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We study the categorical-algebraic condition that internal 
actions are weakly representable (WRA) in the context of va-
rieties of (non-associative) algebras over a field.
Our first aim is to give a complete characterization of action 
accessible, operadic quadratic varieties of non-associative al-
gebras which satisfy an identity of degree two and to study the 
representability of actions for them. Here we prove that the va-
rieties of two-step nilpotent (anti-)commutative algebras and 
that of commutative associative algebras are weakly action 
representable, and we explain that the condition (WRA) is 
closely connected to the existence of a so-called amalgam.
Our second aim is to work towards the construction, still 
within the context of algebras over a field, of a weakly repre-
senting object E(X) for the actions on (or split extensions of) 
an object X. We actually obtain a partial algebra E(X), which 
we call external weak actor of X, together with a monomor-
phism of functors SplExt(−, X) ↣ Hom(U(−), E(X)), which 
we study in detail in the case of quadratic varieties. Further-
more, the relations between the construction of the universal 
strict general actor USGA(X) and that of E(X) are described 
in detail. We end with some open questions.

© 2025 Elsevier Inc. All rights are reserved, including those 
for text and data mining, AI training, and similar 

technologies.

Introduction

In the article [3], F. Borceux, G. Janelidze and G. M. Kelly introduce the concept of 
an internal object action, with the aim of extending the correspondence between actions 
and split extensions from the context of groups and Lie algebras to arbitrary semi-
abelian categories [19]. In certain of those categories, internal actions are exceptionally 
well behaved, in the sense that the actions on each object X are representable: this 
means that there exists an object [X], called the actor of X, such that the functor 
Act(−, X) ∼ = SplExt(−, X), which sends an object B to the set of actions/split extensions 
of B on/by X, is naturally isomorphic to the functor Hom(−, [X]). The context of action 
representable semi-abelian categories is further studied in [4], where it is for instance 
explained that the category of commutative associative algebras over a field is not action 
representable. Later it was shown that the only action representable variety of non-
associative algebras over an infinite field F of characteristic different from 2 is the variety 
of Lie algebras [14]. The relative strength of the notion naturally led to the definition of 
closely related weaker notions.

The first of these was the concept of an action accessible category due to D. Bourn 
and G. Janelidze [6]: it is weak enough to include all Orzech categories of interest [29], 
as proved by A. Montoli in [28].
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Alternatively, the properties of the representing object [X] may be weakened; this is 
the aim in [8], where it is shown that each Orzech category of interest admits a so-called 
universal strict general actor (USGA for short).

Our present article focuses on a concept which was more recently introduced, by 
G. Janelidze in [17]: weak representability of actions (WRA). Instead of asking that 
for each object X in a semi-abelian category C we have an object [X] and a natural 
isomorphism SplExt(−, X) ∼ = HomC(−, [X]), we require the existence of an object T and 
a monomorphism of functors

τ : SplExt(−, X) ↣ HomC(−, T ).

Such an object T is then called a weak actor of X, and when each X admits a weak 
actor, C is said to be weakly action representable. For instance, if in an Orzech category of 
interest, each USGA(X) is an object of the category, then this category is weakly action 
representable [10]. This is the case of the category Assoc of associative algebras [17] or 
the category Leib of Leibniz algebras [10] over a field.

J. R. A. Gray observed in [15] that an Orzech category of interest need not be weakly 
action representable. One of our aims in the present article is to study the condition 
(WRA) in the context of varieties of (non-associative) algebras over a field. (We recall 
basic definitions and results concerning this setting in Section 1.) It is known that such 
a variety is action accessible if and only if it is algebraically coherent [14], and it is also 
known [17] that action accessibility is implied by (WRA). In Section 2 we give a complete 
classification of the action accessible, operadic quadratic varieties of non-associative al-
gebras with an identity of degree 2 (so commutative or anti-commutative algebras) and 
we study the representability of actions of each of them. Moreover, we prove that the 
variety of commutative associative algebras, the variety of two-step nilpotent commuta-
tive algebras and that of two-step nilpotent anti-commutative algebras are weakly action 
representable categories. For the variety of commutative associative algebras, we show 
that the existence of a weak representation is closely connected to the amalgamation 
property (AP) [20] which already appeared in [4] in relation to action representability. 
In Section 3 the study of (WRA) and its relations with the condition (AP) is extended 
to a general variety of algebras over a field.

Our second aim is to work towards the construction, still within the context of algebras 
over a field, of a weakly representing object E(X) for the actions on/split extensions 
of an object X of a variety of non-associative algebras V. We believe that in certain 
settings, this object may be easier to work with than the more abstract weak actor. In 
Definition 3.3 we actually obtain a partial algebra E(X), which we call external weak actor
of X, together with a monomorphism of functors SplExt(−, X) ↣ Hom(U(−), E(X)), 
where U is the forgetful functor from V to the category of partial algebras, which we 
study in detail in the case of quadratic varieties of algebras (Section 4).

We end the article with some open questions (Section 5).
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1. Preliminaries

The present work takes place in semi-abelian categories which were introduced in [19] 
in order to capture categorical-algebraic properties of non-abelian algebraic structures. 
A category is semi-abelian if it is pointed, admits binary coproducts, is protomodular and 
Barr-exact. Well-known examples are the category Grp of groups, the category Rng of 
not necessarily unitary rings, any variety V of non-associative algebras over a field F , as 
well as all abelian categories. Throughout the remainder of the paper, when we consider 
a category C, we assume it to be semi-abelian; when we consider a variety V, we assume 
that V is a variety of non-associative algebra over a field F . We fix the field F , so that 
we may drop it from our notation.

1.1. Internal actions and their representability

A central notion which appears in the semi-abelian context is that of split extensions. 
Let X, B be objects of a semi-abelian category C; a split extension of B by X is a 
diagram

0 X A B 0k α

β
(1.1)

in C such that α ◦ β = 1B and (X, k) is a kernel of α. We observe that since proto-
modularity implies that the pair (k, β) is jointly strongly epic, the morphism α is indeed 
the cokernel of k and diagram (1.1) represents an extension of B by X in the usual 
sense. Morphisms of split extensions are morphisms of extensions that commute with 
the sections. Let us observe that, again by protomodularity, a morphism of split exten-
sions fixing X and B is necessarily an isomorphism. For an object X of C, we define the 
functor

SplExtC(−, X) : Cop → Set

which assigns to any object B of C, the set SplExtC(B,X) of isomorphism classes of split 
extensions of B by X in C, and to any arrow f : B′ → B the change of base function 
f∗ : SplExtC(B,X) → SplExtC(B′, X) given by pulling back along f . When there is no 
ambiguity on the category C, we will use the notation SplExt(−, X).

A feature of semi-abelian categories is that one can define a notion of internal action. 
Internal actions correspond to split extensions via a semidirect product construction; it 
turns out that, as a result, for our purposes we need no explicit description of what is 
an internal action. We refer the interested reader to [5,4], where the equivalence between 
the two concepts is described in detail. For us here, it suffices to note that if we fix an 
object X, internal actions on X in C give rise to a functor

Act(−, X) = ActC(−, X) : Cop → Set
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and a natural isomorphism of functors Act(−, X) ∼ = SplExt(−, X). This justifies the 
terminology in the definition that follows.

Definition 1.1 ([4]). A semi-abelian category C is said to be action representable if for 
every object X in it the functor Act(−, X) is representable. In other words, there exists 
an object [X] in C, called the actor of X, and a natural isomorphism

SplExt(−, X) ∼ = HomC(−, [X]).

Basic examples of semi-abelian categories which satisfy action representability are 
the category Grp of groups with the actor of X being the group of automorphisms 
Aut(X), the category Lie of Lie algebras with the actor of X being the Lie algebra of 
derivations Der(X), and any abelian category with the actor of X being the zero object. 
For the categories Assoc of associative algebras and CAssoc of commutative associative 
algebras, representability of actions was studied in [4], where the authors proved that 
they are not action representable.

It is explained in [3] that action representability is equivalent to the condition that 
for every object X in C the category SplExt(X) of split extensions in C with kernel X
has a terminal object

0 X [X] ⋉X [X] 0.

We can weaken this condition assuming instead that for any X, every object in SplExt(X)
is accessible (i.e. it has a morphism into a subterminal or so-called faithful object, see 
[6]). In this way, we encompass a wider class of examples that did not satisfy repre-
sentability of actions such as the category Pois of (non-commutative) Poisson algebras, 
the category Assoc of associative algebras or the category CAssoc of commutative asso-
ciative algebras. This notion called action accessibility was introduced by D. Bourn and 
G. Janelidze [6] in order to calculate centralisers of normal subobjects or of equivalence 
relations. It was then shown by A. Montoli that any Orzech category of interest is an 
action accessible category [28]. This explains why all of the varieties of non-associative 
algebras mentioned above are action accessible.

Since by definition the existence of a terminal object in SplExt(X) is stronger than 
every object being accessible, it is immediate that

action representability ⇒ action accessibility.

Recently, in [17], G. Janelidze introduced an intermediate notion: weak representability 
of actions.

Definition 1.2. A semi-abelian category C is said to be weakly action representable 
(WRA) if for every object X in it, there exists an object T of C and a monomorphism 
of functors
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τ : SplExt(−, X) ↣ HomC(−, T ).

We call such an object T a weak actor of X, and a morphism ϕ : B → T in the image of 
τB an acting morphism.

It is clear from the definitions that every action representable category is weakly 
action representable. Also in [17], it is proven that the category Assoc is weakly action 
representable with a weak actor of X given by the associative algebra

Bim(X) = {(f ∗ −,− ∗ f) ∈ End(X) × End(X)op | f ∗ (xy) = (f ∗ x)y,

(xy) ∗ f = x(y ∗ f), x(f ∗ y) = (x ∗ f)y, ∀x, y ∈ X} 

of bimultipliers of X (see [25]). The case of the category Leib of Leibniz algebras was 
studied in [10]. There the authors showed that a weak actor of a Leibniz algebra X is 
the Leibniz algebra

Bider(X) = {(d,D) ∈ End(X)2 | d(xy) = d(x)y + xd(y),

D(xy) = D(x)y −D(y)x, xd(y) = xD(y), ∀x, y ∈ X} 

of biderivations of X (see [24] and [26]), where the bilinear operation is defined by

[(d,D), (d′, D′)] = (d ◦ d′ − d′ ◦ d,D ◦ d′ − d′ ◦D).

In the same paper, the representability of actions in the categories Pois and CPois of 
(commutative) Poisson algebras was studied.

Another important observation made by G. Janelidze is that every weakly action 
representable category is action accessible. We thus have that

action representability ⇒ weak action representability ⇒ action accessibility.

J. R. A. Gray proved in [15] that the varieties of n-solvable groups where n ≥ 3 are action 
accessible but not weakly action representable. This partially answers a question asked 
by G. Janelidze in [17], whether reasonably mild conditions may be found on a semi-
abelian category under which the second implication may be reversed: already it makes 
clear that not all action accessible semi-abelian varieties are weakly action representable. 
Our aim here is to study what happens for a different class of categories, namely varieties 
of not necessarily associative algebras over a field.

1.2. Varieties of non-associative algebras

We now recall the algebraic setting we are working in: varieties of non-associative 
algebras over a field F . We think of those as collections of algebras satisfying a chosen 
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set of polynomial equations. The interested reader can find a more detailed presentation 
of the subject in [33].

By a (non-associative) algebra A we mean a vector space A equipped with a bilinear 
operation A× A → A : (x, y) 
→ xy which we call the multiplication. The existence of a 
unit element is not assumed, nor are any other conditions on the multiplication besides 
its bilinearity. Let Alg denote the category of non-associative algebras, where morphisms 
are linear maps which preserve the multiplication.

We consider the free algebra functor Set → Alg which sends a set S to the free algebra
generated by elements of S. This functor has the forgetful functor as a right adjoint. 
Moreover, it factorises through the free magma functor FM: Set → Mag, which sends 
a set S to the magma FM(S) of non-associative words in S, and the magma algebra 
functor F [−] : Mag → Alg.

Let S be a set. An element ϕ of F [FM(S)] is called a non-associative polynomial on S. 
We say that such a polynomial is a monomial when it is a scalar multiple of an element 
in FM(S). For example, if S = {x, y, z, t}, then (xy)t + (zy)x, xx + yz and (xt)(yz)
are polynomials in S and only the last one is a monomial. For a monomial ϕ on a set 
{x1, . . . , xn}, we define its type as the n-tuple (k1, . . . , kn) ∈ Nn where ki is the number 
of times xi appears in ϕ, and its degree as the natural number k1+· · ·+kn. A polynomial 
is said to be multilinear if all monomials composing it have the same type of the form 
(1, . . . , 1). Among the examples above, only the last one is multilinear.

Definition 1.3. An identity of an algebra A is a non-associative polynomial ϕ =
ϕ(x1, . . . , xn) such that ϕ(a1, . . . , an) = 0 for all a1, . . . , an ∈ A. We say that the 
algebra A satisfies the identity ϕ.

Let I be a subset of F [FM(S)] with S being a set of variables. The variety of algebras
determined by I is the class of all algebras which satisfy all the identities in I. We say 
that a variety satisfies the identities in I if all algebras in this variety satisfy the given 
identities. In particular, if the variety is determined by a set of multilinear polynomials, 
then we say that the variety is operadic. If there exists a set of identities of degree 2 or 3
that generate all the identities of V, we say that the variety is quadratic. Recall—see 
for instance [11] where this is explained in detail—that an operadic, quadratic variety of 
algebras over a field can be viewed as a variety determined by a quadratic operad.

Any variety of non-associative algebras can, of course, be seen as a category where 
the morphisms are the same as in Alg. In particular, any such variety is a semi-abelian 
category.

Remark 1.4. Whenever the characteristic of the field F is zero, any variety of non-
associative algebras over F is operadic. This is due to the well-known multilinearisation 
process, see [30, Corollary 3.7]. The reason behind the name “operadic” is explained 
in [31, Section 2].
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Examples 1.5. 

(1) We write AbAlg for the variety of abelian algebras determined by the identity 
xy = 0. Seen as a category, this variety is isomorphic to the category Vec of vector 
spaces over F . It is the only non-trivial variety of non-associative algebras which is 
an abelian category; this explains the terminology.

(2) We write Assoc for the variety of associative algebras determined by the identity 
of associativity which is x(yz) − (xy)z = 0, or equivalently x(yz) = (xy)z.

(3) We write AAssoc for the variety of anti-associative algebras, determined by the 
anti-associative identity x(yz) = −(xy)z.

(4) We write Com for the variety of commutative algebras determined by the identity 
of commutativity which is xy − yx = 0, or equivalently xy = yx.

(5) We write ACom for the variety of anti-commutative algebras determined by anti-
commutativity which is xy + yx = 0, or equivalently xy = −yx.

(6) We write CAssoc for the variety of commutative associative algebras.
(7) We write ACAAssoc for the variety of anti-commutative anti-associative algebras.
(8) We write Lie for the variety of Lie algebras determined by anti-commutativity and 

the Jacobi identity, which respectively are xy+yx = 0 and x(yz)+y(zx)+z(xy) = 0.
(9) One can see that all the previous examples are operadic varieties. Let us provide 

a non-operadic example: the variety Bool of Boolean rings, which may be seen as 
associative Z2-algebras satisfying xx = x. This variety is action representable.

(10) We write JJord for the variety of Jacobi–Jordan algebras which is determined 
by commutativity and the Jacobi identity. Jacobi–Jordan algebras, also known as 
mock-Lie algebras, are the commutative counterpart of Lie algebras. The name of 
Jordan in the definition is justified by the fact that every Jacobi–Jordan algebra is 
a Jordan algebra (see [7]).

(11) We write Leib for the variety of (right) Leibniz algebras determined by the (right) 
Leibniz identity which is (xy)z − (xz)y − x(yz) = 0.

(12) We write Alt for the variety of alternative algebras, which is determined by the 
identities (yx)x − yx2 = 0 and x(xy) − x2y = 0. Every associative algebra is 
obviously alternative and an example of an alternative algebra which is not asso-
ciative is given by the octonions O, that is the eight-dimensional algebra with basis 
{e1, e2, e3, e4, e5, e6, e7, e8} and multiplication table

eiej =

⎧⎪⎪⎨
⎪⎪⎩
ej , if i = 1
ei, if j = 1
−δije1 + εijkek, otherwise,

where δij is the Kronecker delta and εijk a completely antisymmetric tensor with 
value 1 when ijk = 123, 145, 176, 246, 257, 347, 365. Notice that e1 is the unit of the 
algebra O.
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When char(F) �= 2, the multilinearisation process shows that Alt is equivalent to 
the variety defined by

(xy)z + (xz)y − x(yz) − x(zy) = 0

and

(xy)z + (yx)z − x(yz) − y(xz) = 0.

(13) Taking any variety V, one can look at a subvariety of it by adding further identities 
to be satisfied. For example, let V be a variety determined by a set of identities I
and let k be any positive natural number, then we write Nilk(V) for the variety of 
k-step nilpotent algebras in V determined by the identities in I and the identities 
of the form x1 · · ·xk+1 = 0 with all possible choices of parentheses.

We now want to explain how we may describe actions in a variety of non-associative 
algebras. As we already mentioned before, in a semi-abelian category, actions are split 
extensions.

Definition 1.6. Let

0 X A B 0i π

s
(1.2)

be a split extension in the variety V. The pair of bilinear maps

l : B ×X → X, r : X ×B → X

defined by

b ∗ x = s(b)i(x), x ∗ b = i(x)s(b), ∀b ∈ B, ∀x ∈ X

where b∗− = l(b,−) and −∗b = r(−, b), is called the derived action of B on X associated 
with (1.2).

Given a pair of bilinear maps

l : B ×X → X, r : X ×B → X

with B, X objects of V, we may define a multiplication on the direct sum of vector spaces 
B ⊕X by

(b, x) · (b′, x′) = (bb′, xx′ + b ∗ x′ + x ∗ b′) (1.3)
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with b ∗ x′ := l(b, x′) and x ∗ b′ := r(x, b′). This construction allows us to build the split 
extension in Alg

0 X B ⊕X B 0i2 π1

i1
(1.4)

with i2(x) = (0, x), i1(b) = (b, 0) and π1(b, x) = b. This is a split extension in V if and 
only if (B ⊕X, ·) is an object of V, i.e. it satisfies the identities which determine V. In 
other words, we have the following result analogous to [29, Theorem 2.4] and [14, Lemma 
1.8]:

Lemma 1.7. In a variety of non-associative algebras V, given a pair of bilinear maps

l : B ×X → X, r : X ×B → X,

we define the multiplication on B⊕X as above in (1.3). Then, the pair (l, r) is a derived 
action of B on X if and only if (B ⊕ X, ·) is in V. In this case, we call B ⊕ X the 
semidirect product of B and X (with respect to the derived action) and we denote it by 
B ⋉X.

Remark 1.8. Notice that, for any split extension (1.2) and the corresponding derived 
action (l, r), there is an isomorphism of split extensions

0 X B ⋉X B 0

0 X A B 0

i2

1X

π1

θ

i1
1B

i π

s

where θ : B ⋉X → A : (b, x) 
→ s(b) + i(x). Thus, when we write b ∗ x (resp. x ∗ b), one 
can think of it as the multiplication (b, 0) · (0, x) (resp. (0, x) · (b, 0)) in B ⋉X.

1.3. Categorical consequences

Let V be an operadic variety of non-associative algebras. We recall two results which 
will be useful for understanding the rest of the paper.

Theorem 1.9 ([12,13]). The following conditions are equivalent:

(i) V is algebraically coherent [9];
(ii) V is an Orzech category of interest;
(iii) V is action accessible;
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(iv) there exist λ1, . . . , λ8, μ1, . . . , μ8 in F such that

x(yz) = λ1(xy)z + λ2(yx)z + λ3z(xy) + λ4z(yx)

+ λ5(xz)y + λ6(zx)y + λ7y(xz) + λ8y(zx)

and

(yz)x = μ1(xy)z + μ2(yx)z + μ3z(xy) + μ4z(yx)

+ μ5(xz)y + μ6(zx)y + μ7y(xz) + μ8y(zx)

are identities in V. □

We call the two previous identities together the λ/μ-rules. Since (WRA) implies action 
accessibility in general, the existence of the λ/μ-rules is a necessary condition for the 
variety V to be weakly action representable.

Theorem 1.10 ([14]). The following conditions are equivalent:

(i) V is action representable;
(ii) V is either the variety Lie or the variety AbAlg. □

Theorem 1.10 helps motivating our interest in the condition (WRA). In fact, in our 
context, there is only one non-trivial example of a variety which is action representable. 
This suggests to study a generalisation of the notion of representability of actions. On 
the other hand, action accessibility may not be enough to study some kind of (weak) 
actor. The next result, which is closely related to [17, Proposition 4.5], explains one way 
of understanding weak action representability for any variety of non-associative algebras 
over a field.

Proposition 1.11. A variety of non-associative algebras V is weakly action representable 
if and only if for any object X in it, there exists an object T of V such that for every 
derived action of an object B of V on X

l : B ×X → X, r : X ×B → X,

there exists a unique morphism ϕ ∈ HomV(B, T ) and a derived action (l′, r′) of ϕ(B) on 
X such that

l′(ϕ(b), x) = l(b, x), r′(x, ϕ(b)) = r(x, b),

for every b ∈ B and for every x ∈ X.
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Proof. (⇒) If V is weakly action representable, then for any object X in it there exists a 
weak representation (T, τ). Let B be an object of V which acts on X and let ϕ : B → T

be the corresponding acting morphism. Consider the split extension diagram

0 X B ⋉X B 0

0 X ϕ(B) ⋉X ϕ(B) 0

i

1X

π

∃!f
s

ϕ̃

i′ π′

s′

where ϕ̃ is the corestriction of ϕ to its image, i′(x) = (0, x), s′(ϕ(b)) = (ϕ(c), 0), where 
(c, 0) = s(b), and f(b, x) = (ϕ(b), x). Then the action of ϕ(B) on X is defined by the 
pair of bilinear maps

l′ : ϕ(B) ×X → X, r′ : X × ϕ(B) → X

where

l′(ϕ(b), x) = s′(ϕ(b))i′(x) = s(b)i(x) = l(b, x)

and

r′(ϕ(b), x) = i(x)s′(ϕ(b)) = i(x)s(b) = r(b, x),

for every b ∈ B and for every x ∈ X (we use [17, Proposition 4.5] to see that l′ and r′

are well defined).
(⇐) Conversely, given an object X of V, a weak representation of SplExt(−, X) is 

given by (T, τ), where the component

τB : SplExt(B,X) ↣ HomV(B, T )

sends every action of B on X to the corresponding morphism ϕ. Moreover, τB is an 
injection since the morphism ϕ is uniquely determined by the action of B on X. Thus τ
is a monomorphism of functors. □

1.4. Partial algebras

We end this chapter with a notion we shall use throughout the text.

Definition 1.12. Let X be an F -vector space. A bilinear partial operation on X is a map

· : Ω → X,

where Ω is a vector subspace of X ×X, which is bilinear on Ω, i.e.
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(α1x1 + α2x2) · y = α1x1 · y + α2x2 · y

for any α1, α2 ∈ F and x1, x2, y ∈ X such that (x1, y), (x2, y) ∈ Ω and

x · (β1y1 + β2y2) = β1x · y1 + β2x · y2

for any β1, β2 ∈ F and x, y1, y2 ∈ X such that (x, y1), (x, y2) ∈ Ω.

Definition 1.13. A partial algebra over F is an F -vector space X endowed with a bilinear 
partial operation

· : Ω → X.

We denote it by (X, ·,Ω). When Ω = X ×X we say that the algebra is total.

Let (X, ·,Ω) and (X ′, ∗,Ω′) be partial algebras over F . A homomorphism of partial 
algebras is an F -linear map f : X → X ′ such that f(x · y) = f(x) ∗ f(y) whenever 
(x, y) ∈ Ω, which tacitly implies that (f(x), f(y)) ∈ Ω′ (i.e. both x ·y and f(x)∗f(y) are 
defined). We denote by PAlg the category whose objects are partial algebras and whose 
morphisms are partial algebra homomorphisms.

Definition 1.14. We say that a partial algebra (X, ·,Ω) satisfies an identity when that 
identity holds wherever the bilinear partial operation is well defined.

For instance, a partial algebra (X, ·,Ω) is associative if

x · (y · z) = (x · y) · z

for every x, y, z ∈ X such that (x, y), (y, z), (x, yz), (xy, z) ∈ Ω.

Remark 1.15. We observe that any variety of non-associative algebras V has an obvious 
forgetful functor U : V → PAlg.

2. Commutative and anti-commutative algebras

In this section we aim to study the (weak) representability of actions of some varieties 
of non-associative algebras which satisfy the commutative law or the anti-commutative 
law. As explained in Section 1, we may assume our variety satisfies the λ/μ-rules, or 
equivalently is action accessible.

When V is either a variety of commutative or anti-commutative algebras, i.e. xy = εyx

is an identity of V, with ε = ±1, the λ/μ-rules reduce to

x(yz) = α(xy)z + β(xz)y,

for some α, β ∈ F . The following proposition is a representation theory exercise:
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Proposition 2.1. Let V be a non-abelian, action accessible, operadic variety of non-
associative algebras.

(1) If V is a variety of commutative algebras, then V is a either a subvariety of CAssoc
or a subvariety of JJord.

(2) If V is a variety of anti-commutative algebras, then V is either a subvariety of Lie
or a subvariety of ACAAssoc. □

Remark 2.2. We observe that Nil2(Com) is a subvariety of both CAssoc and JJord: 
in fact, from x(yz) = (xy)z = 0 we may deduce that associativity holds and the Jacobi 
identity is satisfied:

x(yz) + y(zx) + z(xy) = 0 + 0 + 0 = 0.

If char(F) �= 3, then Nil2(Com) is precisely the intersection of the varieties CAssoc and 
JJord. Indeed, let V be a subvariety of both CAssoc and JJord. Since commutativity, 
associativity and the Jacobi identity hold in V, we have

(xy)z = x(yz) = −y(zx) − z(xy) = −x(yz) − (xy)z = −2(xy)z

and thus 3(xy)z = 3x(yz) = 0.
An example of an algebra which lies in the intersection of CAssoc and JJord but 

which is not two-step nilpotent is the two-dimensional F3-algebra with basis {e1, e2} and 
bilinear multiplication determined by

e2
1 = e1e2 = e2e1 = e2

2 = e2.

Likewise, Nil2(ACom) is a subvariety of both Lie and ACAAssoc: from x(yz) =
(xy)z = 0 we may deduce anti-associativity and the Jacobi identity. If char(F) �= 3, 
then Nil2(ACom) coincides with the intersection of the varieties Lie and ACAAssoc. 
Indeed, let V be a subvariety of both Lie and ACAAssoc. Since anti-commutativity, 
anti-associativity and the Jacobi identity hold in V, we have

(xy)z = −x(yz) = −(xy)z − y(xz) = −(xy)z + (yx)z = −2(xy)z

and thus 3(xy)z = −3x(yz) = 0.
When char(F) = 3, it is possible to construct an algebra that lies in the intersection 

of Lie and ACAAssoc but which is not two-step nilpotent. Let X be the algebra of 
dimension 7 over F3 with basis

{e1, e2, e3, e4, e5, e6, e7}

and bilinear multiplication determined by
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e1e2 = −e2e1 = e4, e1e3 = −e3e1 = −e6, e2e3 = −e3e2 = e5

and

e1e5 = −e5e1 = e2e6 = −e6e2 = e3, e4 = −e4e3 = e7.

Then X is a Lie algebra such that

x(xy) = 0

for any x, y ∈ X and, using the multi-linearisation process, one can check this identity is 
equivalent to anti-associativity if the characteristic of the field is different from 2. This 
X is not two-step nilpotent, since

e1(e2e3) = e1e5 = e7.

Corollary 2.3. Let V be an action accessible, operadic, quadratic variety of non-associative 
algebras and suppose that V is not the variety AbAlg of abelian algebras.

(1) If V is commutative, then it has to be one of the following varieties: JJord, CAssoc, 
their intersection, or Nil2(Com).

(2) If V is anti-commutative, then it has to be one of the following varieties: Lie, 
ACAAssoc, their intersection, or Nil2(ACom). □

We already know that Lie is action representable and that the actor of a Lie algebra 
X is the Lie algebra Der(X) of derivations of X. Therefore, we shall study the repre-
sentability of actions of the varieties CAssoc, JJord, Nil2(Com), ACAAssoc and 
Nil2(ACom).

2.1. Commutative associative algebras

The representability of actions of the variety of commutative associative algebras over 
a field was studied in [4], where F. Borceux, G. Janelidze and G. M. Kelly proved that it is 
not action representable. We want to extend this result proving that the variety CAssoc
is weakly action representable. In Section 3 this is further extended to general algebras 
over a field. We start by recalling the following result, where U : CAssoc → Assoc
denotes the forgetful functor.

Lemma 2.4 ([4], proof of Theorem   2.6). Let X be a commutative associative algebra. 
There exists a natural isomorphism of functors from CAssocop → Set which we denote

ρ : SplExt(−, X) ∼ = HomAssoc(U(−),M(X)),
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where SplExt(−, X) = SplExtCAssoc(−, X) and

M(X) = {f ∈ End(X) | f(xy) = f(x)y, ∀x, y ∈ X}

is the associative algebra of multipliers of X, endowed with the product induced by the 
usual composition of functions (see [8,25]). □

We recall that M(X) in general does not need to be a commutative algebra. For 
instance, let X = F2 be the abelian two-dimensional algebra, then M(X) = End(X)
which is not commutative. However there are special cases where M(X) is an object of 
CAssoc, such as when the annihilator of X (which coincides with the categorical notion 
of centre)

Ann(X) = {x ∈ X | xy = 0, ∀y ∈ X}

is trivial or when X2 = X, where X2 denotes the subalgebra of X generated by the 
products xy where x, y ∈ X. We refer the reader to [8] for further details.

Theorem 2.5 ([4], Theorem   2.6). Let X be a commutative associative algebra. The fol-
lowing statements are equivalent:

(i) M(X) is a commutative associative algebra;
(ii) the functor SplExt(−, X) is representable. □

Since we have examples where M(X) is not commutative, we conclude that CAssoc is 
not action representable. We now want to prove that it is a weakly action representable 
category. We analyse what this means and then prove that the category does indeed 
fulfil these requirements.

For any commutative associative algebra T , the fully faithful embedding U of the 
category CAssoc into Assoc induces a natural isomorphism

i : HomCAssoc(−, T ) ∼ = HomAssoc(U(−), U(T )) : CAssocop → Set.

Lemma 2.6. If the functor SplExt(−, X) admits a weak representation (T, τ), then there 
exists an injective function j : M(X) → T such that for each commutative associative 
algebra B, the square

SplExt(B,X)

ρB

τB HomCAssoc(B, T )

∼ = iB

HomAssoc(U(B),M(X))
j◦(−)

HomAssoc(U(B), U(T ))

commutes.
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Proof. The free associative F -algebra on a single generator is the algebra F [x] of non-
constant polynomials in a single variable x, which since it is commutative is also the free 
algebra on a single generator in CAssoc. We find j as the injective function

V (M(X)) ∼ = HomAssoc(F [x],M(X)) → HomAssoc(F [x], U(T )) ∼ = V (U(T ))

where V (A) denotes the underlying set of an algebra A and the function in the middle 
is the F [x]-component of the monomorphism of functors

i ◦ τ ◦ ρ−1 : HomAssoc(U(−),M(X)) ↣ HomAssoc(U(−), U(T )).

Now each b ∈ B induces a morphism b : F [x] → B, and the collection of morphisms 
(b : F [x] → B)b∈B is jointly epic. Hence its image

(HomAssoc(U(B), U(T )) → HomAssoc(U(F [x]), U(T )))b∈B

through the contravariant functor HomAssoc(U(−), U(T )) is a jointly monic collection 
of arrows. It thus suffices that for each b ∈ B, the outer rectangle in the diagram

SplExt(B,X)

ρB

τB HomCAssoc(B, T )

∼ = iB

HomAssoc(U(B),M(X))

(−)◦U(b)

j◦(−)
HomAssoc(U(B), U(T ))

(−)◦U(b)

HomAssoc(U(F [x]),M(X))

∼ = 
iF[x]◦τF[x]◦ρ−1

F[x]

HomAssoc(U(F [x]), U(T ))

∼ = 

V (M(X))
j

V (U(T ))

commutes in Set. This is an immediate consequence of the naturality of the transforma-
tions involved. □

Remark 2.7. The above proof can be modified to show that the function j is in fact 
a vector space monomorphism. If it were moreover an algebra monomorphism, then 
this would yield a proof that all M(X) are commutative, which is false by the above-
mentioned example. Thus we would be able to conclude that CAssoc is not weakly 
action representable. Theorem 2.11 below proves that this is wrong. Hence j cannot 
preserve the algebra multiplication in general.

Each action ξ of a commutative associative algebra B on X gives rise to a morphism 
ρB(ξ) : U(B) → M(X) in Assoc. If the actions in CAssoc are weakly representable, then 
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ξ is also determined by a morphism of commutative associative algebras τB(ξ) : B → T . 
The above lemma tells us that j ◦ ρB(ξ) = τB(ξ). Note that here we drop the iB for the 
sake of clarity.

Each ρB(ξ) : U(B) → M(X) is the composite of a surjective commutative associative 
algebra map ρ′B(ξ) : U(B) → Mξ and the canonical inclusion of a subalgebra Mξ of 
M(X). We find a diagram of subalgebras of M(X) indexed over the commutative asso-
ciative algebra actions on X. Note that since trivial actions exist, the image in Assoc
of the diagram (Mξ)ξ actually consists of all commutative subalgebras of M(X), with 
the canonical inclusions between them. We may re-index and view (Mξ)ξ as a diagram 
in Assoc over the thin category of commutative subalgebras of M(X).

By the above, the Mξ further include into T via j. For each ξ, an image factorisation 
of τB(ξ) : B → T is given by the surjective algebra map ρ′B(ξ) : U(B) → Mξ followed by 
the inclusion of Mξ into M(X) composed with j. We denote this function μMξ

: Mξ → T

and note that it only depends on the object Mξ. (That is to say, if ξ and ψ are two 
B-actions such that Mξ = Mψ, then the induced inclusions into T coincide as well.) 
A priori this μMξ

is only an injective map, but since τB(ξ) and ρ′B(ξ) are morphisms 
of algebras and ρ′B(ξ) is a surjection, that injection is a monomorphism of commuta-
tive associative algebras. Furthermore, the μMξ

form a cocone on the diagram of all 
commutative subalgebras of M(X) with vertex T .

Recall that for a diagram in a category, an amalgam is a monic cocone, i.e. a cocone 
which is a monomorphic natural transformation. This means that each component of that 
cocone is a monomorphism, which implies that all the morphisms of the given diagram 
were monomorphisms to begin with. Note that in a category with colimits, an amalgam 
for a diagram exists if and only if its colimit cocone is such an amalgam. A category is 
said to have the amalgamation property (AP) when each span of monomorphisms admits 
an amalgam; equivalently, for each pushout square

I
t

s

T

ιT

S
ιS

S +I T

if s and t are monomorphisms then so are ιS and ιT . It is known that neither the category 
of associative algebras, nor the category of commutative associative algebras satisfies the 
condition (AP)—see [20] for an overview of examples and references to the rich literature 
on the subject.

This is as follows related to the problem at hand. The associative algebra M(X) is 
an amalgam in Assoc of the diagram consisting of the commutative subalgebras Mξ

of M(X). So if the functor SplExt(−, X) admits a weak representation (T, τ), then the 
natural transformation τ factors through the diagram (Mξ)ξ as explained above, and we 
see that (T, τ) restricts to an amalgam of that diagram in the category CAssoc.
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Thus we find a necessary condition for weak representability of actions in the category 
CAssoc: we need that for each commutative associative algebra X, the diagram (Mξ)ξ of 
commutative subalgebras of the associative algebra M(X) not only admits the amalgam 
M(X) in the category Assoc; it should also admit an amalgam T in CAssoc. Actually, 
the converse also holds:

Proposition 2.8. For a commutative associative algebra X, a weak representation (T, τ)
of SplExt(−, X) exists if and only if an amalgam in CAssoc exists for the diagram of 
commutative subalgebras of M(X).

Proof. We already explained that any weak representation of SplExt(−, X) restricts 
to such an amalgam. So let us assume that a commutative amalgam for the diagram 
of commutative subalgebras of M(X) exists. For each commutative associative algebra 
action ξ of an object B on X, we let τB(ξ) : B → T be the composite of ρ′B(ξ) : U(B) →
Mξ with the inclusion μMξ

: Mξ → T of Mξ into the amalgam T .
The thus defined τ is a natural transformation by the naturality of both ρ′ and the 

cocone components in the amalgam. Note that if two maps, say ρB(ξ) and ρC(ψ), to 
M(X) have the same image subalgebra Mξ = Mψ of M(X), then by naturality of ρ and 
the fact that the inclusion of Mξ into M(X) is a monomorphism, for any equivariant 
map f : B → C we have that the square on the left

B

f

ρ′
B(ξ)

Mξ

μMξ

T

C
ρ′
C(ψ)

Mψ μMψ

T

commutes. The commutativity of the entire diagram proves naturality of τ .
We still have to prove that the components of τ are monomorphisms: two different 

actions ξ and ψ of B on X give rise to two different maps τB(ξ), τB(ψ) : B → T . Suppose, 
on the contrary, that τB(ξ) = τB(ψ). Then by uniqueness of image factorisations, the 
images of μMξ

: Mξ → T and μMψ
: Mψ → T are isomorphic subobjects of T . Now the 

image in Assoc of the diagram (Mξ)ξ is a thin category, so that Mξ = Mψ. Hence 
μMξ

◦ ρ′B(ξ) = τB(ξ) = τB(ψ) = μMψ
◦ ρ′B(ψ) = μMξ

◦ ρ′B(ψ), which implies ρ′B(ξ) =
ρ′B(ψ). But then the actions ξ and ψ are equal, since ρ is a natural isomorphism by 
Lemma 2.4. □

Thus we see that the problem of weak representability of actions of CAssoc amounts 
to proving that an amalgam in CAssoc exists for the diagram of commutative subalge-
bras of M(X) for any object X. We are actually going to prove something a bit stronger: 
namely, that an amalgam in CAssoc exists for any diagram of commutative associative 
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algebras for which an amalgam exists in Assoc. The essence of the proof is contained in 
the following special case.

Theorem 2.9. If S ← I → T is a span of commutative associative algebras for which an 
amalgam exists in Assoc, then it has an amalgam in CAssoc.

The proof depends on the following lemma.

Lemma 2.10. Let f : X → Y and g : Y → Z be morphisms in a semi-abelian category. 
The composite g ◦ f : X → Z is a monomorphism if and only if f is a monomorphism 
and Im(f) ∩ Ker(g) is trivial.

Proof. Note that if g ◦ f is a monomorphism, then so is f . So we may assume that f
is a monomorphism in either case. The composite g ◦ f is a monomorphism precisely 
when Ker(g ◦ f) is trivial. Now this kernel is a pullback of Ker(g) along f . Since f is 
a monomorphism, that pullback is Im(f) ∩ Ker(g). So Ker(g ◦ f) is zero if and only if 
Im(f) ∩ Ker(g) is zero. □

Proof of Theorem 2.9. Let S ← I → T be such a span. Recall that an amalgam in either 
category exists if and only if the S and T components of the induced pushout cocone in 
either category are monic. We focus on the case ιS : S → S +I T = S +Assoc

I T which 
we assume to be monic. The question is whether its composite with the reflection unit 
ηS+IT : S +Assoc

I T → S +CAssoc
I T is still monic. We are going to prove that the answer 

is yes, indeed it is.
Consider the following morphism of short exact sequences in Assoc:

0 J

ηS+T |J

S + T

ηS+T

S +I T

ηS+IT

0

0 K S +CAssoc T S +CAssoc
I T 0

As a vector space, the coproduct S + T of S and T in Assoc is S ⊕ T ⊕ U where 
U = (S ⊗ T ) ⊕ (T ⊗ S) ⊕ (S ⊗ T ⊗ S) ⊕ · · · contains all the tensors. The coproduct 
S +CAssoc T of S and T in CAssoc is S⊕T ⊕ (S⊗T ), so that ηS+T admits a canonical 
splitting σ : S +CAssoc T → S + T in Vec which commutes with the inclusions of S, T
and S ⊗ T .

We note that K is the ideal of S +CAssoc T = S ⊕ T ⊕ (S ⊗ T ) generated by the 
elements of the form i− i, where i is i ∈ I viewed as an element of S, while i is i viewed 
as an element of T . Let G denote the set of generators {i − i | i ∈ I}. The algebra 
J is generated by G as well, but now as an ideal of S + T = S ⊕ T ⊕ U . It follows 
that σ(K) ⊆ J—even though σ is not a morphism of algebras. We give a detailed proof 
of this claim. We know that K consists of all elements of the form x1g1 + · · · + xngn
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where x1, . . . , xn ∈ S +CAssoc T and g1, . . . , gn ∈ G. Since σ is a morphism of abelian 
groups, it suffices that σ(xg) belongs to J for all x ∈ S +CAssoc T and g ∈ G. Now 
each x ∈ S +CAssoc T is of the form (s1, t1, s

′
1 ⊗ t′1) + · · · + (sn, tn, s′n ⊗ t′n) with s1, 

. . . , sn, s′1, . . . , s′n ∈ S and t1, . . . , tn, t′1, . . . , t′n ∈ T . Hence it suffices to prove that 
σ((s, t, s′ ⊗ t′)g) belongs to J for all s, s′ ∈ S, t, t′ ∈ T and g ∈ G. Next, we see that 
(s, t, s′ ⊗ t′) = (s, 0, 0) + (0, t, 0) + (0, 0, s′ ⊗ t′). As a consequence, it suffices to prove 
that σ((s, 0, 0)g), σ((0, t, 0)g) and σ((0, 0, s ⊗ t)g) belong to J for all s ∈ S and t ∈ T . 
Writing g = (i,−i, 0) ∈ S +CAssoc T = S ⊕ T ⊕ (S ⊗ T ) and S + T = S ⊕ T ⊕ U , we 
calculate what happens in each of these three cases:

σ((s, 0, 0)g) = σ((s, 0, 0)(i,−i, 0)) = σ(si, 0,−s⊗ i) = (si, 0,−s⊗ i)

= (s, 0, 0)(i,−i, 0) ∈ J,

σ((0, t, 0)g) = σ((0, t, 0)(i,−i, 0)) = σ(0,−it, i⊗ t) = (0,−it, i⊗ t)

= (i,−i, 0)(0, t, 0) ∈ J,

σ((0, 0, s⊗ t)g) = σ((0, 0, s⊗ t)(i,−i, 0)) = σ(0, 0, si⊗ t− s⊗ it)

= (0, 0, si⊗ t− s⊗ it) = (si, 0,−s⊗ i)(0, t, 0)

= (s, 0, 0)(i,−i, 0)(0, t, 0) ∈ J.

Note that in the above calculations, we used commutativity twice: in the second equality 
of the second and third cases.

Thanks to Lemma 2.10, inside the vector space S+T , the intersection S∩J is trivial, 
by the assumption that the composite ιS : S → S + T → S +I T is monic. But then the 
smaller space S ∩ σ(K) is trivial as well, so that the composite

S → S +CAssoc T → S +CAssoc
I T

is a monomorphism by Lemma 2.10. □

For arbitrary diagrams of monomorphisms of commutative associative algebras, the 
proof stays essentially the same. This allows us to conclude:

Theorem 2.11. The category CAssoc of commutative associative algebras is weakly ac-
tion representable. □

Remark 2.12. For a given diagram of commutative associative algebras as above, the 
amalgam T in CAssoc is also an amalgam in Assoc.

Remark 2.13. Note that by its construction as a colimit, the weak representation (T, τ)
is automatically an initial weak representation (see [17, Section 5]). As explained in [17, 
Corollary 5.3, Corollary 5.4], the existence of the initial weak representation also follows 
from the existence of a weak representation and the fact that CAssoc, as a semi-abelian 
variety of universal algebras, is a total category [32].
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2.2. Jacobi–Jordan algebras

We now want to study the representability of actions of the variety JJord of Jacobi–
Jordan algebras. As already mentioned in Section 1, every split extension of B by X in 
Lie is represented by a homomorphism B → Der(X). For Jacobi–Jordan algebras, the 
role the derivations have in Lie is played by the so-called anti-derivations.

Definition 2.14. Let X be a Jacobi–Jordan algebra. An anti-derivation is a linear map 
d : X → X such that

d(xy) = −d(x)y − d(y)x, ∀x, y ∈ X.

The (left) multiplications Lx for x ∈ X are particular anti-derivations, called in-
ner anti-derivations. We denote by ADer(X) the space of anti-derivations of X and by 
Inn(X) the subspace of the inner anti-derivations. Anti-derivations play a significant role 
in the study of cohomology of Jacobi–Jordan algebras: see [1] for further details.

We now want to make explicit what are the derived actions in the category JJord
and how they are related with the anti-derivations. The following is an easy application 
of Lemma 1.7.

Proposition 2.15. Let X and B be two Jacobi–Jordan algebras. Given a pair of bilinear 
maps

l : B ×X → X, r : X ×B → X

defined by

b ∗ x = l(b, x), x ∗ b = r(x, b),

we construct (B ⊕ X, ·) as in (1.3). Then (B ⊕ X, ·) is a Jacobi–Jordan algebra if and 
only if

(1) b ∗ x = x ∗ b;
(2) b ∗ (xx′) = −(b ∗ x)x′ − (b ∗ x) ∗ x′;
(3) (bb′) ∗ x = −b ∗ (b′ ∗ x) − b′ ∗ (b ∗ x);

for all b, b′ ∈ B and x, x′ ∈ X. □

In an equivalent way, a derived action of B on X in the variety JJord is given by a 
linear map

B → ADer(X) : b 
→ b ∗ −
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which satisfies

(bb′) ∗ x = −b ∗ (b′ ∗ x) − b′ ∗ (b ∗ x), ∀b, b′ ∈ B, ∀x ∈ X. (2.1)

Remark 2.16. The vector space ADer(X) endowed with the anti-commutator

〈−,−〉 : ADer(X) × ADer(X) → End(X), 〈f, f ′〉 = −f ◦ f ′ − f ′ ◦ f

is not in general an algebra, since the anti-commutator of two anti-derivations is not in 
general an anti-derivation: in [2, Remark 2.2], the authors proved that 〈f, f ′〉 ∈ ADer(X)
if and only if

〈f, f ′〉(xy) = −f(x)f ′(y) − f ′(x)f(y), ∀x, y ∈ X.

Moreover, it can happen that the anti-commutator 〈−,−〉 is a well defined bilinear oper-
ation on the space ADer(X) but it does not define a Jacobi–Jordan algebra structure: for 
instance, if X = F is the abelian one-dimensional algebra, then ADer(X) = End(X) ∼ = F
(every linear endomorphism of X is of the form ϕα : x 
→ αx, for some α ∈ F) and the Ja-
cobi identity is not satisfied. Nevertheless, there are some subspaces of ADer(X) that are 
Jacobi–Jordan algebras. For instance, the subspace Inn(X) of all inner anti-derivations 
of X. Indeed, the linear map

X → ADer(X) : x 
→ Lx,

restricts to a Jacobi–Jordan algebra homomorphism X → Inn(X). This is true in general 
for the image of any linear map B → ADer(X) satisfying equation (2.1).

Thus we need to use an algebraic structure which includes the space of anti-derivations 
endowed with the anti-commutator and which allows us to describe categorically the 
representability of actions of the variety JJord. One possible solution is given by partial 
algebras.

Indeed, the vector space ADer(X) endowed with the anti-commutator 〈−,−〉 is a 
commutative partial algebra. In this case Ω is the preimage

〈−,−〉−1(ADer(X))

of the inclusion ADer(X) ↪→ End(X).

Theorem 2.17. Let X be a Jacobi–Jordan algebra and let U : JJordop → PAlg denote 
the forgetful functor.

(1) There exists a natural isomorphism of functors from JJordop → Set

ρ : SplExt(−, X) ∼ = HomPAlg(U(−),ADer(X)),
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where SplExt(−, X) = SplExtJJord(−, X);
(2) if ADer(X) is a Jacobi–Jordan algebra, then the functor SplExt(−, X) is repre-

sentable and ADer(X) is the actor of X.

Proof. (1) For a Jacobi–Jordan algebra B, we define the component

ρB : SplExt(B,X) → HomPAlg(U(B),ADer(X))

as the functor which sends any split extension

0 X A B 0i π

s

to the morphism B → ADer(X) : b 
→ b ∗ −. The transformation ρ is natural. Indeed, 
for any Jacobi–Jordan algebra homomorphism f : B′ → B, it is easy to check that the 
diagram in Set

SplExt(B,X) Hom(U(B),ADer(X))

SplExt(B′, X) Hom(U(B′),ADer(X))

ρB

SplExt(f,X) Hom(U(f),ADer(X))
ρB′

where Hom(U(−),−) = HomPAlg(U(−),−), is commutative. Moreover, for any Jacobi–
Jordan algebra B, the morphism ρB is an injection, as each element of SplExt(B,X) is 
uniquely determined by the corresponding action of B on X. Thus ρ is a monomorphism 
of functors. Finally ρ is a natural isomorphism since, given any Jacobi–Jordan algebra 
B and any homomorphism of partial algebras ϕ : B → ADer(X), the bilinear maps 
lϕ : B ×X → X : (b, x) 
→ ϕ(b)(x), rϕ = lϕ define a (unique) derived action of B on X
such that ρB(lϕ, rϕ) = ϕ.

(2) If ADer(X) is a Jacobi–Jordan algebra, then by (1) we have a natural isomorphism

SplExt(−, X) ∼ = HomJJord(−,ADer(X)),

hence ADer(X) is the actor of X. □

2.3. Two-step nilpotent commutative algebras

We now analyse the case where V is a subvariety of both CAssoc and JJord, i.e. 
V is the variety Nil2(Com) of two-step nilpotent commutative algebras. We recall this 
means that xyz = 0 is an identity of V. An example of such an algebra is the Kronecker 
algebra k1 (see [21]), which is the three-dimensional algebra with basis {e1, e2, e3} and 
multiplication determined by e1e2 = e2e1 = e3.

We shall show that Nil2(Com) is an example of a weakly action representable, op-
eradic, quadratic variety of commutative algebras.
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Proposition 2.18. Let X and B be two algebras in Nil2(Com). Given a pair of bilinear 
maps

l : B ×X → X, r : X ×B → X,

we construct (B ⊕X, ·) as in (1.3). Then (B ⊕X, ·) is in Nil2(Com) if and only if

(1) b ∗ x = x ∗ b;
(2) b ∗ (xx′) = (b ∗ x)x′ = 0;
(3) (bb′) ∗ x = b ∗ (b′ ∗ x) = 0;

for any b, b′ ∈ B and x, x′ ∈ X. □

The second equation of Proposition 2.18 states that, for every b ∈ B, the linear map 
b ∗ − belongs to the vector space

[X]2 = {f ∈ End(X) | f(xy) = f(x)y = 0, ∀x ∈ X}.

Moreover, seeing [X]2 as an abelian algebra (i.e. 〈f, g〉 = 0End(X), for every f, g ∈ [X]2), 
from the third equation we deduce that the linear map

B → [X]2 : b 
→ b ∗ −

is an algebra homomorphism.
On the other hand, given a morphism of algebras

ϕ : B → [X]2, ϕ(b) = b ∗ −

satisfying

b ∗ (b′ ∗ x) = 0, ∀b, b′ ∈ B, ∀x ∈ X,

we can consider the split extension

0 X (B ⊕X, ∗ϕ) B 0i π

s

where the two-step nilpotent commutative algebra structure of B ⊕X is given by

(b, x) ∗ϕ (b′, x′) = (bb′, xx′ + b ∗ x′ + b′ ∗ x), ∀(b, x), (b′, x′) ∈ B ⊕X.

We can now claim the following result.
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Theorem 2.19. 

(1) Let B and X be two-step nilpotent commutative algebras. The isomorphism classes 
of split extensions of B by X are in bijection with the algebra homomorphisms

B → [X]2 : b 
→ b ∗ −

satisfying

b ∗ (b′ ∗ x) = 0, ∀b, b′ ∈ B, ∀x ∈ X. (2.2)

(2) The variety Nil2(Com) is weakly action representable. A weak representation of the 
functor SplExt(−, X) = SplExtNil2(Com)(−, X) is given by

τ : SplExt(−, X) ↣ HomNil2(Com)(−, [X]2),

where τB is the injection which sends any split extension of B by X to the corre-
sponding homomorphism B → [X]2, defined by b 
→ b ∗ − as above.

(3) A homomorphism B → [X]2 is an acting morphism if and only if it satisfies Equa-
tion (2.2).

Proof. (1) It follows from the analysis above.
(2) We observe that τ is a natural transformation. Indeed, for every morphism f : B′ →

B in Nil2(Com), we can check that the diagram in Set

SplExt(B,X) Hom(B, [X]2)

SplExt(B′, X) Hom(B′, [X]2)

τB

SplExt(f,X) Hom(f,[X]2)
τB′

is commutative. Moreover τB is an injection since every isomorphism class of split exten-
sions of B by X is uniquely determined by the corresponding derived action. Thus τ is 
a monomorphism of functors and Nil2(Com) is a weakly action representable category.

(3) Finally, ϕ : B → [X]2 is an acting morphism if and only if it defines a split 
extension of B by X in Nil2(Com), i.e. it satisfies equation (2.2). □

Let us observe that not every morphism B → [X]2 defines a split extension of B by 
X. For instance, if B = F{b, b′} and X = F{x} ∼ = F are abelian algebras, then [X]2 =
End(X) and the homomorphism ϕ : B → [X]2, defined by

ϕ(b) = ϕ(b′) = 1X

is not an acting morphism. Indeed,

ϕ(b)(ϕ(b′)(x)) = 1X(1X(x)) = x �= 0.
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2.4. Anti-commutative anti-associative algebras

For the variety ACAAssoc of anti-commutative anti-associative algebras, a similar 
description of split extensions and derived actions can be made as for the variety JJord. 
The role of the anti-derivations is played here by the endomorphisms in the associative 
partial algebra

[X] := {f ∈ End(X) | f(xy) = −f(x)y, ∀x ∈ X},

whose bilinear partial operation is given by

〈f, g〉 = −f ◦ g.

It is easy to see that 〈−,−〉 does not define, in general, a total algebra structure on [X], 
nor need it be anti-commutative or anti-associative. An example is given by the abelian 
two-dimensional algebra X = F2, where [X] = End(X).

We may check that a derived action of B by X in the variety ACAAssoc is the same 
thing as a partial algebra homomorphism

B → [X] : b 
→ b ∗ −

which satisfies

(bb′) ∗ − = −b ∗ (b′ ∗ −), ∀b, b′ ∈ B.

Moreover, we obtain the following result whose proof is similar to the one of Theo-
rem 2.17.

Theorem 2.20. Let X be an object of ACAAssoc and let U : ACAAssoc → PAlg
denote the forgetful functor.

(1) There exists a natural isomorphism

SplExt(−, X) ∼ = HomPAlg(U(−), [X]),

where SplExt(−, X) = SplExtACAAssoc(−, X);
(2) if [X] is an anti-commutative anti-associative algebra, then the functor SplExt(−, X)

is representable and [X] is the actor of X. □

2.5. Two-step nilpotent anti-commutative algebras

We conclude this section by studying the representability of actions of the variety 
Nil2(ACom). An important example of a two-step nilpotent anti-commutative algebra 
is the (2n + 1)-dimensional Heisenberg algebra h2n+1, that is the algebra with basis
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{e1, . . . , en, f1, . . . , fn, h}

and non-trivial products eifj = −fjei = δijh, for all i, j = 1, . . . , n, where δij is the 
Kronecker delta.

An analysis, similar to the case of two-step nilpotent commutative algebras can be 
made, so we simply state the following theorem:

Theorem 2.21. 

(1) Let B and X be two-step nilpotent anti-commutative algebras. The isomorphism 
classes of split extensions of B by X are in bijection with the algebra homomorphisms

B → [X]2 : b 
→ b ∗ −

where [X]2 is defined as in the commutative case, which satisfy the condition

b ∗ (b′ ∗ x) = 0, ∀b, b′ ∈ B, ∀x ∈ X. (2.3)

(2) The variety Nil2(ACom) is weakly action representable. A weak representation of 
SplExt(−, X) = SplExtNil2(ACom) is given by

τ : SplExt(−, X) ↣ HomNil2(ACom)(−, [X]2),

where τB is the injection which associates with any split extension of B by X, the 
corresponding homomorphism B → [X]2 : b 
→ b ∗ − as in (1).

(3) A homomorphism B → [X]2 is an acting morphism if and only if it satisfies Equa-
tion (2.3). □

Again, if B = F{b, b′} is the abelian two-dimensional algebra and X = F is the 
abelian one-dimensional algebra, the linear map ϕ : B → [X]2 = End(X), defined by 
ϕ(b) = ϕ(b′) = 1X is an example of a morphism in Nil2(ACom) which is not an acting 
morphism.

3. Representability of actions of non-associative algebras

We want to extend the results obtained in the previous section by studying the (weak) 
representability of actions of a general variety of non-associative algebras over a field F . 
Again, we assume that V is an action accessible, operadic variety of non-associative 
algebras over F . Thus V satisfies a set of multilinear identities

Φk,i(x1, . . . , xk) = 0, i = 1, . . . , n,

where k is the degree of the polynomial Φk,i. We fix λ1, . . . , λ8, μ1, . . . , μ8 ∈ F which 
determine a choice of λ/μ rules, i.e.
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x(yz) = λ1(xy)z + λ2(yx)z + λ3z(xy) + λ4z(yx)

+ λ5(xz)y + λ6(zx)y + λ7y(xz) + λ8y(zx)

and

(yz)x = μ1(xy)z + μ2(yx)z + μ3z(xy) + μ4z(yx)

+ μ5(xz)y + μ6(zx)y + μ7y(xz) + μ8y(zx)

which are identities in V. Note that these are not unique, but fixed for our purposes.
For any object X of V, we want to define a vector space E(X) such that

Inn(X) ≤ E(X) ≤ End(X)2,

where Inn(X) = {(Lx, Rx) | x ∈ X} is the vector space of left and right multiplications 
of X, and we want to endow it with a bilinear partial operation

〈−,−〉 : Ω ⊆ X ×X → X,

such that we can associate in a natural way a homomorphism of partial algebras B →
E(X), with every split extension of B by X in V. To do this, we describe derived actions 
in V in a similar fashion as in the previous section.

Proposition 3.1. Let X and B be two algebras in V. Given a pair of bilinear maps

l : B ×X → X, r : X ×B → X,

we construct (B ⊕X, ·) as in (1.3). Then (B ⊕X, ·) is an object of V if and only if

Φk,i(α1, . . . , αk) = 0, ∀i = 1, . . . , n,

where at least one of the α1, . . . , αk is an element of the form (0, x), with x ∈ X, and the 
others are of the form (b, 0), with b ∈ B. The resulting algebra is the semidirect product 
of B and X, denoted by B ⋉X. □

Using the same notation of Remark 1.8, we obtain the following:

Corollary 3.2. When every identity of V can be deduced from the λ/μ rules, (B ⊕X, ·)
is an object of V if and only if 

(1) b ∗ (xx′) = λ1(b ∗ x)x′ + · · · + λ8x(x′ ∗ b);
(2) (xx′) ∗ b = μ1(b ∗ x)x′ + · · · + μ8x(x′ ∗ b);
(3) x(x′ ∗ b) = λ1(xx′) ∗ b + · · · + λ8x

′(b ∗ x);
(4) (x′ ∗ b)x = μ1(xx′) ∗ b + · · · + μ8x

′(b ∗ x);
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(5) x(b ∗ x′) = λ1(x ∗ b)x′ + · · · + λ8b ∗ (x′x);
(6) (b ∗ x′)x = μ1(x ∗ b)x′ + · · · + μ8b ∗ (x′x);
(7) x ∗ (bb′) = λ1(x ∗ b) ∗ b′ + · · · + λ8b ∗ (b′ ∗ x);
(8) (bb′) ∗ x = μ1(x ∗ b) ∗ b′ + · · · + μ8b ∗ (b′ ∗ x);
(9) b ∗ (b′ ∗ x) = λ1(bb′) ∗ x + · · · + λ8b

′ ∗ (x ∗ b);
(10) (b′ ∗ x) ∗ b = μ1(bb′) ∗ x + · · · + μ8b

′ ∗ (x ∗ b);
(11) b ∗ (x ∗ b′) = λ1(b ∗ x) ∗ b′ + · · · + λ8x ∗ (b′b);
(12) (x ∗ b) ∗ b′ = μ1(b ∗ x) ∗ b′ + · · · + μ8x ∗ (b′b),

for all b, b′ ∈ B and x, x′ ∈ X. □

Definition 3.3. For every object X of V, we define E(X) as the subspace of all pairs 
(f ∗ −,− ∗ f) ∈ End(X)2 satisfying

Φk,i(α1, . . . , αk) = 0, ∀i = 1, . . . , n,

for each choice of αj = f and αt ∈ X, where t �= j ∈ {1, . . . , k} and fx := f ∗ x, 
xf := x ∗ f . We endow it with the bilinear map 〈−,−〉 : E(X) × E(X) → End(X)2

〈(f ∗ −,− ∗ f), (g ∗ −,− ∗ g)〉 = (h ∗ −,− ∗ h),

where

x ∗ h = λ1(x ∗ f) ∗ g + λ2(f ∗ x) ∗ g + λ3g ∗ (x ∗ f) + λ4g ∗ (f ∗ x)

+ λ5(x ∗ g) ∗ f + λ6(g ∗ x) ∗ f + λ7f ∗ (x ∗ g) + λ8f ∗ (g ∗ x)

and

h ∗ x = μ1(x ∗ f) ∗ g + μ2(f ∗ x) ∗ g + μ3g ∗ (x ∗ f) + μ4g ∗ (f ∗ x)

+ μ5(x ∗ g) ∗ f + μ6(g ∗ x) ∗ f + μ7f ∗ (x ∗ g) + μ8f ∗ (g ∗ x).

When every identity of V is a consequence of the λ/μ rules, E(X) becomes the subspace 
of all pairs (f ∗ −,− ∗ f) ∈ End(X)2 satisfying 

(1) f ∗ (xx′) = λ1(f ∗ x)x′ + · · · + λ8x(x′ ∗ f);
(2) (xx′) ∗ f = μ1(f ∗ x)x′ + · · · + μ8x(x′ ∗ f);
(3) x(x′ ∗ f) = λ1(xx′) ∗ f + · · · + λ8x

′(f ∗ x);
(4) (x′ ∗ f)x = μ1(xx′) ∗ f + · · · + μ8x

′(f ∗ x);
(5) x(f ∗ x′) = λ1(x ∗ f)x′ + · · · + λ8f ∗ (x′x);
(6) (f ∗ x′)x = μ1(x ∗ f)x′ + · · · + μ8f ∗ (x′x),

for every x, x′ ∈ X.
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Note that the choice of λ/μ rules does not affect to the definition of the underlying 
vector space of E(X), but it does play an important role in the bilinear map 〈−,−〉. In 
general, the vector space E(X) endowed with the bilinear map 〈−,−〉 is not an object 
of V. It may happen that 〈−,−〉 does not even define a bilinear operation on E(X), i.e. 
there exist (f ∗ −,− ∗ f), (g ∗ −,− ∗ g) ∈ E(X) such that

〈(f ∗ −,− ∗ f), (g ∗ −,− ∗ g)〉 �∈ E(X)

or that (E(X), 〈−,−〉) is a non-associative algebra which does not satisfy some identity 
of V.

Example 3.4. We may check that, if V = Assoc, then E(X) ∼ = Bim(X) as vector spaces. 
Moreover, with the standard choice of λ/μ rules λ1 = μ8 = 1 and the rest equal to zero, 
it is also an isomorphism of associative algebras.

Example 3.5. Let V = Leib, it is easy to see that E(X) ∼ = Bider(X) as vector spaces. 
Choosing the λ/μ rules as

x(yz) = (xy)z − (xz)y,

(yz)x = (yx)z − y(xz),

we get the standard multiplication defined in Bider(X) as in [24], that defines a weak 
actor in Leib. On the other hand, choosing the λ/μ rules as

x(yz) = (xy)z − (xz)y,

(yz)x = (yx)z + y(zx),

we get the non-associative algebra structure defined in [8, Definition 5.2], which, in 
general, is not a Leibniz algebra.

Example 3.6. If V = Nilk(Assoc), with k ≥ 3, then

E(X) = {(f ∗ −,− ∗ f) ∈ Bim(X) | f ∗ (x1 · · ·xk) = (x1 · · ·xk) ∗ f = 0}.

With the same choice of λ/μ rules as in Example 3.4, the bilinear operation 〈−,−〉
becomes

〈(f ∗ −,− ∗ f), (g ∗ −,− ∗ g)〉 = (f ∗ (g ∗ −), (− ∗ f) ∗ g)

which makes E(X) an associative algebra, but not a k-step nilpotent algebra. For in-
stance, let X be the abelian one-dimensional algebra, then

E(X) = End(X) × End(X)op ∼ = F2
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which is not nilpotent. Every linear endomorphism of X is of the form ϕα : x 
→ αx, for 
some α ∈ F and

〈(ϕα, ϕβ), (ϕα′ , ϕβ′)〉 = (ϕα ◦ ϕα′ , ϕβ′ ◦ ϕβ) = (ϕαα′ , ϕββ′).

Example 3.7. If V = Alt is the variety of alternative algebras over a field F with 
char(F) �= 2, then E(X) consists of the pairs (f ∗ −,− ∗ f) ∈ End(X)2 satisfying

f ∗ (xy) = (x ∗ f)y + (f ∗ x)y − x(f ∗ y),
(xy) ∗ f = x(f ∗ y) + x(y ∗ f) − (x ∗ f)y,

x(y ∗ f) = (yx) ∗ f + (xy) ∗ f − y(x ∗ f)

and

(f ∗ x)y = f ∗ (yx) + f ∗ (xy) − (f ∗ y)x

for any x, y ∈ X, and the bilinear map

〈(f ∗ −,− ∗ f), (g ∗ −,− ∗ g)〉 = (h ∗ −,− ∗ h)

is given by

h ∗ x = −(f ∗ x) ∗ g + f ∗ (g ∗ x) + f ∗ (x ∗ g)

and

x ∗ h = (x ∗ f) ∗ g + (f ∗ x) ∗ g − f ∗ (x ∗ g).

One can check that 〈−,−〉 does not define an algebra structure. Nevertheless, it is possible 
to find examples where E(X) is an alternative algebra.

For instance, if X is a unitary, or unital, alternative algebra (i.e. there exists an 
element e ∈ X such that xe = ex = x, for any x ∈ X), such as the algebra of octonions 
O, then the elements of E(X) satisfy the following set of equations

f ∗ x =(x ∗ f)e + (f ∗ x)e− x(f ∗ e),
x ∗ f =e(f ∗ x) + e(x ∗ f) − (e ∗ f)x,

x ∗ f =x ∗ f + x ∗ f − x(e ∗ f),

f ∗ x =f ∗ x + f ∗ x− (f ∗ e)x,

for any x ∈ X. Thus, if α := f ∗ e and β := e ∗ f , one has

f ∗ x = αx = βx, x ∗ f = xα = xβ
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and, for x = e, one obtains α = β. In other words, an element of E(X) is uniquely 
determined by an element α = f ∗ e = e ∗ f of X, i.e.

E(X) ∼ = {(α, α) | α ∈ X} ∼ = X

is an object of Alt.

Remark 3.8. The same result can be obtained for unitary algebras in the variety Assoc. 
In fact, let X be a unitary associative algebra and let (f ∗ −,− ∗ f) ∈ Bim(X). Thus

f ∗ x = f ∗ (ex) = αx,

x ∗ f = (xe) ∗ f = xβ

and

xα = (x ∗ f)e = xβ,

where α := f ∗ e and β := e ∗ f . For x = e, we obtain α = β and

Bim(X) ∼ = {(α, α) | α ∈ X} ∼ = X.

Since unitary algebras are perfect and have trivial centre, from [8] we have a natural 
isomorphism

SplExt(−, X) ∼ = HomAssoc(−, X)

for any unitary associative algebra X, i.e. X is its own actor.

The construction of E(X) gives rise to an alternative characterisation of the split 
extensions in V. In fact, a split extension of B by X in V is the same as a linear map

B → E(X) : b 
→ (b ∗ −,− ∗ b),

such that ((bb′) ∗ −,− ∗ (bb′)) = 〈(b ∗ −,− ∗ b), (b′ ∗ −,− ∗ b′)〉 and

Φk,i(α1, . . . , αk) = 0, i = 1, . . . , n,

where α1, . . . , αk are as in Proposition 3.1.
We remark also that the bilinear map

〈−,−〉 : E(X) × E(X) → End(X)2

defines a partial operation 〈−,−〉 : Ω → E(X), where Ω is the preimage
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〈−,−〉−1(E(X))

of the inclusion E(X) ↪→ End(X)2.
Now we are ready to announce and prove our main result about the weak repre-

sentability of actions of non-associative algebras.

Theorem 3.9. Let V be an action accessible, operadic variety of non-associative algebras 
over a field F and let U : V → PAlg denote the forgetful functor. 

(1) Let X be an object of V. There exists a monomorphism of functors

τ : SplExt(−, X) ↣ HomPAlg(U(−), E(X)),

where SplExt(−, X) = SplExtV(−, X) and, for every object B of V, τB is the in-
jection which sends an element of SplExt(B,X) to the corresponding partial algebra 
homomorphism

B → E(X) : b 
→ (b ∗ −,− ∗ b).

(2) Let B, X be objects of V. The homomorphism of partial algebras

B → E(X) : b 
→ (b ∗ −,− ∗ b)

belongs to Im(τB) if and only if Φk,i(α1, . . . , αk) = 0, as in Proposition 3.1.
(3) If (E(X), 〈−,−〉) is an object of V, then (E(X), τ) becomes a weak representation of 

SplExt(−, X).
(4) If the diagram in V given by those subalgebras of E(X) which occur as a codomain 

of a morphism (B → E(X)) ∈ Im(τB) admits an amalgam in V, then the colimit of 
that diagram determines an (initial) weak representation of SplExt(−, X).

(5) If V is a variety of commutative or anti-commutative algebras, then E(X) is isomor-
phic to the partial algebra

{f ∈ End(X) | Φk,i(f, x2, . . . , xk) = 0, ∀x2, . . . , xk ∈ X}

endowed with the bilinear partial operation 〈f, g〉 = α(f ◦ g) + β(g ◦ f), where α, 
β ∈ F are given by the λ/μ rules.

Because of these results, we can give the following definitions.

Definition 3.10. Let X be an object of an action accessible, operadic variety of non-
associative algebras V with a choice of λ/μ rules. The partial algebra E(X) is called 
external weak actor of X. The pair (E(X), τ) is called external weak representation of 
the functor SplExt(−, X). When τ is a natural isomorphism, we say that E(X) is an 
external actor of X.
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Proof. (1) The collection {τB}B gives rise to a natural transformation since, for every 
algebra homomorphism f : B′ → B, the diagram in Set

SplExt(B,X) Hom(U(B), E(X))

SplExt(B′, X) Hom(U(B′), E(X))

τB

SplExt(f,X) Hom(U(f),E(X))
τB′

where Hom(U(−),−) = HomPAlg(U(−),−), is commutative. Moreover, for every object 
B of V, the map τB is an injection, since every element of SplExt(B,X) is uniquely 
determined by the corresponding derived action of B on X, i.e. by the pair of bilinear 
maps

l : B ×X → X, r : X ×B → X

defined as in Definition 1.6. Thus τ is a monomorphism of functors.
(2) Let B, X be objects of V. A homomorphism of partial algebras B → E(X) belongs 

to Im(τB) if and only if it defines a split extension of B by X in V. This is equivalent to 
saying that

Φk,i(α1, . . . , αk) = 0, ∀i = 1, . . . , n,

where α1, . . . , αk are as in Proposition 3.1
(3) If (E(X), 〈−,−〉) is an object of V, then we have a monomorphism of functors

τ : SplExt(−, X) ↣ HomV(−, E(X)),

and (E(X), τ) is a weak representation of SplExt(−, X).
(4) We may copy the “if” part of the proof of Proposition 2.8, replacing the subalgebras 

of M(X) in CAssoc with those subalgebras of E(X) in V which occur as codomain of a 
morphism (B → E(X)) ∈ Im(τB). As in Remark 2.13, by its construction as a colimit, 
the weak representation thus obtained is automatically an initial weak representation 
[17].

(5) If V is a variety of commutative (resp. anti-commutative) algebras, then for every 
object X of V, E(X) consists of pairs of the form (f ∗ −,− ∗ f) with x ∗ f = f ∗ x (resp. 
x ∗ f = −f ∗ x), for every x ∈ X. Thus, an explicit isomorphism

{f ∈ End(X) | Φk,i(f, x2, . . . , xk) = 0} → E(X)

is given by f 
→ (f,±f). □

Example 3.11. We may check that, with the obvious choices of the λ/μ rules, 

(1) if V = AbAlg, then E(X) = 0 is the actor of X;
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(2) if V = CAssoc, then E(X) ∼ = M(X) is an external actor of X (see Lemma 2.4);
(3) if V = JJord, then as observed in Theorem 2.17, the external actor E(X) is isomor-

phic to the partial algebra ADer(X) of anti-derivations of X;
(4) if V = Lie, then E(X) ∼ = Der(X) is the actor of X;
(5) if V = ACAAssoc, then as observed in Theorem 2.20, the external actor E(X) is 

isomorphic to the partial algebra [X];
(6) if V = Nil2(Com) or V = Nil2(ACom), then E(X) ∼ = [X]2 is a weak actor of X;
(7) if V = Nil2(Alg), then E(X) is an abelian algebra and it is a weak actor of X;
(8) if V = Alt over a field F with char(F) �= 2 and X is a unitary alternative algebra, 

then E(X) ∼ = X is an alternative algebra and we have a natural isomorphism

SplExt(−, X) ∼ = HomAlt(−, X)

i.e. X is the actor of itself. In particular, the algebra of octonions O has representable 
actions.

Remark 3.12. The construction of the vector space E(X) can be done also in a variety of 
non-associative algebras V which is not action accessible. However, there is no canonical 
way to endow E(X) with a bilinear map 〈−,−〉 as in Definition 3.3 so we only have a 
monomorphism of functors

τ : SplExt(−, X) → HomVec(U(−), E(X)),

where U : V → Vec denotes the forgetful functor.

Remark 3.13. As described in [10, Section 3], for every Orzech category of interest C and 
for every object X of C, it is possible to define a monomorphism of functors

μ : SplExt(−, X) ↣ HomC′(V (−),USGA(X)),

where C′ is a category which contains C as a full subcategory, USGA(X) is an object 
of C′ called the universal strict general actor of X [8] and V : C → C′ denotes the 
forgetful functor. We further recall that USGA(X) is unique up to isomorphism, once 
the presentation of the Orzech category of interest C is fixed.

For a variety of non-associative algebras V, a presentation is given by a choice of 
constants λ1, . . . , λ8, μ1, . . . , μ8 ∈ F which determine the λ/μ rules. In this case, it 
turns out that V ′ = Alg. Thus we have monomorphism of functors

μ : SplExt(−, X) ↣ HomAlg(V (−),USGA(X))

and, by Theorem 3.9, another monomorphism of functors

τ : SplExt(−, X) ↣ HomPAlg(U(−), E(X)).
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As explained at the beginning of [8, Section 4], USGA(X) is the algebraic closure of the 
external weak actor E(X) with respect to the bilinear partial operation 〈−,−〉. When 
〈−,−〉 is well defined on E(X) × E(X), then USGA(X) = E(X) and μ = τ .

However, it is often more convenient to work with the external weak actor E(X), 
since it is easier to construct than the universal strict general actor USGA(X). In fact, 
in the next section we shall present the construction of E(X) in different varieties of 
non-associative algebras.

4. The quadratic case

In this section we introduce a systematic approach to finding the explicit structure 
of E(X) in the setting of operadic, quadratic varieties of algebras. Here we shall denote 
an element (f ∗ −,− ∗ f) of E(X) by the symbol f ; this means that fx := f ∗ x and 
xf := x ∗ f .

Let V be an action accessible, operadic, quadratic variety of non-associative algebras 
with no identities of degree 2. Let us consider the free non-associative algebra generated 
by the symbols f , x and y, and let us focus on its multilinear component of degree 3. 
There are 12 possible monomials which we order as follows:

f(xy) > f(yx) > (xy)f > (yx)f > (fy)x > (fx)y

> (yf)x > (xf)y > x(fy) > y(fx) > x(yf) > y(xf).

Permuting the variables determines an action of the symmetric group S3 on this space. 
For a given variety of algebras V, we can write the orbit under the S3-action of its 
defining equations in matrix form, where each row corresponds to an equation and each 
column corresponds to a monomial, ordered as above. Let us denote this matrix by M3, 
and its reduced row echelon form by RM3. Action accessibility implies the following:

Lemma 4.1. The rank of M3 is at least 4. Moreover, the 4 × 4 minor located on the top 
left of RM3 is the identity matrix. □

The vector space E(X) will be the subspace of End(X)2 formed by the pairs that 
satisfy the identities coming from RM3.

Our task now is to endow this vector space with a partial multiplication, induced by 
action accessibility, and to provide strategies to check 

(1) when this multiplication is total;
(2) when it induces a V-algebra structure on E(X).

Let us rename the tags on the columns of M3 by the following rule: f 
→ x, x 
→ f

and y 
→ g. Then, the third and first columns of RM3 will give us equations of the form



438 J. Brox et al. / Journal of Algebra 669 (2025) 401–444 

(fg)x = λ1(fg)x + λ2(fx)g + λ3(gf)x + λ4(xf)g

+ λ5x(fg) + λ6y(fx) + λ7x(gf) + λ8g(xf)

and

x(fg) = μ1(fg)x + μ2(fx)g + μ3(gf)x + μ4(xf)g

+ μ5x(fg) + μ6g(fx) + μ7x(gf) + μ8g(xf).

At a first glance, these rules seem to yield a way of multiplying two elements f and g
belonging to E(X). However, this choice might not be unique. If the rank of M3 is strictly 
larger than 4, the lower rows will have zeroes in the first four positions, so adding any 
linear combination of them will produce a new bracket in E(X). Let us exemplify this 
with a concrete variety:

Example 4.2. The most common presentation of the variety of right Leibniz algebras is 
given by the identity (xy)z − (xz)y − x(yz) = 0. Then, M3 will be the matrix

f(xy) f(yx) (xy)f (yx)f (fy)x (fx)y (yf)x (xf)y x(fy) y(fx) x(yf) y(xf)⎛
⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎠

−1 0 0 0 −1 1 0 0 0 0 0 0
0 −1 0 0 1 −1 0 0 0 0 0 0
0 0 −1 0 0 0 0 1 −1 0 0 0
0 0 1 0 0 0 0 −1 0 0 −1 0
0 0 0 −1 0 0 1 0 0 −1 0 0
0 0 0 1 0 0 −1 0 0 0 0 −1

while its reduced row echelon form is

f(xy) f(yx) (xy)f (yx)f (fy)x (fx)y (yf)x (xf)y x(fy) y(fx) x(yf) y(xf)⎛
⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎠

1 0 0 0 1 −1 0 0 0 0 0 0
0 1 0 0 −1 1 0 0 0 0 0 0
0 0 1 0 0 0 0 −1 0 0 −1 0
0 0 0 1 0 0 −1 0 0 0 0 −1
0 0 0 0 0 0 0 0 1 0 1 0
0 0 0 0 0 0 0 0 0 1 0 1

Removing the rows in odd position—which we are entitled to, thanks to the obvious 
symmetry—we obtain that E(X) is formed by the elements of End(X)2 satisfying the 
following identities:

f(xy) = (fx)y − (fy)x,

(xy)f = (xf)y + x(yf),

x(fy) = x(yf).

(4.1)

These are exactly the identities satisfied by biderivations. With the change of tag in the 
columns described before, we obtain



J. Brox et al. / Journal of Algebra 669 (2025) 401–444 439

x(fg) x(gf) (fg)x (gf)x (xg)f (xf)g (gx)f (fx)g f(xg) g(xf) f(gx) g(fx)⎛
⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎠

1 0 0 0 1 −1 0 0 0 0 0 0
0 1 0 0 −1 1 0 0 0 0 0 0
0 0 1 0 0 0 0 −1 0 0 −1 0
0 0 0 1 0 0 −1 0 0 0 0 −1
0 0 0 0 0 0 0 0 1 0 1 0
0 0 0 0 0 0 0 0 0 1 0 1

Therefore, the multiplication

(fg)x = (fx)g + f(gx) + α1
(
f(xg) + f(gx)

)
+ α2

(
g(xf) + g(fx)

)
x(fg) = (xf)g − (xg)f + β1

(
f(xg) + f(gx)

)
+ β2

(
g(xf) + g(fx)

) (4.2)

induces a partial algebra structure on E(X), for any choice of α1, α2, β1, β2 ∈ F .

Now that we have a partial algebra structure induced on a general E(X), the next 
step is to verify when it is total. To do so, we have to focus on a partial subset of the set 
of consequences of degree 4. Let us consider the 120-dimensional space formed by the 
multilinear monomials of degree 4 in the free non-associative algebra generated by the 
symbols f, g, x, y. To gather all the consequences of the identities in degree 3, we have 
three different ways of operating. Let us take any identity from RM3. The first way is 
to multiply it from the right or from the left by g. The second way, is to substitute x by 
(gx) or (xg). Finally, we can substitute y by (gy) or by (yg). Doing all these substitutions 
together with the permutations of f and g, we obtain all the consequences. Note that in 
none of these identities the terms (fg) or (gf) will appear.

Now we need to check if the defining bracket satisfies the identities of E(X). To do 
so, we take again the identities from RM3, substitute f by (fg) and expand it by the 
already defined product. The bracket will be closed if and only if these new obtained 
equations are linear combination of the previously obtained consequences.

To conclude, we shall check when the bracket satisfies the identities of the variety. 
This can be done just by directly substituting elements of E(X) in the defining equations 
of the variety. After applying them to a generic element x, once on the left and once on 
the right, it is a matter of substituting the bracket on E(X) when necessary.

Example 4.3. Continuing with the Leibniz algebras Example 4.2, applying the procedure 
described before to the first equation in (4.1) yields:

g(f(xy)) = g((fx)y) − g((fy)x),

(f(xy))g = ((fx)y)g − ((fy)x)g,

f((gx)y) = (f(gx))y − (fy)(gx),

f((xg)y) = (f(xg))y − (fy)(xg),

f(x(gy)) = (fx)(gy) − (f(gy))x,

f(x(yg)) = (fx)(yg) − (f(yg))x.
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It is a straightforward computation to check that the rank of the matrix formed by all 
the consequences is 72. Then, we have to compare it with the multiplication defined 
in Equation (4.2). For instance, taking again the first equation in Equation (4.1) we 
have to expand the identity

(fg)(xy) = ((fg)x)y − ((fg)y)x,

which gives us

f(g(xy)) + (f(xy))g + α1
(
f(g(xy)) + f((xy)g)

)
+ α2

(
g(f(xy)) + g((xy)f)

)
= (f(gx))y + ((fx)g)y + α1

(
(f(gx))y + (f(xg))y

)
+ α2

(
(g(fx))y + (g(xf))y

)
−(f(gy))x + ((fy)g)x + α1

(
(f(gy))x + (f(yg))x

)
+ α2

(
(g(fy))x + (g(yf))x

)
.

After a linear algebra computation it can be checked that no matter which α1 and α2 we 
choose, it belongs to the subspace generated by the consequences. In fact, this will be true 
for all the identities (4.1), so any α1, α2, β1, β2 ∈ F will produce a total multiplication 
on E(X).

To check whether the induced bracket endows E(X) with a Leibniz algebra structure, 
we just need to check when the following identities hold

(f(gh))x = ((fg)h)x− ((fh)g)x,

x(f(gh)) = x((fg)h) − x((fh)g).

A quick computation tells us that this is only true when (α1, α2, β1, β2) = (1, 0, 0, 0), so 
that we recover exactly the multiplication defined in [8, Definition 5.1].

We consider some further examples.

Example 4.4. In the case of associative algebras any choice of bracket will induce a 
total algebra structure, but only the already known example of bimultipliers will be an 
associative algebra.

Example 4.5. The variety of symmetric Leibniz algebras is formed by the intersection 
between the varieties of right and left Leibniz algebras, i.e. the variety determined by 
(xy)z − (xz)y − x(yz) = 0 (right Leibniz identity) and z(xy) − (xz)y − x(zy) = 0
(left Leibniz identity). The space generated by its bilinear identities of degree 3 has 
dimension 10, which means that there are 12 parameters to define a product in E(X). 
With the help of a computer algebra system such as Macaulay2 [16] we check that any 
choice will give us a total algebra structure, and the set of variables that induces a 
symmetric Leibniz algebra structure on E(X) forms an affine variety of dimension 2.
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Example 4.6. Following the algorithm proposed before, it can be checked easily that the 
variety of two-step nilpotent (non-commutative) algebras is weakly action representable. 
In fact, a weak actor may be given by the expected structure

E(X) = {f ∈ End(X)2 | f(xy) = (xy)f = 0 = (fx)y = x(yf)}

with product fg = 0 = gf . Nevertheless, this is not the only product that can be 
induced. Since the space generated by its bilinear identities of degree 3 has maximum 
dimension 12, there are 16 parameters that can be taken into account to define a product 
in E(X). All of them induce a total multiplication on it, and the set of parameters which 
induce a two-step nilpotent algebra on E(X) forms an affine variety of dimension 3. Note 
that these algebras were studied and classified in [21–23].

Example 4.7. Although commutative Poisson algebras are usually defined as a variety 
with two operations, in [27] it was shown that with the depolarisation technique they 
can be seen as a quadratic variety (with one operation), so they fit in the scope of this 
section. The algorithmic approach presented before shows that it is possible to induce 
several total algebra structures on E(X), more precisely it gives rise to a 3-parametric 
family.

Example 4.8. The varieties of Novikov algebras or anti-associative algebras do not allow 
a total algebra structure on their respective E(X) induced by action accessibility, but it 
is still an open problem whether or not these varieties are weakly action representable.

5. Open questions and further directions

5.1. Converse of the implication “weakly action representable category ⇒ action 
accessible category”

We studied the representability of actions of a general operadic variety of non-
associative algebras over a field but we were not able to find an example of an action 
accessible variety which is not weakly action representable. Does the converse of the 
implication

weakly action representable category ⇒ action accessible category

hold in this context?

5.2. Subvarieties

We do not know how the condition (WRA) behaves under taking subvarieties (espe-
cially in the non-quadratic case, when the degree of the identities may be higher than 3). 
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For instance, we know that the variety Assoc is weakly action representable, but we do 
not know whether the subvariety Nilk(Assoc) for k ≥ 3 satisfies the same condition. 
We recall that in this case, E(X) is an associative algebra, but it is not k-step nilpotent 
in general (see Example 3.6).

5.3. Initial weak representation

As already mentioned in Remark 2.13, a variety of non-associative algebras V is weakly 
action representable if and only if it is initially weakly action representable, which means 
that for every object X, the functor SplExt(−, X) admits an initial weak representation. 
We do not know whether or not the weak representations that occur in this article when 
the external weak actor E(X) is an object of V (such as for Leibniz algebras or associative 
algebras) are initial, or how we would check this in practice.

5.4. Representability of actions of unitary algebras

In the recent article [18], G. Janelidze introduced the notion of ideally exact category, 
with the aim of generalising semi-abelian categories in a way which includes relevant 
examples of non-pointed categories, such as the categories Ring and CRing of (commu-
tative) rings with unit.

A category C is ideally exact when it is Barr-exact and Bourn-protomodular with 
finite coproducts, such that the unique morphism 0 → 1 in C is a regular epimorphism. 
Thus, semi-abelian categories are precisely the pointed ideally exact categories.

G. Janelidze also extended the notions of action representability and weak action 
representability to ideally exact categories, showing Ring and CRing are action repre-
sentable, with the actor of a (commutative) unitary ring X being isomorphic to X itself. 
We do not recall the construction here, since it is essentially the same as the one for 
alternative algebras with unit given in Example 3.7.

We recall that a variety of non-associative algebras V is said to be unitary closed
if for any object X in it, the algebra X̃ spanned by X and the element 1, equipped 
with the multiplication x · 1 = 1 · x = x for any x ∈ X, is still an object of V. For 
instance, Assoc and Alt are unitary closed, and the category Leib, or any variety of 
anti-commutative algebras over a field of characteristic different from 2, such as Lie, are 
examples of varieties which are not. Thus, the condition of being unitary closed depends 
on the set of identities which determine the variety V.

When a variety of algebras V is unitary closed, one can consider the subcategory V1
of unitary algebras of V with the arrows being the algebra morphisms of V that preserve 
the unit. Of course, V1 is an ideally-exact category and it is not pointed.

Examples 3.7 and 3.8 suggest that for a unitary closed variety V, one may use the 
construction of the external weak actor E(X) to study the representability of actions 
of the subcategory V1. For instance, it follows easily that Alt1 and Assoc1 are action 
representable, with the actor of an object X in both cases being the object X itself.
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