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Abstract

Nonautonomous bifurcation theory is a growing branch of mathematics, for the insight it provides into 
radical changes in the global dynamics of realistic models for many real-world phenomena, i.e., into the oc-
currence of critical transitions. This paper describes several global bifurcation diagrams for nonautonomous 
first order scalar ordinary differential equations generated by coercive third degree polynomials in the state 
variable. The conclusions are applied to a population dynamics model subject to an Allee effect that is weak 
in the absence of migration and becomes strong under a migratory phenomenon whose sense and intensity 
depend on a threshold in the number of individuals in the population.
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1. Introduction

Bifurcation theory is a branch of the study of dynamical systems that dates back to the early 
works of Poincaré [41] at the end of the 19th century. Much more recent is the extension of 
this theory to non-autonomous dynamical systems. The analysis of these systems arises from the 
need of the applied branches of science to describe models whose own laws of evolution change 
with respect to time, which generally allows a more realistic description of the phenomenon. All 
these models depend on parameters, and very often a small variation in one of these parameters 
causes a strong variation in the resulting global dynamics. Understanding the mechanisms of 
occurrence of these changes and, closely related, describing the dynamics for close values of the 
parameter are, broadly speaking, the objectives of nonautonomous bifurcation theory.

The most common approach to autonomous bifurcation theory for one-parametric families 
of scalar ordinary differential equations (ODEs in what follows) analyzes the evolution, as the 
parameter varies, of the number and type of critical points, which correspond to the constant 
solutions of the ODEs. They are classified into hyperbolic attractive, hyperbolic repulsive, and 
nonhyperbolic, and often determine the global phase line. The object of study is not so clear 
in the nonautonomous extension of the theory, since a scalar time-dependent ODE x′ = f (t, x)

does not admit, in general, constant solutions. So, although the overall objective is basically 
always the same, there is not total agreement on where to place the focus for the analysis. Dif-
ferent approaches are presented in the works of Braaksma et al. [6], Johnson and Mantellini 
[26], Fabbri et al. [16], Kloeden [29], Langa et al. [32], Rasmussen [44,45], Núñez and Obaya 
[38,39], Jäger [23], Pötzsche [42,43], Kloeden and Rasmussen [30], Anagnostopoulou and Jäger 
[1], Anagnostopoulu et al. [2,3], Fuhrmann [17], Longo et al. [34], Remo et al. [46], and Dueñas 
et al. [11,12,14], as well as in the references therein.

In this work, following in the wake of [11,12,14], we analyze the bifurcation problem given by 
the variation in ε of an ε-parametric family of third degree coercive polynomial nonautonomous 
ODEs,

x′ = −x3 + c̄(t) x2 + ε 
(
b̄(t) x + ā(t)

)
, (1.1)

determined by three bounded and uniformly continuous maps c̄, b̄, ā : R → R. With the ap-
proach previously established in [38,39,34], we use the skew-product formalism, defining from 
(1.1) a (possibly local) real continuous flow τε on the trivial bundle Ω × R, where Ω is the 
hull of (c̄, b̄, ā). That is, Ω is the (compact) closure in the compact-open topology of C(R,R3)

of the set of time-shifts {(c̄, b̄, ā)·t | t ∈ R}, where d̄·t (s) = d̄(t + s). Defining c(ω) = ω1(0), 
b(ω) = ω2(0) and a(ω) = ω3(0) for ω = (ω1,ω2,ω3) ∈ Ω, we obtain, for each ε ∈ R, the family 
of equations

x′ = −x3 + c(ω·t) x2 + ε 
(
b(ω·t) x + a(ω·t)) , ω ∈ Ω , (1.2)

whose solutions vε(t,ω, x) satisfying vε(0,ω, x) = x yield the fiber-component of the flow τε, 
which is of skew-product type: τε(t,ω, x) = (ω·t, vε(t,ω, x)). Observe that (1.1) is (1.2) for 
ω = (c̄, b̄, ā). We assume the time-shift flow on the hull Ω to be minimal and uniquely ergodic 
2 



C. Elia, R. Fabbri and C. Núñez Journal of Differential Equations 435 (2025) 113315 
(which is the situation in many nonautonomous mathematical models, as those determined by 
an almost periodic function (c̄, b̄, ā) : R → R3), and choose the minimal subsets of Ω × R as 
the objects whose variation in number and type (hyperbolic attractive, hyperbolic repulsive of 
nonhyperbolic) determine the occurrence of bifurcation values of ε. The most basic minimal set 
is the so-called copy of the base, which is the (invariant) graph of a continuous map bε : Ω →
R such that bε(ω·t) = vε(t,ω,bε(ω)) for all (t,ω) ∈ R × Ω: this is the natural extension of 
a critical value in the autonomous case. So, our approach is quite natural, although unlike in 
the autonomous framework there may be minimal subsets with a highly complicated dynamics. 
Some of the first samples of these extremely complex minimal sets, that include strange non-
chaotic attractors, can be found in Millions̆c̆ikov [36,37], Vinograd [51] (see also Lipnitskii [33] 
for some technical improvements), Johnson [24], and Koltyzhenkov [31] (and in Grebogi et al. 
[19], Bezhaeva and Oseledets [5], and Keller [28] for discrete instead of continuous flows). In 
the bifurcation diagrams described in [38,39,34,11,12,14] we observe a phenomenon that appears 
frequently in the literature: these complex sets can appear only at the bifurcation values of the 
parameter. This will also be the situation of the problem studied here. So, we get one more sample 
that the degree of rarity of these sets depends not only on their intern dynamics, but also on their 
extreme lack of persistence under quite standard perturbations.

Returning to the particular case of (1.2), it is enough to work with autonomous examples to see 
that the possibilities of the bifurcation diagram are very numerous. In order for the result of our 
analysis to be of reasonable length, we need to make certain choices at the beginning. Modifying 
these assumptions will substantially change the results, but the study of many of the cases that 
we do not consider in this paper can be carried out using the same techniques: classical general 
methods of topological dynamics and ergodic theory combined with new results and techniques, 
in the line of those developed in [38,40,11,14]. The main results of this paper are obtained under 
the conditions infω∈Ω d(ω) > 0 for d = c, b, −a; and, like in the autonomous case (with c > 0
b > 0 and a < 0), the relative sizes of c and −a/b determine very different bifurcation situations.

In all these autonomous bifurcation diagrams, only two types of bifurcations appear: local 
saddle-node bifurcations, when two branches of hyperbolic critical points exist to the left (or 
right) of ε0 and collide at this point, giving rise to a unique nonhyperbolic critical point at ε0
and to the local absence of critical points to its right (or left); and local transcritical bifurcation, 
when two branches of hyperbolic critical points exist both at the left and right of ε0, and they 
collide at a unique nonhyperbolic critical point at ε0. In the nonautonomous setting, we say that 
ε0 is a local saddle-node bifurcation point when two hyperbolic copies of the base which exist 
for close values of ε < ε0 (or ε > ε0) approach each other as ε → (ε0)

− (or as ε → (ε0)
+) until 

they collide at least at a point (and simultaneously at all the points of a residual subset of Ω), 
giving rise to a locally unique τε0 -minimal set, which is nonhyperbolic, and to the absence of 
minimal sets “nearby” for close ε > ε0 (or ε < ε0). And we say that ε0 is a local transcritical 
bifurcation point when two hyperbolic copies of the base exist for close values of ε and approach 
each other as ε → ε0 until they collide at ε0, giving rise to a locally unique τε0 -minimal set which 
is nonhyperbolic. For our problem, roughly speaking, we prove that

- 0 is always a local saddle-node bifurcation point, which appears as the result of the global 
collision of two hyperbolic copies of the base as ε → (0)+.

- When supω∈Ω c(ω) < infω∈Ω(−a(ω)/b(ω)), there are at least two more values of (possibly 
partial) collision of hyperbolic copies of the base: ε∗ > ε∗ > 0; the three values are local 
saddle-node bifurcation points if, in addition, a is a real multiple of b; and they are the 
unique ones if the oscillation of c is not too strong.
3 
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- When infω∈Ω c(ω) > supω∈Ω(−a(ω)/b(ω)), there are no strictly positive bifurcation val-
ues. Additional conditions determine either the absence of negative bifurcation values or the 
existence of exactly two of them, also of saddle-node type.

- When c(ω) = −a(ω)/b(ω) = s, with s constant, there is a strictly positive bifurcation value, 
of local transcritical type, and none negative.

The results outlined above are better understood by having a look to the depictions in Figs. 1, 2
and 3, in Section 3. In all the situations, the analysis also involves a description of the evolution 
of the global attractor Aε of the flow τε and, in most of the cases, the bifurcation values are 
points of discontinuity of the map ε �→ Aε . The hypotheses and results, assumed and proved for 
the skew-product, are easily rewritten for the initial family (1.1). In this reformulation, instead of 
considering the evolution in the type and number of minimal sets, we focus on the number and 
type of hyperbolic solutions.

The results are applied to describe the evolution of a single population in a given habitat, sub-
ject to an Allee effect (see Courchamp at al. [9]) which is weak in the absence of migration, and 
to a particular type of migration whose intensity depends on a threshold in the number of individ-
uals in the habitat. The bifurcation points can be read in terms of critical transitions (see Scheffer 
[48]): significant changes in the state of a complex system that occur as consequences of small 
variations in its inputs.

We complete the Introduction with a brief sketch of the structure of the paper. Section 2 con-
tains the basic concepts and properties required to understand the rest of the paper: we introduce 
the skew-product framework we work in; we recall the concepts of equilibria, hyperbolic and 
nonhyperbolic minimal set, and global attractor; we summarize some properties of the Lyapunov 
exponents; and we describe with more detail the hull construction outlined above. The core of 
the paper is Section 3, where we obtain the global bifurcation diagrams mentioned above (and 
additional results under less restrictive hypotheses, not described in these first paragraphs), and 
where we indicate how to particularize each of them to a parametric family of processes instead 
of flows. Finally, in Section 4, we apply our previous results to analyze the occurrence of critical 
transitions in a particular population dynamics model.

2. Some preliminary results

In this section we recall the main concepts and tools required to prove the main results in 
Section 3. A (real and continuous) flow on a topological space Y is a continuous map σ : V ⊆
R × Y → Y defined in an open subset V ⊇ {0} × Y such that, for all y ∈ Y , σ(0, y) = y and 
σ(t + s, y) = σ(t, σ (s, y)) if the right-hand term is defined. It is global if V = R × Y . The 
definitions of orbit, forward and backward semiorbit, invariant set, α-limit set and ω-limit set, 
which we omit, can be found in the basic texts of topological dynamics, as [15]. We also omit 
the definitions of (regular) invariant and ergodic measures for the flow: see, e.g., [35].

Let (Ω,σ ) be a global flow on a compact metric space Ω, and let us consider the family of 
equations

x′ = f (ω·t, x) , ω ∈ Ω , (2.1)

where f ∈ C0,1(Ω×R,R); i.e., we assume that the partial derivative fx globally exists, and that 
f and fx are jointly continuous. (In Section 2.3 we will briefly explain how such a family arises 
4 
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from a suitable single ODE.) We represent by τ the (possibly local) skew-product flow induced 
by (2.1) on Ω ×R, namely

τ : V ⊆ R× Ω ×R→ Ω ×R , (t,ω, x) �→ (ω·t, v(t,ω, x)) (2.2)

where V ⊇ {0} × Ω × R is an open subset and v(t,ω, x) is the maximal solution of the equa-
tion (2.1) corresponding to ω with initial condition v(0,ω, x) = x. We will write v′(t,ω, x) =
f (ω·t, v(t,ω, x)). So, v′ represents (d/dt) v.

2.1. Compact invariant sets, upper and lower solutions, and global attractor

The next concepts will play a fundamental role in some of the proofs. A map b : Ω → R is 
a τ -equilibrium if b(ω·t) = v(t,ω,b(ω)) for all ω ∈ Ω and t ∈ R. A τ -copy of the base is the 
graph of a continuous τ -equilibrium. (The prefix τ will be sometimes omitted if there is no risk 
of confusion.)

Let K ⊂ Ω × R be a compact τ -invariant set projecting onto the whole set Ω. The set K is 
pinched if the section (K)ω := {x ∈R | (ω, x) ∈ K} reduces to a point at least at a point ω ∈ Ω. It 
is easy to check that its lower (resp. upper) equilibrium, given by lK(ω) := sup{x ∈ R | (ω, x) ∈
K} (resp. uK(ω) := inf{x ∈R | (ω, x) ∈K}) is a lower (resp. upper) semicontinuous equilibrium, 
and hence it is continuous at the points of a residual subset of Ω.

The flow (Ω,σ ) (or the set Ω) is minimal if every σ -orbit is dense in Ω. A τ -invariant compact 
subset M ⊂ Ω ×R is τ -minimal if (M, τ |M) is minimal; or, equivalently, if the τ -orbit of any 
element of M is dense in M. Any τ -invariant compact set contains a τ -minimal set. If Ω is 
minimal, then any τ -invariant compact set projects on the whole set Ω, and any copy of the base 
is a τ -minimal set. As already mentioned, the copies of the base are the simplest minimal sets, 
playing in many cases the equivalent role of the equilibrium points for autonomous ODEs. We 
represent by M= {b} the τ -minimal set defined by a continuous copy of the base b : Ω →R.

The next result, for a minimal base flow, is basically proved in [7, Section 2]. A more detailed 
proof is given in [10, Proposition 1.32 and Corollary 1.33].

Proposition 2.1. Let the flow (Ω,σ ) be minimal.

(i) Let b : Ω → R be a semicontinuous equilibrium and let ω0 be any continuity point of b. 
Then,

Mb = clΩ×R{(ω0·t,b(ω0·t)) | t ∈R} (2.3)

is a minimal set, it is independent of the choice of ω0, and its section (Mb)ω reduces to b(ω)

for all the points of the residual σ -invariant subset of Ω given by the continuity points of b. 
In addition, the sections (M)ω of any τ -minimal set M ⊂ Ω ×R are singletons for all the 
points ω in a residual σ -invariant subset of Ω.

(ii) Two different τ -minimal sets M1 and M2 are fiber-ordered: if x0
1 < x0

2 for two points 
(ω0, x0

1) ∈ M1 and (ω0, x0
2) ∈ M2, then x1 < x2 whenever (ω, x1) ∈ M1 and (ω, x2) ∈

M2.

A bounded global lower solution for x′ = f (ω·t, x) is a bounded map b : Ω → R such that 
t �→ b(ω·t) is C1 and b′(ω) ≤ f (ω,b(ω)) for all ω ∈ Ω, where b′(ω) = (d/dt) b(ω·t)|t=0, and it 
5 
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is strict if the inequality is strict for all ω ∈ Ω. By changing the sign of the inequalities we obtain 
the definition of (strict) bounded global upper solution.

The constant lower and upper solutions r (respectively characterized by the conditions 
f (ω, r) > 0 and f (ω, r) < 0 for all ω ∈ Ω) will be a useful tool for many points in the proofs of 
the main results. The next property will be used often:

Proposition 2.2. Let m1 < m2 be real constants, and assume that one of them is a global upper 
solution and the other one a lower global solution. Then, there exists a minimal set contained 
in Ω × [m1,m2]. If, in addition, m1 (resp. m2) is strict, then the minimal set is contained in 
Ω × (m1,m2] (resp. Ω × [m1,m2)).

Proof. We choose any ω ∈ Ω. It is easy to check that Ω × [m1,m2] contains the forward 
(resp. backward) semiorbit of (ω, (m1 + m2)/2) if m2 (resp. m1) is the global upper solution. 
Hence, Ω × [m1,m2] also contains a minimal subset of the ω-limit set (resp. α-limit set) of this 
orbit. Let us prove the last assertion in the case that m2 is a strict global upper solution, assum-
ing for contradiction the existence of a point (ω̄,m2) in the ω-limit set of (ω, (m1 + m2)/2). 
Then, since v′(0, ω̄,m2) = f (ω̄, v(0, ω̄,m2)) = f (ω̄,m2) < (m2)

′ = 0, we get v(t, ω̄,m2) > m2
for small t < 0. But this is impossible, since the ω-limit set is τ -invariant and contained in 
Ω × [m1,m2]. The proofs of the three remaining cases are analogous. �

A set A ⊂ Ω × R is the global attractor for the flow τ if it is a compact τ -invariant 
set that attracts every bounded set C ⊂ Ω × R. This attraction property means that all the 
forward τ -semiorbits of points of C are globally defined (i.e., [0,∞) × C ⊂ V) and that 
limt→∞ dist(τt (C),A) = 0, where τt (C) := {τ(t,ω, x) | (ω, x) ∈ C} and

dist(C1,C2) = sup 
(ω1,x1)∈C1

(
inf 

(ω2,x2)∈C2

(
distΩ×R((ω1, x1), (ω2, x2))

))
.

The next properties are proved in [11, Theorem 5.1].

Theorem 2.3. Assume the coercivity condition limx→±∞ f (ω,x) = ∓∞ uniformly on Ω. Then 
all the forward semiorbits are global (i.e., [0,∞) × Ω × R ⊂ V), and there exists the global 
attractor A for τ , which is given by the union of the graphs of all the bounded solutions of the 
family of equations (2.1) and takes the form

A =
⋃
ω∈Ω

({ω} × [l(ω),u(ω)]) .

Remarks 2.4. In what follows we give some properties of global attractors, bounded global upper 
and lower solutions and copies of the base that will be needed in Section 3. The coercivity 
condition of Theorem 2.3 is assumed.

1. If there exists r1 ∈ R (resp. r2 ∈ R) such that f (ω,x) > 0 if x ≤ r1 (resp. f (ω,x) <

0 if x ≥ r2) for all ω ∈ Ω, then A ⊂ Ω × (r1,∞) (resp. A ⊂ Ω × (−∞, r2)). Let us prove 
the first assertion, assuming for contradiction that l := infω∈Ω l(ω) = l(ω̄) ≤ r1. Then, l(ω̄·t) =
v(t, ω̄, l(ω̄)) = v(t, ω̄, l) < l for t < 0, and this is impossible. Similarly, if f (ω,x) > 0 for x < r1
and for all ω ∈ Ω, then A⊂ Ω × [r1,∞). The remaining proofs are analogous.

2. If b : Ω → R is C1 along the base orbits and b′(ω) ≤ f (ω,b(ω)) (resp. b′(ω) ≥
f (ω,b(ω))) for all ω ∈ Ω, then b ≤ u (resp. b ≥ l). If b′(ω) < f (ω,b(ω)) (resp. b′(ω) >
6 
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f (ω,b(ω))) for all ω ∈ Ω, then b< u (resp. b> l). These properties, based on classical compar-
ison arguments, are proved in [11, Theorem 5.1(iii)].

3. If b : Ω → R is upper semicontinuous and a bounded global (strict) upper solution, then 
its graph is (strictly) above the ω-limit set O of any point (ω0,b(ω0)) (i.e., of the corresponding 
orbit); that is, x ≤ b(ω) (x < b(ω)) for any point (ω, x) ∈ O. And if, in addition, there exists the 
α-limit set of a point (ω0,b(ω0)), then this set is (strictly) above the graph of b. Consequently, 
in the strict case, no point (ω0,b(ω0)) belongs to any minimal set. Analogous properties with 
reverse orders hold in the case of a bounded global (strict) lower solution given by a lower semi-
continuous maps. The proofs of these properties are based on comparison results: we first prove 
the non-strict inequalities, and then deduce the strict ones in the strict cases by easy contradiction 
arguments, solving the equation in the reverse sense of the time.

2.2. Lyapunov exponents and hyperbolic minimal sets

Let K ⊂ Ω ×R be a τ -invariant compact set projecting onto the whole set Ω. A value γ ∈ R
is a Lyapunov exponent of K if there exists (ω, x) ∈K such that

γ = lim 
t→±∞(1/t)

t∫
0 

fx(τ (r,ω, x)) dr . (2.4)

Let us assume that (Ω,σ ) is uniquely ergodic, and let us call m the unique σ -invariant 
(and ergodic) measure. Using Riesz’ Representation Theorem, Kryloff-Bogoliuboff’s Theorem, 
Birkhoff’s Ergodic Theorem, [18, Theorem 4.1] and [4, Theorem 1.8.4], it is possible to check 
that γ is a Lyapunov exponent of K if and only if there exists an m-measurable equilibrium 
b : Ω → R with graph contained in K such that

γ =
∫
Ω 

fx(ω,b(ω)) dm .

A detailed proof of this assertion, in a much more general case, can be found in [10, Sections 
1.1.3 and 1.2.4].

A τ -copy of the base {b} is hyperbolic attractive if it is uniformly exponentially stable (on the 
fiber) as time increases; i.e., if there exists ρ > 0, k ≥ 1 and γ > 0 such that: if, for any ω ∈ Ω, 
|b(ω) − x| < ρ, then v(t,ω, x) is defined for all t ≥ 0, and in addition |b(ω·t) − v(t,ω, x)| ≤
k e−γ t |b(ω) − x| for t ≥ 0. Changing t ≥ 0 by t ≤ 0 and γ by −γ provides the definition of 
repulsive hyperbolic τ -copy of the base. We will also say that a τ -minimal set is hyperbolic 
attractive (resp. repulsive) if it is a hyperbolic attractive (resp. repulsive) τ -copy of the base; 
and, otherwise, it is nonhyperbolic.

Remark 2.5. An attractive (resp. repulsive) hyperbolic copy of the base {b} does not intersect 
the α-limit set (resp. ω-limit set) of any (ω, x) with x �= b(ω). This intuitive property is proved 
in [13, Proposition 2.6(ii)].

The next result, which will be repeatedly used, is basically proved in [7, Corollary 2.10 and 
Theorem 3.4], and a more detailed proof of (i) and (ii) is included in the proof of [10, Theorem 
1.40].
7 
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Theorem 2.6. Let the flow (Ω,σ ) be minimal. Then,

(i) a minimal set is hyperbolic attractive if and only if its upper Lyapunov exponent is negative.
(ii) A minimal set is hyperbolic repulsive if and only if its lower Lyapunov exponent is positive.

(iii) If the coercivity condition of Theorem 2.3 holds, then the global attractor A is an attractive 
hyperbolic τ -copy of the base if and only if all the τ -minimal sets are hyperbolic attractive.

In particular, in the uniquely ergodic case, with ergodic measure m, a τ -copy of the base {b}
is: hyperbolic attractive if and only if 

∫
Ω

fx(ω,b(ω)) dm < 0, hyperbolic repulsive if and only 
if 

∫
Ω

fx(ω,b(ω)) dm > 0, and (hence) nonhyperbolic if and only if 
∫
Ω

fx(ω,b(ω)) dm = 0. 
And, in the conditions of (iii), A is an attractive hyperbolic copy of the base if and only if ∫
Ω

fx(ω,b(ω)) dm < 0 for any m-measurable bounded τ -equilibrium.

2.3. The hull construction

Let us now consider a single ODE

x′ = f̄ (t, x) (2.5)

where f̄ : R × R → R belongs to C0,1(R,R); i.e., the derivative f̄x with respect to x globally 
exists, and the restrictions of the maps f and fx to R×J are bounded and uniformly continuous 
for any compact set J ⊂ R. Let us define f̄t (s, x) := f̄ (t +s, x). The hull Ω of f̄ is the closure of 
the set {f̄t | t ∈ R} on the set C(R×R,R) provided with the compact-open topology. Then: the 
set Ω is a compact metric space contained in C0,1(R×R,R), the time-shift map σ : R× Ω →
Ω,(t,ω) �→ ω·t := ω·t defines a global continuous flow, and the map f given by f (ω,x) =
ω(0, x) belongs to C0,1(Ω ×R,R). The proof of these properties can be found in [49, Theorem 
IV.3] and [50, Theorem I.3.1]. Note that (2.5) is one of the equations of the corresponding family 
(2.1): it is given by the element ω = f̄ ∈ Ω. Note also that (Ω,σ ) is a transitive flow, i.e., there 
exists a dense σ -orbit: that of the point f̄ . The map f̄ is recurrent if (Ω,σ ) is a minimal flow.

The flow τ given by (2.2) from the family (2.1) constructed from (2.5) is the skew-product flow 
induced by f̄ on its hull. A standard procedure in nonautonomous dynamics is: to construct this 
skew-product flow, use techniques from topological dynamics and ergodic theory to describe 
the behavior of its orbits, and derive consequences for the dynamics induced by (2.5). This is 
basically the approach of this paper: the results are formulated for minimal and uniquely ergodic 
flows; but then we show how to extract conclusions for a single recurrent equation giving rise to 
a uniquely ergodic hull, and apply them to the analysis of a particular model.

3. Some global bifurcation diagrams

Let (Ω,σ ) be a global real continuous flow on a compact metric space, minimal and uniquely 
ergodic, and let m be the unique σ -invariant measure on Ω. Let a, b, c : Ω → R be continuous 
maps, and let us consider the one-parameter family of families of scalar ODEs

x′ = pε(ω·t, x) , ω ∈ Ω , (3.1)

where ε varies in R and
8 
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pε(ω,x) := −x3 + c(ω) x2 + ε 
(
b(ω) x + a(ω)

)
. (3.2)

Recall that a family of this type appears by the hull procedure from a single ODE: see Sections 2.3
and 3.2. We will write (3.1)ε and (3.1)ωε to refer to the ω-family for a fixed ε and to a particular 
equation, respectively. We also represent by τε the (possibly local) skew-product flow induced 
by (3.1)ε on Ω ×R, so that

τε : Vε ⊆ R× Ω ×R → Ω ×R , (t,ω, x) �→ (ω·t, vε(t,ω, x))

where Vε ⊃ {0} × Ω × R is open. Note that pε satisfies the most restrictive conditions of [11], 
which are the coercivity property limx→±∞ pε(ω,x)/x = −∞ uniformly on Ω, and the strict 
concavity of the derivative of x �→ pε(ω,x) for all ω ∈ Ω. Some of the results of that paper, as 
well as some of [13] (in turn, strongly based on [40] and [34]), will be used in the description of 
the possibilities for the global τε-dynamics. As stated in Theorem 2.3, the coercivity condition 
ensures that vε(t,ω, x) is defined and bounded for all t ≥ 0 (i.e., [0,∞) × Ω × R ⊂ Vε), and 
there exists the global attractor Aε for τε , which is given by the union of the graphs of all the 
bounded solutions of the family of equations (3.1)ε , and takes the form

Aε =
⋃
ω∈Ω

({ω} × [lε(ω),uε(ω)]) .

Recall also (see Section 2.1) that the maps lε, uε : Ω → R are lower and upper semicontinuous 
equilibria, respectively, and that each of them is continuous at the points of a residual subset of 
Ω.

Theorem 3.1. There are three possibilities for the number of τε-minimal sets:

(1) There are exactly three τε-minimal sets. In this case, they are copies of the base: {lε}, {mε}
and {uε}, with lε < mε < uε . In addition, {lε} and {uε} are hyperbolic attractive and {mε} is 
hyperbolic repulsive.

(2) There are exactly two τε-minimal sets. In this case, there are two possibilities: either {lε} is 
an attractive hyperbolic τε-copy of the base and the other one, nonhyperbolic, is constructed 
as the closure of {(ω0·t,uε(ω0·t)) | t ∈R} for a continuity point ω0 of uε , and it is a pinched 
set; or {uε} is an attractive hyperbolic τε-copy of the base and the other one, nonhyperbolic, 
is constructed as the closure of {(ω0·t, lε(ω0·t)) | t ∈ R} for a continuity point ω0 of lε , and 
it is a pinched set.

(3) There is only one τε-minimal set, in which case lε and uε coincide on the residual set of 
common continuity points, and hence the global attractor is a pinched set. If this minimal 
set is hyperbolic, then it is an attractive hyperbolic τε-copy of the base, given by {lε} = {uε}, 
and it coincides with Aε.

Proof. The existence of the global attractor (which is compact and τε-invariant) ensures the 
existence of at least one τε-minimal set: see Section 2.1. According to [11, Theorem 4.2], there 
are at most three of them, and the situation is that of (1) if there are three. Let us define Ml

ε

and Mu
ε from lε and uε as in Proposition 2.1(i). Since any minimal set projects on the whole 

set Ω (see Section 2.1), the existence of more than one of them ensures that lε(ω) < uε(ω) for 
all ω ∈ Ω. So, if there are exactly two, then they are Ml and Mu: see again Proposition 2.1(i). 
ε ε

9 
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In addition, [11, Theorem 5.13(iii)] ensures that one of them is an attractive hyperbolic copy of 
the base, and it follows from [11, Proposition 5.3(ii)] that the other one is nonhyperbolic. So, 
we are in the situation (2). Finally, if there exists exactly one minimal set, then Ml

ε = Mu
ε , and 

Proposition 2.1(i) guarantees that lε(ω) = uε(ω) at all the common continuity points of both 
maps; so, the section (Aε)ω reduces to one element at these points, and hence Aε is pinched. If, 
in addition, Ml

ε = Mu
ε is hyperbolic, then [11, Proposition 5.3(i)] precludes the possibility that 

it is repulsive, so it is attractive. Hence, “all” the minimal sets are hyperbolic attractive, which, 
according to Theorem 2.6(iii), ensures that Aε is an attractive hyperbolic copy of the base. That 
is, the situation is that described in (3). �
Remarks 3.2. 1. Whenever the dynamics of (3.1)ε fits in situation (1) of Theorem 3.1, we repre-
sent by {mε} the repulsive hyperbolic τε-copy of the base.

2. A detailed description of the global dynamics (i.e., of the asymptotic behavior of the solu-
tions) can be done in each case of Theorem 3.1. We omit this, which is basically done in [11,13], 
and we refer to the numerical simulations of Section 4 for some clues in this regard.

As said in the Introduction, we will perform our analysis in the case that a(ω) < 0 and c(ω) >

0 for all ω ∈ Ω. These are the unique conditions required in Theorem 3.4 (and in the auxiliary 
Proposition 3.3) to establish the first basic bifurcation properties.

Proposition 3.3. Assume that a(ω) < 0 and c(ω) > 0 for each ω ∈ Ω. Then, there exists ε0 > 0
such that

(i) the map x �→ pε(ω,x) has three real roots if ε ∈ (0, ε0] for all ω ∈ Ω: x1
ε (ω) > x2

ε (ω) > 0 >

x3
ε (ω). In addition, limε→0+(x1

ε (ω) − c(ω)) = 0 and limε→0+ x2
ε (ω) = limε→0+ x3

ε (ω) = 0, 
and the three limits are uniform on Ω.

(ii) The map x �→ pε(ω,x) has only one real root if ε ∈ [−ε0,0), x1
ε (ω), with limε→0−(x1

ε (ω)−
c(ω)) = 0 uniformly on Ω. In addition, x1

ε (ω) > 0 for all ω ∈ Ω.

Proof. A classical algebraic result (see, e.g., [20, Exercises 10.14 and 10.17]) establishes that 
the existence of one or three real roots of the third degree polynomial pε(ω,x) depends on the 
sign of its discriminant Δε(ω), given by

Δε := ε 
( − 4 a c3 + ε b2 c2 − 18 ε a b c − 27 ε a2 + 4 ε2 b3 ) : (3.3)

there is only one real root if Δε(ω) < 0 and three of them if Δε(ω) > 0. Hence, since Δε(ω)

is jointly continuous in (ε,ω), and since limε→0 Δε(ω)/ε = −4 a(ω) c3(ω) > 0, there are three 
real roots x1

ε (ω) > x2
ε (ω) > x3

ε (ω) if ε > 0 is small enough, and a real root x1
ε (ω) (plus two 

complex ones) if −ε > 0 is small enough. In addition, the roots (considered as complex numbers) 
can be written as continuous maps of the coefficients ε a, ε b and c of pε . Hence, the limits 
of the three solutions as ε → 0 are c(ω), 0 and 0 (the roots of x2 (c(ω) − x) = p0(ω, x) =
limε→0 pε(ω,x)), and they are uniform on Ω (since the limits limε→0 ε a(ω) = limε→0 ε b(ω) =
0 are uniform on Ω). In both cases, the upper (unique for small ε < 0) real solution converges 
to c(ω) as ε → 0, so x1

ε > 0 for |ε| > 0 small enough. Finally, for ε > 0, pε(ω,0) = ε a(ω) < 0
and limx→−∞ pε(ω,x) = ∞. So, if there were more than one negative root, there would be 
no positive ones, which as just seen is precluded for ε > 0 small enough. The conclusion is 
x1(ω) > x2(ω) > 0 > x3(ω) for such an ε > 0. �
ε ε ε

10 
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We fix some notation which will be used in the rest of the paper:

a− := inf 
ω∈Ω

a(ω) and a+ := sup 
ω∈Ω

a(ω) ,

b− := inf 
ω∈Ω

b(ω) and b+ := sup 
ω∈Ω

b(ω) ,

c− := inf 
ω∈Ω

c(ω) and c+ := sup 
ω∈Ω

c(ω) .

Recall that we say that there exists a (nonautonomous) local saddle-node bifurcation point at ε0
when two hyperbolic copies of the base exist for ε < ε0 (or ε > ε0) close to ε0 and they approach 
each other as ε → (ε0)

− (or as ε → (ε0)
+), giving rise to a locally unique nonhyperbolic τε0 -

minimal set Mε0 , and to the absence of minimal sets “nearby Mε0” for close ε > ε0 (or ε < ε0).

Theorem 3.4. Assume that a(ω) < 0 and c(ω) > 0 for each ω ∈ Ω. Then,

(i) the unique τ0-minimal sets are {l0} = {0}, which is nonhyperbolic, and {u0}, which is hyper-
bolic attractive and satisfies c− ≤ u0 ≤ c+. In addition, either u0 ≡ c and these maps are 
constant or, for all ω ∈ Ω, there exists a strictly increasing two-sided sequence (tn)n∈Z with 
limn→±∞ tn = ±∞ such that c(ω·t2n) − u0(ω·t2n) > 0 and c(ω·t2n+1) − u0(ω·t2n+1) < 0.

(ii) For all ε > 0, lε < 0, {lε} is an attractive hyperbolic τε-copy of the base, and (0,∞) →
C(Ω,R), ε �→ lε is a continuous map in the uniform topology of C(Ω,R).

(iii) The set I := {ε+ > 0 | there are three hyperbolic τε-copies of the base for all ε ∈ (0, ε+)}
is nonempty and open; lε < 0 < mε < uε for all ε ∈ I; limε→0+(uε(ω) − u0(ω)) =
limε→0+ lε(ω) = limε→0+ mε(ω) = 0, all of them uniformly on Ω; the maps I ∪ {0} →
C(Ω,R), ε �→ lε, mε, uε are continuous in the uniform topology of C(Ω,R), where m0 :=
0; and there exists ε0 ∈ (0, supI] such that the maps (0, ε0) → C(Ω,R), ε �→ −lε,mε are 
strictly increasing.

(iv) For all ε < 0, uε > 0.
(v) If, in addition, c+ < 3 c−, then there exists ε− < 0 such that, if ε ∈ (ε−,0), then Aε = {uε}

is the unique τε-minimal set; it is hyperbolic attractive; and limε→0−(uε(ω) − u0(ω)) = 0
uniformly on Ω. In particular, there is a local saddle-node bifurcation at ε = 0.

Proof. (i) Since p0(ω, x) = −x3 + c(ω) x2, the (unique) Lyapunov exponent of the τ0-copy 
of the base {0} is 

∫
Ω
(p0)x(ω,0) dm = 0, and hence {0} is a nonhyperbolic τ0-minimal set: 

see Theorem 2.6. In particular, l0 ≤ 0. Since p0(ω, r) = −r2(r − c(ω)) > 0 for all r < 0, Re-
mark 2.4.1 ensures that l0 ≥ 0, and hence l0 ≡ 0. In addition, p0(ω, c−) = (c−)2(c(ω)− c−) ≥ 0
and p0(ω, c+) = (c+)2(c(ω) − c+) ≤ 0, and hence Proposition 2.2 ensures the existence of a 
minimal set contained in Ω × [c−, c+] ⊂ Ω × (0,∞). So, we are necessarily in case (2) of 
Theorem 3.1, and hence the second minimal set is {u0} and it is hyperbolic attractive. The first 
assertions in (i) are proved.

Now, observe that u′
0(ω·t)/u0(ω·t) = u0(ω·t)(−u0(ω·t) + c(ω·t)) for all ω ∈ Ω and t ∈ R. 

So, if u0 ≡ c, then t �→ u0(ω·t) is constant for all ω and hence the continuous map ω �→
u0(ω) = c(ω) is constant by the minimality of the base. Otherwise, Birkhoff’s Ergodic Theo-
rem yields 0 = ∫

Ω
(u′

0(ω)/u0(ω)) dm = ∫
Ω
u0(ω)(−u0(ω) + c(ω)) dm = 0, which precludes the 

global inequalities c > u0 and c < u0. Hence, the sets U± := {ω ∈ Ω | ± (u0(ω)− c(ω)) > 0} are 
nonempty and open. The minimality of Ω yields, for a fixed ω ∈ Ω, two increasing sequences 
11 
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(s±
n )n∈N with limit ∞ and two decreasing ones (s̄±

n )n∈N with limit −∞ such that ω·s±
n ∈ U±

and ω·s̄±
n ∈ U±, which implies the existence of the sequence (tn)n∈Z of the last assertion in (i). 

(ii)&(iv) Since pε(ω,0) = ε a(ω), we have (0)′ = 0 > pε(ω,0) if ε > 0 and (0)′ = 0 <

pε(ω,0) if ε < 0 for all ω ∈ Ω. So, Remark 2.4.2 guarantees lε < 0 for ε > 0 (in (ii)) and 
property (iv). To prove the second assertion in (ii), we fix ε > 0, define

qε(ω,x) :=
{

−x3 + c(ω) x2 + ε 
(
b(ω) x + a(ω)

)
if x ≤ 0 ,

c(ω) x2 + ε 
(
b(ω) x + a(ω)

)
if x > 0 ,

and consider the induced skew-product τ̄ε(t,ω, x) = (ω·t, v̄ε(t,ω, x)). It is easy to check that qε

is globally continuous and C2 with respect to x, and that its second derivative (qε)xx is strictly 
positive. Hence, x �→ qε(ω,x) is strictly convex for all ω, which ensures that y �→ −qε(ω,y)

is strictly concave for all ω. Let us consider the time-reversed flow σ− : R× Ω → Ω, (t,ω) �→
ω·(−t). It is easy to check that (Ω,σ−) is minimal and uniquely ergodic. Note that −qε(ω,0) =
−ε a(ω) > 0 for all ω ∈ Ω, and that there exists r > 0 such that −qε(ω,±r) < 0 for all ω ∈
Ω. Hence, Proposition 2.2 applied to the skew-product flow (Ω × R, τ̄−

ε ) defined from y′ =
−qε(ω·(−t), y) (over (Ω,σ−)) ensures the existence of at least two minimal sets, strictly below 
and above Ω×{0}. Consequently, the dynamics for τ̄−

ε is determined by an attractor-repeller pair 
of copies of the base (see, e.g., [13, Theorem 3.6]), and this ensures that the lower minimal set 
is a repulsive hyperbolic τ̄−

ε -copy of the base, and that there are no bounded τ̄−
ε -orbits below it. 

The change x(t) = y(−t) takes y′ = −qε(ω·(−t), y) to x′ = qε(ω·t, x), and it is easy to deduce 
from τ̄−

ε (t,ω, x) = (ω·(−t), v̄ε(−t,ω, x)) that the lower minimal set is an attractive hyperbolic 
τ̄ε-copy of the base, say {l̄ε}, and that there are no bounded τ̄ε-orbits below it. Since each one 
of the maps t �→ l̄ε(ω·t) and t �→ lε(ω·t) (bounded and negative) solve x′ = pε(ω·t, x) and 
x′ = qε(ω·t, x), l̄ε ≥ lε (since t �→ lε(ω·t) is the lower bounded solution for x′ = pε(ω·t, x)), 
and lε ≥ l̄ε (since t → l̄ε(ω·t) is the lower bounded solution for x′ = qε(ω·t, x)). Therefore, they 
are equal. In particular, 

∫
Ω

px(ω·t, lε(ω)) dm = ∫
Ω

qx(ω·t, l̄ε(ω)) dm (where m is the unique σ -
invariant measure on Ω). That is, the unique Lyapunov exponent for {lε} for the flow τε coincides 
with that of {l̄ε} for τ̄ε , and hence Theorem 2.6 ensures that it is negative (since it is the unique 
Lyapunov exponent of the attractive hyperbolic τ̄ε-copy of the base {l̄ε}) and that {lε} is an 
attractive hyperbolic τε-copy of the base (since its unique Lyapunov exponent is negative).

Finally, the classical result of robustness of the existence of hyperbolic copies of the base 
and their continuous variation in the uniform topology (see, e.g., [14, Theorem 2.3]) proves the 
continuity of ε �→ lε stated in (ii). 

(iii) Let us take ρ ∈ (0, c−). Proposition 3.3(i) allows us to take ερ > 0 small enough to 
ensure that x3

ε (ω) < 0 < x2
ε (ω) < ρ < x1

ε (ω) for all ω ∈ Ω and ε ∈ (0, ερ). Since pε(ω,x) =
−(x − x1

ε (ω))(x − x2
ε (ω))(x − x3

ε (ω)), we have pε(ω,ρ) > 0 for all ω ∈ Ω. We also look for 
k− < 0 and k+ > ρ such that pε(ω, k−) > 0 and pε(ω, k+) < 0 for all ε ∈ [0, ερ] and all ω ∈ Ω. 
Then: k− and ρ are strict global upper solutions, and 0 and k+ are strict global lower solutions. 
Since k− < 0 < ρ < k+, Proposition 2.2 ensures the existence of three minimal sets M1

ε , M2
ε

and M3
ε , with M1

ε ⊂ Ω × (k−,0), M2
ε ⊂ Ω × (0, ρ) and M3

ε ⊂ Ω × (ρ, k+). Theorem 3.1
ensures that M1

ε = {lε} (attractive), M2
ε = {mε} (repulsive), and M3

ε = {uε} (attractive). So, 
(0, ερ) ⊆ I , with I defined in (iii). The robustness of the existence of hyperbolic copies of the 
base and their continuous variation in the uniform topology (see [14, Theorem 2.3]) prove that I
is open and that the maps I → C(Ω,R), ε �→ lε, mε, uε are continuous. Note also that, if ε > 0
the inequality pε(ω,0) < 0 for all ω precludes the existence of a point (ω,0) in any τε-minimal 
12 
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set Mε: see Remark 2.4.3. So, since mε > 0 for small ε > 0 and ε →mε is continuous on I , we 
conclude that mε > 0 and hence lε < 0 < mε < uε for all ε ∈ I .

Keeping the notation of Proposition 3.3, we define (x3
ε )− := infω∈Ω x3

ε (ω) for ε > 0 small 
enough. Then, pε(ω, r) > 0 for all r < (x3

ε )−, which ensures that lε > (x3
ε )−: see Remark 2.4.1. 

Proposition 3.3 ensures that limε→0+(x3
ε )− = 0, which combined with lε < 0 for ε > 0 yields 

limε→0+ lε(ω) = 0 uniformly on Ω. Now, we choose the initial ρ > 0 as close to 0 as desired, and 
observe that 0 < mε < ρ if ε is small enough. This proves the assertion concerning limε→0+ mε . 
Finally, [14, Theorem 2.3] ensures the existence of an attractive hyperbolic copy of the base 
as uniformly close as desired to {u0} for small ε > 0, which must be {uε}, and this proves the 
assertion about limε→0+(uε − u0). These properties and (i) complete the proof of the continuity 
on I ∪ {0}.

The proofs of the monotonicity properties of ε �→ lε,mε take arguments from the proof of 
[11, Theorem 5.10], which we repeat here for the reader’s convenience. The previous uniform 
limiting properties allow us to ensure that, if ε > 0 is small enough, then b(ω) x + a(ω) < 0 if 
x ∈ [lε(ω),mε(ω)] for all ω ∈ Ω. We choose ε0 so that this holds for ε ∈ (0, ε0). If 0 < ε1 <

ε2 < ε0, then l′ε1
(ω) = pε1(ω, lε1(ω)) > pε2(ω, lε1(ω)), and hence lε1 > lε2 (see Remark 2.4.2). 

Let us complete the proof of (iii) checking that ε �→ mε is strictly increasing on (0, ε0). We 
fix ε1 ∈ (0, ε0). The previously checked continuous variation of the copies of the base allows 
us to take ε2 < ε1 in (0, ε0) close enough to ensure lε1 < mε2 < uε1 . So, for a fixed ω̄ ∈ Ω, 
vε1(t, ω̄,mε2(ω̄)) > vε1(t, ω̄, lε1(ω̄)) = lε1(ω̄·t) for all t ∈ R: the τε1 -orbit of (ω̄,mε2(ω̄)) is 
above {lε1}, and hence globally bounded. This ensures the existence of the corresponding α-
limit set. In addition, m′

ε2
(ω) < pε1(ω,mε2(ω)) for all ω ∈ Ω, since ε2 (b(ω) mε2(ω) + a(ω)) <

ε1 (b(ω) mε2(ω) + a(ω)). According to Remark 2.4.3, the previous α-limit set is strictly below 
the graph of mε2 . Let N be a τε1 -minimal contained in this α-limit set. This α-limit set cannot 
intersect {lε1} or {uε1} (see Remark 2.5), and hence N = {mε1}. This ensures that mε1 < mε2 , as 
asserted. 

(v) We assume that c+ < 3 c− and work with ε < 0. Initially, we take values of ε < 0 close 
enough to 0 to ensure that, for all ω ∈ Ω, x1

ε (ω) > 0 is the unique real root of x �→ pε(ω,x)

(see Proposition 3.3), and define (x1
ε )− := infω∈Ω x1

ε (ω). Then lε > (x1
ε )−, since pε(ω, r) > 0

for all r < (x1
ε )− (see again Remark 2.4.1). Since limε→0−(x1

ε (ω) − c(ω)) = 0 uniformly on 
Ω (see again Proposition 3.3), we have limε→0−(x1

ε )− = c−. We fix r ∈ (c+/3, c−) and look 
for ε− < 0 close enough to 0 to ensure that (x1

ε )− > r for all ε ∈ (ε−,0). Now, we fix ε ∈
(ε−,0) and define qε(ω,x) as the C0,2(Ω × R,R) function which coincides with pε(ω,x) for 
x ≥ r and is given by a second degree polynomial for x ≤ r . In particular, qε(ω, r) > 0. In 
addition, for all x ≤ r , (∂2/∂x2) qε(ω,x) = (∂2/∂x2) qε(ω, r) = (∂2/∂x2) pε(ω, r) = −6 r +
2 c(ω) ≤ −6 r + 2 c+ < 0. And, if x > r , then (∂2/∂x2) qε(ω,x) = (∂2/∂x2) pε(ω,x) = −6 x +
2 c(ω) < −6 r + 2 c+ < 0. That is, the map x �→ qε(ω,x) is strictly concave for all ω ∈ Ω. 
Moreover, limx→−∞ qε(ω,x) = −∞ (as in the case of a concave second-degree polynomial) and 
limx→∞ qε(ω,x) = limx→∞ pε(ω,x) = −∞, uniformly on Ω in both cases. These properties 
mean that qε satisfies all the conditions c1-c4 of [13, Section 3]. Since lε ≥ (x1

ε )− > r , any 
τε-minimal set is contained in Ω × (r,∞), and hence is also a τ̃ε-minimal set for the skew-
product flow τ̃ε defined on Ω ×R by x′ = qε(ω·t, x). Conversely, any τ̃ε-minimal set contained 
in Ω × (r,∞) is also a τε-minimal set. Since qε(ω, r) > 0 and qε(ω,±s) < 0 for all ω ∈ Ω if 
s is large enough, Proposition 2.2 ensures the existence of a τ̃ε-minimal set Mu

ε in Ω × (r,∞)

and of another in Ω × (−∞, r). According to [13, Theorem 3.3], Mu
ε is an attractive hyperbolic 

τ̃ε-copy of the base, and the unique τ̃ε-minimal set above r . The conclusion is that Mu
ε is also 

the unique τε-minimal set. Since its Lyapunov exponents are the same for pε as for qε (due 
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to the equality (pε)x = (qε)x on Ω × (r,∞)), they are negative, and Theorem 2.6 ensures that 
Aε = Mε is an attractive hyperbolic τε-copy of the base, as asserted. Finally, the last assertion 
in (v) follows from the previous ones and (iii). �
Remarks 3.5. 1. Observe that the hypothesis c+ < 3 c− of Theorem 3.4(v) always holds if the 
map c is a positive constant. Otherwise, the range of “allowed” values of c increases as c−
increases. Note also that, if all the conditions assumed in Theorem 3.4(v) hold, then the local 
saddle-node bifurcation at ε = 0 has an extra property: the collision as ε → 0+ of the two ap-
proaching hyperbolic τε-copies of the base is total, giving rise to the nonhyperbolic τ0-copy of 
the base {0}. So, in contrast to the possibly very complex dynamics at the bifurcation values 
ε �= 0 which we will find later (due to the possibly very complex dynamics of the nonhyper-
bolic minimal set), here the dynamics for ε = 0 is simple: a nonautonomous reproduction of 
the autonomous dynamics around ε = 0 of, for instance, x′ = −x3 + x2 − ε. In fact, since 
p0(ω, r) > 0 for all r ∈ (0, c−), it is easy to check that {0} is the α-limit set of the τ0-orbit 
of all (ω, r) ∈ Ω × [0, c−) and that {u0} is the unique τ0-minimal set contained in the ω-limit 
set.

2. If, under the hypotheses of Theorem 3.4, we also assume b ≡ 0, then an easy extension 
of the results of [11] (see also [14]) provides a complete description of the global bifurcation 
diagram of (3.1):

- there are exactly two bifurcation points, 0 and a certain ε∗ > 0;
- the maps (−∞, ε∗) → C(Ω,R), ε �→ uε and (0,∞) → C(Ω,R), ε �→ lε are continuous 

and strictly decreasing, and {uε} (resp. {lε}) is an attractive hyperbolic τε-copy of the base 
for all ε < ε∗ (resp. ε > 0);

- Aε = {lε} = {uε} for ε / ∈ [0, ε∗], with limε→±∞ uε = ∓∞ uniformly on Ω;
- there are three hyperbolic τε-copies of the base for ε ∈ (0, ε∗) given by lε < mε < uε , and 

ε �→ mε is strictly increasing on (0, ε∗);
- and there are two τε minimal sets for ε = 0 (resp. ε = ε∗): {u0} (resp. {lε∗}), which is hyper-

bolic attractive, and a nonhyperbolic one given by the collision of the two lower (resp. upper) 
copies of the base as ε → 0+ (resp. ε → (ε∗)−).

So, the two bifurcations points are of local saddle-node type. The interested reader can find in 
[11, Figure 1] a similar bifurcation diagram, which must be horizontally inverted to get ours. In 
this situation, Theorem 3.4 adds just a little piece of information to these facts: as explained in 
the previous remark, the lower nonhyperbolic minimal set for ε = 0 reduces to the copy of the 
base {0}. Note also that this description shows that the situation that Theorem 3.6(iii) describes 
cannot hold if b ≡ 0.

The hypotheses b ≥ 0 or b > 0, added in the next result, allow us to delve deeper into the 
dynamical changes as ε varies.

Theorem 3.6. Assume that a(ω) < 0, b(ω) ≥ 0 and c(ω) > 0 for all ω ∈ Ω. Then, in addition to 
the information provided by Theorem 3.4,

(i) lε < 0 for all ε > 0, l0 ≡ 0, and lε > s0 > 0 for all ε < 0, where s0 := min( infω∈Ω c(ω), 
infω∈Ω, b(ω)�=0(−a(ω)/b(ω))) if b �≡ 0, and s0 := infω∈Ω c(ω) if b ≡ 0. In particular, there is 
a local saddle-node bifurcation at ε = 0.
14 
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(ii) The continuous map (0,∞) → C(Ω,R), ε �→ lε is strictly decreasing, with limε→0+ lε(ω) =
0 and limε→∞ lε(ω) = −∞, both of them uniformly on Ω.

If, in addition, b(ω) > 0 for all ω ∈ Ω, then

(iii) the set J := {ε+ > 0 | there are three hyperbolic τε-copies of the base for all ε > ε+} is 
nonempty and open, the maps J → C(Ω,R), ε �→ lε, mε, uε are continuous in the uniform 
topology of C(Ω,R), and limε→∞ uε(ω) = ∞ uniformly on Ω. In addition, there exists 
ε0 ≥ infJ such that the continuous map (ε0,∞) → C(Ω,R), ε �→ uε is strictly increasing.

Proof. (i) The two first assertions in (i) (as well as the continuity stated in (ii)) are proved in 
Theorem 3.4(i)-(ii). Let us now define s0 as in the statement of (i), and take r < s0. Then, if 
ε < 0, pε(ω, r) > p0(ω, r) > 0: the first inequality follows from ε (b(ω) r + a(ω)) > 0, and the 
second one from c(ω)−r > 0. This ensures that Aε ⊂ Ω× (s0,∞) (see Remark 2.4.1) and hence 
proves that lε > s0 for all ε < 0. This fact precludes the existence of τε-minimal sets “close” to 
{0} if ε < 0. Consequently, there is a local saddle-node bifurcation at ε = 0, due to the collision 
of lε and mε as ε → 0+: see Theorem 3.4(iii). 

(ii) Since lε < 0 for ε > 0, we have b(ω) lε(ω) + a(ω) < 0 for all ω ∈ Ω. So, if 0 <

ε1 < ε2, then l′ε1
(ω) = pε1(ω, lε1(ω)) > pε2(ω, lε1(ω)), and hence lε1 > lε2 : see Remark 2.4.2. 

Theorem 3.4(v) proves the assertion about limε→0+ lε . Now, we fix r < 0 and note that 
limε→∞ pε(ω, r) = −∞ uniformly on Ω, since a(ω) + b(ω) r ≤ a+ < 0. Hence, there exists 
εr > 0 such that pε(ω, r) < 0 for all ε ≥ εr . According to Remark 2.4.2, lε < r for all ε > εr , 
which proves the last assertion in (ii). 

(iii) The first goal is to find a strictly positive constant providing a global strict lower solution 
if ε > 0 is large enough: as we will see later, the conclusions follow from this property. Note that, 
if ε > 0 and x > 0, then pε(ω,x) ≥ p̄ε(x) := −x3 + c− x2 + ε b− x + ε a− for all ω ∈ Ω. The 
points x+

ε and x−
ε given by

x±
ε =

c− ±
√

c2− + 3 ε b−
3 

are the local minimum and maximum of p̄ε(x), respectively. We observe that x+
ε > 0 and write it 

as x+
ε = (c− + rε)/3, with rε :=

√
c2− + 3 ε b− >

√
3 ε b−. A straightforward computation shows 

that

27 p̄ε(x
+
ε ) = 6 ε b− rε + 9 ε b− c− + 27 ε a− + 2 c2− rε + 2 c3−

> 6
√

3 ε3/2 b
3/2
− + ε (27 a− + 9 b− c−) ,

and hence pε(ω,x+
ε ) ≥ p̄ε(x

+
ε ) > 0 for all ω ∈ Ω if ε > 0 is large enough.

So, for ε > 0 large enough, the constant x+
ε is a global strict lower solution. The expression of 

pε(ω,x) shows that a sufficiently large constant sε > 0 is a global strict upper solution, and 0 is 
a global strict upper solution (due to pε(ω,0) = ε a(ω) < 0). So, Proposition 2.2 ensures the ex-
istence of two minimal sets: Mu

ε ⊂ Ω× (x+
ε ,∞) and Mm

ε ⊂ Ω× (0, x+
ε ). Since Theorem 3.4(ii) 

shows the existence of a third minimal set Ml = {lε} ⊂ Ω × (−∞,0), Theorem 3.1 ensures that 
ε

15 
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Mu
ε = {uε} and it is hyperbolic attractive, and that Mm

ε is a repulsive hyperbolic τε-copy of the 
base, say Mm

ε = {mε}.
Therefore, J is nonempty. It is open, as a consequence of the persistence of hyperbolic 

copies of the base under small variations of ε (see again [14, Theorem 2.3]), which also 
shows the continuity asserted in (iii). In addition, limε→∞ uε(ω) = +∞ uniformly on Ω, since 
uε > x+

ε and limε→∞ x+
ε = ∞. This last property ensures the existence of ε0 ≥ infJ such 

that infω∈Ω uε(ω) ≥ supω∈Ω(−a(ω)/b(ω)) for ε > ε0. So, if ε2 > ε1 > ε0, then u′
ε1

(ω) =
pε1(ω,uε1(ω)) < pε2(ω,uε1(ω)) for all ω ∈ Ω, and hence uε1 < uε2 (see Remark 2.4.2). The 
proof is complete. �
3.1. Four different nonautonomous bifurcation diagrams

The next three results add extra conditions to a < 0, b ≥ 0 with b �≡ 0 and c > 0, related 
to the relative sizes of b c ≥ 0 and a < 0. These conditions can be considered nonautonomous 
extensions of the three possibilities arising in the autonomous case, namely b c+a < 0, b c+a >

0 and b c + a = 0. The three cases which we consider are far away from covering the infinitely 
many possibilities that arise in the nonautonomous case, but there are mathematical models that 
justify their interest, such as the case of the population dynamics that we analyze in Section 4. 
Recall that we assume the existence of a unique σ -invariant measure m on Ω.

Theorem 3.7. Assume that a(ω) < 0, b(ω) ≥ 0, c(ω) > 0, and b(ω) c+ +a(ω) < 0 for all ω ∈ Ω. 
Let I = (0, ε∗) be the open interval of Theorem 3.4(iii). Then, in addition to the information 
provided by Theorems 3.4 and 3.6,

(i) ε∗ ∈ R, the continuous maps I → C(Ω,R), ε �→ lε, −mε, uε are strictly decreasing, and 
mε∗(ω) := limε→(ε∗)− mε(ω) and ūε∗(ω) := limε→(ε∗)− uε(ω) define two semicontinuous 
τε∗ -equilibria which coincide with uε∗(ω) at all ω in a σ -invariant residual subset Rε∗ ⊆
Ω. In particular, there exist exactly two τε∗-minimal sets: {lε∗} ⊂ Ω × (−∞,0), which is 
hyperbolic attractive, and Mε∗ ⊂ Ω × (0, c+), which is nonhyperbolic.

(ii) For all ε < 0, Aε ⊂ Ω × (c−,∞).
(iii) If, in addition, c+ < 3 c−, then Aε = {uε} is the unique τε-minimal set for all ε < 0, it 

is hyperbolic attractive, and the map (−∞, ε∗) → C(Ω,R), ε �→ uε is continuous in the 
uniform topology of C(Ω,R).

Assume also that b(ω) > 0 for all ω ∈ Ω, and define s− := infω∈Ω(−a(ω)/b(ω)) and s+ :=
supω∈Ω(−a(ω)/b(ω)). Then,

(iv) for all ε ≤ 0, uε < s+; there exists ε̄ ≤ 0 such that Aε = {uε} is an attractive hyperbolic copy 
of the base for all ε < ε̄; and if, in addition, c+ < 3 c−, then there exists ε with −∞ ≤ ε < 0
such that ε �→ uε is strictly decreasing on (ε,0).

(v) Let J = (ε∗,∞) be the open set defined in Theorem 3.6(iii). Then, ε∗ < ε∗, mε > s− for 
all ε ∈ J , and there are exactly two τε∗ -minimal sets: {lε∗} and Mε∗ ⊂ Ω × (s−,∞) ⊂
Ω × (c+,∞).

(vi) If, in addition, a/b = −s ∈R, then the maps (ε∗,∞) → C(Ω,R), ε �→ uε, −mε are strictly 
increasing; the maps mε∗(ω) := limε→(ε∗)+ mε(ω) and ūε∗(ω) := limε→(ε∗)+ uε(ω) define 
two semicontinuous τε∗ -equilibria which coincide with uε∗(ω) at all ω in a σ -invariant 
residual subset Rε∗ ⊆ Ω; the continuous map (−∞, ε∗) → C(Ω,R), ε �→ uε is strictly 
16 
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decreasing; limε→−∞ uε(ω) = limε→∞ mε(ω) = s uniformly on Ω; and {lε} is the unique 
τε minimal set for ε ∈ (ε∗, ε∗). So, 0, ε∗ and ε∗ are three bifurcation points, all of them of 
local saddle-node type, and they are the unique ones if c+ < 3 c−.

Proof. (i) In what follows, we use the notation and information of Proposition 3.3. Let us take 
ε0 ∈ I small enough to ensure that, if ε ∈ (0, ε0], then there exist three real roots of pε(ω,x)

which satisfy x3
ε (ω) < 0 < x2

ε (ω) < x1
ε (ω) and x2

ε (ω) < c+ for all ω ∈ Ω, and take ε ∈ (0, ε0]. 
Since pε(ω, c+) = (c+)2(c(ω) − c+) + ε (b(ω) c+ + a(ω)) < 0 if ω ∈ Ω, either c+ < x2

ε (ω) or 
c+ > x1

ε (ω) for each ω ∈ Ω, so that c+ > x1
ε (ω) for all ω ∈ Ω. So, pε(ω, r) < 0 for any r > c+, 

and hence uε < c+: see Remark 2.4.1. Now assume that uε ≤ c+ for ε = ε1, ε2 with 0 ≤ ε1 < ε2. 
Then, u′

ε2
(ω) = pε2(ω,uε2(ω)) > pε1(ω,uε2(ω)), since b(ω) uε(ω) + a(ω) ≤ b(ω) c+ + a(ω) <

0. Hence, uε2 < uε1 ≤ c+ (see Remark 2.4.2). In particular, ε �→ uε strictly decreases on [0, ε0]. 
Let Iu ⊂ I the interval of persistence of this property. There exists δ > 0 such that, for any 
ε ∈ Iu, uε < u0 − δ ≤ c+ − δ. This, the continuity of ε �→ uε on I , and the previously proved 
property, preclude the possibility that supIu < supI , and hence ε �→ uε strictly decreases on I .

The strictly decreasing character of the continuous map ε �→ lε on I ⊆ (0,∞) is proved in 
Theorem 3.6(ii). To check that ε �→ mε is strictly increasing on I , we adapt the argument of the 
proof of Theorem 3.4(iii). First note that, for all ε ∈ I , mε < uε < c+ and hence b(ω) mε(ω) +
a(ω) < 0 for all ω ∈ Ω. So: we fix ε1 ∈ I and take ε2 > ε1 in I close enough to ensure uε1 >

mε2 > lε1 , so that the τε1 -orbit of (ω,mε2(ω)) is above {lε1}; we check that mε2 is a global strict 
lower solution for τε1 ; we use these properties and Remark 2.4.3 to ensure that the α-limit set for 
τε1 of (ω,mε2(ω)) exists and is strictly below the graph of mε2 ; and we deduce that the unique 
τε1 -minimal set contained in this α-limit set is {mε1}, so that mε1 < mε2 .

Now, we assume for contradiction that supI =: ε∗ = ∞. Note that uε > mε > 0 for all ε ∈ I . 
Given any ρ > 0, we take ερ > maxω∈Ω, x∈[−ρ,c+](x3 − c(ω) x2)/(b(ω) x + a(ω)) ≥ 0 (note 
that b(ω) x + a(ω) < 0 if x ≤ c+). Then, pε(ω, r) < 0 for all r ∈ [−ρ, c+] if ε > ερ . Let us 
deduce that uε ≤ −ρ < 0 if ε ≥ ερ , which provides the sought-for contradiction. Recall that 
uε is continuous and uε < c+ for all ε ∈ I = (0,∞). Again for contradiction, we assume that 
maxω∈Ω uε(ω) =: s ∈ (−ρ, c+), and take ω̄ ∈ Ω with uε(ω̄) = s. Then, pε(ω̄,uε(ω̄)) < 0, and 
hence uε(ω̄·t) = vε(t, ω̄,uε(ω̄)) > s for small values of t < 0, which contradicts the definition of 
s. The conclusion is that ε∗ is finite, as asserted.

Recall that ε∗ / ∈ I , since I is open. Therefore, there exists at most a τε∗ -minimal set Mε∗
different from {lε∗} (see Theorems 3.1 and 3.4(ii)), which is nonhyperbolic. The remaining part 
of this proof is very similar to part of that of [11, Theorem 5.10(i)], but we detail it for the 
reader’s convenience. The monotonicity properties of 0 < mε < uε ensure the global existence of 
the limits mε∗ and ūε∗ , with 0 < mε < mε∗ ≤ ūε∗ < uε for ε ∈ I . It is easy to check that they are 
τε∗ -equilibria. Since they are monotone limits of continuous functions, they are semicontinuous 
on Ω: mε∗ is lower semicontinuous and ūε∗ is upper semicontinuous. Let Mm

ε∗ be the minimal 
set associated to mε∗ by (2.3). The lower semicontinuity of mε∗ yields x ≥ mε∗(ω) ≥ 0 for any 
(ω, x) ∈ M. In particular, Mm

ε∗ �= {lε∗} (see Theorem 3.4(ii)), which yields Mm
ε∗ = Mε∗ . The 

nonexistence of a third minimal set, the inequalities mε∗ ≤ ūε∗ ≤ uε∗ , and Proposition 2.1 ensure 
that Mε∗ is also associated to ūε∗ and to uε∗ by (2.3). Of course, x ≤ uε∗(ω) for any (ω, x) ∈
Mε∗ . In particular, mε∗(ω) = ūε∗(ω) = uε∗(ω) for all ω in the residual subset of Ω formed by 
their common continuity points, and hence Mε∗ is contained in 

⋃
ω∈Ω

({ω}× [mε∗(ω),uε∗(ω)]), 
which is a compact τε∗-invariant pinched subset of Ω × (0, c+). 

(ii) Since c− ≤ c+ ≤ −a(ω)/b(ω) for all ω ∈ Ω with b(ω) �= 0, we have c− ≤ s0, where s0 is 
defined in Theorem 3.6(i). This result proves (ii).
17 
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(iii) We fix ε < 0, assume c+ < 3 c−, and proceed in a similar way to the proof of The-
orem 3.4(v): we fix r ∈ (c+/3, c−); we define qε(ω,x) as the C0,2(Ω × R,R) function which 
coincide with pε(ω,x) for x ≥ r and is given by a second degree polynomial for x ≤ r ; we check 
that (∂2/∂x2) qε(ω,x) = −6 r +2 c(ω) ≤ −6 r +2 c+ < 0 for all x ≤ r and (∂2/∂x2) qε(ω,x) =
−6 x + 2 c(ω) < −6 r + 2 c+ < 0 for all x > r ; we deduce that qε satisfies all the conditions 
c1-c4 of [13, Section 3]; we use qε(ω, c−) = pε(ω, c−) > 0 and qε(ω,±s) < 0 for all ω ∈ Ω

if s > c− is large enough to deduce from Proposition 2.2 and [13, Theorem 3.3] the existence 
of exactly one minimal set Mε strictly above Ω × {c−} for the skew-product flow τ̃ε defined 
by x′ = qε(ω·t, x), which is an attractive hyperbolic copy of the base; and we conclude from 
Aε ⊂ Ω× (c−,∞) (proved in (ii)) that Mε is also the unique τε-minimal set, and from the coin-
cidence of the Lyapunov exponents of the minimal sets for both flows which are above Ω×{c−}
and from Theorem 2.6 that Aε = Mε is an attractive hyperbolic copy of the base, i.e., Aε = {uε}. 
The continuity of (−∞, ε∗) → C(Ω,R), ε �→ uε follows, again, from the robustness of the ex-
istence of hyperbolic copies of the base and their continuous variation in the uniform topology 
(see, e.g., [14, Theorem 2.3]).

(iv) Let us take ε < 0. If r ≥ s+, then pε(ω, r) = r2(c(ω) − r) + ε (b(ω) r + a(ω)) < 0, 
since b(ω) r + a(ω) ≥ b(ω) s+ + a(ω) ≥ 0 and c(ω) − r ≤ c(ω) − s+ ≤ c+ + a(ω)/b(ω) < 0. 
According Remark 2.4.2, uε < s+, as asserted. Our next goal is to check that, if −ε is large 
enough, then all the Lyapunov exponents of Aε are strictly negative: according to Theorem 2.6, 
this property proves that Aε = {uε} is an attractive hyperbolic copy of the base. As explained in 
Section 2.2, it suffices to check that

∫
Ω 

(pε)x(ω,bε(ω)) dm =
∫
Ω 

(−3(bε(ω))2 + 2 bε(ω) c(ω) + ε b(ω)) dm < 0

for any m-measurable equilibrium bε : Ω → R with graph contained in Aε. Since c− ≤ bε ≤ s+
for any such τε-equilibrium bε , and since b− > 0, the inequality holds if −ε > 0 is large enough, 
say ε < ε̄ < 0. On the other hand, according to Theorem 3.4, u0 ≤ c+ (and hence u0 < s−) and 
if, in addition, c+ < 3 c−, then ε �→ uε ∈ C(Ω,R) is continuous at ε = 0. So, there exists ε ≤ 0
(perhaps ε = −∞) such that, if ε ∈ (ε,0), then uε(ω) ≤ s− for all ω ∈ Ω. It is easy to deduce 
that, if ε < ε1 < ε2 ≤ 0, then u′

ε2
(ω) = pε2(ω,uε2(ω)) < pε1(ω,uε2(ω)) for all ω ∈ Ω, and hence 

uε2 < uε1 (see once more Remark 2.4.2). 

(v) It is clear that ε∗ does not belong to J , since according to (i) there are exactly two τε∗ -
minimal sets. This ensures that ε∗ ≤ ε∗. In addition, there exist at most two τε∗-minimal sets, 
since ε∗ / ∈ J . We will check below that there are indeed two of them: {lε∗} (which is hyperbolic 
attractive and below Ω × {0}, as proved by Theorem 3.4(ii)) and Mε∗ , which is above Ω × {s−}
for s− := infω∈Ω(−a(ω)/b(ω)) > c+. Since, as seen in (i), Mε∗ is below Ω×{c+}, we conclude 
that ε∗ < ε∗. The proof will also show that mε > s− for all ε ∈ J , and this completes the list of 
assertions in (v).

It is easy to check that pε(ω, s−) < 0 for all ω ∈ Ω if ε > 0. So, s− is a global strict upper solu-
tion for τε . On the other hand, since limε→∞ uε(ω) = ∞ uniformly on Ω (see Theorem 3.6(iii)), 
there exists a minimum ε1 ≥ ε∗ such that uε(ω) ≥ s− for all ω ∈ Ω if ε > ε1. These properties, 
combined with lε < 0 < s− for all ε > 0 (see Theorem 3.4(ii)) mean that, for any fixed ω ∈ Ω

and all ε ≥ ε1, the map t �→ vε(t,ω, s−) is globally bounded, and that Ω×{s−} is always strictly 
above the ω-limit set of (ω, s−) and strictly below its α-limit set: see Remark 2.4.3. Remark 2.5
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ensures that the α-limit set cannot contain {uε}. Hence it necessarily contains {mε}, and the ω-
limit set contains the unique τε-minimal set below {mε}, which is {lε}. In particular, mε > s− for 
all ε > ε1. Let us check that ε1 = ε∗, assuming for contradiction that ε1 > ε∗. Using the continu-
ity of ε �→ uε on J ensured by Theorem 3.6(iii), we deduce that uε1(ω) ≥ s− for all ω ∈ Ω, and 
that there exists ω0 ∈ Ω such that uε1(ω0) = s−. But, as just seen, this yields uε1 > mε1 > s−, 
which provides the contradiction. Altogether, we have mε > s− > lε for all ε ∈ J .

Note that we have proved that Ω × {s−} ⊂ Aε for all ε > ε∗. Since there exists ρ >

0 such that s− < mε < uε ≤ ρ for all ε ∈ (ε∗, ε∗ + 1], we conclude that vε∗(t,ω, s−) =
limε→(ε∗)+ vε(t,ω, s−) ≤ ρ for all t < 0 and ω ∈ Ω. So, lε∗ < s− ≤ uε∗ , and hence, as seen 
above, there exists the α-limit set of any point (ω, s−) for τε∗ and it is strictly above Ω × {s−}. 
Hence, there exists a τε∗-minimal set contained in Ω × (s−,∞), as asserted. 

(vi) Assume that −a(ω)/b(ω) = s, constant. Let us first analyze the situation in (ε∗,∞). 
Recall that uε > mε > s if ε > ε∗: see (v). An argument similar to that of the first (resp. sec-
ond) paragraph of the proof of (i) proves that ε �→ uε (resp. ε �→ −mε) is strictly increasing 
on (ε∗,∞). In particular, there exist the pointwise limits ūε∗ := limε→(ε∗)+ uε and mε∗ :=
limε→(ε∗)+ mε , whose additional properties are checked as those of ūε∗ and mε∗ in (i). Let 
us prove that limε→∞ mε(ω) = s uniformly on Ω. We take δ > 0 such that, for an ε2 > ε∗, 
lε < 0 < s + δ < uε if ε > ε2, and work for these values of ε. Note that pε(ω, s + δ) =
(s + δ)2(c(ω) − s − δ) + ε b(ω) δ, so that s + δ is a global strict lower solution if ε > 0 is 
large enough. According to Remark 2.4.3, Ω × {s + δ} is strictly above a τε-minimal set con-
tained in the α-limit set of a point (ω, s + δ) (that exists since this point belongs to Aε), which 
is necessarily {mε}, as Remark 2.5 guarantees. That is, s ≤ mε ≤ s + δ if ε is large enough, and 
this proves the assertion.

Let us now analyze the situation for ε ∈ (−∞, ε∗). First of all, we check that limε→−∞ uε(ω) 
= s uniformly on Ω. For δ > 0, pε(ω, s − δ) = (s − δ)2(c(ω) − s + δ) − ε b(ω) δ, so s − δ is a 
global strict lower solution if −ε > 0 is large enough. According to Remark 2.4.3, Ω×{s − δ} is 
strictly below a τε-minimal set contained in the ω-limit set of a point (ω, s − δ); and, according 
to (iv), this τε-minimal set is necessarily {uε} if ε < ε̄. That is, s − δ < uε < s if −ε > 0 is large 
enough (see (iv)), which proves the assertion. To check that ε �→ uε is strictly decreasing on 
(−∞, ε∗), we repeat the argument of (iv), which is possible since, by (iv) and (i), uε < s for all 
these values of ε. (Recall that, in addition, Aε = {uε} for all ε ≤ 0 if c+ < 3 c−: see (iii).)

Let us see what happens for ε ∈ (ε∗, ε∗). We fix ε̄ ∈ (ε∗, ε∗). As a first step, we will check 
that Aε̄ ⊂ Ω × (−∞, s); i.e., that s > uε̄(ω) for all ω ∈ Ω. Since lε̄ < 0 (see Theorem 3.4(ii)), 
it suffices to assume that the τε̄-orbit of a point (ω0, s) is bounded (i.e., that s ≤ uε̄(ω)) and 
reach a contradiction. Since pε̄(ω, s) = s2 (c(ω) − s) < 0, s is a constant strict upper solution 
for τε̄ . Then, as seen in the proof of (v), Ω × {s} is strictly above the ω-limit set of (ω0, s), 
which ensures that s < uε̄ . So, we can repeat once again the argument of (iv) to check that 
ε �→ uε is strictly increasing on (ε̄,∞). In particular, the τε-orbit of (ω0, s) is bounded for all 
ε ≥ ε̄. Let ω̄ be a continuity point of the semicontinuous map uε∗ , so that (Mε∗)(ω̄) = {uε∗(ω̄)}
(see Proposition 2.1). The α-limit set of (ω0, s) for τε∗ contains a minimal set which cannot 
be hyperbolic attractive (see again Remark 2.5), so it is Mε∗ . That is, there exists (tn) ↓ −∞
such that (ω̄,uε∗(ω̄)) = limn→∞(ω0·tn, vε∗(tn,ω0, s)). We can assume without restriction the 
existence of x̄ := limn→∞ vε̄(tn,ω0, s), and observe that x̄ ≤ uε̄(ω̄), since vε̄(t, ω̄, x̄) is bounded 
(vε̄(t, ω̄, x̄) = limn→∞ vε̄(tn + t,ω0, s)). Then, since vε̄(t,ω0, s) > vε∗(t,ω0, s) for all t < 0 (as 
we deduce from pε̄(ω, r) < pε∗(ω, r) for all ω ∈ Ω if r ≥ s and from vε(t,ω0, s) > s for all 
t < 0 and all ε > 0), we can conclude that x̄ ≥ uε∗(ω̄) > uε̄(ω̄), which provides the sought-for 
contradiction.
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So, we have Aε̄ ⊂ Ω × (−∞, s). Now we assume for contradiction the existence of a τε̄-
minimal set Nε̄ > {lε̄}. We choose a point ω̄ ∈ Ω at which the sections of Mε∗ and Nε̄ are single-
tons: (Mε∗)ω̄1 = {uε∗(ω̄)} = {mε∗(ω̄)} and (Nε̄)ω̄ = {x̄}, so that x̄ ∈ (lε(ω̄), s). The information 
regarding monotonicity, continuity, limiting behavior as ε → −∞, and the shape of Mε∗ pro-
vided so far, allows us to choose an ε0 < ε̄ and a unique (bounded) τε-equilibrium, say bε0 , such 
that bε0(ω̄) = x̄: if x̄ ∈ (lε(ω̄),0], then ε0 ∈ [0, ε̄) and bε0 = lε0 ; if x̄ ∈ (0,mε∗(ω̄)) = (0,uε∗(ω̄)), 
then ε ∈ (0, ε∗) and bε0 = mε0 ; and if x̄ ∈ [uε∗(ω̄), s), then ε0 ∈ (−∞, ε∗] and bε0 = uε0 . In any 
case, bε0 is a global strict upper solution for τε̄, since b′

ε0
(ω) = pε0(ω,bε0(ω)) > pε̄(ω,bε0(ω))

due to the inequality bε < s. As explained in Remark 2.4.3, this ensures that the ω-limit of the 
point (ω̄,bε0(ω̄)) = (ω̄, x̄) (which is, of course, Nε̄) is strictly below the graph of bε0 . This fact 
precludes (ω̄, x̄) ∈ Nε̄ and provides the sought-for contradiction.

The assertions of the last sentence of (vi) follow from the previous description and Theorems 
3.6(i) and 3.4(v). �

Fig. 1 provides a depiction of the “three saddle-node bifurcation diagram” of (3.1) under the 
most restrictive conditions of Theorem 3.7. It is interesting to remark that the dynamics of the 
nonhyperbolic minimal sets Mε∗ and Mε∗ at the bifurcation points ε∗ and ε∗ can be extremely 
complicated, even with the occurrence of SNAs described, for instance, in [27], [38], [21,22] 
(based on the classical examples of [36,37], [51] and [25]). A more detailed description of these 
dynamical possibilities can be easily adapted to this case from that made in [11, Proposition 
5.11]. In particular, as there explained, the measure m of the residual subsets Rε∗ and Rε∗

of Ω
at whose points the upper and lower equilibria of Mε∗ and Mε∗ respectively collide can be 0 or 1.

Theorem 3.8. Assume that a(ω) < 0, b(ω) > 0, c(ω) > 0 and b(ω) c− + a(ω) > 0 for all ω ∈ Ω, 
and call s+ := supω∈Ω(−a(ω)/b(ω)) and s− := infω∈Ω(−a(ω)/b(ω)). Then, in addition to the 
information provided by Theorems 3.4 and 3.6,

(i) for all ε > 0, there are three hyperbolic copies of the base, with lε < 0 < mε < s+ < uε . 
That is, I = (0,∞), where I is defined in Theorem 3.4(iii). In addition, the maps (0,∞) →
C(Ω,R), ε �→ −lε,uε are strictly increasing; and there exists ε∗ with 0 < ε∗ ≤ ∞ such 
that the map (0, ε∗) → C(Ω,R), ε �→ mε is strictly increasing. In particular, there are no 
strictly positive bifurcation values. 

(ii) For all ε < 0, Aε ⊂ Ω × (s−, c+); there exists ε∗ with −∞ ≤ ε∗ < 0 such that the map 
(ε∗,∞) → C(Ω, (s−, c+)), ε �→ uε is strictly increasing; and there exists ε0 ≤ 0 such that 
Aε is an attractive hyperbolic copy of the base for ε ∈ (−∞, ε0).

(iii) If, in addition, c+ < 3 s−, then ε0 = 0. Hence, {uε} is an attractive hyperbolic copy of the 
base for all ε ∈ R and the map R→ C(Ω,R), ε �→ uε is continuous. Consequently, in this 
case, 0 is the unique bifurcation value, of local saddle-node type.

(iv) If, in addition, a/b = −s ∈ R, then ε∗ = ∞ and ε∗ = −∞; the map (−∞,0) →
C(Ω, (s, c+)), ε �→ lε is strictly increasing; and limε→−∞ uε(ω) = limε→∞ mε(ω) = s

uniformly on Ω. There are three possibilities for ε ∈ (−∞,0):
- Aε = {uε} is an attractive hyperbolic copy of the base for all ε < 0, in which case the 

map R→ C(Ω,R), ε �→ uε is continuous, and 0 is the unique bifurcation value, of local 
saddle-node type. (This happens if c+ < 3 s.)

- There exist ε < ε̄ < 0 such that: there are three τε hyperbolic copies of the base for any 
ε ∈ (ε, ε̄); Aε is an attractive hyperbolic copy of the base for ε ∈ (0,∞) − [ ε, ε̄ ]; there 
are two τε-minimal sets, {lε} (which is hyperbolic attractive) and a nonhyperbolic one 
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Fig. 1. The figure in the left depicts the bifurcation diagram of the ε-parametric family (3.1) when c > 0, c+ < 3c− , b > 0, 
a = −s b for a constant s > 0, and b c+ + a < 0, which is described in Theorem 3.7 in combination with Theorems 3.4
and 3.6. The three strictly monotone solid red curves represent the families of attractive hyperbolic copies of the base that 
determine the upper and lower equilibria of the global attractor. The two strictly monotone dashed blue curves represent 
the families of repulsive hyperbolic copies of the base. The light grey arrows partly depict the dynamics of the rest of 
the orbits. There are three bifurcation points, all of them of saddle-node type: ε = 0, where mε and lε globally collide 
on 0; and ε∗ and ε∗, where mε and uε partly collide, giving rise to semicontinuous but perhaps noncontinuous maps. 
This fact is depicted by two large green points, and explained for ε∗ in the zoom at the right. (Figs. 2 and 3 will also use 
“large green points” to depict similar situations, as well as red and blue curves, and grey arrows.) (For interpretation of 
the colors in the figure(s), the reader is referred to the web version of this article.)

given by the collision of {uε} and {mε} as ε → (ε)+; there are two τε̄-minimal sets, {uε̄}
(which is hyperbolic attractive) and a nonhyperbolic one given by the collision of {lε} and 
{mε} as ε → (ε̄)−; the maps (−∞, ε̄) → C(Ω,R), ε → lε and (ε,0) → C(Ω,R), ε →
uε are continuous and strictly increasing; and the map (ε, ε̄) → C(Ω,R), ε → mε is 
continuous and strictly decreasing. So, there are exactly three bifurcation values, ε, ε̄
and 0, all of them of local saddle-node type.

- There is a unique negative value ε1 < 0 such that {uε1} is not a hyperbolic copy of the 
base, in which case Aε1 is a pinched set containing a unique τε1-minimal set.

Proof. (i) If ε ≥ 0, then pε(ω, s+) = (s+)2(−s+ + c(ω)) + ε (b(ω) s+ + a(ω)) > 0, since 
b(ω) s+ + a(ω) ≥ 0 for all ω ∈ Ω and c− > −a(ω)/b(ω) for all ω (and hence c(ω) ≥ c− >

s+). In addition, pε(ω,0) = ε a(ω) < 0 if ε > 0. We fix ε > 0, look for r1 < 0 < s+ < r2

with pε(ω, r1) > 0 and pε(ω, r2) < 0 for all ω ∈ R, and deduce the first assertion in (i) 
from Proposition 2.2 and Theorem 3.1. If 0 < ε1 < ε2, then u′

ε1
(ω) < pε2(ω,uε1(ω)) (since 

b(ω) uε1(ω) + a(ω) > b(ω) s+ + a(ω) ≥ 0), and hence, as explained in Remark 2.4.2, uε1 < uε2 : 
ε �→ uε is strictly increasing on (0,∞). To prove the monotonicity of ε �→ mε , we use an ar-
gument analogous to that of the last paragraph in the proof of Theorem 3.4(iii), working on the 
interval (0, ε∗) (perhaps (0,∞)) on which b(ω) mε(ω)+ a(ω) < 0: this happens if mε < s−, and 
hence at least for small values of ε > 0, since limε→0+ mε(ω) = 0 uniformly on Ω. The lack of 
strictly positive bifurcation values of ε is a trivial consequence of the previous properties. 

(ii) Let us fix ε < 0. By hypotheses, s− = s0, with s0 defined in Theorem 3.6(i), and this 
result ensures that Aε ⊂ Ω × (s−,∞). In addition, if r ≥ c+, then pε(ω, r) < 0 for all ω ∈ Ω, 
since c(ω) − r ≤ 0 and b(ω) r + a(ω) ≥ b(ω) c− + a(ω) > 0. According to Remark 2.4.1, Aε ⊂
Ω × (s−, c+).
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Since {u0} is a hyperbolic copy of the base and u0 ≥ c− > s+ (see Theorem 3.4(i)), the 
persistence ensured by [14, Theorem 2.3] guarantees the existence of a hyperbolic copy of 
the base strictly greater than s+ for ε < 0 close enough to 0, and hence the definition of uε

shows that uε > s+ for these values of ε. Let (ε∗,0) ⊆ (−∞,0) be the interval of persistence 
of this property (on which we cannot guarantee the continuity of uε). If ε∗ < ε1 < ε2 < 0, 
then u′

ε1
(ω) < pε2(ω,uε1(ω)) (since b(ω) uε1(ω) + a(ω) > b(ω) s+ + a(ω) ≥ 0), and hence Re-

mark 2.4.2 ensures that uε1 < uε2 , as asserted.
Let us check that Aε is an attractive hyperbolic copy of the base if −ε is large enough. We 

deduce from b− > 0 that 
∫
Ω
(pε)x(ω,bε(ω)) dm < 0 for all m-measurable equilibrium bε : Ω →

(s−, c+) (i.e., with graph contained in Aε) if, let’s say, ε < ε0 < 0. As explained in the proof of 
Theorem 3.7(iv), this ensures that all the Lyapunov exponents of the global attractor are strictly 
negative, and hence the assertion follows from Theorem 2.6. 

(iii) Let us assume that c+ < 3 s−. To check the first assertion in (iii), we use again an ar-
gument similar to that used in the proofs of Theorems 3.4(v) and 3.7(iii). We fix ε < 0; we 
define qε(ω,x) as the C0,2(Ω × R,R) function which coincides with pε(ω,x) for x ≥ s− and 
is given by a second degree polynomial for x ≤ s−; we check that (∂2/∂x2) qε(ω,x) < 0 for 
x ≥ s− and for x < s−; and we deduce from this and its shape that qε satisfies all the conditions 
c1-c4 of [13, Section 3]. In addition, s− is a strict global lower solution for our ε < 0, since 
qε(ω, s−) = pε(ω, s−) > 0 (which follows from s− < c+). Hence, there exists exactly a minimal 
set Mu

ε for the skew-product flow τ̃ε defined by x′ = qε(ω·t, x), and it is hyperbolic attractive 
and strictly above Ω × {s−}. Since any τε-minimal set is strictly above Ω × {s−}, Mu

ε is the 
unique one, and since its Lyapunov exponents are the same for pε as for qε (i.e., negative), then 
Theorem 2.6 ensures that Aε = Mε is an attractive hyperbolic copy of the base, Aε = {uε}. The 
usual persistence argument shows the continuity of ε �→ uε on R, and the last assertion in (iii) is 
a consequence of the previous analysis. 

(iv) Let us assume that a/b = −s ∈ R. By reviewing the proofs of (i) and (ii), we see that 
ε∗ = ∞ (since s− = s+ and hence mε < s− for all ε > 0) and ε∗ = −∞ (since s+ = s− and 
hence uε > s+ for all ε < 0). We fix ε1 < ε2 < 0 and deduce from lε2 > s− = s+ (see (ii)) that 
l′ε2

(ω) > pε1(ω, lε2(ω)) for all ω ∈ Ω, so lε2(ω) > lε1(ω) (see Remark 2.4.2). Let us check that 
limε→∞ mε(ω) = s uniformly on Ω. We take δ > 0. Since pε(ω, s − δ) = (s − δ)2(c(ω) − s +
δ) − ε b(ω) δ, we have that s − δ is a global strict upper solution if ε > 0 is large enough, and 
(ω, s − δ) ∈ Aε for all ω ∈ Ω and a large enough ε (see (i)), Remark 2.4.3 shows that, for these 
values of ε, Ω × {s − δ} is strictly below a τε-minimal set contained in the α-limit set of a point 
(ω, s − δ), which according to Remark 2.5 is necessarily {mε}. That is, mε > s − δ if ε is large 
enough, which combined with mε < s proves the assertion. A similar argument, working with 
s + δ, shows that limε→−∞ uε(ω) = s uniformly on Ω.

The property Aε ⊂ Ω× (s, c+) for any ε < 0 (see (iii)) allows us to check that, if ε1 < ε2 < 0, 
any τε1 -equilibrium is a global strict lower solution for τε2 , and any τε2 -equilibrium is a global 
strict upper solution for τε1 . These properties are required several times in the steps leading to a 
detailed proof of the remaining assertions, which we only sketch.

Let us assume the existence of an ε1 < 0 such that Aε1 is not a hyperbolic copy of the base 
(which, according to (iii), ensures that ε0 ≤ ε1 and is not possible if c+ < 3 s). To start with, we 
also assume that there are three τε1 -minimal sets. We call I the maximal interval containing ε1 at 
which this property holds. We know that I ⊂ [ε0,0] (see point (ii) and Theorem 3.4(i)), and that 
it is open. This property and those mentioned in the previous paragraph allow us to repeat the 
arguments leading to the proof of [11, Theorem 5.10] to conclude the existence of ε and ε̄ with 
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Fig. 2. The two panels represent two of the three possibilities for the bifurcation diagram of the ε-parametric family 
(3.1) when c > 0, b > 0, a = −s b for s ∈ (0,∞), and s < c. See Theorem 3.8 (in combination with Theorems 3.4 and 
3.6) for the results, and the caption of Fig. 1 for the meaning of the different elements. In the left panel, there are three 
bifurcation values of the parameter, all of them of local saddle-node type. In the right panel, the purple point over ε1
depicts a pinched attractor containing a unique nonhyperbolic τε1 -minimal set. In the non depicted bifurcation diagram, 
which holds at least if, in addition, c < 3s, a solid red upper continuous curve would represent the evolution of uε as ε
varies in R, and hence ε = 0 would be the unique bifurcation value, of local saddle-node type.

ε0 ≤ ε < ε1 < ε̄ ≤ 0 satisfying the stated properties. To check that ε̄ < 0, it is enough to observe 
that the lower τε̄-minimal set is strictly above {0}, which is the lower τ0-minimal set (see again 
Theorem 3.4(i)).

Now we assume that there are exactly two τε1 -minimal sets. According to [11, Theorem 
5.13(iii)], one of them is hyperbolic attractive. This allows us to repeat the arguments of [11, 
Theorem 5.12] to conclude the existence of three τε2 -minimal sets for an ε2 < 0 close to ε1, and 
hence we are in the same situation of the previous paragraph (being in this case ε1 one of the two 
negative bifurcation values).

The remaining case is that Aε1 , which is not a hyperbolic copy of the base, contains just one 
τε1 -minimal set, which is necessarily nonhyperbolic: see Theorem 2.6(iii). The previous analysis 
shows that there exists just one τε-minimal set for any ε < 0, and hence we can reason as in [11, 
Theorems 5.14 and 5.15] to conclude that the situation is the last one described in the statement 
of the theorem. �

It is easy to find autonomous examples of the three cases described in the previous point (iv), 
what makes sense of this case study. Fig. 2 depicts two of these three bifurcation diagrams of 
(3.1), appearing under the most restrictive conditions of Theorem 3.8.

The hypotheses of the next theorem are considerably more restrictive than those of the previ-
ous ones. We include this result by completeness, and point out that it completes the description 
of all the possibilities for the bifurcation diagrams in the autonomous case with c > 0, b > 0
and a < 0. Recall that ε0 is a (nonautonomous) local transcritical bifurcation point when two 
hyperbolic copies of the base exist for close values of ε and approach each other as ε → (ε0), 
giving rise to a locally unique τε0-minimal set, which is nonhyperbolic.

Theorem 3.9. Assume that b(ω) > 0, c(ω) ≡ s > 0 (constant), and a(ω) = −s b(ω) for all ω ∈
Ω. Let ε∗ := supI , with I defined in Theorem 3.4(iii). Then, ε∗ = s2/

∫
Ω

b(ω) dm. In addition, 
{s} is a τε-copy of the base for all ε ∈ R, it is hyperbolic attractive with s = uε if and only if 
ε < ε∗, and it is hyperbolic repulsive with s < uε if and only if ε > ε∗. More precisely, in addition 
to the information provided by Theorems 3.4 and 3.6,
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(i) if ε < 0, then Aε = {s}, and it is hyperbolic attractive.
(ii) There exist exactly two τ0-minimal sets: {l0} = {0}, which is nonhyperbolic, and {u0} = {s}, 

hyperbolic attractive.
(iii) If ε > 0 and ε �= ε∗, there are three hyperbolic copies of the base, given by lε < mε < s for 

ε ∈ (0, ε∗) and by lε < s < uε for ε > ε∗.
(iv) There exist exactly two τε∗ -minimal sets: {lε}, which is hyperbolic attractive, and {s}, non-

hyperbolic.
(v) The maps [0,∞) → C(Ω,R), ε �→ −lε , [0, ε∗) → C(Ω,R), ε �→ mε (with m0 := 0), and 

(ε∗,∞) → C(Ω,R), ε �→ uε are continuous and strictly increasing. In addition, the semi-
continuous maps uε∗ and mε∗ := limε→(ε∗)− mε take the value s at their continuity points.

Therefore, there exist exactly two bifurcation points: 0, of local saddle-node type, and ε∗, of local 
transcritical type.

Proof. Note that the hypotheses guarantee that pε(ω,x) = (x − s) (−x2 + ε b(ω)). Since 
pε(ω, s) = 0 for all ω ∈ Ω and ε ∈ R, {s} is a τε-copy of the base; and the remaining initial as-
sertions follow from the fact that 

∫
Ω

px(ω, s) dm = −s2 + ε
∫
Ω

b(ω) dm is its unique Lyapunov 
exponent: see Section 2.2. 

(i) For ε < 0, pε(ω, r) < 0 for all ω ∈ Ω if r > s and pε(ω, r) > 0 for all ω ∈ Ω if r < s. So, 
Remark 2.4.1 shows that Aε = {s}. 

(ii) Since {s} is an attractive hyperbolic τ0-copy of the base, Theorem 3.4(i) proves (ii). 

(iii) For ε ∈ (0, ε∗), lε < 0 determines an attractive hyperbolic copy of the base (see Theo-
rem 3.4(ii)), and s another one. Hence, there exists a repulsive hyperbolic copy of the base, {mε}, 
with lε < mε < s: see Theorem 3.1. For ε > ε∗, {lε} provides an attractive hyperbolic copy of 
the base and {s} a repulsive one, with lε < s. Hence, Theorem 3.1 ensures that {uε} is also an 
attractive hyperbolic copy of the base above {s}. 

(iv) Theorem 3.4(ii) shows that {lε∗} is an attractive hyperbolic τε∗-copy of the base. Since {s}
is a nonhyperbolic one, there are no more: see Theorem 3.1.

(v) Theorem 3.6(ii) proves the assertions concerning lε. Note now that the sets I of The-
orem 3.4(iii) and J of Theorem 3.6(iii) are (0, ε∗) and (ε∗,∞). Since uε > s for ε > ε∗, 
we get (uε1)

′(ω) ≥ pε2(ω,uε1(ω)) for all ω ∈ Ω if ε∗ < ε1 < ε2. According to Remark 3.2, 
this ensures that uε1 < uε2 . This fact combined with Theorem 3.6(iii) proves the assertions 
concerning uε on (ε∗,∞). By reasoning as in the proof of Theorem 3.4(iii), we check that 
(0, ε∗) → C(Ω,R), ε �→ mε is strictly increasing, which combined with Theorem 3.4(iii) proves 
the assertions concerning uε on [0, ε∗). The monotonicity properties ensure the existence of 
the limits limε→(ε∗)+ uε ≥ s and limε→(ε∗)− mε ≤ s, and that they provide semicontinuous τε∗-
equilibria, and Proposition 2.1 ensures that they coincide with s at their continuity points. �

The bifurcation diagram described in Theorem 3.9 is depicted in Fig. 3.

Remark 3.10. For further purposes, we point out that the complete analysis can be repeated for 
if we change (3.1) by x′ = d(ω) pε(ω,x) with d : Ω → (0,∞) continuous and pε given by (3.2). 
In fact, d does not have influence on the global shape of the bifurcation diagram in the analysed 
cases: they still depend on the relation between c and −b/a.
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Fig. 3. The bifurcation diagram of the ε-parametric family (3.1) when c = s for s ∈ (0,∞), b > 0 and a = −s b. In 
this case, 0 is a local saddle-node bifurcation point, and ε∗ := s2/

∫
Ω b(ω) dm is a transcritical bifurcation point. This 

is proved in Theorem 3.9, combined with Theorems 3.4 and 3.6. The meaning of the different elements is explained in 
Fig. 1.

We complete the description of these bifurcation diagrams by pointing out that the bifurcation 
values ε∗ and ε∗ of Fig. 1, ε, ε̄ and 0 (resp. 0) of the left (resp. right) panel of Fig. 2, and 0 of 
Fig. 3, are points of discontinuity of the map ε → Aε , in the sense explained in [8, Chapter 3]. 
(In fact, the map is upper-semicontinuous but not lower-semicontinuous at those points.)

3.2. The results for an ε-parametric family of ODEs

The results obtained so far in Section 3 provide a wealth of information about the evolution 
of the dynamics induced by the ε-parametric family of ODEs

x′ = p̄ε(t, x) , (3.4)

where ε varies in R and

p̄ε(t, x) := −x3 + c̄(t) x2 + ε 
(
b̄(t) x + ā(t)

)
for bounded and uniformly continuous maps c̄, b̄, ā : R→R such that the corresponding hull is 
minimal and uniquely ergodic.

More precisely, let Ω be the joint hull of ω̄ := (c̄, b̄, ā), defined as the closure in the compact 
open topology of C(R,R3) of the time-shifts ωt = (c̄t , b̄t , āt ) (see Section 2.3), and let us define 
c(ω) = ω1(0), b(ω) = ω2(0) and a(ω) = ω3(0) for ω = (ω1,ω2,ω3) ∈ Ω. Note that c(ω̄t ) =
c̄(t), b(ω̄t ) = b̄(t) and a(ω̄t ) = ā(t). That is, (3.4) is one of the elements of the family

x′ = −x3 + c(ωt ) x2 + ε 
(
b(ωt ) x + a(ωt )

)
, ω ∈ Ω . (3.5)

There are well-known conditions ensuring the minimality and unique ergodicity of the time-shift 
flow on Ω, what we assume from now on. For instance, this is the case if c̄, b̄, ā : R → R are 
almost periodic functions.

Let us represent by (3.4)ε the equation corresponding to the value ε. The analysis of the 
global dynamics induced by (3.4)ε requires the analysis of the set Bε of bounded solutions of 
(3.4)ε , which is closely related to the attractor Aε of (3.5)ε: if lε and uε are the lower and 
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upper bounded equilibria, and if lε(t) = lε(ω̄·t) and uε(t) = uε(ω̄·t) (for ω̄ = (c̄, b̄, ā)), then 
Bε := {(t, x) | lε(t) ≤ x ≤ uε(t)}. This is a consequence of Theorem 2.3. The analysis also re-
lies on the number and type of hyperbolic solutions. Recall that a bounded solution b(t) of 
(3.4)ε is hyperbolic attractive (resp. hyperbolic repulsive) if there exist k ≥ 1 and γ > 0 such 

that exp
(∫ t

s
(p̄ε)x(r, b(r)) dr

)
≤ ke−γ (t−s) whenever t ≥ s (resp. exp

(∫ t

s
(p̄ε)x(r, b(r)) dr

)
≤

keγ (t−s) whenever t ≤ s). According to, e.g., [13, Theorems 5.3 and 5.6], (3.4)ε has at most three 
hyperbolic solutions, in which case lε and uε are hyperbolic attractive and the “middle one” is re-
pulsive. In this case, the dynamics of (3.4)ε is completely determined by its hyperbolic solutions: 
see, e.g., [13, Theorem 5.6].

It is easy to establish conditions on c̄, b̄ and ā which are equivalent to the hypotheses on c, b
and a required in Theorems 3.4, 3.6, 3.7, 3.8 and 3.9:

- the conditions c > 0, a < 0, b ≥ 0 and b > 0 hold if and only if inft∈R c̄(t) > 0, 
supt∈R ā(t) < 0, inft∈R b̄(t) ≥ 0 and inft∈R b̄(t) > 0, respectively;

- the conditions b(ω) c+ + a(ω) < 0, b(ω) c− + a(ω) > 0, c+ < 3 c− and c+ < 3 s− for s− =
infω∈Ω(−a(ω)/b(ω)) are equivalent to supt∈R c̄(t) < inft∈R(−ā(t)/b̄(t)), inft∈R c̄(t) >

supt∈R(−ā(t)/b̄(t)), supt∈R c̄(t) < 3 inft∈R c̄(t) and supt∈R c̄(t) < 3 inft∈R(−ā(t)/b̄(t)), 
respectively;

- and the equality a = −s b for a constant s ∈ R holds if and only if ā = −s b̄.

Let us give an example of how to apply the previous results to the analysis of the parametric 
variation of (3.4). (Another one, more precise, will be given in Section 4.)

Proposition 3.11. Let us assume that inft∈R c̄(t) > 0, inft∈R b̄(t) > 0, ā(t) = −s b̄(t) for a con-
stant s ∈ (0,∞) and all t ∈ R, and inft∈R c̄(t) > s. Then,

(i) l0 is an attractive hyperbolic solution of (3.4)0 and u0 is a nonhyperbolic solution, with 
inft∈R c̄(t) < u0(t) < supt∈R c̄(t). In addition, u0(t) − c(t) changes sign at the points of a 
strictly increasing two-sided sequence (sn)n∈Z.

(ii) For all ε > 0, (3.4)ε has three hyperbolic solutions lε < mε < uε , with lε < 0 < mε <

s < uε , with lε and uε attractive and mε repulsive. In addition, limε→∞ uε(t) = ∞, 
limε→∞ lε(t) = −∞, limε→∞ mε(t) = s and limε→0+(uε(t) − u0(t)) = limε→0+ lε(t) =
limε→0+ mε(t) = 0, all of them uniformly on R, and the maps (0,∞) → C(R,R), ε �→
−lε,mε,uε are strictly increasing.

(iii) For all ε < 0, Aε ⊂ Ω × (s, supt∈R c̄(t)); the map (∞,0] → R, ε �→ uε is strictly increas-
ing; and there exists ε0 ≤ 0 such that, for ε ∈ (−∞, ε0), there is a unique bounded solution 
(given by lε = uε), which is hyperbolic attractive. If, in addition, supt∈R c̄(t) < 3 s, then 
ε0 = 0,

(iv) There are three possibilities for ε < 0:
- the value ε0 of (iii) is 0. (This is the situation if supt∈R c̄(t) < 3 s.)
- There exist ε < ε̄ < 0 such that: (3.4)ε has three hyperbolic solutions for any ε ∈ (ε, ε̄); 

lε = uε and it is hyperbolic attractive for ε ∈ (0,∞) − [ ε, ε̄ ]; lε is the unique hyper-
bolic solution of (3.4)ε , it is attractive, and it is uniformly separated from uε; uε̄ is the 
unique hyperbolic solution of (3.4)ε̄ , it is attractive, and it is uniformly separated from 
lε̄; the maps (−∞, ε̄) → C(R,R), ε → lε and (ε,0) → C(R,R), ε → uε are strictly 
increasing; and the map (ε, ε̄) → C(R,R), ε → mε is strictly decreasing.
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- There is a unique point ε1 < 0 such that (3.4)ε1 has bounded solutions but not hyperbolic 
ones. In this case, inft∈R(uε1(t) − lε1(t)) = 0.

The proof relies on applying Theorem 3.8 to the families (3.5)ε constructed from (3.5)ε . It 
also uses that: a hyperbolic copy of the base {b} for (3.5)ε determines a hyperbolic solution of 
each equation (3.5)ωε , given by t �→ b(ω·t) (see, e.g., [13, Proposition 2.7]); and that, since Ω is 
minimal, if M is a nonhyperbolic τε-minimal set and (ω, x) ∈ M, then the solution vε(t,ω, x)

of (3.5)ωε is nonhyperbolic (see, e.g., [10, Proposition 1.54]). We leave the (easy) details to the 
reader.

We complete this section pointing out that, in the conditions of the previous result, the possibly 
complicated dynamics arising at ε reads as: it is possible that uε is the pointwise limit of uε and 
of mε as ε → (ε)+, but not sure. This happens if the point ω̄ = (c̄, b̄, ā) belongs to a residual 
subset of Ω, impossible to determine a priori, which in addition can have measure (m) 0 or 1. 
In many situations (as when the initial coefficients are constants or periodic maps) this residual 
set is the whole Ω. If not, we just know that uε ≥ ūε ≥ mε , with ūε(t) := limε→(ε)+ uε(t) and 
mε(t) := limε→(ε)+ mε(t). The situation is analogous at ε̄ with lε̄ and limits as ε → (ε̄)−; but not 
necessarily the same, since the residual set can be different.

4. Numerical simulations in a population dynamics model

In this section, we study a single species population model that undergoes quasiperiodic 
fluctuations (see for example [47] and references therein where experimental evidence of quasi-
periodic behavior in population dynamics can be found). We take into account the interplay 
between the Allee effect (see for example [9]) and migration phenomena, both affected by sea-
sonality. The model is

x′ = r(t) x2 (1 − x/k(t)) + ε b(t) (x − s) , (4.1)

with ε ≥ 0. The value ε = 0 of the parameter corresponds to the absence of migration. The 
maps r(t) and k(t) are positively bounded from below: r(t) represents the intrinsic growth rate, 
i.e., the growth rate in case of unlimited resources, and the function k(t) is closely related to 
the carrying capacity although not exactly equal (as in the autonomous case): it measures the 
threshold below which the per capita population growth rate x′/x decreases. Changing the x
factor of logistic models to x2 is a common way to include the weak Allee effect: the per capita 
population growth rate is reduced at lower density (as the solution x = 0 loses hyperbolicity).

The additive term ε b(t) (x − s) is related to migration. The map ε b(t), where b is positively 
bounded from below, represents the (seasonality-dependent) intensity of migration, while s is 
a positive constant representing the threshold of population attractiveness: there is immigration 
(population increases) if the population is sufficiently high, and emigration if it is below s. The 
idea fits well with that of the Allee effect: a sufficient number of individuals increases the chances 
of survival of the population. In fact, as we will explain later, for small and large values of ε > 0
(or even for all ε > 0) there appear two strictly positive hyperbolic solutions of (4.1)ε: a critical 
population mε(t) (repulsive) that provides a threshold below which the population will die out, 
and a stable (attractive) healthy population uε(t) above this threshold. This is the usual situation 
under strong Allee effect. Note that x = 0 is not a solution of (4.1)ε if ε > 0, so that extinction 
in finite time is possible: at the moment in which x reaches 0, the population disappears and the 
model becomes meaningless. (Also observe that, for b > 0, a negative value of ε changes the 
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role of s: there would be immigration for a lower number of individuals, and this makes sense 
too. Although we will focus on ε ≥ 0, the previously obtained theory also provides conclusions 
for ε < 0.)

A variation of ε means a variation in the migratory intensity which may give rise to dif-
ferent population dynamics. The coefficient maps r , k and b are chosen to get a quasiperiodic 
map (r, k, b) : R → R3, so the flow on its hull is minimal and uniquely ergodic. Note that (4.1)
is x′ = (r(t)/k(t)) (−x3 + k(t) x2 + ε k(t) b(t) (x − s)/r(t)). Since inft∈R r(t)/k(t) > 0, the 
hull extension provides one of the families considered in Remark 3.10, and hence all the results 
of Section 3 can be applied to describe the bifurcation diagram of the ε-parametric family of 
skew-product flows. In line with Section 3.2, in what follows we just focus on the family of pro-
cesses instead of flows. It is easy to check that the conditions supt∈R k(t) < s, inft∈R k(t) > s

and k(t) ≡ s lead us respectively to the situations of Theorems 3.7, 3.8 and 3.9, under their 
most restrictive hypotheses. So, in all these cases, we have already proved the previously men-
tioned existence of two strictly positive hyperbolic solutions mε < uε for small or large ε > 0, 
where mε is repulsive and uε is attractive, and where limε→0+ mε(t) = 0 uniformly on R. The 
solution mε acts as a threshold for survival: if, for an ε > 0, xε(0) < mε(0) or, equivalently, 
if xε(t0) < mε(t0) for any t0 > 0, then the population becomes extinct in finite time; whereas, 
if xε(0) > mε(0), the population eventually “reaches” (i.e., “approaches until being undistin-
guishable from”) the healthy steady population uε(t). In addition, limε→∞ uε(t) = ∞ uniformly 
on R, and so the resources that the stable population requires exceed the capacity of the envi-
ronment if ε is sufficiently large: the increase of uε is due to a massive influx of individuals, 
difficult to imagine for any reasonable population. But the model makes perfect sense for a not 
too large migratory intensity. In addition, for ε = 0, any initial number of individuals gives rise to 
a population which eventually reaches the (hyperbolic attractive) stable population u0(t), where 
inft∈R k(t) < u0(t) < supt∈R k(t) for all t ∈ R, and where u0 − k changes sign infinitely many 
times as t increases. This proves the aforementioned close relation between k(t) and the steady 
population in the absence of migration.

First, let us assume inft∈R k(t) > s, which is the situation of Proposition 3.11: roughly speak-
ing, the threshold of population attractiveness is below the carrying capacity in the absence of 
migration. So, everything works properly: only a population that is initially too low dies out, 
since, for (ε-relatively) small x, emigration dominates over intrinsic growth. More precisely, 
Proposition 3.11 ensures the absence of strictly positive bifurcation values of ε: the strictly pos-
itive hyperbolic solutions mε and uε exist for all ε > 0. However, their monotonicity properties 
with respect to ε (see Fig. 2), and their behavior as ε → 0+ and as ε → ∞, give rise to a critical 
value of εx0 if we fix an initial number of individuals xε(0) = x0 < s: this ensures emigration for 
small t > 0, and implies that the population xε(t) survives reaching the steady one if and only if 
this emigration is not too intense. More precisely, there exists εx0 > 0 such that xε(0) < mε(0)

if 0 < ε < εx0 and xε(0) > mε(0) if ε > εx0 , and this means survival if ε < εx0 (and in the un-
stable situation ε = εx0 , with xεx0

= mεx0
), and extinction in finite time for ε > εx0 . If the initial 

population is x0 ≥ s, then it survives for all ε > 0.
Now, let us analyze the case k ≡ s, adapting the information of Theorem 3.9 (see also Fig. 3). 

In this case, the threshold of attractiveness coincides with the (constant) carrying capacity in the 
absence of migration. If ε∗ = s2/b̄ for b̄ = limt→∞(1/t)

∫ t

0 b(s) ds, then s is a constant solution 
for all ε > 0, hyperbolic attractive if and only if ε < ε∗ and hyperbolic repulsive if and only 
if ε > ε∗. As in the previous case, an initial population xε(0) = x0 < s only survives while the 
migration intensity is low enough to yield x0 < mε(0). Now, this situation ends for sure at a value 
εx ≤ ε∗ of the parameter, beyond which our population is doomed to extinction. In addition, 
0
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again as in the previous case, the population survives for any ε if x0 ≥ s. In terms of hyperbolic 
solutions, there are two strictly positive ones mε < uε for all ε > 0, ε �= ε∗, with uε = s for ε < ε∗
and mε = s for ε > ε∗. They approach each other as ε → ε∗, and their limits at this point are non 
uniformly separated bounded solutions (which may coincide, as in the autonomous and periodic 
cases). So, there is a (nonautonomous) transcritical bifurcation point at ε∗.

In the rest of this section, we analyze the case supt∈R k(t) < s, which we illustrate below 
with the help of a specific example. Now, the threshold of population attractiveness is above the 
(again roughly speaking) carrying capacity of the environment without migration. For instance, 
a low population may lose attractiveness even with sufficient resources, leading to emigration; 
and immigration may occur if there are nearby patches occupied by the same species but with 
fewer resources (and this causes population stress). The precise information about the variation 
as ε increases is provided by Theorem 3.7 (see also Fig. 1), that shows the existence of two 
bifurcation values ε∗ < ε∗ on (0,∞) for the ε-parametric family of skew-products. They can 
also be read as bifurcation values for our initial process (4.1). Note that a population that reaches 
a number of individuals less than s stays below s (since s is an upper solution), and its survival 
is only possible (not sure) if ε ≤ ε∗ is small (see Fig. 1). In other words, a low population is 
subject to emigration, and even if the first term on the right-hand side of (4.1)ε is positive, it is 
not sufficient to prevent extinction if the migration intensity is relatively large.

Let us now analyze the situation when ε ∈ (0, ε∗]. If 0 < xε(0) = x0 < mε∗(0) := 
limε→(ε∗)− mε(0), then the population gets extinct in finite time when the migratory intensity 
exceeds a certain value εx0 ∈ (0, ε∗) (with x0 = mεx0

(0)). If x0 ≥ mε∗(0), then the population 
survives for all ε ∈ [0, ε∗]. But the steady population uε eventually reached, which is below s, 
decreases as ε increases: even if the initial population is above s and hence there is immigration 
during a time, the lack of resources causes a decrease, so the population eventually reaches s, 
there is emigration forever, and a more intense emigration means a lower steady population.

For ε ∈ (ε∗, ε∗), no matter how large the initial population is, extinction arrives in finite time: 
the intensity of emigration once the population is below s causes a decrease which is not com-
pensated by the intrinsic growth rate. Finally, for ε ≥ ε∗: if 0 < x0 < mε(0) (as for all ε ≥ ε∗ if 
x0 ≤ s), then the population gets extinct in finite time; and if x0 > s, then population survives 
for ε ≥ εx0 , where this second critical value εx0 ≥ ε∗ satisfies mεx0 (0) ≤ x0 (which exists since 
mε(0) decreases to s as ε → (ε∗)+). So, a high enough initial population can compensate the 
stress caused by immigration. But now, the only factor that allows the population to survive is 
immigration, and hence the model loses credibility for a high value of ε.

In terms of hyperbolic solutions, ε∗ and ε∗ are points at which two hyperbolic solutions mε

and uε approach each other (as ε → (ε∗)− and as ε → (ε∗)+), giving rise to the local absence of 
hyperbolic solutions: they are replaced by limits of the monotonic families {uε} and {mε}, which 
may globally coincide or not, but which are never uniformly separated.

Let us illustrate these theoretical results with a particular example. The quasiperiodic fluctua-
tions in the population dynamics are represented by taking r ≡ 1, and k > 0 and b > 0 periodic 
with incommensurate oscillation frequencies. More precisely, we work with

x′ = − 1 

2 + 0.5 sin(
√

3 t)
x3 + x2 + ε (2.1 + 0.3 cos(t)) (x − 2.6) , (4.2)

so that b(t) := 2.1+0.3 cos(t) and s := 2.6 > 2+0.5 sin(
√

3 t) =: k(t) for all t ∈ R: we are in the 
third of the cases described above. In what follows, we detect numerically the bifurcation values 
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Fig. 4. Equation (4.2). Panels 1 to 5: Depiction of uε , mε and lε as ε increases towards εa . Panel 6: behavior of solutions 
for ε > εa .

ε∗ and ε∗ for (4.2) and approximate the hyperbolic copies of the base for different parameter 
values.

In order to approximate ε∗, we reason as follows. We choose ε0
a and ε0

b such that (4.2)ε has 
three hyperbolic solutions for ε = ε0

a and just one for ε = ε0
b . The existence of the hyperbolic 

solutions has been detected numerically solving (4.2) with a 4-th order Runge-Kutta method and 
constant discretization stepsize h = 2−10. We obtain analogous numerical results also for smaller 
and larger stepsizes. We solve initial value problems in [−104,104] for forward integration and 
in [104,−104] for backward integration. We then apply a bisection procedure to the starting 
interval [ε0

a, ε
0
b] and locate ε∗ in [εa, εb] = [0.201945926862769 0.201945926863700]. Note 

that (εb − εa) = O(10−12). We reason in a similar way for ε∗ and locate it inside the interval 
[9.129175817935083, 9.129175817935174].

In Fig. 4 we depict solutions of (4.2) for different values of ε in a neighborhood of ε∗. In 
all six panels we plot in red the attractive hyperbolic solutions (including the lower bounded 
solution lε , which is negative for ε > 0), in blue the repulsive one, and in black other solutions. 
We use same initial conditions in all panels for the solutions in black, namely xε(0) = 2.5 and 
xε(0) = 0.9. These initial data are marked on all panels. The first panel of Fig. 4 corresponds to 
ε = 0: the model does not contemplate migration. In addition to the already described behavior, 
it is worth to observe that an initially low number of individuals results in a low population over 
a long period (as a consequence of the weak Allee effect). The solution l0 = m0 = 0 is depicted 
in green, since it is nonhyperbolic. Panels 2,3, and 4 correspond to three values of ε < ε∗, so 
that (4.2)ε has three hyperbolic solutions: uε and lε , depicted in red and mε , in blue. The solution 
mε acts as a threshold for survival. We call attention to the variation of the solution depicted in 
black with initial condition xε(0) = x0 = 0.9: in panels 2 and 3, it converges towards uε, while 
in panel 4 it converges towards lε and hence it gets extinct in finite time; so, the critical value εx0

described above is inside (0.1,0.15). For ε = εa we can not distinguish between uε and mε: the 
two solutions seem to collide (for sure, they are not uniformly separated at ε∗) and hence they 
lose hyperbolicity. Populations above uεa survive, while populations below it get extinct. Finally 
for ε = 0.21, which is between ε∗ and ε∗, the population is always doomed to extinction.

To complete the analysis, we explore the behavior of uε and mε as ε increase towards εa , to 
graphically show that they approximate each other and to illustrate their hyperbolicity loss as 
ε → (ε∗)+. In the first and second panel of Fig. 5 we respectively plot uε and mε for different 
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Fig. 5. Equation (4.2). Behavior of mε and uε as ε increases towards εa . The maps mεa and uεa are indistinguishable in 
the representation window.

Fig. 6. Truncated Lyapunov exponents of uε as ε varies. 

values of ε. The plots show that uε decreases towards uεa and that mε increases towards mεa : see 
Theorem 3.7(i). In order to verify the loss of hyperbolicity, we compute the Lyapunov exponent 
of uε as ε increases towards εa . The Lyapunov exponent is computed truncating (2.4) at a large 
enough time T . Equation (4.2) is quasiperiodic, hence the Lyapunov exponent of uεa exists as 
a limit. Nonetheless, we compute upper and lower approximations of γεa in order to locate the 
Lyapunov exponent in a given interval. To this purpose, together with T , we also use a finite time 
τ , with 0 � τ < T . We then take as lower (resp. upper) approximation the minimum (maximum) 
of all the truncated exponents for t ∈ [τ, T ]. We denote this lower and upper approximations 
respectively as γ l

εa
and γ u

εa
. The values that we obtain are showed in Table 1. From this table, the 

linear convergence of the Lyapunov exponent to 0 is evident, confirming the loss of hyperbolicity 
of uε at the bifurcation value. Finally, in Fig. 6, we plot the Lyapunov exponents γ l

ε and γ u
ε of 

uε as ε varies in [0, εa]. In the plot, the upper and lower exponent approach zero as ε approaches 
εa , witnessing a loss of hyperbolicity of uε as ε → ε∗.
31 



C. Elia, R. Fabbri and C. Núñez Journal of Differential Equations 435 (2025) 113315 
Table 1
Lower and upper approximations of the Lyapunov 
exponent of uεa for different values of the trun-
cated time τ and T .

T τ γ l
εa

γ u
εa

103 102 −1.8 × 10−2 3.1 × 10−3

104 103 −9.4 × 10−3 −1.2 × 10−3

105 104 −1.3 × 10−3 −1.5 × 10−4
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