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 A B S T R A C T

In this work, a limit analysis of typical building frames is carried out, and the collapse load and collapse 
mechanism of 3D frames composed of slender steel structural elements under concentrated and uniformly 
distributed loads are calculated. To this end, the direct kinematic method and nonlinear optimization 
techniques are proposed to search for the collapse mechanism and determine the collapse load. This work 
has the advantage that the structure’s equilibrium equations are obtained through a completely systematic 
formulation of the problem of interest. In many cases, the case of uniformly distributed loads is simplified 
by equivalent point loads. However, this work verifies that the results differ in the cases of point loads and 
uniformly distributed loads, both qualitatively and quantitatively.
1. Introduction

Limit analysis of building structures focuses on determining the 
load level at which a building structure collapses. This type of anal-
ysis uses the concept of collapse mechanism, which describes how a 
structure fails under certain loading conditions. Plastic hinges are used 
to model the zones where plastic deformations occur, allowing a more 
accurate representation of the structure’s behavior when the load limit 
is reached. The collapse load factor is an essential parameter, as it 
indicates the maximum increase in load that can be supported before 
the structure collapses. This approach is essential for the evaluation of 
the safety and efficiency of building structures under extreme loads.

Plastic calculation is based on the theory of plasticity, which studies 
the behavior of materials beyond the elastic limit. In the context of 
bar structures, it is considered that the cross sections of the bars can 
develop plastic hinges, which are plastic hinges are points where plastic 
deformation is concentrated. Once a plastic hinge is formed, the cross 
section of the bar can no longer support the bending moment. The 
structure collapses when enough plastic hinges are formed to turn it 
into a mechanism. This occurs when the structure can no longer support 
any more load and deforms indefinitely. Steel frames show a high non-
linear behavior due to the plasticity of the material and the slenderness 
of the members. In general, the plastic-hinge approach is adopted to 
capture the inelastic of material [1].

It allows for a more efficient and economical design by taking 
advantage of the plastic deformation capacity of materials, optimizing 
the design. It provides a more realistic estimate of the ultimate load 
capacity of the structure, which improves structural safety.
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Kazinczy (1914) was the first to investigate the reserve of plas-
tic strength in a statically insulated beam structures, introducing the 
concept of plastic hinge and the collapse mechanism. The terminology 
plastic hinge is used to indicate a section in which all points are in 
plastic regime. And collapse mechanism was initially used to describe 
the ultimate state of a frame.

The great impulse acquired by limit analysis was possible thanks to 
the rigorous establishment of the basic theorems, which was carried out 
by Gvozdev, in 1938. In general, there are two fundamental theorems: 
the static and the kinematic. This gives rise to two corresponding 
approaches: the static approach and the kinematic approach. The latter 
are called direct methods and have difficulties in solving large-scale 
problems because direct methods are one-step methods based on the 
method of combining mechanisms [2–4].

Orbison (1982) presents an efficient procedure for modeling the 
inelastic behavior in three-dimensional finite elements of beams and 
columns. The formation of plastic hinges and the interaction of element 
forces at a hinge and the elastic unloading (yielding surface equation) 
of light- and medium-weight American wide-flange steel sections are 
taken into account [5].

In 2020, Casciaro and Garcea perform the analysis of perfect elastic–
plastic structures and propose a fast incremental-iterative solution 
method and describe an example of its implementation for the analysis 
of planar structures [6].

A few years later, in 2008, the works of Hoang-Van et al. stand out, 
this author presents an efficient algorithm for both limit and shakedown 
analysis of 3-D steel frames by the kinematic method using linear 
programming technique. Some numerical examples are presented to 
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demonstrate the robustness, efficiency of the proposed technique and 
computer program (CEPAO) [7,8].

The kinematic direct method has important drawbacks from the 
point of view of its practical application: first, it is not systematic 
or general; and secondly, it requires possible collapse mechanisms to 
be tested, which even with few plastic hinges implies many possible 
collapse mechanisms that will have to be tested and verified. On the 
other hand, the step-by-step methods based on the matrix formulation 
are systematic and efficient for concentrated load cases at the nodes of 
the structure, and they are very inefficient and imprecise for analyzing 
structures with uniform distributed loads [9,10].

In 2016, a new beam–column element for nonlinear analysis of pla-
nar steel frames under static loads is presented by Doan-Ngoc et al. [11] 
The refined plastic-hinge method is used to model the material nonlin-
earity to avoid the further division of the beam–columns in modeling 
the structure. A Matlab computer program is developed based on the 
combined arc-length and minimum residual displacement methods.

Shin suggests the improved model that can employ a new finding on 
the behavior of plastic hinges at buckled steel braces [12]. It was con-
firmed from the validation that the improved model with a nonlinear 
assumption can properly capture the changes of hinge rotations during 
the excursion between the maximum tensile and compressive loads and 
can be the best candidate for addressing the shortcoming of the existing 
physical theory model.

Zhou et al. propose a plastic hinge method applicable to different 
materials that considers strain hardening and local buckling [13]. A 
beam–column element was proposed, incorporating the second-order 
effect between axial load and bending moment. The continuum strength 
method was introduced into the plastic hinge model to consider the 
strain hardening effect of cross sections and local buckling, controlling 
the strength and deformability of the sections.

To address the complex construction in beam–column joints of 
prefabricated frame structures, Wu et at. study introduces innovative 
artificial plastic hinge joints (HJs), exhibited excellent seismic per-
formance [14]. The validated finite element model reliably simulates 
the seismic behavior of HJs, accurately capturing their failure modes, 
load-bearing capacity, and energy dissipation characteristics.

Step-by-step methods, or elastic–plastic incremental methods, are 
based on the standard methods of elastic analysis. The loading process 
is divided into various steps. The step-by-step methods benefit the 
long experiences of the linear elastic analysis by the finite element 
method. For the case of arbitrary loads, the step-by-step methods are 
cumbersome and embed many difficulties, it is a great challenge [15].

It is also worth mentioning that current sampling-based techniques 
are related to machine learning-based assessment methods. Advances in 
artificial intelligence (AI) in the field of structural engineering offer new 
solutions to improve design safety, efficiency, and cost-effectiveness. 
Wang et al. present a novel machine learning-assisted structural relia-
bility analysis for frame structures with functional grading under static 
loading [16]. Uncertain system parameters, as well as the degree of 
functionally graded material gradation (FGM), can be incorporated into 
a unified 3D structural reliability analysis framework. Gondaliya et al. 
present a machine learning-based approach to estimate the seismic 
vulnerability of reinforced concrete building frames [17].

Finally, the most important contributions of this work can be sum-
marized in the following points:

• The calculation of the equilibrium equations has been system-
atized, which facilitates the application of the kinematic direct 
method of plastic calculation of structures, and especially in the 
case of space structures.

• The interaction between the stresses in the sections is taken into 
account by implementing the Orbison yielding function.

• The collapse load and the collapse mechanism are obtained in a 
single step using a non-linear optimization algorithm.
2 
• Point or concentrated loads and uniform distributed loads are 
considered.

• When considering uniform distributed loads, the methodology 
contemplates the possibility of plastic hinges forming within the 
element (internal) and not only in the extreme sections of the 
elements.

This paper has been organized as follows: after this brief intro-
duction, the methodology is then applied to various types of space 
frames. Finally, the main conclusions and contributions of the work are 
summarized.

2. Methodology

In this section, the calculation hypotheses are established, the 
derivation of the equilibrium equations is explained in a systematic way 
and the resolution of the plastic calculation problem is proposed using 
the kinematic direct method [18,19].

2.1. Hypotheses

• Beams and columns are assumed to be free of residual stresses 
and/or initial deformations.

• Plastic collapse implies unlimited displacement at constant load, 
and the level of load that causes it is called the collapse load.

• The value of the maximum bending moment that the section can 
transmit is called the plastic moment (𝑀𝑝) and the value of the 
maximum axial force is called the plastic axial force (𝑁𝑝).

• When a plastic hinge is formed, the rotation of the section where 
it occurs can increase indefinitely.

• The plastic moment and plastic axial force depends on the mate-
rial and the section.

• The formation of each plastic hinge is assumed to take place 
suddenly and concentrated in the section in which the Orbison 
yielding function is fulfilled [5].

• The hypothesis of small displacements and rotations of the sec-
tions of the structure at the moment of collapse is assumed; 
therefore, the accumulated rotations between beams or columns 
in the plastic hinges must also be small.

2.2. Equilibrium equations

The equilibrium of each beam/column of the structure is based on 
the stresses in extreme sections (six per node) at the local reference of 
each bar (see Fig.  1) and is formulated in a vectorial form [7,20]. 
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where (𝑁𝑥) is the axial force, (𝑀𝑥) is the twisting moment, (𝑉𝑦𝑖, 𝑉𝑧𝑖,
𝑀𝑦𝑖,𝑀𝑧𝑖) are the shear forces and the bending moments at node i, 
(𝑉𝑦𝑗 , 𝑉𝑧𝑗 ,𝑀𝑦𝑗 ,𝑀𝑧𝑗) are the shear forces and the bending moments at 
node j, (𝑞𝑦, 𝑞𝑧) are transversal uniform distributed loads in directions 𝑦
and z, respectively; (𝐿𝑘) es the length of the beam/column element k, 
defined from node i to node j. All magnitudes are expressed as functions 
of the axial force (𝑁 ), twisting moment (𝑀 ) and the values of the 
𝑥 𝑥
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Fig. 1. Methodology. Space beam/column element.
bending moments in both end sections (𝑀𝑦𝑖,𝑀𝑧𝑖,𝑀𝑦𝑗 ,𝑀𝑧𝑗) and the 
applied loads (𝑞𝑦, 𝑞𝑧) and the load factor (𝜆) (monotonically increasing).

The above vector is expressed in the coordinates (𝑥, 𝑦, 𝑧) of the 
beam/column element, the local coordinate system of the element, but 
the bars can have different orientations in their arrangement in the 
structure, which requires considering the equilibrium of each node in a 
common global coordinate system (𝑋, 𝑌 ,𝑍), through the corresponding 
coordinate transformation (see Annex A): 
𝑭 𝑘 = 𝑻 𝑇 ⋅ 𝒇𝑘 (2)

where (𝑭 𝑘) are the forces (and moments) at the ends of the bar k, 
expressed in a common system for all the members of the structure, 
and (𝑻 𝑇 ) indicates the operation of transposing rows and columns in 
the matrix (𝑻 ) of coordinate transformation.

The internal force vector (𝑭 𝑖𝑛𝑡) must be balanced the external loads 
(𝑭 𝑒𝑥𝑡) applied at the nodes of the structure: 

𝑭 𝑖𝑛𝑡 = 𝑭 𝑒𝑥𝑡 (3)

2.3. Limit analysis

This section summarizes the plastic calculation method proposed 
in the work. Firstly, the sections of the structure that are candidates 
to form a possible plastic hinge are: in the case of point loads, the 
nodes (connections between bars), the fixed supports, the section of 
application of the loads and the changes of section [21,22]; and in 
the case of distributed loads, additional plastic hinges can be formed 
in intermediate sections of the beam/column element. It requires car-
rying out the corresponding checks in intermediate sections of the 
element based on the bending moments calculated in the nodes of the 
structure [23,24].

The proposed methodology must take into account that if a plastic 
hinge occurs in an intermediate section, then its location in the element 
requires defining a new parameter 𝑥 . This parameter reports the 
𝑘

3 
specific element where it is formed and its position relative to the first 
node of said beam/column element.

This work employs the kinematic direct method and the Orbison 
concentrated plastic hinge model that considers the interaction of the 
effect of axial forces and bending moments through the plastic function 
(see Annex B).

In Oxz bending plane: 
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where (𝑀𝑦) is the maximum Oxz bending moment in the beam k and 
(𝑥𝑦) is the section position where this maximum value occurs.

For the Oxz bending plane: 
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where (𝑀𝑧) is the maximum Oxy bending moment in the beam k and 
(𝑥𝑧) is the section position where this maximum value occurs.

The internal section that is a candidate for the formation of the 
plastic hinge is determined from the previous values relative to the 
Orbison yield function: 
𝜙𝑚𝑎𝑥 = max

(

𝜙𝑦, 𝜙𝑧
)

; 𝑥𝑘 =
{

𝑥𝑦 𝑜𝑟 𝑥𝑧
}

𝜙𝑦 = 𝜙(𝑛, 𝑚𝑦, 𝑚𝑧)|𝑥𝑦 ; 𝜙𝑧 = 𝜙(𝑛, 𝑚𝑦, 𝑚𝑧)|𝑥𝑧
(6)

where 𝜙𝑚𝑎𝑥 is the maximum 𝜙 yield function value in the beam k and 
𝑥  is the section where the maximum value occurs.
𝑘
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Fig. 2. Methodology flowchart.
2.4. Collapse mechanism

The search for the collapse mechanism is carried out by posing 
and solving an optimization problem. The objective function consists 
of maximizing the load factor subject to: equality constraints, the 
equilibrium equations of the problem; and the inequality constraints 
given by the yielding function in each study section. 
max 𝜆 ∶

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑭 𝑖𝑛𝑡 = 𝑭 𝑒𝑥𝑡
𝜙𝑖 ≤ 1; 𝜙𝑗 ≤ 1

}

∀𝑖, ∀𝑗 ∕ (𝑖, 𝑗) ∈ 𝑘 element

𝜙𝑚𝑎𝑥 ≤ 1
0 ≤ 𝑥𝑘∕𝐿𝑘 ≤ 1

}

∀𝑘 element

(7)

where 𝜆 is the load factor; 𝑭 𝑖𝑛𝑡 are the internal forces; 𝑭 𝑒𝑥𝑡 are the 
external loads; 𝜙𝑖, 𝜙𝑗 , 𝜙𝑚𝑎𝑥 are the value of the plastic function at 
section i, section j and interior of beam/column k, respectively; and 
𝑥𝑘∕𝐿𝑘 is the relative length from the first node to the section where 
the internal plastic hinge of element k is formed.

Fig.  2 includes a flowchart with the steps to follow in the method-
ology outlined.

The design variables of the optimization problem posed here are: 
𝑁𝑥 the axial forces and 𝑀𝑥 the torsional moment of each bar, 𝑀𝑦𝑖,𝑀𝑧𝑖
the bending moments at node i and 𝑀𝑦𝑖,𝑀𝑧𝑖 the bending moments at 
node j, that is, at the extreme sections of each k bar; and the locations 
𝑥𝑘 where plastic hinges can occur at interior sections of each k bar 
element.

The final value taken by the objective function is the value of the 
load factor that causes the collapse of the structure (𝜆𝑐). In the sections 
where the corresponding yielding surface is reached, a plastic hinge 
is formed. This load value implies the formation of enough plastic 
hinges so that the structure cannot withstand any further load. This 
is the ultimate state of the structure for that load state and is called the 
collapse mechanism.
4 
Although the formulation may appear to be complicated, this is not 
the case, since what has been called the vector method are the equi-
librium equations of the matrix formulation of structures in which the 
degrees of freedom, and therefore, neither the corresponding stiffness 
matrices, are involved. This method does not require the calculation 
of the stiffness matrices of each bar element of the discretization. 
Consider that in the limiting case, the collapse mechanism is an isostatic 
structure that cannot withstand further loads and can therefore be 
solved using only the equilibrium equations. Additional compatibility 
equations are not necessary, unless the desired deformation of the struc-
ture at that instant is required, which is not the objective of this work. 
Remember that the objective here is to obtain the collapse mechanism 
and the associated collapse load factor for spatial structures.

2.5. Safety factor

In this section, it is interesting to calculate the safety factor (𝑛𝑠), 
that is, to determine the quotient between the load factor associated 
with the plastic design (𝜆𝑐) and the load factor associated with a linear 
elastic design (𝜆1) of the structure. 

𝑛𝑠 =
𝜆𝑐
𝜆1

(8)

For nominal loads (𝜆 = 1), a linear elastic analysis is performed, and 
the most stressed section is determined. Based on its internal forces, the 
maximum value of the yielding function (𝜙𝑚𝑎𝑥) is calculated. According 
to AISC standards, if loads are increased, the structure cannot withstand 
further loads once the first plastic hinge (𝜆1) is formed: 

𝜆1 =

√

1
𝜙𝑚𝑎𝑥

(9)

The safety factor provides information on the theoretical resistance 
reserve available to the linear elastic design compared to the plastic 
design of the structure.
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Table 1
Resultant force in X direction.
 Case a b c d  
 𝐹𝑋 (kN) 480.6 231.16 231.16 231.16 
 𝐹𝑋∕𝐹0 2.079 1.0 1.0 1.0  

3. Numerical results and discussion

In this section, the methodology is applied to the study of three 
application problems: a six-story space frame, a twenty-story space 
frame and an industrial building [25].

For the first two examples, all the beams and columns have the same 
length, they are: 𝐿𝑏 = 7.315m and 𝐿𝑐 = 3.658m where 𝐿𝑏 is the length 
of the beams and 𝐿𝑐 is the length of the columns, respectively.

The following applied loads are assumed: wind 𝑞𝑤 = 0.96 kN/m2

and usage 𝑞𝑢 = 4.8 kN/m2; where 𝑞𝑤 is the wind load and 𝑞𝑢 is variable 
usage load, both are uniformly distributed loads per unit area. And four 
cases are studied:

• Case a: hypothesis of load, wind and variable usage load, mod-
eled with point or concentrated loads at the nodes of the struc-
ture; wind loads 𝐹𝑤 = 26.7 kN/node and usage loads 𝐹𝑢 =
64.211 kN/node/bar. This case is compared with the results of 
other researchers [6,7].

• Case b: the wind hypothesis of case a) is unrealistic, so here the 
concentrated wind load is calculated as 𝐹𝑤 = 𝑞𝑤𝐿𝑏𝐿𝑐∕4 and is 
applied at each node as said value (𝐹𝑤 = 6.422 kN) multiplied by 
the number of surfaces (𝐿𝑏 𝑥𝐿𝑐) that meet there.

• Case c: the same load situation but modeled with uniform dis-
tributed loads per bars, in principle a more realistic hypothesis.

• Case d: in this case the wind load predominates.

3.1. Six-story space frame

In this section, the Orbison’s six-story space frame is solved [6–8], 
the columns base are fixed, requested by the wind load 𝑞𝑤 on wall 
(𝑋 = 𝐿𝑏) and by the usage load 𝑞𝑢 on each floor (see Fig.  3). The 
yield strength of all members is 250MPa and Young’modulus is 206GPa. 
Two analyses are performed: case a, assumes concentrated/point loads 
applied at the nodes of the structure; and case b, assumes all loads are 
uniform distributed load type.

The methodology described in Section 2 is implemented in Mat-
lab, which systematically solves the plastic problem in a single step 
using the kinematic direct method. To do this, the calculation of the 
equilibrium equations of the structure is first systematized and then a 
non-linear optimization algorithm (sequential quadratic programming, 
sqp) maximizes the load proportionality factor (𝜆) that takes the struc-
ture to its limiting load situation, it is called the collapse mechanism, 
which corresponds to the applied nominal loads multiplied by a factor 
(𝜆𝑐) called the collapse load factor.

If the resultants of the forces applied to the structures in each 
direction are calculated in order to compare the results (see Table  1), 
the following is obtained: 
𝐹0 = 𝑞𝑤𝑠𝑥𝐿𝑏𝐿𝑐 = 231.16 kN (10)

where 𝑠𝑥 is the total number of rectangles (𝐿𝑏 𝑥𝐿𝑐) in the wall where 
the wind acts (in this case 𝑠𝑥 = 9).

Fig.  4 summarizes how to apply concentrated loads at the nodes 
for case b. Table  2 presents the summary of results for the six-story 
building, and Fig.  5 shows the corresponding collapse mechanisms, 
where the blue circles indicate plastic hinges at the nodes and the red 
circles are in-element plastic hinges. The results are compared using 
the CEPAO [26] and SAP2000 [27] programs. The table indicates the 
load factor (𝜆1) associated with an elastic design according to the 
American standard and the corresponding safety factor (𝑛 ), which 
𝑠

5 
Fig. 3. Six-story space frame. 3D view.

Fig. 4. Six-story space frame. Concentrated wind loads (case b).

provides information on the structure’s resistance reserve. The table 
also shows the relative error between the results obtained compared 
to the available value (the values being compared are indicated in blue 
for each row).

For cases b and c, the collapse load factor is logically higher, since in 
Table  1 it was found that case a involves 107.9% more wind load than 
the problem of interest. Comparing Fig.  5.(a) with Figs.  5.(b) and (c), 
it can be observed that the collapse mechanism is different, since case 
a considers equal point wind forces at all nodes of the wall where the 
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Table 2
Six-story space frame. Collapse load factor.
 Case 𝑛𝑠 𝜆1 𝜆𝑐 Difference 
 This work SAP2000 [27] CEPAO [26]  
 a 1.78 1.564 2.780 2.162 2.033 −26.87%  
 b 1.26 4.252 5.340 4.528 – −15.21%  
 c 1.94 3.057 5.936 3.798 – −36.02%  
 d 1.21 6.687 8.087 5.518 – −31.77%  

Fig. 5. Six-story space frame. Collapse load factor (safety factor).

wind impacts; in case b they are different, more realistic, with higher 
values where there is a greater applied load; and in case c the load is 
applied in a uniformly distributed manner, both for the wind load and 
the use load.

Finally, Fig.  5.(d) shows the results when wind load predominates 
and the value of the usage overload is small. The red circles indicate 
the formation of in-element plastic hinges.

Logically, if the nominal loads to which the structure is subjected 
are modified, the collapse load factor is modified and the collapse 
mechanism could change. A new limit analysis of the structure would 
then have to be performed.

3.2. Twenty-story space frame

In this section, this working methodology is used to solve a large 
building, a twenty-story space frame (see Fig.  6). The yield strength of 
6 
Table 3
Twenty-story space frame. Collapse load factor.
 Case 𝑛𝑠 𝜆1 𝜆𝑐 Difference 
 This work SAP2000 [27] CEPAO [26]  
 a 2.61 0.4083 1.066 1.208 1.024 −3.94%  
 b 1.21 1.146 1.386 1.646 – 36.04%  
 c 1.36 1.088 1.485 1.454 – −4.45%  
 d 1.62 0.9900 1.600 1.774 – 27.84%  

Table 4
Industrial building. Collapse load factor.
 Case 𝑛𝑠 𝜆1 𝜆𝑐 Difference 
 This work SAP2000 [27]  
 a 1.65 4.278 7.029 10.30 46.54%  
 b 1.21 4.704 5.704 8.352 46.42%  
 c 1.72 3.090 5.321 4.404 −17.23%  

all members is 344.8MPa and Young’modulus is 200GPa. The same four 
cases of the previous problem are solved.

Table  3 presents the plastic collapse load factor and the safety factor 
for the elastic design. The results of this work are in good agreement 
with those obtained using the CEPAO program (only the results for case 
a are available) and show discrepancies with those obtained using the 
commercial SAP2000 program.

It is also observed that for the results of this work, see column four 
of Table  3, there is a difference in considering the loads as concentrated 
in the nodes or uniformly distributed in the beams/columns.

Fig.  7 represents the collapse mechanism for each load case. It can 
be seen that if the load model of the structure changes, the final state 
of the structure due to plasticity also changes. In this example, the 
building is slender, and even changing the loads only results in the 
formation of plastic hinges at the nodes and not in-element hinges.

3.3. Industrial building

In this example, a gabled industrial building has been designed with 
the following data: 𝐿0 = 25m building span, 𝑚0 = 5m longitudinal 
modulus, 𝐿𝑐 = 7m height of the columns, 𝐻 = 9.5m height of the 
building (see Fig.  8). The cross-sections are W18 × 106 and W14 × 82 
for the columns and beams of the intermediate frames; and W10 × 30 
and W8 × 21 for the columns and beams of the two end frames. The 
yield strength of all members is 235MPa and Young’modulus is 200GPa. 
Regarding the applied loads, only the lateral wind action from left to 
right with a value of 𝑞𝑤 = 0.5 kN/m2 is considered.

For the analysis of the gabled industrial building, three calculation 
models are proposed:

• Case a: the structure is discretized with a bar-by-bar element and 
the load is modeled using equivalent point loads applied at the 
nodes.

• Case b: the structure is discretized with two bar-by-bar elements 
and the load is modeled again using equivalent point loads ap-
plied at the nodes.

• Case c: the structure is discretized as in case (a) and the load is 
modeled by uniform distributed loads applied to the bar elements.

Table  4 and Fig.  9 summarize the results for the cases in this 
example. The Table  4 presents the collapse load factor and safety factor, 
and Fig.  9 shows the collapse mechanism corresponding to each load 
application model. Fig.  9.(c) represents plastic hinges at the ends of 
the bars with blue circles, and internal plastic hinges within the bar 
element, with red circles.

After the application problems, it is found that one of the advantages 
of the methodology is that the uniform distributed loads case is solved 
using the same meshing of nodes and elements that for concentrated 
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Fig. 6. Twenty-story space frame. 3D view.
loads case. And it is possible to obtain the safety factor (𝑛𝑠) of the 
linear-elastic design and quantify the resistance reserve available in the 
structure.

4. Conclusions

The classical formulation of plastic methods for spatial and building 
structures is not very systematic. The combination of mechanisms 
method, for example, relies on testing possible mechanisms until the 
final collapse mechanism is found, which may require numerous tests. 
It is also not very efficient in cases of distributed loads acting on 
beams/columns.
7 
This paper attempts to facilitate the formulation of the equilibrium 
equations necessary for applying the direct kinematic method. The 
final state of the structure (collapse mechanism) is obtained using a 
nonlinear optimization method with an objective function of maxi-
mizing the load factor parameter of the structure. Equality constraints 
are posed, which are the equilibrium equations for the problem, and 
inequality equations are also posed, given by the yield function used. 
This methodology leads to the collapse mechanism corresponding to 
the structure with the given loads, geometry, and boundary conditions.

This article summarizes a spatial method for the analysis of build-
ings, which can be analyzed using 3D steel frames. The method allows 
the structure to be analyzed regardless of the load type, whether point, 
uniformly distributed, or both. The factor of safety for a linear-elastic 
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Fig. 7. Twenty-story space frame. Collapse load factor (safety factor).
design of the structure under study can be obtained as an additional 
result. Another advantage is that the same dicretization of the structural 
members is used, regardless of the load type, whether concentrated or 
uniformly distributed.

The application examples show that the solution to the plastic de-
sign problem with uniformly distributed loads differs from the solution 
modeled with statically equivalent point loads; both the value of the 
collapse load factor and the resulting collapse mechanism are different.

Work is underway to include second-order analysis and stability 
checking as the load factor increases, which may require changing 
the limit analysis methodology from a direct kinematic method to a 
stepwise static method.
8 
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Fig. 8. Industrial building.
Fig. 9. Industrial building. Collapse load factor (safety factor).
Annex A. Coordinate transformation matrix

This section summarizes the transformation of coordinates between 
Cartesian systems, specifically from the global coordinate system (of 
the structure) to the local coordinate system (of each bar): (𝑋, 𝑌 ,𝑍) →
(𝑥, 𝑦, 𝑧) (see Fig.  10). For this purpose, it is necessary to define each 
bar element by three nodes (1,2,3) and calculate the following unit
vectors:
9 
�⃗�𝑥 =

(

�⃗�2 − �⃗�1
)

|

|

�⃗�2 − �⃗�1||

�⃗�𝑦 =
(

�⃗�3 − �⃗�1
)

|

|

�⃗�3 − �⃗�1||
�⃗�𝑧 = �⃗�𝑥 × �⃗�𝑦

(11)

It allows to define the change of basis matrix 𝑹 [3 × 3]: 

𝑹 =
[

�⃗�𝑥; �⃗�𝑦; �⃗�𝑧
]𝑇 (12)
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Fig. 10. Cartesian coordinate transformation.
Fig. 11. Yield surface (𝜙 = 1).

And the coordinate transformation matrix 𝑻  [12 × 12] is based 
on the matrix 𝑹 [3 × 3] organized by blocks on the diagonal in the 
following way: 

𝑻 =

⎛

⎜

⎜

⎜

⎜

⎝

𝑹
𝑹

𝑹
𝑹

⎞

⎟

⎟

⎟

⎟

⎠

(13)

Annex B. Yielding function

In this work, the Orbison plastic hinge model is used, an effi-
cient procedure for modeling inelastic behavior in three-dimensional 
beam/column elements (see Fig.  11). Plastic hinge formation and the 
interaction of element forces at a hinge are taken into account. A single-
equation, stress-resultant yield surface has been developed [5,10]. 

𝜙(𝑛, 𝑚𝑦, 𝑚𝑧) = 1.15𝑛2 + 𝑚2
𝑧 + 𝑚4

𝑦 + 3.67𝑛2𝑚2
𝑧 + 3𝑛6𝑚2

𝑦 + 4.65𝑚4
𝑧𝑚

2
𝑦 (14)

where 𝑛 = 𝑁𝑥∕𝑁𝑝 is the ratio of the applied axial force to the plastic 
axial force (𝑁 = 𝐴𝑓 ), 𝑚 = 𝑀 ∕𝑀  is the ratio of the weak axis 
𝑝 𝑦 𝑦 𝑦 𝑝𝑦

10 
bending moment to the corresponding plastic moment (𝑀𝑝𝑦 = 𝑆𝑦𝑓𝑦) 
and 𝑚𝑧 = 𝑀𝑧∕𝑀𝑝𝑧 is the ratio of the strong axis bending moment to the 
corresponding plastic moment (𝑀𝑝𝑧 = 𝑆𝑧𝑓𝑦), with 𝐴 the cross-sectional 
area, 𝑆𝑦 and 𝑆𝑧 the corresponding plastic modules of the section and 
𝑓𝑦 the elastic limit of the material.

Data availability

No data was used for the research described in the article.

References

[1] M. Saka, M. Hayalioglu, Optimum design of geometrically nonlinear 
elastic-plastic steel frames, Comput. Struct. 38 (3) (1991) 329–344.

[2] M. Doblaré, L. Gracia, Plastic Analysis of Bar Structures, Copycenter, 1988.
[3] H.R. Dalmau, J. Vilardell, Plastic Analysis of Structures: Introduction, Ediciones 

UPC, 2003.
[4] G.R. Calborg, Plastic Analysis of Bar Structures: Theory, Universidad de Granada, 

2008.
[5] J.G. Orbison, W. McGuire, J.F. Abel, Yield surface applications in nonlinear steel 

frame analysis, Comput. Methods Appl. Mech. Engrg. 33 (1) (1982) 557–573, 
http://dx.doi.org/10.1016/0045-7825(82)90122-0.

[6] R. Casciaro, G. Garcea, An iterative method for shakedown analysis, Comput. 
Methods Appl. Mech. Engrg. 191 (49) (2002) 5761–5792, http://dx.doi.org/10.
1016/S0045-7825(02)00496-6.

[7] H. Van Long, N. Dang Hung, Limit and shakedown analysis of 3-D steel frames, 
Eng. Struct. 30 (7) (2008) 1895–1904, http://dx.doi.org/10.1016/j.engstruct.
2007.12.009.

[8] V.L. Hoang, D.H. Nguyen, Plastic optimization of 3D steel frames under fixed or 
repeated loading: Reduction formulation, Eng. Struct. 32 (4) (2010) 1092–1099, 
http://dx.doi.org/10.1016/j.engstruct.2009.12.035.

[9] A. Lorenzana, P.M. López-Reyes, E. Chica, J.M. Terán, M. Cacho-Pérez, A 
nonlinear model for the elastoplastic analysis of 2D frames accounting for 
damage, J. Theoret. Appl. Mech. 49 (2) (2011) 515–529.

[10] V.L. Hoang, H. Nguyen, J.P. Jaspart, J.F. Demonceau, An overview of the 
plastic-hinge analysis of 3D steel frames, Asia Pac. J. Comput. Eng. (2015).

[11] T.-N. Doan-Ngoc, X.-L. Dang, Q.-T. Chu, R.J. Balling, C. Ngo-Huu, Second-order 
plastic-hinge analysis of planar steel frames using corotational beam-column 
element, J. Constr. Steel Res. 121 (2016) 413–426, http://dx.doi.org/10.1016/j.
jcsr.2016.03.016.

[12] D.-H. Shin, H.-J. Kim, Plastic hinge rotations of steel braces estimated using 
improved physical theory models, J. Constr. Steel Res. 203 (2023) 107814, 
http://dx.doi.org/10.1016/j.jcsr.2023.107814.

[13] Y. Zhou, B. Hu, Y. Gong, L. Tang, Y. Li, Second-order improved refined plastic 
hinge method with implementation of continuous strength method, J. Constr. 
Steel Res. 211 (2023) 108169, http://dx.doi.org/10.1016/j.jcsr.2023.108169.

[14] C. Wu, H. Song, B. Mou, K. Xin, J. Men, Experimental and theoretical research 
on innovative prefabricated artificial plastic hinge joints, J. Constr. Steel Res. 
228 (2025) 109440, http://dx.doi.org/10.1016/j.jcsr.2025.109440.

http://refhub.elsevier.com/S0143-974X(25)00340-2/sb1
http://refhub.elsevier.com/S0143-974X(25)00340-2/sb1
http://refhub.elsevier.com/S0143-974X(25)00340-2/sb1
http://refhub.elsevier.com/S0143-974X(25)00340-2/sb2
http://refhub.elsevier.com/S0143-974X(25)00340-2/sb3
http://refhub.elsevier.com/S0143-974X(25)00340-2/sb3
http://refhub.elsevier.com/S0143-974X(25)00340-2/sb3
http://refhub.elsevier.com/S0143-974X(25)00340-2/sb4
http://refhub.elsevier.com/S0143-974X(25)00340-2/sb4
http://refhub.elsevier.com/S0143-974X(25)00340-2/sb4
http://dx.doi.org/10.1016/0045-7825(82)90122-0
http://dx.doi.org/10.1016/S0045-7825(02)00496-6
http://dx.doi.org/10.1016/S0045-7825(02)00496-6
http://dx.doi.org/10.1016/S0045-7825(02)00496-6
http://dx.doi.org/10.1016/j.engstruct.2007.12.009
http://dx.doi.org/10.1016/j.engstruct.2007.12.009
http://dx.doi.org/10.1016/j.engstruct.2007.12.009
http://dx.doi.org/10.1016/j.engstruct.2009.12.035
http://refhub.elsevier.com/S0143-974X(25)00340-2/sb9
http://refhub.elsevier.com/S0143-974X(25)00340-2/sb9
http://refhub.elsevier.com/S0143-974X(25)00340-2/sb9
http://refhub.elsevier.com/S0143-974X(25)00340-2/sb9
http://refhub.elsevier.com/S0143-974X(25)00340-2/sb9
http://refhub.elsevier.com/S0143-974X(25)00340-2/sb10
http://refhub.elsevier.com/S0143-974X(25)00340-2/sb10
http://refhub.elsevier.com/S0143-974X(25)00340-2/sb10
http://dx.doi.org/10.1016/j.jcsr.2016.03.016
http://dx.doi.org/10.1016/j.jcsr.2016.03.016
http://dx.doi.org/10.1016/j.jcsr.2016.03.016
http://dx.doi.org/10.1016/j.jcsr.2023.107814
http://dx.doi.org/10.1016/j.jcsr.2023.108169
http://dx.doi.org/10.1016/j.jcsr.2025.109440


M. Cacho-Pérez Journal of Constructional Steel Research 234 (2025) 109662 
[15] M. Cacho-Pérez, J. Gómez-Carretero, Plastic calculation of slender beam frames 
systematic method based on mechanism theory, Structures 34 (2021) 2840–2847, 
http://dx.doi.org/10.1016/j.istruc.2021.09.033.

[16] Q. Wang, Q. Li, D. Wu, Y. Yu, F. Tin-Loi, J. Ma, W. Gao, Machine learning aided 
static structural reliability analysis for functionally graded frame structures, Appl. 
Math. Model. 78 (2020) 792–815, http://dx.doi.org/10.1016/j.apm.2019.10.007.

[17] K.M. Gondaliya, S.A. Vasanwala, A.K. Desai, J.A. Amin, V. Bhaiya, Machine 
learning-based approach for assessing the seismic vulnerability of reinforced 
concrete frame buildings, J. Build. Eng. 97 (2024) 110785, http://dx.doi.org/
10.1016/j.jobe.2024.110785.

[18] J. Lubliner, Plasticity Theory, Maxwell Macmillan International Editions, 1990.
[19] J. Chakrabarty, Theory of Plasticity, Elsevier, 2006.
[20] M. Cacho-Pérez, Limit analysis of planar steel frames, in-element plastic-hinge 

for uniformly distributed loads, Int. J. Non-Linear Mech. 166 (2024) 104827, 
http://dx.doi.org/10.1016/j.ijnonlinmec.2024.104827.

[21] J. Richard-Liew, H. Chen, N. Shanmugam, W. Chen, Improved nonlinear hinge 
analysis of space frame structures, Eng. Struct. 22 (2000) 1324–1338.
11 
[22] S. Kim, M. Kim, W. Chen, Improved refined plastic hinge analysis accounting for 
strain reversal, Eng. Struct. 20 (2000) 15–25.

[23] M. Cacho-Pérez, Plastic analysis, stability, and natural frequency of two-
dimensional frames of variable section beams, J. Eng. Mech. 142 (3) 
(2016).

[24] M. Cacho-Pérez, Numerical Techniques for Failure Analysis of Two-Dimensional 
Frames, Including Stability and Vibration Behaviour (Ph.D. thesis), University of 
Valladolid. ProQuest Dissertations Publishing, 3489189, 2010.

[25] S. Lee, T. Kim, Q.X. Lieu, T.P. Vo, J. Lee, A novel data-driven analysis for 
sequentially formulated plastic hinges of steel frames, Comput. Struct. 281 (2023) 
107031, http://dx.doi.org/10.1016/j.compstruc.2023.107031.

[26] V.L. Hoang, Automatic plastic-hinge analysis and design of 3D steel frames, 
2008.

[27] CSI, SAP2000 Integrated Software for Structural Analysis and Design, Computers 
and Structures Inc., Berkeley, California.

http://dx.doi.org/10.1016/j.istruc.2021.09.033
http://dx.doi.org/10.1016/j.apm.2019.10.007
http://dx.doi.org/10.1016/j.jobe.2024.110785
http://dx.doi.org/10.1016/j.jobe.2024.110785
http://dx.doi.org/10.1016/j.jobe.2024.110785
http://refhub.elsevier.com/S0143-974X(25)00340-2/sb18
http://refhub.elsevier.com/S0143-974X(25)00340-2/sb19
http://dx.doi.org/10.1016/j.ijnonlinmec.2024.104827
http://refhub.elsevier.com/S0143-974X(25)00340-2/sb21
http://refhub.elsevier.com/S0143-974X(25)00340-2/sb21
http://refhub.elsevier.com/S0143-974X(25)00340-2/sb21
http://refhub.elsevier.com/S0143-974X(25)00340-2/sb22
http://refhub.elsevier.com/S0143-974X(25)00340-2/sb22
http://refhub.elsevier.com/S0143-974X(25)00340-2/sb22
http://refhub.elsevier.com/S0143-974X(25)00340-2/sb23
http://refhub.elsevier.com/S0143-974X(25)00340-2/sb23
http://refhub.elsevier.com/S0143-974X(25)00340-2/sb23
http://refhub.elsevier.com/S0143-974X(25)00340-2/sb23
http://refhub.elsevier.com/S0143-974X(25)00340-2/sb23
http://refhub.elsevier.com/S0143-974X(25)00340-2/sb24
http://refhub.elsevier.com/S0143-974X(25)00340-2/sb24
http://refhub.elsevier.com/S0143-974X(25)00340-2/sb24
http://refhub.elsevier.com/S0143-974X(25)00340-2/sb24
http://refhub.elsevier.com/S0143-974X(25)00340-2/sb24
http://dx.doi.org/10.1016/j.compstruc.2023.107031
http://refhub.elsevier.com/S0143-974X(25)00340-2/sb26
http://refhub.elsevier.com/S0143-974X(25)00340-2/sb26
http://refhub.elsevier.com/S0143-974X(25)00340-2/sb26
http://refhub.elsevier.com/S0143-974X(25)00340-2/sb27
http://refhub.elsevier.com/S0143-974X(25)00340-2/sb27
http://refhub.elsevier.com/S0143-974X(25)00340-2/sb27

	Limit analysis of 3D building structures
	Introduction
	Methodology
	Hypotheses
	Equilibrium equations
	Limit analysis
	Collapse mechanism
	Safety factor

	Numerical results and discussion
	Six-story space frame
	Twenty-story space frame
	Industrial building

	Conclusions
	Declaration of competing interest
	Acknowledgments
	Annex A. Coordinate transformation matrix
	Annex B. Yielding function
	Data availability
	References


