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Abstract
The trend of implementing a diversification strategy, which involves introducing two or more species, is becoming increas-
ingly prevalent on a global scale, particularly in tropical forest plantations that were previously dominated by single-species 
compositions. Improving productivity and enhancing other ecosystem services are the main reasons for this conversion. 
While mixing effects in temperate forests and plantations are well supported by empirical data, such information is scarce for 
tropical forest plantations. We analyzed the quantitative aboveground tree biomass—structure—tree diversity relationship 
in a tropical mixed-forest plantation in Northern Vietnam, hypothesizing that aboveground tree biomass would be increased 
with greater structural and species diversity. The study site was in a mixed abandoned plantation of Acacia mangium and 
Acacia auriculiformis in Northern Vietnam. A one-hectare permanent plot was installed in which all trees were identi-
fied individually by species, measured (diameter and height), and georeferenced. The descriptive analysis found that the 
study area contains 110.66 tons/ha of biomass in the aboveground tree compartments. The structural and species diversity 
analysis indicated high richness and evenness. A set of models was fitted and ranked to determine the relationship between 
aboveground tree biomass and structural and specific diversity. The results indicate that the species diversity and evenness, 
described by the Shannon index, and height differentiation indexes were negatively significant for both species while basal 
area was only positively significant for Acacia mangium. According to the model sensitivity analysis, aboveground tree 
biomass—and therefore carbon concentration—decreases as species diversity increases.
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Introduction

Until recently, most forest plantations in the tropics only 
included one tree species, but using two or more tree species 
is becoming more frequent during the planting phase. Plan-
tation diversification can also be achieved through natural 
succession by incorporating individuals from different tree 
species that have been sourced from adjacent patches or have 
sprouted and germinated in the local seed bank. Thus, it is 
not unusual in tropical forest plantations to observe that the 
main planted species (Acacia sp., Pinus sp. Eucalyptus sp, 
…) is mixed with native tree species (Pryde et al. 2015). 
This creates potential for complementarity in resource acqui-
sition (Lu et al. 2018) and ecological gains (Erskine et al. 
2006). This transition towards mixed-species plantations 
reflects a paradigm shift in forestry practices, emphasizing 
the multifaceted benefits of species diversity beyond tradi-
tional monoculture approaches. As mixed-species planta-
tions become more prevalent, there arises an imperative to 
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accurately estimate biomass, given its pivotal role in assess-
ing carbon storage potential and supporting various ecosys-
tem services. Forest plantations can compensate for carbon 
emissions efficiently by storing CO2 in the tree biomass. 
Forest biomass estimation is essential for its many applica-
tions in a range of ecosystem services, from trade to timber 
use (Morgan and Moss 1985) to analysis of the global carbon 
cycle. Due to difficulties in collecting information on below-
ground biomass, most studies predict biomass based solely 
on aboveground data (Lu 2006).

As Vietnam embraces diversified planting approaches, 
the need for accurate biomass estimation becomes increas-
ingly evident, not only to assess carbon storage potential but 
also to support the country's energy sustainability initiatives. 
Biomass energy plays a vital role in fulfilling Vietnam’s 
Nationally Determined Contribution commitment (Socialist 
Republic of Vietnam 2022), its green growth strategy (The 
Prime Minister of Vietnam 2020) and in working towards 
achieving the UN Sustainable Development Goals. Approxi-
mately 90% of domestic energy consumption in rural areas 
is derived from biomass such as fuelwood, agricultural 
residues (e.g. rice straw and husks), and charcoal (SNV 
Netherlands Development Organisation Vietnam 2012). 
In Vietnam, studies on biomass and forest carbon stocks 
have been receiving attention since 1988, when Vietnam 
became a Partner Country of the United Nations Collabora-
tive Programme on Reducing Emissions from Deforestation 
and Forest Degradation in Developing Countries, known as 
UN-REDD. Implementing REDD + requires knowledge of 
local biomass and carbon stocks, and Vietnam has made 
substantial efforts to participate. This includes remark-
able achievements such as forest stratification resulting in 
the identification of two ecological zones, eight ecological 
regions and 47 ecological sub-regions in Vietnam (Vũ et al. 
2011a) and the development of tree allometric equations for 
estimating above-ground forest biomass in several ecore-
gions (Bảo et al. 2012; Nguyễn et al. 2012a, c, b; Phùng 
et al. 2012; Vũ et al. 2012). Many other works have focused 
on tree biomass estimation, and some case studies involve 
research on grass and shrub carbon stock in Acacia man-
gium, Acacia auriculiformis, Eucalyptus urophylla, Acacia 
hybrid or Pinus kesiya plantations (Võ 2007, 2009; Nguyễn 
and Võ 2008). Vietnam stands out for having achieved a net 
increase in forest cover in recent years (Pham et al. 2019) 
mainly due to the expansion of plantations (Vũ et al. 2011a).

In the past 20 years, many studies have focused on the 
relationship between species diversity and ecosystem func-
tions. One of the most common topics addresses the connec-
tion between productivity and species richness (Mittelbach 
et al. 2001; Hooper et al. 2005; Keddy 2005; Huang et al. 
1979). Interrelationships between biodiversity and the car-
bon cycle are believed to be an important consideration for 
climate change loss and damage mitigation, in addition to 

diminishing the alteration of natural ecosystems (Midgley 
et al. 2010). Many studies have reported that the relationship 
between tree species diversity and productivity is generally 
(Huang et al. 1979). This could result from the idea of com-
plementarity in resource acquisition, which involves differ-
ent tree species in a mixed stand using resources like water, 
nutrients, and sunlight in complementary ways. Essentially, 
each species has unique resource needs or uptake mecha-
nisms, enabling them to coexist and utilize resources more 
efficiently than in a monoculture. A strong positive rela-
tionship between tree-species richness and net basal area 
growth has been determined for conifer stands in western 
North America (Edgar and Burk 2001), subtropical forests 
in Asia (Huang et al. 1979) and various mixtures in Europe 
(Lόpez-Marcos et al. 2021; del Río et al. 2022). Tree species 
richness in production forests has also resulted in positive 
relationships with multiple ecosystem services. (Gamfeldt 
et al. 2013) reported that trees in a mixed forest of five spe-
cies produced up to 50% more biomass than a monoculture. 
The negative effect of species diversity loss on forest pro-
ductivity also highlights the potential advantages of mixed 
species over monocultures (Liang et al. 2016). However, 
other studies have found neutral effects or even a negative 
relationship between aboveground tree biomass and species 
diversity (Chen and Klinka 2003; Szwagrzyk and Gazda 
2007; Cavard et al. 2010; Bourdier et al. 2016).

While species richness has long been recognized as a 
key driver of ecosystem productivity, understanding the 
structural composition of forest stands provides additional 
insights into productivity patterns. This shift in focus 
underscores the multidimensional nature of species diver-
sity—productivity relationships and highlights the need 
for comprehensive assessments of forest ecosystems. Stand 
structure can be described in terms of the stand density or 
vertical and horizontal tree spartial distribution patterns. 
Tree spatial distribution patterns and population structures 
result directly from complex dynamics involving species 
characteristics and environmental factors along with the 
intraspecific or interspecific interactions of individual trees 
over a long period. Tree spatial distribution patterns depend 
on the small-scale biological characteristics of the tree and 
large-scale environmental heterogeneity factors such as 
soil, pH, nutrition, water, canopy cover, and terrain (Condit 
et al. 1979). Research has shown that species mixing signifi-
cantly enhances structural heterogeneity, potentially lead-
ing to over-yielding compared to monospecific stands, with 
changes in stand structure influenced by both species-spe-
cific traits and interactions, thus contributing to the observed 
structural complexity, and highlighting the crucial role of 
crown complementarity and vertical stratification in the 
canopy for enhancing ecosystem productivity, particularly 
in light-demanding species (Riofrío et al. 2017). A positive 
relationship (weak correlation) between aboveground tree 
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biomass and stand structural diversity were also found in 
boreal forests (Wang et al. 2011).

In tropical forest sites, biomass carbon stock can also be 
driven by a complex mechanism involving multiple factors. 
There, large trees and selective species were found to act as 
key regulators, while factors such as structural attributes, 
species richness, and species diversity had a significant 
positive influence (Kaushal and Baishya 2021). However, 
the positive, negative, or null effects of mixed species on 
productivity depend on diversity, biomass yield and species 
identity. The relationship between tree biomass and diver-
sity can also vary among the species analyzed (Lindén and 
Agestam 2003; Chen and Klinka 2003; Baeten et al. 2019; 
Bravo et al. 2021).

Research on the relationship between diversity and pro-
ductivity in forest ecosystems has focused mainly on species 
diversity or stand structure. Although the two factors may 
interact, it is not always possible to isolate the effect of each 
factor on productivity (Ishii et al. 2004; Vilà et al. 2005; 
Dănescu et al. 2016; Bohn and Huth 2017; Díaz-Yáñez 
et al. 2017; Ercanli 2018). However, a combined analysis of 
species diversity and stand structure might illustrate above-
ground tree biomass or carbon sequestration in tree commu-
nities better than species diversity or stand structure alone.

The main objective of this study was to analyze the 
relationship between aboveground tree biomass and stand 
diversity. To achieve that, a one-hectare permanent plot was 
established in a forest plantation in Northern Vietnam, in 
which all individual trees were identified, measured, and 
geo-positioned. From this data, aboveground tree biomass 
and tree species diversity metrics were obtained. We hypoth-
esized that increased structural and tree species diversity 
levels would lead to enhanced aboveground tree biomass 
in the forest.

Materials and methods

Study site

The study area was located in the Hoa Lac Campus of Viet-
nam National University, in the Thach That Commune, 
located 40 km from Hanoi (latitude 21o0′35.0″N and longi-
tude 105o30′51.2″E) (Fig. 1C). The Hoa Lac forest is a tran-
sitional area between the mountainous and midland areas in 
the North and the Northern plains. The climate at the study 
site is characterized as monsoon tropical with wet, cold win-
ters and hot, humid summers (Fig. 1B). The stratigraphy 
of the study area consists of a clay-loam layer extending 
to a depth of 5 m below the ground surface, with heteroge-
neous mixed-clay layers under that. The geological profile 
includes Precambrian, Paleozoic, Mesozoic, and Kainozoic 
rocks. Soil types include red-yellow, brown–red and yellow 

feralite soils, red-brown basaltic soils, alluvial soils, valley 
soils, and gleysols (Nguyễn et al. 2009).

A one-hectare permanent plot (Hoa Lac Marteloscope) 
was established in 2017, following the Marteloscope design 
by Schuck et al. 2015 and the installation protocol of the 
BioEcon Project (Bravo et al. 2018), within an area of an 
abandoned plantation, and there was no information on its 
previous management regimes. It consists of a 100 m × 100 
m plot divided into 16 permanent subplots or quadrats meas-
uring 25 × 25 m each and is planned to be utilized for train-
ing purposes in the future, enhancing educational opportuni-
ties and facilitating hands-on learning experiences (Fig. 1A).

To set up the Hoa Lac Marteloscope, the four outer cor-
ners were established using GPS, and the corners of the 
16 inner quadrats were marked. The site is nearly flat, so 
no slope correction was required. All standing trees with a 
diameter at breast height (dbh) of 5 cm or more were identi-
fied to species level, and their dbh, total height, and spatial 
position were recorded. Aboveground tree biomass was cal-
culated using species-specific allometric equations; see Sup-
plementary A for a complete list of equations (Brown et al. 
1989; Nguyễn et al. 2012a; Phạm 2014; Ounban et al. 2016; 
Traoré et al. 2018). The estimates included biomass from the 
stem, branches, and leaves, while root biomass was not con-
sidered. Only living, standing trees were included, exclud-
ing deadwood and fallen trees. The total aboveground tree 
biomass for each quadrat and for the entire Marteloscope 
was obtained by summing the biomass of individual trees. 
The conversion of aboveground tree biomass to carbon was 
conducted following the guidelines outlined by the IPCC 
Good Practice Guidance for Land Use, Land-Use Change 
and Forestry (Penman et al. 2003), which stipulate that car-
bon content is estimated to be 50% of the above-ground bio-
mass of each living tree.

Seven different tree species were found in the Hoa Lac 
Marteloscope (446 trees/ha plus 61 standing dead trees/ha), 
including Acacia mangium, Acacia auriculiformis, Eucalyp-
tus camaldulensis, Senna siamea, Litsea glutinosa, Aporosa 
villosa and Averrhoa carambola. Of these, Acacia mangium 
and Acacia auriculiformis were the two most abundant spe-
cies, with 300 and 108 individuals, respectively (Table 1). 
The standing dead tree species could not be identified due 
to their level of decay.

Structural and species diversity

Various tree diversity and mixture measurements were com-
puted for each tree with R version 3.5.3, using the “vegan” 
and “spatstat” packages (Baddeley et al. 2015; Oksanen et al. 
2019; R Core Team 2019) to estimate species richness and 
diversity, species intermingling and horizontal and vertical 
tree distribution patterns (del Río et al. 2018a, b) (Table 2).
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Fig. 1   Hoa Lac Marteloscope study area (A) location in northern 
Vietnam (C). The climate diagram (B) displays monthly average tem-
perature in degrees Celsius (°C) (red line) and precipitation in mil-
limeters (mm) (blue line), using Walter and Lieth climate diagram 

standards. Data for 1970–2000 was obtained from the gridded data-
set of Climatic Research Unit (CRU) at the University of East Anglia 
(https://​cruda​ta.​uea.​ac.​uk/​cru/​data/​hrg/)

Table 1   General characteristics of each species in the Hoa Lac 1 ha Marteloscope

n: number of individuals; dbh: diameter at breast height (cm); ht: total height (m); AGB: total aboveground tree biomass of each species (tons); 
C: weight of carbon of each species (tons); CO2: weight of carbon dioxide sequestered of each species (tons)

Species n dbh ht AGB C CO2

Mean Median Max Min Mean Median Max Min

Acacia mangium 300 20.61 19.74 78.62 6.05 15.06 14.90 24.00 1.70 65.71 32.86 120.45
Acacia auriculiformis 108 22.07 21.96 49.97 6.68 15.24 15.00 22.50 6.00 23.70 11.85 43.45
Eucalyptus camaldulensis 15 17.76 18.14 30.88 7.00 15.41 13.50 22.00 8.50 2.05 1.02 3.75
Senna siamea 18 38.87 39.15 75.12 15.92 12.00 11.75 16.00 7.50 13.64 6.82 25.00
Litsea glutinosa 3 11.46 11.46 15.60 7.32 8.60 6.80 12.50 6.50 0.15 0.08 0.28
Aporosa villosa 1 11.46 – – – 4.70 – – – 0.02 0.01 0.04
Averrhoa carambola 1 11.46 – – – 7.50 – – – 0.04 0.02 0.07
Dead trees 61 15.35 13.85 56.98 6.37 9.25 9.00 17.50 1.30

https://crudata.uea.ac.uk/cru/data/hrg/
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The Simpson’s Diversity index (Sm) (Simpson 1949) is 
a measure of dominance, emphasizing the abundance of 
the most common species rather than species richness. It 
reflects the probability of two individuals being from differ-
ent species, with higher values indicating greater diversity. 
The Shannon’s index (H’) (Shannon et al. 1949) considers 
both abundance and evenness, where higher values suggest 
higher diversity and more even distribution of species. The 
Berger–Parker index (D) (Berger and Parker 1979) quantifies 
the dominance of the most abundant species, with higher 
values indicating greater dominance. The reciprocal of this 
index (1/D) is often used to highlight diversity. The Even-
ness index (E) (Pielou 1975) compares the actual diversity 
value (the Shannon–Wiener Index, H′ ) the maximum pos-
sible diversity (H_max = ln S), indicating how evenly spe-
cies are distributed in the community. Species richness and 
diversity indices and other stand structural metrics (basal 
area, number of trees per hectare) were derived from all tree 
species present in each quadrat to capture overall diversity 
and stand structure patterns.

The segregation index (S) by (Pielou 1961) is commonly 
used to describe the intermingling of two tree species A 
and B. The Segregation index (S) describes the relative 
mixing of two species regardless of their spatial pattern. 
This method is based on the nearest neighbor distances and 
compares the observed number of mixed pairs with the one 
expected under random conditions. S is considered as the 
ratio of the observed probability (pij) that the reference tree 
i and its neareast neighbor j belong to different species along 
with the same probability for completely random distrib-
uted or independent species attributes (Río et al. 2018a, b). 
The segregation index range between − 1 and 1. The trend 
toward association is indicated by value below 0, while a 
trnd towards segregation is indicated by value greater than 
0. The Mingling index (Mi) (Füldner 1995) describes the 
species pattern around the reference tree. Mingling index is 
expressed by the proportion of the n nearest neighbour trees 
of the ith reference tree that do not belong to the same spe-
cies. This index is generally used to derive a distribution of 
trees that belong to a certain structure class. (Aguirre et al. 
2003). The Mingling index ranges from 0 to 1, the larger the 
mingling variable Mi, the more the different tree species are 
intermingled. A high value of mean mingling Mi represents 
a high intermingling of the different species, while a small 
value near 0 will indicates large groups of one single spe-
cies and segregation. The Spatial diversity status (MS) is an 
improvement of the Mingling index, which considers not 
only the spatial mingling, but also the number of tree spe-
cies. Spatial diversity status of a particular tree species is 
determined by the relative species richness within the stand 
or analyzed spatial unit i and the degree of mingling of the 
reference tree (Río et al. 2018a, b). The Spatial diversity 
status ranges from 0 to 1 ( 0 ≤ MS ≤ 1) . A reference tree of 

a common species is more likely to have neighbors of the 
same species, which is reflected by low values of MSi . In 
contrast, a rare species is likely to produce a high proportion 
of high MS values. Thus, MS is especially sensitive to rare 
species. (von Gadow and Hui 2002a, b).

The Vertical species profile (A) (Pretzsch 1995) is based 
on the common diversity index of Shannon (Shannon 1948). 
A index considers the presence of the species in different 
height zones in addition to the proportion of the species 
within a stand. The value of Vertical species profile is greater 
than 0 (A > 0) is for a single-layered pure stand. The more 
heterogeneous the vertical profile, the higher the A value. 
In order to calculate Vertical Species profile A by using 
R-studio, the Height were devided into 3 zones. Assume the 
height of the highest tree in the stand is 100%, zone I extends 
from 100 to 80% of maximal tree height (Hmax), zone 2 from 
80 to 50% of Hmax and zone 3 from 50% to the forest ground 
which is 0% of Hmax. A tree is considerd in the zone where 
the top of the tree is located. The Height Differentiation 
index (TH) was developed by (Gadow 1993). It measures 
the differences of size between the reference tree i and its 
neighboring trees on a continuous scale and describes spatial 
distribution of tree sizes. TH reveals small-scale variability 
in the height for the i reference tree and its n nearest neigh-
bours j(j = 1… n). The Height Differentiation index (TH) 
range from 0 to 1. Value of 1 indicates that the neighbour 
trees have high differentiation in height, while TH = 0 means 
the neightbour trees have an equal height.

The L-function defined by (Besag 1977) was used to 
define the spatial distribution of the trees. L-function was 
calculated by dividing the K—function (Ripley 1977) by � 
and by taking the square root of the quotient, which yields 
the L -function with both statistical and graphical advantages 
over the K -function. The L—function allowed tree distribu-
tion patterns to be quantified more precisely. In this study, 
the L—function was applied at whole stand level, quadrat 
level and species level (within and between interactions of 
species) in each quadrat. Point patterns can vary from com-
plete random patterns ( ̂L(r) = 0 ) by being either aggregated 
( �L(r) > 0 ) or regular ( �L(r) < 0 ) (Grigoropoulou and Butt 
2010). Therefore, if L̂(r) falls on the expected values (dot-
ted diagonal lines), the trees have a random distribution; if 
L̂(r) r falls above the expected values (dotted diagonal lines), 
the trees have a clumpy distribution; if L̂(r) r falls below 
the expected values (dotted diagonal lines), the trees have a 
uniform distribution. The Aggregation index (R) (Clark and 
Evans 1954) is the ratio of the observed mean nearest neigh-
bor distance in the pattern to that expected mean distance 
in a random tree distribution. The index ranges between 0 
(greatest clumping, all objects occur at the same point) and 
2.1491 (strictly regular hexagonal pattern), and indicates 
whether the trees are distributed regularly, randomly or in 
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clumps across an area. R > 1 describe a tendency towards 
regular distribution, R < 1 indicates a tendency towards 
clustering and Value around 1 shows random distribution. 
The Uniform Angle Index (W) developed by (Gadow 1993) 
describes the degree of regularity in the spatial distribu-
tion of trees. This index is based on the classification of 
angles between nearest neighbours tree of the reference 
tree (Gadow and Hui 2002a, b). The Uniform Angle Index 
ranges from 0 to 1. W < 0.5 shows regular tree distribution 
pattern; 0.5 ≤ W ≤ 0.6 illustrate random distribution while 
W > 0.6 can be considered as clumpled. Tree distribution 
pattern indices were computed using all tree species present 
in each quadrat to capture species mixing, spatial clustering, 
and vertical stratification. This approach ensures that spatial 
relationships among trees are accurately represented, pro-
viding a comprehensive assessment of stand structure and 
interspecific interactions.

Data analysis: model selection and evaluation

To investigate the relationship between stand complexity and 
individual tree biomass, a total of 524 models was fitted, 
focusing on Acacia mangium and Acacia auriculiformis. 
Other species were excluded from the statistical analysis 
due to limited sample sizes. Model selection was based on 
Akaike’s Information Criterion (AIC), Bayesian Informa-
tion Criterion (BIC), coefficient of determination (R2), and 
mean square error (MSE) to evaluate model performance 
and ensure a balance between explanatory power and com-
plexity (Schwarz 1978; Akaike 1998; Bravo et al. 2009; 
Wang et al. 2011).

AIC was prioritized as it provides a trade-off between 
model fit and complexity, penalizing excessive parameters 
that do not substantially improve predictive power. BIC 
applies a stronger penalty for model complexity, potentially 
leading to underfitting in ecological datasets where a slightly 
larger model may be justified. R2, while commonly used to 
assess explanatory power, tends to increase as more vari-
ables are added, regardless of their relevance. MSE evaluates 
prediction error but does not address overfitting. Given the 
limitations of R2 and MSE, and the more conservative nature 
of BIC, AIC was chosen as the primary criterion for model 
selection to identify models that optimize both interpret-
ability and predictive capability.

Three general model structures were tested: addi-
tive (Eq. 1), exponential (Eq. 2) and multiplicative models 
(Eq. 3), each capturing different aspects of the relationship 
between stand structure and aboveground tree biomass. 
The additive model assumes independent contributions of 
explanatory variables to biomass accumulation, making it 
suitable for assessing direct, linear effects of stand struc-
ture and biodiversity. The multiplicative model accounts 
for interactions among variables, meaning that the effect of 
one factor depends on the values of others. This is particu-
larly relevant in forest ecosystems, where tree biomass is 
influenced by the combined effects of stand density, species 
diversity, and spatial arrangement. The exponential model 
captures nonlinear growth patterns, where biomass accu-
mulation may increase disproportionately with structural 
complexity, especially in mixed-species stands where com-
petition and resource availability create nonlinear responses.

Table 3   Descriptive statistics for the response variable and candidate explanatory variables

AGB: aboveground tree biomass of each individual tree (kg). G: basal area (m2/ha); N: number of trees per hectare; Sh: Shannon index; Sm: 
Simpson index; E: evenness index; D: Berger-Parker index; R: aggregation index; Mi: mingling index; MS: spatial diversity status; W: uniform 
angle index; S: segregation index; A: vertical species profile; TH: height differentiation index

Variables Mean Max Min St.Dev

Response variable AGB 218.26 3010.28 6.92 8.84
Candidate explanatory vari-

ables at quadrat level
Stand structure metrics G 20.628 43.233 11.057 5.916

N 546.15 720.00 272.00 126.66
Species diversity indices Sh 3.36 3.71 2.55 0.29

Sm 0.96 0.97 0.90 0.02
E 0.96 1.00 0.90 0.02
D 1.64 2.21 1.16 0.35

Species Intermingling Mi 0.48 1.00 0.00 0.33
MS 0.19 0.60 0.00 0.15

Horizontal tree Distribution patterns R 1.08 1.20 0.82 0.10
W 0.50 1.00 0.00 0.22
S 0.22 1.00 -0.03 0.17

Vertical tree distribution patterns A 2.46 3.42 0.00 0.59
TH 0.26 0.91 0.04 0.14
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Explanatory variables were selected based on their eco-
logical relevance to tree biomass dynamics and were catego-
rized into four main groups: species richness and diversity, 
species intermingling, horizontal tree distribution patterns, 
and vertical tree distribution patterns. Additionally, stand 
structure metrics were considered into account for competi-
tion effects and biomass accumulation potential. A detailed 
summary of these variables is provided in Table 3. Quad-
rats that did not contain either Acacia mangium or Acacia 
auriculiformis, such as Quadrat 16, were excluded from 
aboveground tree biomass modeling to maintain consist-
ency in biomass estimation. This exclusion ensured that 
biomass–structure–tree diversity models were specific to the 
two target species and prevented non-target species from 
influencing model outcomes. However, these quadrats still 

contributed to the computation of quadrat-level diversity 
metrics, which were used as explanatory variables in the 
models.

A correlation analysis was conducted to identify and 
remove highly correlated variables, ensuring that models 
remained statistically robust. Only variable pairs with cor-
relation coefficients within the range − 0.5 ≤ r ≤ 0.5 were 
retained together in the same model. Pairs exceeding this 
threshold were excluded to minimize redundancy and col-
linearity (Fig. 2). The full correlation matrix is provided in 
Supplementary C.

To ensure model assumptions were met, log transfor-
mation was applied to all models using Eq. 2 (exponen-
tial model) and Eq. 3 (multiplicative model), where both 
the dependent variable and explanatory variables were 

Fig. 2   Pearson’s correlation 
matrix between aboveground 
tree biomass and input variables



European Journal of Forest Research	

log-transformed. This transformation was performed to 
improve normality by making the distribution more symmet-
ric, stabilize variance by reducing the impact of large values, 
and minimize heteroscedasticity, ensuring that the variability 
of residuals remained constant across different levels of the 
explanatory variables. For the exponential model (Eq. 2), log 
transformation linearized the relationship between above-
ground tree biomass and explanatory variables, simplifying 
estimation and interpretation. In the multiplicative model 
(Eq. 3), log transformation converted multiplicative effects 
into additive relationships, making coefficient interpretation 
more intuitive as elasticity measures. The three tested model 
structures were formulated as follows:

where AGB represents aboveground tree biomass (kg), X
i
 

denotes explanatory variables, β
0
 is the intercept representing 
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n
∑
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0
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1

β1 ×⋯ × X
n

βn + ε

the expected AGB when all explanatory variables are zero, β
i
 

are estimated model coefficients indicating the effect of each 
explanatory variable, and ε is the error term accounting for 
unexplained variability in the model.

After selecting the optimal model, a sensitivity analysis 
was conducted to assess how fluctuations in explanatory var-
iables influenced aboveground tree biomass. This was done 
by keeping one independent variable at its average value and 
observing the behavior of the dependent variable when the 
remaining independent variables varied. The analysis pro-
vided crucial insights into the broader relationship between 
explanatory variables and tree biomass.

All statistical analyses were conducted using R version 
3.5.3 (R Core Team 2019).

Results

Stand diversity

The Shannon Index, which indicates species richness and 
evenness, ranged from 2.55 to 3.71 with a median value of 
3.43. Only 25% of the Shannon index values were below 
3.22, indicating a mean abundance of more than three spe-
cies (Fig. 3). Similarly, the Simpson index ranged from 0.90 

Fig. 3   Stand diversity indexes 
for the Marteloscope
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to 0.97, with a median of 0.96, indicating high diversity in 
the plot. The evenness index results also clearly indicated 
high or complete evenness in the community, with values 
ranging between 0.90 and 1. The Berger-Parker index illus-
trated the importance of the most abundant species, with 
values ranging from 1.16 to 2.21.

Tree distribution, as depicted by the mingling index, 
varied considerably throughout the 16 quadrats (Fig. 4). A 
higher component in the 0.25 value class can be observed 
in quadrats 7, 13, 14, 16, indicating that only two of four 
nearest neighbors j belong to species other than the reference 
tree i. This is indicated by the greater prevalence of weak 
mingling, or low small-scale mixture. However, small mon-
ospecific groups were more present in quadrats 8 and 12, 
where a high percentage of the mingling index had a value 
of 0. A general mingling value distribution trend towards 
monospecific groups was observed in quadrats 7, 8, 11, 12, 
13, 14 and 16; towards mean mingling in quadrats 4, 5, 6, 

9 and 15; and towards multi-specific groups in quadrats 1, 
2, 3 and 10.

The reference trees in quadrats 4, 5, 7, 8, 11, 12, 13, 14 
and 16 were more likely to have neighbors of the same spe-
cies (Fig. 5a), as reflected by the low MS value. Meanwhile, 
quadrats 1, 2, 3, 6, 9, 10 and 15 had a high MS value, indi-
cating high diversity, and the reference trees were observed 
to be more likely to have neighbors of different species.

The height differentiation index (TH) had a relatively low 
value (Fig. 5b) despite the presence of outliers with high val-
ues in certain quadrats. Examination of the TH class based 
on the two most abundant species (Fig. 6) revealed that at 
least 40% of the TH values fell within the ranges of 0 to 0.2 
and 0.2 to 0.4. This explains why only limited height differ-
ences were observed between neighboring trees.

The L-function line deviates very slightly from the 
expected values (red-line) (Fig. 7); when r is small, the 
actual values are just below the expected values. While 

Fig. 4   Percentage frequency distribution of the mingling index (Mi) in each quadrat
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this may suggest uniform distribution, it is more accurate 
to interpret it as reflecting random distribution because the 
deviations are not significant enough to be considered uni-
form. For bigger r, the actual values mostly coincide with 
the expected values, indicating random distribution. This can 
be observed in almost all quadrats, but since the deviation 
from the expected value is slight, it would be very easy to 
mistakenly interpret this L-function line as random, uniform 
or clumpy distribution. The Clark and Evans aggregation 

index (R) for the entire Marteloscope are R = 1.11 indicated 
random distribution. For each quadrat, R ranged from 0.82 
to 1.20, indicating that all quadrats and species in the Mar-
teloscope displayed a tendency towards random distribution. 
Though the study area had once been a plantation, the results 
from functions and indexes depicting horizontal spatial pat-
terns indicate that the trees in the Marteloscope followed a 
trend towards random (Poisson) distribution.

Fig. 5   Tree distribution pattern 
at the study site

Fig. 6   TH classes of the two most abundant species
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Model selection and evaluation

Only models that met regression assumptions, such as homo-
geneity of variance, normality, linearity, and non-autocorre-
lation, with a high goodness of fit were selected (Table 4). 
The R2 was low for all models, indicating a weak relation-
ship between aboveground tree biomass and the independent 
variables. Despite the low goodness-of-fit, low R2 values 
were acceptable in this context because the primary goal of 
the models is not to predict aboveground tree biomass pre-
cisely but to explain its relationships with species diversity. 

While the models explain only a small proportion of above-
ground tree biomass variability, the statistical significance 
of key predictors (Supplementary D) suggests that tree 
species diversity and stand structure have consistent, non-
random influences on aboveground tree biomass dynamics. 
This indicates that even though the models do not capture 
all sources of variation, they still provide valuable insights 
into how species diversity and stand structure contribute to 
biomass accumulation. Such findings are crucial for ecologi-
cal studies and forest management, where identifying key 

Fig. 7   L – function for all quadrats
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drivers of biomass is often more important than achieving 
high predictive accuracy.

After comparing AIC, BIC, R2 and MSE, Model 
(4) (Model 1.1, Table 4) for Acacia mangium and Model 
(5) (Model 2.1, Table 4) for Acacia auriculiformis were 
selected as the optimal models for explaining the relation-
ship between tree aboveground tree biomass and species 
diversity. The results of the model evaluation for the selected 
models (4) and (5) indicate a negative relationship between 
aboveground tree biomass (AGB) and species diversity 
(Fig. 8), as represented by a given set of values for the basal 
area of each quadrat (G), the Shannon index (Sh) and the 
height differentiation index (TH). 

Figure 8 presents the sensitivity analysis of above-
ground tree biomass in response to key explanatory 

(4)AGB = e6.0575+0.0010× G
2−0.1115× Sh

2−1.5179× TH
2

(5)AGB = e6.7478−4.2598×TH
2−0.12839×Sh2

variables within the selected models for Acacia mangium 
(4) and Acacia auriculiformis (5). For Acacia mangium, 
the effects of species diversity (Sh), height differentiation 
(TH), and G on aboveground tree biomass are examined 
across four fixed levels (13, 17, 21, and 25) (Fig. 8a). 
The results show a negative relationship between Sh and 
aboveground tree biomass, meaning that as species diver-
sity increases, biomass decreases. This effect is especially 
pronounced when G is high, suggesting that interspecific 
competition limits biomass accumulation despite the over-
all productivity increase associated with larger basal area. 
Additionally, aboveground tree biomass declines as TH 
increases, indicating that a more uneven canopy structure 
leads to competitive asymmetry, where taller trees outcom-
pete smaller ones for resources. Aboveground tree biomass 
reaches its highest values in quadrats with high G, low 
Sh, and low TH (Fig. 9a). While G positively influences 
aboveground tree biomass, the quadratic term suggests that 
although biomass continues to rise with increasing G, the 

Table 4   The 10 best-fitted models for Acacia mangium and Acacia auriculiformis 

AGB: aboveground tree biomass (kg); TH: height differentiation index; Sh: Shannon index; Sm: Simpson diversity index; N: number of trees per 
hectare; E: evenness index; G: basal area of each quadrat (m2/ha); A: vertical species profile

No Model �
0

�
1

�
2

�
3 R

2 p-value MSE AIC BIC

Acacia mangium
1.1 AGB = eβ0+β1G

2+β2Sh
2+β3TH

2 6.0575 0.0011 − 0.1115 − 1.5179 0.0974 1.14E-06 0.5747 691.1749 709.6938

1.2 AGB = eβ0+β1G
2+β2Sh+β3TH

2 7.1698 0.0011 − 0.7120 − 1.5047 0.0960 1.44E−06 0.5757 691.6658 710.1847

1.3 AGB = eβ0+β1G
2+β2Sh

0.5+β3TH
2 9.4081 0.0011 − 2.5318 − 1.4976 0.0951 1.65E−06 0.5762 691.9466 710.4655

1.4 AGB = e
β0+β1G

2+β2Sh
2+β3

1

A
6.7986 0.0010 − 0.1370 − 1.2259 0.0931 2.28E− 06 0.5775 692.6277 711.1466

1.5 AGB = e
β0+β1G

2+β2
1

Sh
+β3TH

2 2.6654 0.0011 6.9634 − 1.4747 0.0922 2.63E−06 0.5781 692.9230 711.4419

1.6 AGB = e
β0+β1G

2+β2Sh+β3
1

A
8.1637 0.0010 − 0.8762 − 1.2104 0.0915 2.91E−06 0.5785 693.1402 711.6591

1.7 AGB = e
β0+β1G

2+β2Sh
0.5+β3

1

A
10.9158 0.0010 − 3.1168 − 1.2001 0.0906 3.38E−06 0.5791 693.4517 711.9706

1.8
AGB = e

β0+β1G
2+β2Sh

2+β3
1

√

A
7.2766 0.0010 −0.1370 − 1.5461 0.0898 3.82E−06 0.5796 693.7098 712.2287

1.9
AGB = e

β0+β1G
2+β2Sh+β3

1
√

A
8.6284 0.0010 − 0.8756 − 1.5201 0.0882 4.93E−06 0.5806 694.2415 712.7604

1.10 AGB = eβ0+β1G
2+β2Sm

2+β3TH
2 10.8937 0.0011 − 6.6910 − 1.4250 0.0881 5.01E−06 0.5807 694.2774 712.7964

Acacia auriculiformis
2.1 AGB = eβ0+β1TH

2+β2Sh
2 6.7478 − 4.2598 − 0.1284 – 0.1742 4.32E-05 0.6891 271.2262 281.9547

2.2 AGB = e�0+�1TH
2+�2Sh 7.9406 − 4.2273 − 0.7887 – 0.1736 4.49E− 05 0.6896 271.3042 282.0327

2.3 AGB = e
β0+β1TH

2+β2
1

Sh
3.1556 − 4.1631 7.1301 – 0.1712 5.22E− 05 0.6916 271.6158 282.3444

2.4 AGB = eβ0+β1TH
2+β2Sm

2 11.4450 − 4.0997 − 6.7161 – 0.1700 5.64E− 05 0.6926 271.7741 282.5026

2.5 AGB = eβ0+β1TH
2+β2

√

N 7.1923 − 4.3516 − 0.0810 – 0.1698 5.70E− 05 0.6927 271.7947 282.5232

2.6 AGB = eβ0+β1TH
2+β2Sm 17.2928 − 4.0937 − 12.5392 – 0.1696 5.77E− 05 0.6929 271.8211 282.5496

2.7 AGB = eβ0+β1TH
2+β2N

2 5.9176 − 4.4299 0.0000 – 0.1661 7.24E−05 0.6959 272.2871 283.0157

2.8 AGB = eβ0+β1TH
2+β2

√

E 27.4966 − 3.7967 − 22.7417 – 0.1587 1.15E−04 0.7020 273.2345 283.9630

2.9 AGB = eβ0+β1TH
2+β2E 16.4912 − 3.7974 − 11.7468 – 0.1586 1.15E−04 0.7020 273.2418 283.9703

2.10 AGB = eβ0+β1TH
2+β2E

2 10.9873 − 3.7988 − 6.2643 – 0.1585 1.16E−04 0.7021 273.2585 283.9870
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Fig. 8   Sensitivity analysis of 
models (4) and (5)

Fig. 9   Modeled AGB versus 
Observed AGB of models (4) 
and (5)
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rate of accumulation slows at higher values, likely due to 
intensified competition.

Figure 8b further explores this relationship in Acacia 
auriculiformis, showing the effect of Sh on aboveground 
tree biomass while holding TH constant at six levels (0.05, 
0.15, 0.25, 0.35, 0.45, and 0.55). The declining trend of 
aboveground tree biomass with increasing Sh remains 
consistent, confirming the negative impact of Sh on above-
ground tree biomass. Moreover, the effect of TH is evident, 
as plots with higher TH consistently exhibit lower above-
ground tree biomass. The model indicates that aboveground 
tree biomass is highest in stands with low TH and low Sh, 
while greater TH and Sh are associated with reduced above-
ground tree biomass. TH has a strong negative impact on 
aboveground tree biomass, with aboveground tree biomass 
decreasing as TH increases. The quadratic term suggests 
that this effect becomes more severe at higher TH values, 
indicating that stands with a more uniform canopy structure 
are more productive. Observed data (Fig. 9b) confirm this 
pattern, as plots with high TH values indicate significantly 
lower aboveground tree biomass. Sh also negatively affects 
aboveground tree biomass, though to a lesser extent than 
TH. Aboveground tree biomass remains relatively high at 
low Sh values but declines as Sh increases. This suggests 
that interspecific competition reduces aboveground tree bio-
mass, likely by limiting the growth of dominant individuals. 
The quadratic relationship indicates that the negative effect 
is most pronounced in highly diverse stands.

The sensitivity analysis highlights that both species 
exhibit a similar response to variations in Sh and TH, with 
lower aboveground tree biomass observed in more diverse 
and vertically stratified quadrats. While G has a positive 
effect on aboveground tree biomass, this does not offset 
the negative impact of Sh and TH. The results suggest that 
aboveground tree biomass is maximized in stands with low 
Sh and uniform TH, emphasizing the role of competition in 
shaping aboveground tree biomass.

Discussion

This study examines the relationships among stand structure, 
species diversity, and aboveground tree biomass in a mixed 
Acacia plantation in Northern Vietnam. The findings reveal 
that the plantation exhibits high species diversity. The Shan-
non index values range from 2.55 to 3.71 (median = 3.43), 
while the Simpson and Evenness indices indicate a near-uni-
form species distribution. These metrics suggest that most 
quadrats contain more than three species with relatively 
balanced abundances. Spatial analyses using the L-function 
and the Clark–Evans aggregation index further demonstrate 
that tree distribution follows a predominantly random pat-
tern rather than a clumped or uniform structure. This spatial 

arrangement implies that resource competition at the local 
scale is primarily governed by individual interactions rather 
than strong spatial segregation. For Acacia mangium, Model 
(4) identifies a strong positive relationship between basal 
area (G) and aboveground tree biomass, aligning with the 
expectation that higher cumulative tree cross-sectional area 
contributes to greater carbon storage and biomass accumula-
tion. However, sensitivity analysis reveals a key interaction: 
in quadrats with higher species diversity, the positive effect 
of G on aboveground tree biomass is weakened. Specifi-
cally, while higher stand density (high G) generally enhances 
productivity, its benefits are offset in more diverse quadrats. 
As the Shannon index increases, aboveground tree biomass 
declines, even when basal area remains high. This suggests 
that in functionally similar species groups, additional species 
may exacerbate competition rather than enhance resource-
use efficiency. Similarly, height differentiation (TH), which 
quantifies vertical heterogeneity in the canopy, exhibits a 
consistent negative association with aboveground tree bio-
mass in both Acacia mangium and Acacia auriculiformis. In 
stands with high TH, taller trees likely capture a dispropor-
tionate share of light and other resources, suppressing the 
growth of smaller individuals. Sensitivity analyses (Figs. 8) 
show that quadrats with lower TH values tend to have 
higher biomass, reinforcing the idea that a more uniform 
canopy structure facilitates a more equitable distribution 
of resources and promotes overall productivity. For Acacia 
auriculiformis, Model (5) indicates that basal area is not a 
significant predictor of aboveground tree biomass. Instead, 
the negative effects of species diversity (Shannon index) and 
vertical heterogeneity (TH) are even more pronounced. This 
suggests that, for Acacia auriculiformis, competitive interac-
tions driven by high species diversity and canopy stratifica-
tion play a dominant role in limiting biomass accumulation, 
outweighing the influence of stand density. Overall, these 
results highlight a key trade-off in the studied plantation: 
while greater basal area generally support higher biomass, 
its benefits are counteracted by increased species diversity 
and vertical heterogeneity. In stands where species share 
similar functional traits—such as the two Acacia species in 
this study—the expected advantages of niche complementa-
rity are not realized. Instead, interspecific competition inten-
sifies, leading to lower aboveground tree biomass. This bal-
ance between stand density benefits and competition costs 
is central to understanding the observed biomass patterns.

The negative relationship observed between species 
diversity (Shannon index) and aboveground tree biomass 
in the current study are consistent with some previous find-
ings in the literature. For example, studies conducted by 
Szwagrzyk and Gazda (2007) in Central Europe and by Suo 
et al. (2008) in Chinese Quercus forests have reported that 
increased species diversity can be associated with reduced 
biomass accumulation. In these cases, when the species 
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coexisting in a stand exhibit similar functional traits, the 
benefits of resource partitioning through niche complemen-
tarity are minimal. Instead, intense interspecific competi-
tion results in lower biomass production. In this analysis, 
although the evenness index was initially included in the 
candidate models, it showed no significant relationship with 
aboveground tree biomass, likely due to the relatively uni-
form species proportions across the study area. In contrast, 
the Shannon index, which accounts for both species abun-
dance and evenness, exhibited a negative correlation with 
aboveground tree biomass. This suggests that higher species 
diversity, particularly among functionally similar species, 
intensifies competition rather than improving resource use 
efficiency.

Stand density, measured as the number of trees per hec-
tare, is another factor that can influence diversity–produc-
tivity relationships, as well as stand biomass and basal area. 
When stand density is low, interactions between trees—
whether competitive or complementary—are weak. Previous 
studies have suggested that stand density can be a stronger 
determinant of productivity than species richness (Paquette 
and Messier, 2011; Vilà et al. 2013). In this study, N (num-
ber of trees per hectare) was included as an explanatory vari-
able in the model fitting process. Among the 20 best candi-
date models (Table 4), some incorporated N alongside other 
predictors such as the Shannon index (Sh), basal area (G), 
and height differentiation (TH). However, in the best-fitted 
models (Models 4 and 5), which provide the most accurate 
representation of aboveground tree biomass variation in Aca-
cia mangium and Acacia auriculiformis, N was not retained 
as a significant predictor. This indicates that while stand 
density was considered in multiple high-ranking models, its 
explanatory power was insufficient for it to be included in 
the optimal models. Thus, compared to other structural and 
diversity-related variables, N did not contribute substantially 
to explaining variations in aboveground tree biomass. On the 
other hand, in this study, the Shannon index and height dif-
ferentiation index (TH) were significant predictors for both 
Acacia mangium and Acacia auriculiformis. However, only 
the model for Acacia mangium showed a good fit for basal 
area (G) at the quadrat level, likely reflecting differences in 
species distribution patterns. This suggests Acacia mangium 
is more influenced by these indices, whereas Acacia auricu-
liformis may be less responsive due to different ecological 
or physiological traits. These findings underscore that the 
biomass–diversity relationship is multifactorial. It can be 
influenced by factors such as similarity in functional traits 
between analyzed species (both were Acacias), species com-
plementarity (Riofrío et al. 2016; Bravo et al. 2021), site 
conditions (Huber et al. 2014), stand density (Condés and 
del Río 2015) or environmental conditions (Wang and Kim-
mins 2002; Manso et al. 2014) that were not fully explained 
by the indicators included in our analysis. This suggests 

that the relatively negative correlation between diversity 
and aboveground tree biomass in our study might be par-
tially driven by the fact that increased species diversity in a 
functionally homogeneous stand does not enhance resource 
partitioning; rather, it intensifies competition among trees 
for limited resources such as light, water, and nutrients. 
Moreover, shifting the focus from diversity based solely 
on species identity to diversity based on functional traits 
could yield results more consistent with literature associ-
ating higher diversity with increased biomass growth and 
yield yield (Roscher et al. 2012; Hisano and Chen 2020). In 
essence, our results suggest that, in systems where species 
have similar ecological roles—as in the studied mixed Aca-
cia plantation—the introduction of additional species can 
intensify competitive interactions, thereby reducing overall 
biomass accumulation. This integrated understanding, which 
draws on both our findings and previous literature, highlights 
the importance of considering multiple dimensions—includ-
ing stand density, vertical heterogeneity, and functional trait 
diversity—when assessing the impacts of species diversity 
on forest productivity. While the results of the model evalu-
ation of (Eq. 1) and (Eq. 2) for Acacia mangium and Acacia 
auriculiformis illustrate that species richness and diversity 
negatively affected tree aboveground tree biomass and car-
bon sequestration, (Li et al. 2018) indicated the opposite 
result across forest strata in their work on the relationship 
between species richness and aboveground biomass in a pri-
mary Pinus kesiya forest, which was generalized to all for-
est vegetation strata. Global research by (Liang et al. 2016) 
highlighted the negative impact of species diversity loss 
on forest productivity, indicating that species loss in forest 
ecosystems worldwide could substantially reduce forest pro-
ductivity and forest carbon absorption rates, compromising 
the global forest carbon sink. Another interesting contrast 
to the results of this study is found in Day et al. (2013), who 
observed that the trend of species diversity to aboveground 
tree biomass varied at different locations within the study 
area. While some high-diversity plots had relatively low bio-
mass, other low-diversity plots had high biomass because the 
study areas were in several forest types with different plot 
management approaches, altitude and climate conditions. 
Though the correlation was only weakly significant, the 
author claimed that there was evidence of a general positive 
relationship between species diversity and between biomass 
compartments. A study by Riofrío et al. (2016) on the effects 
of specific mixtures (Pinus sylvestris L. and Pinus pinaster 
Ait.) also reported that species mixing positively modified 
the aboveground forest yield. Positive relationships between 
biomass and tree species diversity were also found when 
examining data from managed forests dominated by rela-
tively young secondary stands in forest plots in Catalonia, 
NE Spain (Vilà et al. 2005).Research results also corroborate 
this relationship in the north-central USA (Caspersen and 
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Pacala 2001) in simulations of German mixed-forests (Bohn 
and Huth 2017), and for the entire range of forested ecosys-
tems across Canada (Zhang et al. 2016, 2017). This general 
trend of a positive species diversity—productivity relation-
ship has been confirmed on a global scale (Liang et al. 2016) 
by combining data across different forest biomes (Global 
Forest Biodiversity permanent sample plots, https://​www.​
gfbin​itiat​ive.​org/). A key factor underlying these differences 
appears to be the functional traits of the species involved. In 
our mixed Acacia plantation, both Acacia mangium and Aca-
cia auriculiformis exhibit relatively similar functional traits. 
This functional similarity likely limits the potential for 
resource partitioning and niche complementarity, intensify-
ing competition rather than enhancing productivity when 
additional species are present. In contrast, studies reporting 
positive diversity–productivity relationships often involve 
forests where co-occurring species exhibit a broader range 
of functional traits, facilitating complementary resource 
use (Williams et al. 2017; del Río et al. 2017). Moreover, 
the environmental context and stand management prac-
tices differ markedly between these studies. For instance, 
the research by Li et al. 2018 was conducted in a primary 
Pinus kesiya forest, where the variability in environmental 
conditions and species composition may have allowed for 
stronger positive diversity effects. In our study, the relatively 
uniform species proportions and the limited range of envi-
ronmental variation in the plantation likely constrained the 
potential benefits of increased diversity, instead highlight-
ing the competitive suppression of biomass accumulation. 
Thus, while global analyses and studies in more function-
ally diverse forests have found that greater species diversity 
can promote productivity, the results of the present study 
underscore that in systems where species are functionally 
similar—such as this mixed Acacia plantation—increased 
diversity may intensify competition for limited resources and 
consequently reduce aboveground tree biomass.

From a silvicultural perspective, the results of this study 
indicate that silvicultural strategies should aim to maintain 
an optimal balance between basal area and resource competi-
tion. Thinning strategies should target an optimal stocking 
level that maximizes biomass accumulation while preventing 
excessive density that may lead to competition and resource 
depletion. Specifically, for Acacia mangium, controlling 
basal area through appropriate thinning may maximize 
biomass, whereas for Acacia auriculiformis, achieving a 
more uniform canopy with even-height distribution appears 
crucial for enhancing productivity. Moreover, the negative 
effects of species diversity on biomass accumulation suggest 
that, in this specific system, monocultures of Acacia man-
gium might yield higher biomass than mixed-species stands. 
However, promoting monocultures comes at the cost of 
reduced species diversity, a trade-off well recognized in for-
est management. While higher biomass may improve timber 

yield and carbon sequestration, it can compromise other eco-
system services such as resilience to pests, nutrient cycling, 
and overall biodiversity conservation. Therefore, manage-
ment decisions must carefully balance productivity with the 
broader multifunctional benefits of forest ecosystems.

Although the findings of our study provide valuable 
insights into the dynamics of species diversity and stand 
structure on biomass accumulation, several limitations 
must be acknowledged, as these may influence the inter-
pretation and broader applicability of the results. First, the 
study is based on a single plot in Northern Vietnam. This 
limited spatial sampling means that while the findings are 
robust for that particular site, they may not be representa-
tive of all mixed plantation systems. Variations in soil type, 
microclimate, and historical management practices across 
different plantation systems could lead to different patterns 
of biomass accumulation. Therefore, while the results are 
robust for the studied plot, caution should be exercised when 
extrapolating these findings to other regions or forest types.

In addition, the statistical models used in the analy-
sis exhibit relatively low overall R2 values. Although key 
explanatory variables—such as the Shannon index, basal 
area, and height differentiation index (TH)—were found 
to be statistically significant, a considerable portion of the 
variation in aboveground tree biomass remains unexplained. 
This unexplained variance suggests that additional factors 
not considered in the current analysis—such as soil nutri-
ent availability, moisture levels, microtopography, or past 
management practices—may play important roles in deter-
mining biomass. The low R2 values emphasize the inher-
ent complexity of forest ecosystems and the need for more 
comprehensive models that integrate a broader range of 
environmental variables.

Furthermore, the indices used to measure diversity and 
canopy structure have inherent limitations. While the Shan-
non index provides a useful measure of species richness and 
evenness, it does not capture functional trait differences that 
may influence competitive dynamics. In systems where spe-
cies are functionally similar, the Shannon index may not 
fully reflect the interspecific competition that drives biomass 
accumulation. Similarly, the height differentiation index 
(TH), although indicative of vertical heterogeneity, may 
oversimplify the complexity of canopy structure. Finally, 
the legacy effects of previous management practices—such 
as planting density, thinning, or selective harvesting—may 
have influenced the current stand structure and species com-
position. These historical factors could confound the rela-
tionships observed in the study and represent an additional 
source of uncertainty.

Future research should focus on several key areas to 
enhance the understanding of biomass accumulation 
dynamics in mixed-species plantations. Expanding the 
spatial scope to multiple sites will help determine whether 

https://www.gfbinitiative.org/
https://www.gfbinitiative.org/
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the observed negative relationship between species diver-
sity and aboveground tree biomass is site-specific or a gen-
eral pattern, while also allowing for the isolation of local 
factors such as soil, climate, and management practices. 
Incorporating additional environmental variables like soil 
nutrients, moisture, and microclimate will improve model 
accuracy and provide a more comprehensive understanding 
of aboveground tree biomass dynamics. Furthermore, meas-
uring functional traits, such as wood density and leaf area, 
alongside traditional diversity indices will clarify the role 
of species functional diversity in biomass accumulation and 
competitive interactions. Establishing long-term monitoring 
plots and applying process-based models will improve pre-
dictions of biomass accumulation over time, guiding man-
agement practices. Additionally, integrating remote sensing 
technologies, such as LiDAR and multispectral imaging, 
with ground-based measurements will enable large-scale 
assessments of stand structure and biomass, improving the 
generalizability of findings. Future studies should evaluate 
trade-offs between biomass production and other ecosystem 
services, such as carbon sequestration and biodiversity con-
servation, to inform balanced management strategies.

Conclusion

This study highlights a key trade-off in mixed Acacia planta-
tions: while higher stand density promotes biomass accumu-
lation, increased species diversity and vertical heterogeneity 
reduces aboveground tree biomass due to intensified com-
petition among functionally similar species. These findings 
suggest that monocultures or low-diversity plantations may 
be more effective for maximizing productivity, though this 
must be balanced against ecological resilience and biodiver-
sity considerations.

From a carbon sequestration perspective, Acacia planta-
tions play an important role in afforestation efforts, but our 
results indicate that species diversity does not necessarily 
enhance biomass accumulation or carbon storage. Future 
management strategies should optimize stand density and 
thinning regimes to balance productivity with long-term 
sustainability.

Further research is needed to assess whether incorporat-
ing functionally diverse species could mitigate competition 
effects while maintaining ecosystem stability. Expanding 
studies across different plantation types and environmen-
tal conditions will be crucial for developing sustainable 
management guidelines that integrate productivity, carbon 
sequestration, and biodiversity conservation.
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