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A B S T R A C T 

Autoresonance is a phenomenon of physical interest that may take place when a nonlinear oscillator is forced at a frequency that varies slowly. The 
stroboscopic averaging method (SAM), which provides an efficient numerical technique for the integration of highly oscillatory systems, cannot 
be used directly to study autoresonance due to the slow changes of the forcing frequency. We study how to modify SAM to cater for such slow 
variations. Numerical experiments show the computational advantages of using SAM.

1. Introduction

Autoresonance is a phenomenon of much physical interest (see e.g. [14,13]), that has been observed in particle accelerators, atomic 
physics, plasmas, planetary dynamics, etc. As many other resonance phenomena, it is intrinsically nonlinear [21], i.e. it cannot occur 
in linear oscillators. Autoresonance takes place when the amplitude of the oscillations grows because the oscillator automatically 
adjusts its instantaneous frequency so as to match the varying frequency of a forcing term.

Averaging (see e.g. [22]) provides a powerful means to study autoresonance analytically. It may also be useful when numerical 
simulations are needed, because simulating an oscillatory system is usually far more expensive than simulating its averaged versions. 
The stroboscopic averaging method (SAM), [4,16,8,6,7,15] introduced in [3] is a purely numerical technique to integrate highly os-

cillatory systems (𝑑∕𝑑𝜏)𝑦 = 𝑓 (𝑦,𝜔0𝜏), where 𝑓 depends 𝑇0-periodically on 𝜏 . SAM integrates a stroboscopically averaged system 
(𝑑∕𝑑𝜏)𝑌 = 𝐹 (𝑌 ), whose solution (approximately) interpolates the oscillatory solutions at the so-called stroboscopic times 𝜏0 + 𝑘𝑇0, 
𝑘 = 0,1,2… (see [9–11,23]). SAM does not require the analytic expression of 𝐹 : it evaluates 𝐹 by performing numerical integrations 
of the given system (𝑑∕𝑑𝜏)𝑦 = 𝑓 (𝑦,𝜔0𝜏) in small time-windows in the spirit of heterogeneous multiscale methods [12].

SAM, as described in the existing literature, cannot be applied to autoresonant systems, because in them the frequency of the 
forcing is not a constant but varies slowly. The purpose of this paper is to describe how to modify SAM so as to cater for systems with 
autoresonance, or more generally, systems forced at a slowly varying frequency.

Section 2 presents the autoresonance phenomenon. Even though, as mentioned before, SAM is a purely numerical technique, it 
is based on the analytic method of stroboscopic averaging. Section 3 is devoted to briefly summarizing such a method in the case 
of periodic forcing and its extension to the case where the forcing has slowly varying frequency. Section 4 reviews SAM and shows 
how to extend it to cover autoresonant systems. Numerical experiments are reported in Section 5; it turns out that the computational 
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Fig. 1. Left panel: autoresonance in the Duffing equation with 𝛼 = 0.0001, 𝜖 = 0.05. At 𝜏 ≈ 0 the amplitude of the solution starts growing due to linear effects. After 
that, the oscillator automatically adjusts its instantaneous amplitude so that the corresponding frequency matches the (varying) frequency of the forcing; this allows 
the amplitude to keep growing with 𝜏 . In the right panel, the value of 𝛼 is again 0.0001, but 𝜖 = 0.01. Autoresonance does not take place; a growth in amplitude at 
𝜏 ≈ 0 occurs but the system fails to adjust thereafter the amplitude to the frequency of the forcing.

effort of integrating an autoresonant system may be lowered by several orders of magnitude by introducing the ideas presented in 
this paper. There is an Appendix that presents some auxiliary material.

2. Autoresonance

Even though the material in this paper applies with much generality, in order to simplify the exposition, we shall focus on the 
case study of the Duffing oscillator, a well-known model, that, in its forced version, we write in the form:

𝑑2𝜃

𝑑𝜏2
+𝜔2

0𝜃 − 𝜖𝛾𝜃
3 = 𝜖𝐵 cos(𝜓). (1)

Here 𝐵, 𝛾 , 𝜔0 are constants, 𝜖 is a small parameter and 𝜓 is the phase of the forcing. Consider the case of a harmonic forcing with 
𝜓 = 𝜔𝜏 for some constant 𝜔 and 𝜖𝐵 ≠ 0. When 𝛾 = 0, the oscillator is linear; choosing the frequency 𝜔 of the forcing to coincide 
with the frequency 𝜔0 of the unforced oscillator 𝑑2𝜃∕𝑑𝜏2 + 𝜔2

0𝜃 = 0 will lead to resonance and solutions will grow unboundedly as 
𝜏 increases. However as soon as 𝛾 ≠ 0 resonance will not take place, because in nonlinear oscillators the frequency of the unforced 
oscillations changes with the amplitude.1 If initially the amplitude of the oscillations is small so that the cubic term is negligible, the 
system will behave linearly and, to achieve resonance, 𝜔 should be taken close to 𝜔0. However, due to the nonlinearity, once the 
amplitude has become significant, the frequency of the unforced oscillator 𝑑2𝜃∕𝑑𝜏2 +𝜔2

0𝜃 − 𝜖𝛾𝜃
3 = 0 will be very different from the 

linear value 𝜔0 and therefore forcing with frequency 𝜔 ≈ 𝜔0 will be inadequate to sustain the resonance.

One way of increasing the amplitude of the oscillations in the nonlinear case would be by letting the frequency of the forcing to 
change with time: one would have to observe the changing frequency of the solution and use this feedback to modify appropriately 
the frequency of the forcing (this is akin to the way we excite swings for children). When autoresonance occurs such a feedback from 
the solution to the forcing is not necessary; the frequency of the forcing is swept independently of the solution, for instance by setting 
[13]

𝜓 = 𝜔0𝜏 − 𝛼𝜏2∕2, (2)

where 𝛼 > 0 is a suitable constant (note that then the instantaneous frequency 𝑑𝜓∕𝑑𝜏= 𝜔0 − 𝛼𝜏 varies linearly with 𝜏). As it will 
become clear, autoresonance takes place for small values of 𝛼, so that 𝜔0 − 𝛼𝜏 varies slowly with 𝜏 . The analysis and the numerical 
method below depend crucially on this slow dependence. An illustration is provided in the left panel of Fig. 1, where the constants are 
𝛼 = 0.0001, 𝐵 = 2, 𝛾 = 𝜔2

0∕6, 𝜖 = 0.05, 𝜔0 = 2𝜋, and the system (1)–(2) has been numerically integrated for −1000 ≤ 𝜏 ≤ 5000, with 
initial values 𝜃 = 10−9, 𝑑𝜃∕𝑑𝜏 = 0. The integration was performed with the MATLAB code ode89 with absolute and relative tolerance 
10−12. Initially the amplitude of the oscillations is small and therefore the nonlinear term in (1) may be ignored: the frequency of 
the linear oscillations 𝜔0 and the frequency of the forcing 𝜔0 − 𝛼𝜏 are quite different for 𝜏 ≪ 0 and the amplitude does not grow. As 
𝜏 approaches 0, 𝜔0 − 𝛼𝜏 approaches 𝜔0 and the system enters linear resonance. Once the amplitude starts growing, autoresonance 
takes place: this means that the oscillator continuously adjusts the amplitude in an automatic way to ensure that the instantaneous 
nonlinear frequency matches the time-varying frequency 𝜔0 − 𝛼𝜏 of the forcing.

1 In the Duffing case, if 𝜖𝛾 > 0, the frequency diminishes as the amplitude increases.
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Fig. 2. Minimum value of 𝜖 for which autoresonance takes place for eight values of 𝛼. The results provided by six numerical algorithms are indistinguishable. The 
straight line corresponds to the approximation (3).

Since, in this example, the period of the linearized oscillator is 𝑇0 = 2𝜋∕𝜔0 = 1, the horizontal axis in Fig. 1 corresponds to ≈ 6,000
periods of the nonlinear oscillator. For this reason, the changes in 𝜃 over a single period are not visible, and the solution appears to 
fill a domain, rather than appearing as a curve.

Autoresonance only takes place if the magnitude 𝜖𝐵 of the forcing is sufficiently high. The details for the simulation in right panel 
in Fig. 1 are identical to those for the left panel, except that now 𝜖 = 0.01. Autoresonance does not occur.

In the study of several physical phenomena [13] it is of interest to identify the combinations of 𝛼 and 𝜖 that lead to autoresonance. 
Fig. 2, where, as in Fig. 1, 𝐵 = 2, 𝛾 = 𝜔2

0∕6, 𝜔0 = 2𝜋, represents, for eight values of 𝛼, the minimum value of 𝜖 that leads to autoreso-

nance. The minimum values of 𝜖 have been computed numerically with six different algorithms and the results are indistinguishable; 
details will be given in Section 5. The straight line corresponds to the approximation

𝜖2app =
210∕3

35∕3
𝐵−4∕3𝛾−2∕3𝜔2

0𝛼 (3)

derived in the Appendix.

3. Averaging analytically

Fig. 1 provides an example of a highly oscillatory problem, i.e. a problem where the interest is in the behaviour of an oscillatory 
solution in a time-interval spanning a large number of oscillation cycles. Averaging [22] is a standard technique to treat that kind 
of problem analytically and it is also useful for numerical purposes, because integrating averaged systems is usually easier than 
integrating the given oscillatory system.

3.1. Stroboscopic averaging

Many alternative averaging techniques are available [22] and here we shall focus on stroboscopic averaging, that will be sum-

marized next. While we are only concerned with averaging periodic systems, the technique is more general and may be applied to 
quasiperiodic cases.

The oscillatory system to be averaged is written as

𝑑

𝑑𝜏
𝑦 = 𝜖𝑓 (𝑦,𝜔0𝜏), (4)

where 𝑓 (𝑦, 𝜉) is smooth and 2𝜋-periodic in 𝜉. Equivalently, 𝑓 is periodic in 𝜏 with period 𝑇0 = 2𝜋∕𝜔0. It is assumed that 𝜖 is a small 
parameter, that, as 𝜖→ 0, 𝑓 =(1) and that the integration has to be carried out in a long interval 𝜏0 ≤ 𝜏 ≤ 𝜏0 +𝐿∕𝜖. In this way the 
solution 𝑦 undergoes (1) changes along the integration. The 𝑁 -th order (𝑁 = 1,2,… ) stroboscopically averaged version [9–11] of 
(4) is a system

𝑑

𝑑𝜏
𝑌 = 𝜖𝐹 (𝑁)(𝑌 ), 𝐹 (𝑁)(𝑌 ) =

𝑁−1∑
𝑗=0 

𝜖𝑗𝐹𝑗 (𝑌 ), (5)
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such that, if 𝑦(𝜏) and 𝑌 (𝜏) are solutions of (4) and (5) with a common initial condition 𝑦(𝜏0) = 𝑌 (𝜏0), then 𝑦(𝜏𝑗 ) − 𝑌 (𝜏𝑗 ) =(𝜖𝑁 ) at 
the so-called stroboscopic times 𝜏𝑗 = 𝜏0 + 𝑗𝑇0, 𝑗 = 0,1,… ,⌊𝐿∕𝑇0⌋. In this way the autonomous system (5) may be used to approximate 
the nonautonomous (4).2

In (5) the 𝐹𝑗 (𝑌 ) do not change with 𝑁 ; the functions 𝐹𝑗 depend on 𝑡0 when 𝑗 > 0, even though such a dependence has not been 
incorporated to the notation.

The powerful technique of word series [19], that has many useful applications in different areas [1,2,18,19,24], provides an 
algorithm for computing recursively the 𝐹𝑗 in terms of the Fourier coefficients 𝑓𝑘 of 𝑓 :

𝑓 (𝑦, 𝜉) =
∞ ∑

𝑘=−∞
𝑓𝑘(𝑦) exp(𝑖𝑘𝜉).

One has 𝐹0 = 𝑓0. General closed form expressions for 𝐹1 and 𝐹2 obtained with the help of word series may be seen in [20], and, for 
specific problems, it is possible to find explictly higher-order approximations [17,24,5] by using word series.

3.2. Stroboscopic averaging in the case of a slowly varying forcing

We now average the second-order equation (1)–(2). We begin by rewriting the equation as a first-order system

𝑑𝜃

𝑑𝜏 
= 𝑣, (6)

𝑑𝑣 
𝑑𝜏

= −𝜔2
0𝜃 + 𝜖𝛾𝜃

3 + 𝜖𝐵 cos
(
𝜔0𝜏 − 𝛼𝜏2∕2

)
. (7)

This is not of the form (4) and we proceed as follows. We first use a standard change of dependent variables to transform (6)–(7) in 
a system with (𝜖) right hand-side as required in (4). Specifically we introduce new variables 𝜃, 𝑣 via

𝜃 = cos
(
𝜔0(𝜏 − 𝜏0)

)
𝜃 + 1 

𝜔0
sin

(
𝜔0(𝜏 − 𝜏0)

)
𝑣, (8)

𝑣 = −𝜔0 sin
(
𝜔0(𝜏 − 𝜏0)

)
𝜃 + cos

(
𝜔0(𝜏 − 𝜏0)

)
𝑣. (9)

Clearly, at the initial time, 𝜃(𝜏0) = 𝜃(𝜏0) and 𝑣(𝜏0) = 𝑣(𝜏0). If 𝜃 and 𝑣 are seen as constants, then (8)–(9) provide the solution, with 
initial values 𝜃, 𝑣, of the harmonic oscillator obtained by setting 𝜖 = 0 in (6)–(7). In the new variables, the system (6)–(7) becomes

𝑑𝜃

𝑑𝜏 
= −𝜖

(
𝛾

𝜔0
𝜃3 + 𝐵

𝜔0
cos

(
𝜔0𝜏 − 𝛼𝜏2∕2

))
sin

(
𝜔0(𝜏 − 𝜏0)

)
, (10)

𝑑𝑣

𝑑𝜏
= 𝜖

(
𝛾𝜃3 +𝐵 cos

(
𝜔0𝜏 − 𝛼𝜏2∕2

))
cos

(
𝜔0(𝜏 − 𝜏0)

)
, (11)

where it is understood that 𝜃 has to be replaced by its expression in terms of 𝜃 and 𝑣 in (8). Now the right hand-side is (𝜖), but the 
dependence on 𝜔0𝜏 is not 2𝜋-periodic as in (4). We circumvent this difficulty by introducing as a new dependent variable the slow 
time 𝜏 = 𝜖𝜏 and appending to (10)–(11) the differential equation for 𝜏 to get:

𝑑𝜃

𝑑𝜏 
= −𝜖

(
𝛾

𝜔0
𝜃3 + 𝐵

𝜔0
cos

(
𝜔0𝜏 − (𝛼∕𝜖2)𝜏2∕2

))
sin

(
𝜔0(𝜏 − 𝜏0)

)
, (12)

𝑑𝑣

𝑑𝜏
= 𝜖

(
𝛾𝜃3 +𝐵 cos

(
𝜔0𝜏 − (𝛼∕𝜖2)𝜏2∕2

))
cos

(
𝜔0(𝜏 − 𝜏0)

)
, (13)

𝑑𝜏

𝑑𝜏
= 𝜖. (14)

This system for 𝑦 = (𝜃, 𝑣, 𝜏) is of the form (4) provided that 𝛼 = 𝜆𝜖2 with constant 𝜆 and may be averaged by following the methodology 
outlined in the preceding subsection. Since 𝜔0𝜏 does not appear in (14), for each 𝑁 , the 𝑁 -th order averaged version of (14) coincides 
with (14) itself. Therefore in all averaged systems, the average of (𝛼∕𝜖2)𝜏2∕2 is 𝛼𝜏2∕2. In this way, it is sufficient to average (12)–(13)

writing 𝜔0𝜏 − (𝛼∕𝜖2)𝜏2∕2 as 𝜔0𝜏 − 𝑐, where 𝑐 is seen as a constant, and then replacing in the resulting averaged system 𝑐 by 𝛼𝜏2∕2.

The first order averaged system turns out to be:

𝑑𝜃

𝑑𝜏 
= − 𝜖

8𝜔0

(
3𝛾

(
𝜃2 + (𝑣∕𝜔0)2

)
(𝑣∕𝜔0) + 4𝐵 sin

(
𝛼𝜏2∕2

))
, (15)

𝑑𝑣

𝑑𝜏
= 𝜖

8

(
3𝛾

(
𝜃2 + (𝑣∕𝜔0)2

)
𝜃 + 4𝐵 cos

(
𝛼𝜏2∕2

))
. (16)

2 The averaged 𝑌 (𝜏) approximates 𝑦(𝜏) only if 𝜏 is a stroboscopic time. For general 𝜏 , it is still possible to obtain from 𝑌 (𝜏) an (𝜖𝑁 ) approximation to 𝑦(𝜏) by 
using a change of variables. Explicitly 𝑦(𝜏) = 𝜅𝑁 (𝑌 (𝜏),𝜔0𝜏) +(𝜖𝑁 ), where 𝜅𝑁 is a suitable smooth function that may be found by using word series. The change of 
variables is 𝑇0-periodic in 𝜏 and reduces to the identity at stroboscopic times. In the rest of the paper we will not need the change of variables 𝜅𝑁 .
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As pointed out above, the second-order averaged system depends on 𝜏0. Using the formulae in [20], when 𝜏0∕𝑇0 is an integer, the 
second-order averaged system is found to be, after considerable algebra:

𝑑𝜃

𝑑𝜏 
= − 𝜖

8𝜔0

(
3𝛾

(
𝜃2 + (𝑣∕𝜔0)2

)
(𝑣∕𝜔0) + 4𝐵 sin

(
𝛼𝜏2∕2

))
− 3𝜖2𝛾 

256𝜔3
0

(
𝛾
(
19𝜃4 + 70𝜃2(𝑣∕𝜔0)2 + 35(𝑣∕𝜔0)4

)
(𝑣∕𝜔0)

−24𝐵𝜃(𝑣∕𝜔0) cos
(
𝛼𝜏2∕2

)
+ 12𝐵

(
3𝜃2 + 5(𝑣∕𝜔0)2

)
sin

(
𝛼𝜏2∕2

))
, (17)

𝑑𝑣

𝑑𝜏
= 𝜖

8

(
3𝛾

(
𝜃2 + (𝑣∕𝜔0)2

)
𝜃 + 4𝐵 cos

(
𝛼𝜏2∕2

))
− 3𝜖2𝛾 

256𝜔2
0

(
𝛾
(
13𝜃4 − 38𝜃2(𝑣∕𝜔0)2 − 35(𝑣∕𝜔0)4

)
𝜃

−72𝐵𝜃(𝑣∕𝜔0) sin
(
𝛼𝜏2∕2

)
+ 4𝐵

(
5𝜃2 + 3(𝑣∕𝜔0)2

)
cos

(
𝛼𝜏2∕2

))
. (18)

When 𝜏0∕𝑇0 is not an integer the system is slightly more complicated; the expression will not be given as we will not need it.
The complexity of the averaged systems increases quickly with the order 𝑁 and we did not attempt to find the third-order system.

4. SAM

We are now ready to show how to apply SAM to study autoresonance.

4.1. SAM with periodic forcing

A general description of SAM may be seen in [4] and will not be reproduced here. The presentation that follows is restricted to 
those aspects of SAM that are relevant for the purposes of this paper.

Even though more general formats may be considered when applying SAM, we study systems of differential equations of the form 
(cf. (4))

𝑑

𝑑𝜏
𝑦 = 𝑔0(𝑦,𝜔0𝜏) + 𝜖𝑔1(𝑦,𝜔0𝜏), (19)

where 𝑔0 and 𝑔1 are smooth and depend 2𝜋-periodically on their second argument and all solutions of

𝑑

𝑑𝜏
𝑦 = 𝑔0(𝑦,𝜔0𝜏), (20)

are 𝑇0-periodic, 𝑇0 = 2𝜋∕𝜔0. The system (19) is to be integrated in a long interval 𝜏0 ≤ 𝜏 ≤ 𝜏0 +𝐿∕𝜖.
It may be proved that, for each 𝑁 = 1,2,… , there exists a stroboscopically averaged system

𝑑

𝑑𝜏
𝑌 = 𝜖𝐺(𝑁)(𝑌 ), 𝐺(𝑁)(𝑌 ) =

𝑁−1∑
𝑗=0 

𝜖𝑗𝐺𝑗 (𝑌 ), (21)

such that, if 𝑦(𝜏) and 𝑌 (𝜏) are solutions of (19) and (21) with a common initial condition 𝑦(𝜏0) = 𝑌 (𝜏0) = 𝑦0, then 𝑦(𝜏𝑗 )−𝑌 (𝜏𝑗 ) =(𝜖𝑁 )
at the stroboscopic times 𝜏𝑗 = 𝜏0 +𝑗𝑇0, 𝑗 = 0,1,… ,⌊𝐿∕𝑇0⌋. In fact, the existence of the averaged system may be established as follows. 
We denote by 𝜓𝜏0,𝜏 the solution operator of (20), i.e. as 𝜏 varies, 𝜓𝜏0 ,𝜏 (𝑦0) is the solution of (20) with initial condition 𝑦(𝜏0) = 𝑦0. 
Performing the time-dependent change of variables 𝑦(𝜏) = 𝜓𝜏0 ,𝜏 (𝑦(𝜏)) in (19) leads to a system

𝑑

𝑑𝜏
𝑦 = 𝜖𝑔(𝑦,𝜔0𝜏),

where 𝑔 is 2𝜋-periodic in its second argument. We have thus an instance of (4) and we may construct the corresponding 𝑁 -th order 
averaged system. The averaged solution 𝑌 (𝜏) approximates with (𝜖𝑁 ) errors the oscillatory solution 𝑦(𝜏) at stroboscopic times. 
But, at stroboscopic times, 𝑦(𝜏) = 𝑦(𝜏), since at those times 𝜓𝜏0 ,𝜏 is the identity because all solutions of (20) are, by assumption, 
𝑇0-periodic.

To integrate with SAM the oscillatory system (19) with initial condition 𝑦(𝜏0) = 𝑦0 one (approximately) integrates (21) with 
initial condition 𝑌 (𝜏0) = 𝑦0. This integration may be performed with any standard ODE solver referred to as the macrointegrator. The 
macrointegrator may be based on Runge-Kutta or linear multistep methods, implemented with constant or variable step sizes and 
orders. The only information on (21) required by such a standard ODE solver is the capability of evaluating 𝜖𝐺(𝑁)(𝑌 ) at a given 𝑌 . In 
SAM, such evaluations are performed approximately with the help of so-called microintegrations of the target oscillatory system (19)

over short time intervals; there is no need to determine analytically 𝜖𝐺(𝑁)(𝑌 ).
At this point, we require some notation. We denote by Ψ𝜏 the flow of (21), so that, as 𝜏 varies, Ψ𝜏 (𝑌0) is the solution of (21) with 

initial condition 𝑌 (0) = 𝑌0 (the flow depends on 𝑁 and 𝜖 but this dependence is not shown in the notation). In addition, we denote 
by Ω𝜏0 the one-period (or Poincaré) map of (19), i.e. Ω𝜏0 (𝑌

⋆) = 𝜓𝜏0 ,𝜏0+𝑇0 (𝑌
⋆) for each 𝑌 ⋆. The map Ω𝑘𝜏0 with 𝑘 an integer makes the 

solution of (19) to evolve from 𝜏 = 𝜏0 to 𝜏 = 𝜏0 + 𝑘𝑇0.

By definition of Ψ, for each 𝑌 ⋆,

𝜖𝐺(𝑁)(𝑌 ⋆) = 𝑑

𝑑𝜏
Ψ𝜏 (𝑌 ⋆)

||||𝜏=0



Applied Numerical Mathematics 215 (2025) 15–24

20

M.P. Calvo, J.M. Sanz-Serna and B. Zhu 

and, replacing the time-derivative by second-order differences,

𝜖𝐺(𝑁)(𝑌 ⋆) ≈ 1 
2𝛿

(
Ψ𝛿(𝑌 ⋆) − Ψ−𝛿(𝑌 ⋆)

)
.

If 𝛿 is chosen to be the period 𝑇0, then, by the approximation properties of the averaged system Ψ𝛿 =Ψ𝑇0 ≈ Ω𝜏0 and Ψ−𝛿 =Ψ−𝑇0 ≈ Ω−1
𝜏0

and therefore

𝜖𝐺(𝑁)(𝑌 ⋆) ≈ 1 
2𝑇0

(
Ω𝜏0 (𝑌

⋆) − Ω−1
𝜏0
(𝑌 ⋆)

)
. (22)

The vector Ω𝜏0 (𝑌
⋆) is obtained approximately by integrating numerically (19) from 𝜏 = 𝜏0 to 𝜏0 +𝑇0 with initial condition 𝑦(𝜏0) = 𝑌 ⋆

(forward microintegration). Similarly Ω−1
𝜏0
(𝑌 ⋆) is obtained approximately by numerically integrating (19) from 𝜏 = 𝜏0 to 𝜏0 −𝑇0 with 

initial condition 𝑦(𝜏0) = 𝑌 ⋆ (backward microintegration). The microintegrator, i.e. the algorithm used to perform the microintegra-

tions, may be chosen arbitrarily and needs not coincide with the macrointegrator.

Some important remarks:

• The initial condition for each microintegration is always prescribed at 𝜏 = 𝜏0, regardless of the point 𝜏𝑀 in the 𝜏-axis that the 
macrointegrator has reached when the microintegration is required. This issue is discussed at length in [4].

• The step points in the macrointegration need not be stroboscopic times. This is of interest whenever the macrointegration is 
performed with a variable step code.

• On the other hand, and as explained above, the output of the macrointegrator only approximates the solution of (19) at strobo-

scopic times. This is no problem if the macrointegrator has dense output capabilities and the choice of output points does not 
interfere with the determination by the code of the step points. If that is not the case, one has to choose suitably the sequence of 
step sizes in the macrointegrator, so as to have output at stroboscopic times. Alternatively, if it is required to approximate 𝑦(𝜏) at 
a non-stroboscopic time, one may use SAM to obtain an approximation at a nearby stroboscopic time 𝜏𝑗 < 𝜏 and then integrate 
(19) from 𝜏𝑗 to 𝜏 .

The value of 𝑁 remains undetermined when implementing the algorithm. This is because the effect of changing the number of 
terms being summed in (21) is negligible when compared with the error of approximating 𝜖𝐺(𝑁)(𝑌 ⋆) in (22).

Rather than using second order differences as in (22) one may use fourth order differencing:

𝜖𝐺(𝑁)(𝑌 ⋆) ≈ 1 
12𝑇0

(
−Ω2

𝜏0
(𝑌 ⋆) + 8Ω𝜏0 (𝑌

⋆) − 8Ω−1
𝜏0
(𝑌 ⋆) + Ω−2

𝜏0
(𝑌 ⋆)

)
.

Now the microintegration to be carried out to find Ω2
𝜏0
(𝑌 ⋆) or Ω−2

𝜏0
(𝑌 ⋆) works in the intervals 𝜏0 ≤ 𝜏 ≤ 𝜏0 + 2𝑇0 or 𝜏0 ≥ 𝜏 ≥ 𝜏0 − 2𝑇0

respectively, that are twice as long as those required by second-order differencing. Higher-order differences may of course be envisaged 
but increasing the order requires a wider stencil of the difference formula and accordingly microintegrating in longer time intervals.

A detailed error analysis of SAM has been provided in [4]. As discussed there, whenever possible, the microintegrations should 
be carried out in such a way that the computation of the Poincaré map Ω𝜏0 of (19) becomes exact in the limit 𝜖→ 0. This may often 
be achieved by resorting to splitting.

4.2. SAM with slowly varying frequencies

We now show how to apply SAM to the integration of the Duffing system (6)–(7). In SAM it is not required that (6)–(7) be 
transformed via (8)– (9) to get (10)–(11). The equations (6)–(7) are not of the form (19), as the right hand-sides are not 2𝜋-periodic 
in 𝜔0𝜏 . This difficulty is circumvented by introducing the slow time 𝜏 = 𝜖𝜏 as a new dependent variable, just as we did in Subsection 
3.2, and then applying SAM to the enlarged system obtained after adding the equation 𝑑𝜏∕𝑑𝜏 = 𝜖.

As an illustration, we present the details of the microintegration when the microintegrator is the familiar Strang’s splitting with 
step size ℎ > 0 (a submultiple of the period 𝑇0). The split systems for the system obtained by incorporating the variable 𝜏 to (6)–(7)

are

𝑑𝜃

𝑑𝜏 
= 𝑣,

𝑑𝑣 
𝑑𝜏

= −𝜔2
0𝜃,

𝑑𝜏

𝑑𝜏
= 𝜖,

and

𝑑𝜃

𝑑𝜏 
= 0,

𝑑𝑣 
𝑑𝜏

= 𝜖𝛾𝜃3 + 𝜖𝐵 cos(𝜔0𝜏 − (𝛼∕𝜖2)𝜏2∕2),

𝑑𝜏

𝑑𝜏
= 0.
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The solution of the first split system is trivial. An elementary computation reveals that at a final time 𝜏 = 𝜏𝑓 , the solution of the 
second split system that at an initial time 𝜏 = 𝜏𝑖 takes the value (𝜃, 𝑣, 𝜏) is(

𝜃, 𝑣+ (𝜏𝑓 − 𝜏𝑖)𝜖𝛾𝜃3 +
𝜖𝐵

𝜔0

(
sin(𝜔0𝜏𝑓 − (𝛼∕𝜖2)𝜏2∕2) − sin(𝜔0𝜏𝑖 − (𝛼∕𝜖2)𝜏2∕2)

)
, 𝜏
)
.

In the 𝑗-th step of the forward microintegration the independent variable 𝜏 increases from 𝜏0 + 𝑗ℎ to 𝜏0 + (𝑗 + 1)ℎ. If (𝜃𝑗 , 𝑣𝑗 , 𝜏𝑗 )
are the approximations at the beginning of the step, we proceed as follows. We first advance the solution over half step by means of 
the first split system to obtain

𝜃𝑗+1∕2 = cos(𝜔0ℎ∕2)𝜃𝑗 +
1 
𝜔0

sin(𝜔0ℎ∕2)𝑣𝑗 ,

𝑣𝑗+1∕2− = −𝜔0 sin(𝜔0ℎ∕2)𝜃𝑗 + cos(𝜔0ℎ∕2)𝑣𝑗 ,

𝜏𝑗+1∕2 = 𝜏𝑗 + ℎ𝜖∕2.

We then update 𝑣 with the second split system, by means of the formula above:

𝑣𝑗+1∕2+ = 𝑣𝑗+1∕2− + ℎ𝜖𝛾𝜃3
𝑗+1∕2 +

𝜖𝐵

𝜔0

[
sin

(
𝜔0(𝜏0 + (𝑗 + 1)ℎ) − (𝛼∕𝜖2)𝜏2

𝑗+1∕2∕2
)
− sin

(
𝜔0(𝜏0 + 𝑗ℎ) − (𝛼∕𝜖2)𝜏2

𝑗+1∕2∕2
)]
. (23)

The step closes by using again the first split system:

𝜃𝑗+1 = cos(𝜔0ℎ∕2)𝜃𝑗+1∕2 +
1 
𝜔0

sin(𝜔0ℎ∕2)𝑣𝑗+1∕2+,

𝑣𝑗+1 = −𝜔0 sin(𝜔0ℎ∕2)𝜃𝑗+1∕2 + cos(𝜔0ℎ∕2)𝑣𝑗+1∕2+,

𝜏𝑗+1 = 𝜏𝑗+1∕2 + ℎ𝜖∕2.

The initial values (𝜃0, 𝑣0, 𝜏0) to be used at each microintegration are given by the values of (𝜃, 𝑣, 𝜖𝜏) reached during the macroin-

tegration. The formulas for the backward microintegration are obtained by changing ℎ into −ℎ.

Clearly, the Strang microintegrator just presented has the property that it becomes exact in the limit 𝜖→ 0.

In (23), the values 𝜏𝑗 appear divided by 𝜖. Therefore, for practical purposes, one may use the combination 𝜏∕𝜖 as a new variable 
𝜏 . At the beginning of the microintegration 𝜏 is initialized to coincide with 𝜏𝑀 , the current value of 𝜏 in the macrointegration. When 
this variable is used, (23) becomes

𝑣𝑗+1∕2+ = 𝑣𝑗+1∕2− + ℎ𝜖𝛾𝜃3
𝑗+1∕2 +

𝜖𝐵

𝜔0

[
sin

(
𝜔0(𝜏0 + (𝑗 + 1)ℎ) − 𝛼𝜏2

𝑗+1∕2∕2
)
− sin

(
𝜔0(𝜏0 + 𝑗ℎ) − 𝛼𝜏2𝑗+1∕2∕2

)]
.

In addition, 𝜏𝑗+1∕2 = 𝜏𝑀 + (𝑗 + 1∕2)ℎ. In this way, in the microintegrations, the forcing is evaluated at the phases

𝜔0(𝜏0 + (𝑗 + 1)ℎ) − 𝛼(𝜏𝑀 + (𝑗 + 1∕2)ℎ)2∕2

and

𝜔0(𝜏0 + 𝑗ℎ) − 𝛼(𝜏𝑀 + (𝑗 + 1∕2)ℎ)2∕2.

Note that both the initial time of the macrointegration 𝜏0 and the current time 𝜏𝑀 of the macrointegration appear. Replacing 𝜏0 with 
𝜏𝑀 or 𝜏𝑀 with 𝜏0 in the last formulas results in algorithms that do not provide approximations to the Duffing system.

5. Numerical experiments

To illustrate the preceding material we compute, for a grid of eight values of 𝛼, the minimum value of 𝜖 for which autoresonance 
takes place; the parameters in the equation are 𝐵 = 2, 𝛾 = 𝜔2

0∕6, 𝜔0 = 2𝜋. The Duffing oscillator is simulated in the interval −1000 ≤
𝜏 ≤ 5000, with initial values 𝜃 = 10−9, 𝑣 = 𝑑𝜃∕𝑑𝜏 = 0, by means of six numerical techniques:

1. Numerical integration of the given Duffing system (6)–(7) with ode89.

2. Numerical integration of the transformed system (10)–(11) with ode89. The integrator produces values of (𝜃, 𝑣) that have to be 
converted to values of (𝜃, 𝑣) by using the inverse of the linear transformation in (8)–(9). This technique may be expected to be 
cheaper than technique 1. because in (10)–(11) the fast linear rotation has been eliminated by means of the change of variables.

3. Numerical integration of the first-order averaged system (15)–(16) with ode89. The inverse of the linear transformation in (8)–(9)

is required to recover (𝜃, 𝑣).
4. Numerical integration of the second-order averaged system (17)–(18) also with ode89. The inverse of the linear transformation 

in (8)–(9) is again required to recover (𝜃, 𝑣).
5. SAM with ode89 as macrointegrator and Strang splitting as microintegrator, with second order differencing. The microintegra-

tions are performed with a time step ℎ = (2𝜋∕𝜔0)∕40. Using smaller step sizes does not result in smaller errors of the overall 
algorithm. We did not attempt to identify the step size ℎ that maximizes the efficiency of the overall SAM algorithm.

6. SAM with ode89 as macrointegrator and Strang splitting as microintegrator, with fourth order differencing. The details of the 
microintegration are as above.
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Fig. 3. CPU time required by the different techniques. 

Fig. 4. Efficiency: error when finding the minimum value of 𝜖 for techniques 3.–6. (using technique 1. as a reference) as a function of CPU time. 

The absolute and relative tolerances were both 10−12 whenever ode89 was used. For each of the six methods and each given value 
of 𝛼, the minimum 𝜖 was identified as follows. We started with an interval [0.95𝜖app,1.10𝜖app] with 𝜖app given by the approximation 
(3). At the lower end of the interval autoresonance does not take place, but it does at the upper end so that the interval encloses the 
minimum sought. The interval was successively bisected until an interval of length ≤ 10−6 containing the minimum 𝜖 was found. The 
criterion used in the code to decide whether, for fixed 𝛼 and 𝜖, autoresonance had taken place is described in the Appendix.

The results are given in Fig. 2. The values obtained by the six techniques are indistinguishable at the scale of the plot. However, as 
may be seen in Fig. 3, there is a substantial difference in computational cost, especially for the smaller values of 𝛼 or 𝜖. We see that the 
value of 𝛼 does not affect the computational cost of technique 1. and affects marginally the cost of technique 2. The computational cost 
of techniques 3.–6. approximately increases linearly with 𝛼. For 𝛼 = 10−6, integrating the first-order averaged system (technique 3.) 
is almost three orders of magnitude less expensive that the direct integration of the oscillatory problem (technique 1.). As expected, 
technique 2. is less costly than 1., but the difference is marginal. Integrating the second-order averaged system (technique 4.) is 
slightly more costly than integrating the less complex first-order averaged system (technique 3.), as one may also have expected. 
SAM integrations 5. and 6. are more expensive than integrating averaged systems (techniques 3. and 4.), but of course one has to 
remember the nonnegligible analytic effort required to find the averaged systems in the first place. Fourth-order differences in SAM 
require twice as much computational effort as second-order differences, because the microintegrations are performed in twice as long 
time intervals. The CPU times reported are averages over ten runs.

An efficiency comparison of the numerical integrations is provided in Fig. 4, where we have depicted, as a function of CPU time, 
the magnitude of the difference Δ𝜖 between the values delivered by techniques 3.-6. and the value given by techniques 1. or 2., 
which is used as a reference. Three of the eight markers corresponding to technique 4. are not visible because for them Δ𝜖 = 0 and a 
logarithmic scale is being used. The runs using SAM outperform in efficiency the runs using the first-order averaged system (and on 
top of that SAM does not require the algebra necessary to find the averaged system itself). In SAM, fourth-order differences are more 
efficient than second-order differences. The most efficient runs correspond to integrating the second-order averaged system, but we 
have to remember once more the high cost of the algebra that has to be used to find the necessary averaged system.

In addition to the six techniques described above, we also tested SAM algorithms with ode89 as a microintegrator. The results 
were clearly inferior to those reported here for the splitting microintegrator, no doubt (see [4]) due to the fact that the errors in 
ode89 do not vanish in the limit 𝜖→ 0, as it is the case when splitting is used.



Applied Numerical Mathematics 215 (2025) 15–24

23

M.P. Calvo, J.M. Sanz-Serna and B. Zhu 

CRediT authorship contribution statement

M.P. Calvo: Writing – original draft, Validation, Software, Investigation, Formal analysis. J.M. Sanz-Serna: Writing – original 
draft, Supervision, Software, Investigation, Formal analysis, Conceptualization. Beibei Zhu: Validation, Software, Investigation, For-

mal analysis.

Acknowledgements

JMS and MPC have been funded by Ministerio de Ciencia e Innovación (Spain), projects PID2022-136585NB-C21 and PID2022-

136585NB-C22, MCIN/AEI/10.13039/501100011033/FEDER, UE. BZ has been funded by the Young Elite Scientists Sponsorship 
Program by CAST (No. 2023QNRC001).

Appendix A

In this appendix we derive the approximation (3). We follow the procedure used in [13].

We introduce polar variables to replace (𝜃, 𝑣):

𝜃 = 𝑟 cos(𝜙), 𝑣 = −𝜔0𝑟 sin(𝜙). (24)

Combining the change (24) with the change (8)–(9) we find

𝜃 = 𝑟 cos(𝜔0𝜏 + 𝜙), 𝑣 = −𝜔0𝑟 sin(𝜔0𝜏 + 𝜙)

and, accordingly, 𝑟 and 𝜔0𝜏 + 𝜙 correspond respectively to the magnitude and phase of the Duffing solution. The mismatch (i.e. 
difference) between the phase of the solution and the phase 𝜔0𝜏 − 𝛼𝜏2∕2 of the forcing is Φ= 𝜙+ 𝛼𝜏2∕2.

In the new polar variables, the first-order averaged system (15)–(16) is given by

𝑑𝑟 
𝑑𝜏

= −𝜖 𝐵

2𝜔0
sin(𝜙+ 𝛼𝜏2∕2), (25)

𝑑𝜙

𝑑𝜏 
= −𝜖

(
3𝛾 
8𝜔0

𝑟2 + 𝐵

2𝜔0

1
𝑟 
cos(𝜙+ 𝛼𝜏2∕2)

)
. (26)

This system appears in [13], but that reference uses ad hoc approximation techniques rather than the systematic approach based on 
averaging.

In terms of the action 𝐼 = 𝑟2∕2 and the mismatch, the system (25)–(26) becomes

𝑑𝐼

𝑑𝜏 
= −𝜖

√
2𝐵

2𝜔0

√
𝐼 sin(Φ), (27)

𝑑Φ
𝑑𝜏 

= 𝛼𝜏 − 𝜖

(
3𝛾 
4𝜔0

𝐼 +
√
2𝐵

4𝜔0

1 √
𝐼
cos(Φ)

)
. (28)

When autoresonance occurs, the phase of the solution follows the phase of the forcing and the mismatch remains close to −𝜋 (see 
[13]). As a consequence 𝑑Φ∕𝑑𝜏 ≈ 0 and 𝐼(𝜏) will be close to the quantity 𝐼0(𝜏) defined implicitly by

𝛼𝜏 − 𝜖

(
3𝛾 
4𝜔0

𝐼0 −
√
2𝐵

4𝜔0

1 √
𝐼0

)
= 0.

Since 𝛼 is of order 𝜖2, 𝐼0 varies slowly with 𝜏 . Clearly, for large 𝜏 , 𝐼0(𝜏) grows linearly with 𝜏 . Therefore the magnitude 𝑟 =
√
2𝐼 of 

the Duffing solution will grow like 
√
𝜏 , something that may be seen in the left panel in Fig. 1.

We expand the system (27)–(28) around the instantaneous value of 𝐼0 and find the following system for Δ = 𝐼0 − 𝐼 and Φ:

𝑑Δ
𝑑𝜏 

= 𝜖
√
2𝐵

2𝜔0

√
𝐼0 sin(Φ) + 𝛼

𝑆
, (29)

𝑑Φ
𝑑𝜏 

= 𝑆Δ, (30)

where 𝑆 is the slowly varying function of 𝜏 given by

𝑆 = 𝜖

(
3𝛾 
4𝜔0

+
√
2𝐵

8𝜔0
𝐼
−3∕2
0

)
.

The system is Hamiltonian with Hamiltonian function

𝐻(Φ,Δ) = 𝑆

2 
Δ2 + 𝑉 (Φ), 𝑉 (Φ) = 𝜖

√
2𝐵

2𝜔0

√
𝐼0 cos(Φ) − 𝛼

𝑆
Φ.
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Thus we are envisaging the motion of a particle of slowly changing mass 1∕𝑆 in a potential 𝑉 that also changes slowly with 𝜏 ; Δ is 
the momentum and Φ the position of the particle. If 𝜖 is too small, 𝑉 (Φ) monotonically decreases as Φ increases and therefore, in 
the system (29)–(30), Φ keeps increasing monotonically rather than oscillating around −𝜋 as required to have autoresonance. The 
condition

−𝜖
√
2𝐵

2𝜔0
+ 𝛼

𝑆
< 0

ensures that 𝑉 rather than being a monotonically decreasing function of Φ, exhibits a well near 𝜋. After some algebra, one finds that 
the condition holds if and only if 𝜖 is above the value in (3).

When performing the numerical test described in Section 5, the computer code decided whether in a particular run autoresonance 
had taken place or otherwise by looking at the value of 𝐼 = 𝑟2∕2 at the end of the numerical simulation and comparing it with the 
corresponding value of 𝐼0. The fulfilment condition |𝐼 − 𝐼0|∕𝐼0 ≤ 1∕3 was understood to indicate autoresonance (the choice of the 
constant 1∕3 is not critical).
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