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Abstract
Broccoli (Brassica oleracea var. italica) is a crop of great agronomic and economic importance worldwide. Because its 
edible parts are the inflorescences, large quantities of non-commercial biomass are produced each year in the field and in 
the food industry. In order to develop a circular economy around the broccoli crop, the present work develops glucosinolates 
(GSL) extracts with antimicrobial capacity for postharvest use in tomato, apple and table white grape against fungal diseases 
produced by the pathogens Botrytis cinerea, Alternaria alternata and Penicillium expansum. GSL extracts from organic 
crop management reported a higher content of GSLs than conventional management. These extracts are not effective in the 
control of A. alternata and P. expansum, possibly due to the absence of sinigrin. Furthermore, the extracts were ineffective 
in the control of B. cinerea on table white grapes, possibly due to the non-climacteric fruit condition and an absence in the 
induction of ethylene-mediated plant defenses. However, intact GSL extracts were effective in controlling B. cinerea on 
apple, while the addition of myrosinase enzyme caused effectiveness also on tomato and apple. Therefore, obtaining GSL 
extracts with biopesticidal capacity against B. cinerea in postharvest could be a circular economy strategy for broccoli 
agriculture and industry.
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Introduction

Broccoli (Brassica oleracea var. italica) is a crop belonging 
to the Brassicaceae or cruciferous family, of great agronomic 
and economic importance worldwide (Han et al. 2021). The 
harvested part of broccoli is the hypertrophic reproductive 

organs (floral head and stalk), which contribute important 
nutraceutical benefits to the diet (Han et al. 2021). In 2022, 
1.4 million hectares of broccoli and cauliflower was grown 
worldwide, from which 26 million tons of edible product 
was harvested (FAOSTAT 2024). Broccoli harvesting begins 
when the flower primordia are uniformly blue green and 
protrude above the leaves, being the only part of the plant 
used for food (Bhattacharjee and Singhal 2018). Leaves in 
particular represent around 50% of total plant biomass in 
broccoli, thus producing a significant non-marketable bio-
mass (Liu et al. 2018). The edible part of broccoli is called a 
“superfood” because of its vitamins (A, C and K), minerals 
(Ca, K and Fe), fiber, glucosinolates (GSLs) and phenolic 
compounds content, with important antioxidant, anti-inflam-
matory, anticancer, antimicrobial, metabolic disorder regula-
tory, neuroprotective and renoprotective effects on human 
health (Li et al. 2022; Syed et al. 2023). Specifically, broc-
coli presents very important quantities of GSLs, up to 2% of 
dry matter weight (Ilahy et al. 2020).
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GSLs are sulfur-rich secondary plant metabolites pre-
sent in plants within the order Brassicales (Nguyen et al. 
2020; Wu et al. 2021). Of the about 200 different GSLs 
described so far, crops of the genus Brassica present 
between 10 and 40 different ones (Bischoff 2021). These 
are classified into three groups, depending on the amino 
acid present in their structure, being aromatic (phenylala-
nine or tyrosine), indole (tryptophan) or aliphatic (alanine, 
leucine, isoleucine, methionine or valine) (Bischoff 2021). 
GSLs are mainly defensive secondary metabolites due to 
their antimicrobial and insecticidal capacity, being potent 
biocides against bacteria (Liu et al. 2021), fungi (Poveda 
et al. 2020), oomycetes (Poveda et al. 2020), nematodes 
(Eugui et al. 2022) and insects (Liu et al. 2021). This bioc-
idal capacity is mostly caused as a consequence of the 
action of the system called GSL–myrosinase, based on 
the hydrolysis of GSLs by binding to the enzyme myrosi-
nase after plant cell rupture or pathogen recognition. This 
GSL–myrosinase binding results in the chemical modifi-
cation of these secondary metabolites to nitriles, epith-
ionitriles, thiocyanates, oxazolidine-2-thiones and/or iso-
thiocyanates, called as glucosinolate hydrolysis products 
(GHPs), with high biocidal activity (Chhajed et al. 2020). 
Specifically, against fungi, GSLs and GHPs act directly, 
causing damage to the cell membrane and cell wall (Pov-
eda et al. 2020), or indirectly, by inducing plant defenses 
(Rodríguez et al. 2023).

In order to directly exploit the biological activity of GSLs, 
extracts from Brassicaceae plants with a high concentration 
of these metabolites are obtained (Cuellar-Núñez et al. 2020; 
Sheu et al. 2023). In the specific case of broccoli, it has been 
studied how the extraction methodology greatly conditions 
the activity of the extract and the profile of GSLs obtained, 
being mainly involved aspects such as temperature and the 
solvent used (Bojorquez-Rodríguez et al. 2022; Eugui et al. 
2023). Glucosinolate extracts obtained from broccoli have 
been described as effective antifungals by inhibiting the 
in vitro growth of plant pathogenic fungi, such as Alter-
naria alternata and Sclerotinia sclerotiorum, also against 
Rhizoctonia solani if myrosinase enzyme is added to the 
extracts (Eugui et al. 2023).

With respect to postharvest plant pathogens, it is esti-
mated that up to 50% of fruit and vegetables are lost, with 
fungi being the main causal agents (Poveda 2020). The main 
postharvest plant pathogenic fungi in fresh produce are Bot-
rytis cinerea, Penicillium spp., Colletotrichum spp., Alter-
naria spp. and Monilinia spp. (Díaz-Urbano et al. 2023). 
Currently, the main control strategies for these pathogens in 
postharvest are based on physical (controlled atmosphere or 
UV radiation) and chemical (calcium chloride or bicarbo-
nate) methodologies; however, biological strategies, such as 
antagonistic microorganisms or the use of plant extracts and/

or fungicidal essential oils, are gaining prominence (Qadri 
et al. 2020; Díaz-Urbano et al. 2023).

The objective of this work is to characterize different GSL 
extracts from broccoli leaves as potential antifungal biopesti-
cides against several postharvest pathogens in tomato, apple 
and table white grapes.

Materials and methods

Biological material

Cherry tomatoes (SAT Campos de Granada, Spain), Golden 
Delicious apple (Interlázaro, Spain) and Sugar Crisp table 
white grapes (Agronativa, Spain) were purchased at the local 
market and used as fresh postharvest products for fungal 
infection.

Botrytis cinerea (CECT 20973), Alternaria alternata 
(CRD 41/37/2019 JCYL 965) and Penicillium expansum 
(CECT 20906) from the Spanish Type Crop Collection 
(CECT) (Valencia, Spain) and from the Regional Diagnostic 
Center of the Junta de Castilla y León (CRD) (Salamanca, 
Spain) were used as postharvest pathogens.

GSL extracts obtaining and characterization

Broccoli leaves were used to obtain GSL extracts according 
to the methodology described in a previous work (Eugui 
et al. 2023). Plant tissues were obtained from broccoli fields 
grown under conventional conditions (fertilized with NPK 
9-23-30 at 200 kg/ha before planting and then supplemented 
with two more fertilizations of ammonium nitrate 200 kg/
ha) and grown under organic conditions (fertilized with two 
tons/ha of the organic fertilizer NPK 4-5-4 Fercrisa Bio-
suelo (Crisara S.L., Almería, Spain) before planting and 
another two tons/ha one month after planting). The leaves 
were stored at − 20 °C or − 80 °C for one month, until the 
extracts were obtained, using the cold methanol methodol-
ogy. Starting from 100 mg of frozen plant material, samples 
were mixed with 1 ml of 75:25 methanol:water (v/v) in a 
1.5-ml eppendorf tube and vortexed for 1 min 30 s at room 
temperature. The samples were incubated in the dark for 
60 min at room temperature with shaking at 250 rpm and 
centrifuged at 2150 gs for 12 min to collect the supernatant. 
The methanol was evaporated at a rotary evaporator, and the 
samples were topped up to 1 ml with sterile deionized water 
and stored at − 80 °C until use.

Once the extracts were obtained, the GSLs profile was 
analyzed using the methodology previously described by 
Velasco et al. (2021). The quantification of GSLs was car-
ried out with an Ultra-High-Performance Liquid Chroma-
tograph UHPLC Nexera LC-30AD (Shimadzu Corpora-
tion, Kyoto, Japan) equipped with a Nexera SIL-30AC 
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injector (Shimadzu, Kyoto, Japan) and a SPDM20A UV/
VIS photodiode array detector (Shimadzu, Kyoto, Japan). 
An X Select ®HSS T3 UHPLC (2.5 µm particle size, 
2.1 mm I.D., length 100 mm) column was used (Waters 
Corporation, Milford, MA, USA), with a VanGuard pre-
column incorporated. The temperature of the oven was 
35ºC, and GSLs were quantified at 229 nm, separated 
using the aqueous acetonitrile method and identified by 
comparing retention times and UV spectra with the stand-
ards (Phytoplan Diehm & Neuberger GmbH, Heidelberg, 
Germany).

Study of the antifungal capacity of GSL extracts 
in postharvest

To study the protective antifungal effect of different 
GSL–broccoli extracts on tomato, apple and table white 
grape, the methodology described by Fernández-San Mil-
lán et al. (2022) was carried out, with some modifications. 
Initially, the fruits were washed with 70% (v/v) ethanol 
for 1 min, 1% (v/v) sodium hypochlorite for 15 min and 3 
washes with sterile distilled water, finally leaving the fruits 
to dry in the laminar flow chamber for 15 min. Three wounds 
of 1 mm depth and 1 mm width were made on each fruit, 
around the insertion point of the peduncle. Subsequently, 
different treatments were applied, with 5 μl in each wound, 
leaving the fruit to dry for 15 min in the flow cabinet. The 
treatments were distilled water (as control), 1, 10 and 100% 
(v/v) dilutions of the four GSL extracts in distilled water, and 
those same dilutions adding myrosinase enzyme (methodol-
ogy described at the end of this section) in order to check if 
the antifungal effect is carried out by the GSLs or the GHPs. 
Infections with the pathogens were carried out with 5 μl at 
105 conidia/mL of each pathogen, keeping the fruits in ster-
ile humid chambers at 25 ºC and in darkness. Each humid 
chamber contained 6 fruits in the case of Cherry tomato 
and table white grape and 2 fruits in the case of Golden 
Delicious apple, with 3 humid chambers per treatment. The 
entire experiment was repeated 3 times. After 7 days of incu-
bation, disease incidence (DI) was evaluated as the percent-
age of infected wounds over the total. At 14 days, disease 
severity (DS) for Cherry tomato and table white grape was 
evaluated using a qualitative scale: 0 = fruit with no visible 
damage; 1 = 1 to 25% of the fruit damaged; 2 = 26 to 50% 
of the fruit damaged; 3 = 51 to 75% of the fruit damaged; 
4 = 76 to 100% of the fruit damaged. The DS index was then 
calculated with the formula:

DS(tomato, grape)

=

∑

(No. infected fruits in each scale ⋅ scale value)

Total fruits ⋅ highest scale value
⋅ 100

For Golden Delicious apple, the DS was calculated as fol-
lows: The lesion diameter for each wound was measured and 
the maximum diameter from each individual experiment was 
set as 100%, expressing the other values according to this:

A volume of 5 μL of myrosinase (E.C. 3.2.1.147 from 
Sinapis alba) (25 units/mL) (Sigma-Aldrich, Madrid, Spain) 
was added to 1 mL of broccoli extract and incubated 2 h at 
room temperature for the reaction to occur. The hydrolyzed 
extracts were used immediately afterward.

Statistical analysis

The statistical analysis of the data was carried out with the 
Statistix 8.0 software. To perform the data normality confir-
mation analysis, the Shapiro–Wilk test was performed. One-
way ANOVA with Tukey’s comparison t-tests at p ≤ 0.05 
was used in GSL analysis; significant differences are denoted 
using different letters. Student’s t-test was used for com-
parison of means at p ≤ 0.05 in fruit experiments; significant 
differences are denoted using one asterisk. The group means 
were represented in columns in the graphs, representing the 
standard error in the form of error bars.

Results

GSLs profile of the extracts

The analysis of GSLs reported that the extracts obtained 
from organic broccoli contained a significant higher content 
of total GSLs, aliphatic and indole GSLs. In particular, the 
extract obtained from organic broccoli stored at − 20 °C pre-
sented the highest content of GSLs of all 4 extracts (Fig. 1).

Protective effect of GSL extracts on postharvest 
fungal diseases

After applying different GSL extracts, no significant differ-
ences against the water control were reported for DI and 
DS in tomatoes infected with A. alternata and P. expansum, 
apples infected with P. expansum and table white grapes 
infected with B. cinerea (data not shown). Although dif-
ferent intact extracts used did not significantly reduce the 
incidence and severity of B. cinerea disease on tomatoes, 
compared to the control water treatment, the addition of 
myrosinase enzyme caused a significant reduction in the dis-
ease (Fig. 2). Specifically, GE1, GE2 and GE3 extracts incu-
bated with myrosinase enzyme significantly reduced disease 
severity compared to the water control treatment (Fig. 2). 
On the other hand, the treatment of apples with different 

DS(apple) =
Lesion diameter

Maximum lesion diameter
⋅ 100
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GSL extracts (with and without myrosinase) also did not 
significantly reduce the DI caused by B. cinerea (Fig. 3). 
With respect to DS, the intact GSLs extracts GE1, GE3 and 
GE4 significantly reduced the disease affection of apples, as 
well as GE1 and GE4 after incubation with the myrosinase 
enzyme (Fig. 3). 

Discussion

Broccoli GSLs extracts presented different biochemical 
profiles according to their agronomic management, con-
ventional or organic. Specifically, a higher amount of GSLs 
was obtained from leaves under organic management. These 
results could be due to a higher N fertilization in conven-
tional management, causing a higher vegetative growth and a 
lower accumulation of secondary metabolites in leaves, such 
as GSLs. However, the results reported in other works so far 
are very diverse. Higher contents of GSLs have been found 
in crops under conventional versus organic management 
(Robbins et al. 2005; Cámara-Martos et al. 2022), similar 
under both management (Renaud et al. 2014; Conversa et al. 
2016) and even higher in organic management compared to 
conventional (Meyer & Adam 2008; Miranda-Rossetto et al. 
2013). Therefore, more research is still needed to understand 
what causes and mechanisms are involved in these differ-
ences and each case needs to be studied individually.

Regarding the application of GSL extracts in the man-
agement of postharvest fungal diseases, neither the intact 
extracts nor their hydrolysis with myrosinase enzyme were 

effective in the control of A. alternata and P. expansum 
in tomato and apple. Many studies conducted with Peni-
cillium and Botrytis have linked the fungicidal activity 
of GSL-based materials to the presence of AITC, a com-
pound derived from sinigrin hydrolysis (Mari et al. 2002; 
Wu et al. 2011; Ugolini et al. 2014). In a previous work, a 
reduction in postharvest disease caused by both pathogens 
was achieved by the application of GHP allyl isothiocyanate 
(Brader et al. 2006). This GHP is the result of the hydroly-
sis of sinigrin, a GSL not present in our GSL extracts. The 
limited effectiveness of our extracts against Botrytis could 
have multiple explanations. The absence of sinigrin in our 
extracts could limit their effectiveness against this pathogen, 
given its derivative AITC has the most fungicidal potential 
against this pathogen, but other GSLs or compounds could 
be involved, and their concentration could be insufficient 
as well.

The intact GSL extracts used were effective only against 
B. cinerea on apple and after incubation with myrosinase 
on tomato and apple. Therefore, the release of GHPs from 
GSLs present in the extracts enhances their antifungal 
capacity. These results are contrary to those reported also 
in tomato with intact GSL extracts, effectively inhibiting B. 
cinerea (Damas-Job et al. 2023). However, they are consist-
ent with the higher sensitivity of B. cinerea to GHPs than 
other pathogens reported in other postharvest work (Mari 
et al. 1993; Wu et al. 2011). Mechanisms of fungal inhibition 
by GSLs have been described in previous studies and include 
cell membrane damage, alteration of cell wall (Wang et al. 
2020; Zhang et al. 2020), alteration of pathogen metabolism 

Fig. 1   Total, aliphatic and indole GSL content of different broccoli 
leaf extracts obtained. GE1: from conventional broccoli stored at 
− 80  °C; GE2: from conventional broccoli stored at − 20  °C; GE3: 
from organic broccoli stored at − 80  °C; GE4: from organic broc-
coli stored at − 20 °C. The amounts of total GLS (TOTAL), aliphatic 
(ALIF), indole (INDOL), glucoraphanin (GRA), glucoiberin (GIB), 

glucobrassicin (GBS), neoglucobrassicin (NEOGBS) and 4-methoxy-
glucobrassicin (MEOHGBS) were quantified. One-way ANOVA with 
Tukey’s comparison t-tests (p ≤ 0.05) was used in GSL analysis; sig-
nificant differences are denoted using different letters. Data are repre-
sented as the means ± SE (n = 5)
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(Borges et al. 2015) and oxidative stress induction (Jakubik-
ova et al. 2005). In any case, although in our study we have 
not been able to avoid the disease, the symptoms of the 
disease decrease and delay its appearance, which could be 
an interesting option to increase the shelf life of fruits and 
vegetables in a safer way for the consumer.

B. cinerea was more sensitive to GSL extracts on apples 
and tomatoes, but not on grapes. One of the mechanisms 

involved in the effectiveness of GSLs and GHPs in disease 
control in non-cruciferous plants has recently been described 
to be the activation of systemic defenses (Rodríguez et al. 
2023). In the case of postharvest fruits, this defensive path-
way could be activated by the ethylene route and its absence 
in a non-climacteric fruit such as grapes would reduce the 
biocontrol capacity of GSL extracts. Differences in sugar 
content in fruits could affect the virulence of B. cinerea and 

Fig. 2   DI (a) and DS (b) in tomatoes infected with B. cinerea and 
treated with different broccoli GSL extracts, without the addi-
tion of myrosinase enzyme (MYR-) or with the addition of myrosi-
nase (MYR +). Photographs of infected tomatoes treated with GSL 
extracts without myrosinase (c) and with myrosinase (d). GE1: 
from conventional broccoli stored at − 80  °C; GE2: from conven-

tional broccoli stored at − 20 °C; GE3: from organic broccoli stored 
at − 80 °C; GE4: from organic broccoli stored at − 20 °C. Student’s 
t-test was used for comparison of means (p ≤ 0.05) in fruit experi-
ments; significant differences are denoted using one asterisk. Data are 
represented as the means ± SE (n = 18)
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its ability to overcome GSLs toxicity as well, when using 
sugar as carbon sources in fruits could influence its activity 
(Vercesi et al. 1997).

In conclusion, organic management of broccoli crop 
could be involved in a higher content of GSLs in the 
extracts obtained. GSL extracts from broccoli are not effec-
tive against A. alternata and P. expansum, possibly due to 
the absence of sinigrin. However, intact GSL extracts, after 

hydrolisis, reduced the disease caused by B. cienerea on 
apple and on tomato.
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