the carbon source in the presence of 
infrared light. Moreover, some PPBs have demon-
strated the ability to oxidize inorganic compounds 
like CO or  H2, with and without light. For instance, 
studies have reported the capability of Rubrivivax 
gelatinosus CBS, a purple non-sulfur bacterium, of 
using CO as the only carbon source under anaero-
bic light conditions. Moreover, in the absence of 
light, it exhibits the ability to utilize CO as both the 
carbon and energy source (Wawrousek et al. 2014). 
Similarly, Dhakal and Acharya (2021) reported 
Rhodospirillum rubrum to have the inherent ability 
to fix syngas via CO and  H2 oxidization and  CO2 
fixation.

Moreover, PPB are becoming important in bio-
prospecting. PPB such as Rhodobacter capsulatus and 
Rhodospeudomonas palustris are well studied and 
recognised as important microbial mediators due to 
their production of PHAs, high-protein biomass, and 
carotenoids on a wide range of organic and inorganic 
carbon substrates (Capson-Tojo et al. 2020), and they 
have also been suggested for saline and hypersaline 
wastewater bioremediation due to their salt-tolerance 
(Grattieri et  al. 2019; Labarile et  al. 2021). Further-
more, it is important to note, the valuable osmolyte, 
ectoine, was first discovered in the PPB Ectothiorho-
dospira (Galinski et al. 1985). However, it has not yet 
been produced continuously, at scale, with PPB; this 
represents a missed opportunity. All these character-
istics make PPB exceptional microbes for valorizing 
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industrial gases into highly valuable chemicals for the 
pharmaceutical, medical and cosmetic industries.

3  Potential halophilic purple phototrophic 
bacteria able to produce carotenoids, osmolytes, 
amino acids and co‑enzymes from green carbon 
and energy sources

Although several PPB can grow autotrophically, 
some utilize CO, and various strains are halophilic, 
the potential of harnessing halophilic PPB to pro-
duce valuable chemicals from  CO2 and CO under 
high-salinity conditions remains largely unexplored. 
A literature review of primarily PPB uncovered ~ 100 
potentially halophilic species. Supplementary mate-
rials shows the recorded phenotypes, environment 
and optimal growth conditions and growth modes. 
The genomes of such PPB were gathered from pub-
lic databases (Bacterial and Viral Bioinformatics 
Resource Center (BV-BRC; https:// www. bv- brc. org/) 
and the National Center for Biotechnology Informa-
tion (NCBI, https:// www. ncbi. nlm. nih. gov/)) and 
then expanded to 2661 genomes targeting 94 genera. 
Genome retrieval and bioinformatics analysis used a 
specifically updated methodology from Hrovat et al., 
(2024) and Melkonian et  al., (2019) for this study 
(see supplementary materials and the GitHub reposi-
tory). The list of bacteria (phototrophs and non-pho-
totrophs, PPB and non-PPB) was expanded based on 
their evolutionary roots and phylogenetic relations 
with the PPB gathered from literature with the end 
goal of capturing any PPB missed by the original lit-
erature review. After quality control filtering, dupli-
cate removal, and manual curation, 1348 genomes 
remained (see supplementary materials). In total, 
1086 genomes were classified as halophilic/halotol-
erant. We predicted gene/protein sequences with the 
gene prediction algorithm Prodigal (PROkaryotic 
DYnamic programming Gene-finding ALgorithm) 
(Hyatt et al. 2010). We performed functional annota-
tion with eggnog (Cantalapiedra et al. 2021) with the 
following modifications to the default parameters. 
First pass genome mining was conducted to assess 
which of those microorganisms were autotrophs, car-
boxydotrophs or carboxydovores. For  CO2 fixation, 
the pathways (and target genes and orthologs within 
the pathway) considered were the reductive pentose 
phosphate (Calvin) cycle, reverse tricarboxylic acid 

(rTCA) cycle, and the Wood-Ljungdahl pathway. 
For CO utilization, we targeted the KO orthologs of 
the CO dehydrogenase. The identified genomes that 
were reported to have the genetic potential to use  CO2 
and CO are summarized in supplementary materials 
(Table S1). The resulting genomes were mined for the 
presence of certain gene clusters and orthologs within 
predefined metabolic pathways (see Fig. 1, Table S2, 
and Fig. S3), such as: the amino acid proline; pig-
ments/carotenoids such as lycopene, beta-carotene, 
spirilloxanthin, spheroidene; the osmolytes ectoine 
and hydroxyectoine; and the co-enzyme ubiquinone. 
We found a total of 300 genomes encoding genes for 
 CO2 fixation with at least one of these pathways, and 
132 genomes that had the genes that codify for CO 
dehydrogenases. Of these genomes, 13 encode genes 
for the use of both compounds as carbon and energy 
source. PPB genomes accounted for > 90% of the 300 
 CO2-fixing bacteria identified. On the other hand, 
they represented only 18% of the 132 CO-utilizing 
bacteria. Importantly, all 13 genomes which over-
lapped  CO2 fixation and CO utilization belonged to 
PPB.

Genome mining resulted in 276 genomes of PPB 
and 69 genomes of non-PPB which potentially have 
the ability to fix  CO2 and/or utilize CO while pro-
ducing at least one product. 264 PPB and 4 non-
PPB genomes potentially have the ability to fix  CO2 
and produce one or more products, and 20 PPB and 
65 non-PPB genomes have the genomic potential to 
utilize CO and produce one or more products. The 
PPB and non-PPB genomes which have the genetic 
potential to fix  CO2 and produce at least one desired 
compound, and utilize CO and produce at least one 
desired compound, are listed in supplementary 
materials.

We collated and grouped the genomes based on 
their abilities to produce the different desired, valu-
able compounds. To be shortlisted as potentially 
industrially relevant strains (Fig.  2), the organisms 
needed to satisfy selection criteria, meeting at least 4 
conditions (capability for  C1 metabolism and synthe-
sis of 3 products), with joint  CO2 and CO utilization 
being prized. The analysis uncovered a total of 22 
PPBs and 5 non-PPB strains which could potentially 
utilize  CO2 and/or CO and produce several valuable 
products (see Fig. 2; see supplementary materials for 
all genomes which did not meet selection criteria). Of 
the 13 strains which could utilize both  CO2 and CO as 

https://www.bv-brc.org/
https://www.ncbi.nlm.nih.gov/
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carbon and energy sources (all PPB), 11 strains met 
the selection criteria and have the genes capable of 
producing multiple high-value compounds. Analys-
ing the shortlist in Fig. 2, the 22 PPB strains (which 
can utilise  CO2 or CO and produce valuable prod-
ucts) include 12 halotolerant (belonging to the gen-
era Rhodobacter, Rhodoferax, Rhodopseudomonas, 
Rhodospirillum, and Rubrivivax), 8 halophilic (e.g., 
Halorhodospira, Rhodobium, Rhodovulum, Roseina-
tronobacter, Roseospira, Marichromatium), and 2 
salt-tolerating, though mainly freshwater (genera 
Rhodoblastus and Rhodocista) bacteria. Of the 5 non-
PPB strains which could utilize  CO2 or CO, Aqua-
bacterium sp. W35 and Trichodesmium erythraeum 
GBRTRLIN201 are halophiles, Roseobacter litoralis 
Och 149 and Ruegeria pomeroyi DSS-3 are halotol-
erant, and Ideonella sp. KYPY4 is a predominately 

freshwater bacterium. One limitation to the method 
which must be addressed is the presence of incom-
plete strains and bins (e.g., Rubrivivax sp. C15_con-
coct.bin.32_sub), within the databases, which, while 
they are reported to have potential functionality, are 
not able to be used immediately.

When considering just strains with the ability to fix 
 CO2 (Fig. S4), the bioinformatics analysis detected: 
57 strains with the potential to produce ectoine (e.g., 
Halorhodospira halochloris and Rhodovibrio sali-
narum); 11 hydroxyectoine-producing microorgan-
isms (10 PPBs including species from the genera 
Rubrivivax, Rhodocista, and Rhodoferax); 4 proline-
producing microorganisms (3 PPB: Rhodobium spp. 
and Rhodopseudomonas palustris); 240 ubiquinone-
producing bacteria, including Halorhodospira spp., 
Marichromatium spp., and Rhodobacter spp.; 222 

Fig. 1  Metabolic and biosynthesis pathways for PPB. The 
three metabolic pathways considered are (A) the Calvin Ben-
son-Bassham cycle, (B) the Wood-Ljungdahl pathway, and (C) 
the reverse TCA cycle. Note, the relevant gene expressions are 
within blue boxes, solid arrows represent a direct pathway, and 

dotted arrows represent a longer pathway which may contain 
intermediates not depicted. The products (bold, red text, with 
red border) are shown in (D) carotenoid pathways, (E) ectoine 
and hydroxyectoine biosynthesis, (F) proline, and (G) ubiqui-
none
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spirilloxanthin/spheroidene producing PPB (out of 
223 microorganisms); 3 beta-carotene-producing spe-
cies (Marichromatium purpuratum, Rhodoblastus 
acidophilus, and Rhodovulum robiginosum); and 244 
lycopene-producing microorganisms.

With regard to CO-utilizers (Fig. S5), the list is 
more succinct. Only Rhodovulum sp. could produce 
beta-carotene; Rhodopseudomonas palustris BisB18 
was the only proline producer; 54 bacteria could pro-
duce ectoine (predominately aerobic bacteria such as 
Ruegeria and Roseobacter alongside 6 PPBs includ-
ing Rhodobacter sp., Roseospira marina, and Rhodo-
vulum spp.); Rubirvivax sp. and Ruegeria pomeroyi 
were the species which could produce hydroxyec-
toine; 18 organisms (all PPB, including species from 
Rhodospirillum, Rhodovulum, and Rubrivivax) could 
produce ubiquinone; and 38 microorganisms (16 
PPBs including species from the genera Rhodobacter, 
Rhodospirillum, and Rubrivivax) could produce sphe-
roidene and spirilloxanthin.

When considering the non-PPB strains which 
could be utilized to produce high value products 
via  CO2 and CO, there are no strains with the 
ability to fix  CO2, utilize CO, and produce any 
value-added product in our collection (Fig. S6). 
Analyzing the strains which have the capacity for 
 CO2 fixation: Trichodesmium erythraeum GBR-
TRLIN201 has the ability to produce ectoine and 
hydroxyectoine; Trichodesmium erythraeum GBR-
TRLIN201, Desulfofustis sp. PB-SRB1, and Aqua-
bacterium sp. W35 have the ability to produce 
lycopene; Fermentimonas caenicola strain MAG2 
is the only proline producer; Aquabacterium sp. 
W35 is the only spheroidene and spirilloxanthin 
producer; and no strains produce ubiquinone or 
beta-carotene. When considering the strains which 
have the ability to utilize CO, the list of products 
becomes more extensive. 48 strains (predomi-
nately belonging to the genera Ruegeria, Roseo-
bacter, and Leisingera) have the ability to also 

Fig. 2  Shortlist of halotolerant and halophilic PPB and non-PPB which are able to use  CO2 and/or CO to produce an array of valu-
able products
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produce ectoine. Only Ruegeria pomeroyi DSS-3 
can also produce hydroxyectoine. The lycopene 
(17 strains) and spirilloxanthin/spheroidene (14 
strains) producers consisted mainly of Ideonella 
sp., Roseinatronobacter thiooxidans, Roseobacter 
sp., and Thalassobacter sp. No non-PPB strains 
recorded the ability to utilize CO and produce pro-
line, ubiquinone, or beta-carotene.

While this study focussed primarily on PPB, non-
PPB genomes (evolutionarily related to PPB) were 
also shown. However, this list did not incorporate all 
photosynthetic organisms and it is recognised that 
other non-PPB phototrophs (e.g., algae) and aerobic 
bacteria (e.g., cyanobacteria) also produce various 
compounds. Regarding ectoine and hydroxyectoine, 
algae do not have the genomic potential required to 
produce it, as the genes are found almost exclusively 
in Bacteria (Widderich et al. 2014). Some cyanobac-
teria do have the ability to produce it (Dong et  al. 
2023). Regarding ubiquinone, algae, such as Porphy-
ridium purpureum, and cyanobacteria can produce it 
(Degli Esposti 2017; Klein et  al. 2012). Both algae 
and cyanobacteria, for example Chlamydomonas rein-
hardtii, Chlorella sp., Nostoc muscorum, are capable 
proline producers (Barera and Forlani 2023; Chua 
et  al. 2020). With regards to carotenoids, algae and 
cyanobacteria are famed for production of pigments, 
possessing the genomic potential to produce diverse 
carotenoids—with 200 carotenoids found in algae—
including beta carotene and lycopene (Egeland 2016). 
Although to our knowledge, algae and cyanobacte-
ria do not produce the carotenoids spheroidene and 
spirilloxanthin.

4  Perspectives

Genome mining of previously unconsidered microor-
ganisms, such as halophilic PPB, which convert  CO2 
and CO gases into valuable natural chemicals, can 
be of great interest for society, the health and well-
ness industries, and the economy. However, both the 
development of new industries, and the initial phase 
of genome mining face significant challenges which 
must be addressed.

4.1  Perspectives on new industries

Reimagining these waste gases –  CO2/CO sourced 
from previously unconsidered emitters, e.g., steel 
and coke mills, cement production, biogas and bio-
mass gasification, and crude oil refineries – as via-
ble carbon sources for bioconversion processes, the 
health and wellness industries could become new 
carbon scrubbing stations and adhere to emissions 
targets as outlined in Europe’s Green Deal and The 
Paris Agreement. Various industries could sell their 
carbon byproducts (e.g.,  CO2) to nearby biorefin-
eries producing the fine chemicals, or incorporate 
the PPB treatment technology into their own busi-
ness model, valorizing the waste gases into valuable 
chemicals of industrial importance as an additional 
profit stream. However, these aforementioned indus-
tries produce waste gases of varying chemical com-
positions: the  CO2 concentration in steel and cement 
gas (20–30% (v/v)) differs from that in power plant 
emissions (12–15% (v/v)) (Baker et al. 2018). Addi-
tionally, gases like  O2,  CH4,  NOx, and  SOx can also 
be present at varying levels. This variability could 
determine which specific PPB species or consortia 
are best suited, and may require upfront treatment 
such as gas separation membranes, scrubbing or  O2 
purging. Acknowledging this, PPB are extremely 
robust, perform denitrification, utilize sulfides, sul-
fates, and reduced sulfur compounds (Madigan and 
Jung 2009). This suggests that these trace pollut-
ants may not affect PPB´s growth kinetics. Gabrielli 
et  al. (2020) compared traditional chemical indus-
tries against those utilizing direct air captured carbon 
sources (such as  CO2 to produce MeOH) in a CCU 
design and highlighted a major drawback if the sys-
tem is to be run at net-zero carbon: the need for sus-
tainable  H2, which typically has a significantly larger 
land footprint—requiring 20 times more space than 
some renewable systems for direct air capture. How-
ever, if  H2 does not need to be produced separately 
and is already present in the waste gas (e.g., syngas) 
at a point source, this could save on land, energy and 
reagents. Regarding how these systems could look, in 
terms of land footprint and CAPEX, it must be stated 
that there is a lack of a) data on large-scale, indus-
trial PPB processes, and b) consensus on ideal photo-
bioreactor (PBR) design or economics (Hülsen et al. 
2022). This means economic analyses must be treated 
with caution, with significant work still needed to 
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determine its economic feasibility. While not directly 
translatable technologies, algae are the most relevant, 
comparable microorganisms and we can use this as 
a starting point for comparison. Algae do have some 
industries producing valuable compounds: depending 
on the desired product, large open ponds or compact 
PBRs are used. Alloul et  al. (2021) showed that the 
CAPEX of closed tubular PBRs was 80–90 times 
higher than open raceways. Nevertheless, closed ster-
ilized systems must be used for pharmaceutical prod-
ucts, especially given PPB’s anaerobic requirement. It 
has been postulated that PPB´s CAPEX could theo-
retically be 3–10 times smaller than that of algae due 
to factors such as faster PPB growth rates and higher 
biomass concentrations (Hülsen et  al. 2022), how-
ever this compares heterotrophs against autotrophic 
algae. Under autotrophic metabolism, PPB´s growth 
rate is slower, comparable to that of algae (Lee et al. 
2022; Singh and Singh 2015). The harvesting cost 
of microalgae (30% of the total process) (Alabi et al. 
2009) would likely be similar for PPB, unless a bio-
film growth method is employed which can concen-
trate the biomass 100 fold, thereby negating some 
dewatering cost (Hülsen et  al. 2020). If we consider 
PPB´s compact bioreactor design (vertical integra-
tion) and a point-source  CO2/H2 gas supply, the land 
footprint could become more comparable to current 
pharmaceutical plants, especially if redundant tradi-
tional units (e.g., high-temperature, pressurized reac-
tors, multi-step reaction processes) are eliminated. On 
a broader note for industry, the high salinities enable 
the use of seawater, negating sterilization processes, 
conserving freshwater stocks, repurposing arid land, 
and offering countries which have reliable seawater 
access, but limited freshwater supplies a chance to 
develop new industries.

4.2  Perspectives on the tool of genome mining

Before such industries can be created, significant 
work is still required. Firstly, not all bacteria are avail-
able as complete, isolated strains, and the cultiva-
tion of these strains could be a bottleneck. Secondly, 
experimentally verifying the link between genotype 
and phenotype and then translating the discovery to 
new biotechnological applications entails numer-
ous developmental and regulatory hurdles, which 
must not be understated. The presence of a specific 
gene does not guarantee the production of a target 

compound, as it may not be functional, or actively 
expressed, and as such, wet-lab validation is essen-
tial to confirm that the organism can utilize the gene. 
To conclude, while considerable work remains, this 
research potentially provides a new avenue to develop 
circular, green industries using natural, halophilic, 
microbial processes which eliminate waste gases like 
 CO2 and CO.
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