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A B S T R A C T 

By implementing the concept of polytropic structures as a scalar field gas with a dark energy-like behavior, we obtain a static spherically symmetric black hole 
solution in the framework of general relativity. In this paper, we study the quasinormal modes, the greybody bound process, the shadow behaviors, and the sparsity 
of black holes with a surrounding polytropic scalar field gas. Using the Wentzel-Kramers-Brillouin (WKB) approach, we evaluate the impact of a particular set of 
polytropic parameters (𝜉,𝐴) with a fixed setting of the polytropic index 𝑛 on the oscillation frequency and damping rate of gravitational waves. The results show that 
the effect of the parameter 𝜉 is much less significant than that of the parameter 𝐴 on the gravitational waves oscillation frequency and damping rate. Furthermore, 
the analysis of the greybody factor bounds reveals special insight into the effect of certain parameters where the multipole moments 𝑙 and the polytropic index 𝑛
have similar effects, in contrast to the pair of polytropic parameters (𝜉,𝐴). In light of such a comparative study, we investigate, on the other hand, the third-order 
Padé WKB method, which results in a more accurate process for quasinormal mode frequencies compared to the third-order standard WKB method. In this way, 
exploring the sparsity of Hawking radiation is another task that provides a better understanding of the behavior of the black hole solution. In this respect, the results 
show that the black hole behaves like blackbody radiation for a sufficiently large entropy. And for 𝜉 =𝐴 = 0, the relevant sparsity acts exactly like the Schwarzschild 
sparsity. These results provide an insight into the dynamics of black holes with a surrounding polytropic scalar field gas from the analysis of their quasinormal 
modes, greybody factors, shadow behaviors, energy emission rate and sparsity process. Constraints on the associated BH parameters, derived from the Event Horizon 
Telescope observations of M87* and Sgr A*, indicate that this black hole model stands as a compelling candidate for representing astrophysical black holes.

1. Introduction

Black holes (BHs) are considered extremely puzzling compact ob-
jects in the universe. Their presence offers an effective way to uncover 
gravitational effects within extremely intense gravitational fields, e.g., 
the disruption of neighboring stars and the formation of gigantic jets. 
Although BHs have been a major challenge for ordinary observers, the 
theoretical perspective on BHs provides an interesting insight for ex-
ploring theories of gravity beyond general relativity (GR) (Berti et al., 
2015; Barack et al., 2019; Abbott et al., 2021a; Zhao et al., 2019; Zhang 
et al., 2020a,b, 2023b; Carson and Yagi, 2020). Of course, BHs were 
originated as mathematical solutions to GR (Schwarzschild, 1916), fea-
turing two singularities, one at the center and one at the event horizon. 
A coordinate transformation allows one to eliminate the singularity at 
the event horizon; the singularity at the center is a physical singularity, 
so it cannot be removed by any coordinate transformation. Although 
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BHs arose during the gravitational collapse of massive stars, they re-
mained merely theoretical exotic compact objects for a very long time 
(Vertogradov, 2025; Vertogradov et al., 2025; Heidari et al., 2024; Ver-
togradov and Övgün, 2025; Vertogradov, 2024). Even so, observations 
have already been made to prove their existence, notably of gravita-
tional waves (GWs), ushering in a promising prospect for GW astronomy 
(Abbott et al., 2016). In a bid to model the nature of GW, several GW 
signals have been predicted as coalescences of compact bodies, BHs, 
and/or neutron stars as part of the LIGO/Virgo/KAGRA (LVK) scientific 
collaboration (Abbott et al., 2019, 2021b, 2023). On the other hand, 
the insistence on modeling the nature of GW will eventually result in 
the construction of the most sophisticated ground- and space-based GW 
detectors (Moore et al., 2015; Gong et al., 2021), such as the Cosmic Ex-
plorer, Einstein Telescope, Lisa Telescope, Tian Chen, Taiji, and Desigo. 
GW, at this stage, will be detected over a broader frequency spectrum 
and at long distances. This has generated a great deal of enthusiasm 
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for exploring the quasinormal modes (QNMs) of BHs (Berti et al., 2009, 
2018) and the processes of inspiration with extreme mass ratios (Zhang 
et al., 2023a; Tu et al., 2023).

QNMs are the characteristic oscillations that arise when BH or neu-
tron stars are disturbed by external effects (Kokkotas and Schmidt, 
1999a; Nollert, 1999). These perturbations trigger GWs, which act as 
cosmic messengers, encoding crucial details about the characteristics of 
these astrophysical objects (Krivan et al., 1997; Rezzolla, 2003; Kono-
plya, 2005). The study of QNMs offers valuable insights into the sta-
bility of these compact objects (Jaramillo et al., 2021). Unlike normal 
modes, which oscillate indefinitely and stay stable, QNMs are distinct 
in that they have complex frequencies, with the real part indicating 
the oscillation frequency and the imaginary part reflecting the damp-
ing rate (Kokkotas and Schmidt, 1999a; Nollert and Price, 1999; Berti 
et al., 2003). If the damping rate of a frequency is negative, the mode 
is stable and will gradually fade away over time. On the other hand, a 
positive damping rate suggests that the system could behave unstably, 
potentially leading to extreme phenomena such as gravitational collapse 
(Konoplya and Zhidenko, 2006, 2011).

The study of QNMs and greybody factors has been a key area in BH 
physics, providing insights into perturbation dynamics and energy emis-
sion mechanisms. Over the years, several investigations have examined 
QNMs in different BH spacetimes, including Schwarzschild, Reissner-
Nordström, and various modified gravity models (Dolan, 2007; Kono-
plya, 2003a; Pantig et al., 2022; Lambiase et al., 2023b). Similarly, 
greybody factors, which describe the probability of Hawking radiation 
escaping the gravitational potential, have been studied in different sce-
narios using various analytical and numerical techniques (Yang et al., 
2023; Gogoi et al., 2023a; Rincón et al., 2024). This work builds upon 
these studies by examining the impact of a polytropic scalar field gas 
on QNMs and greybody factors, providing a comparative analysis with 
existing results.

In the light of recent observations by Event Horizon Telescope (EHT), 
in particular the brand-new event horizon scale images of M87⋆ and Sgr 
A⋆ BHs (The Event Horizon Telescope Collaboration, 2019a,b,c,d,e,f, 
2022a,b; Do et al., 2019; GRAVITY collaboration, 2022; GRAVITY Col-
laboration, 2020; Kocherlakota et al., 2021; Vagnozzi et al., 2023) have 
aroused particular interest in the community of experimental and theo-
retical physics. Indeed, these recent event horizon scale images offer a 
concrete way for testing in a theoretical frame the GR theory and such-
inspired models of gravity, such as modified theories of gravity (MOG). 
For that reason, a wide number of investigations have been conducted 
to perform a comparative study between the observed image and the 
theoretical image, providing a comparison in view of the size and shape 
of the observed image of M87⋆ or Sgr A⋆. On the other hand, the explo-
ration of the optical appearance of BHs has led to connecting this aspect 
from within the thermodynamic behaviors by linking the event hori-
zon radius with the photon sphere radius (Cai and Miao, 2021; Zhang 
and Guo, 2020). In addition, an attempt to discover a further meaning 
of the photon sphere relevant to the BH shadow has also been car-
ried out from the QNMs process and provided fruitful insight (Jusufi, 
2020a; Yang, 2021). Practically speaking, from a topological point of 
view, the orbiting photon spheres involve two topologically kind sur-
faces, either like a 2𝐷 torus encompassing an infinite photon sphere for 
the case of static BHs or like an infinite photon sphere embedding into 
a two-dimensional deformed surface, which is the scenario for the ro-
tating BHs family endowed with an ergosphere region (Grenzebach et 
al., 2014; Abdujabbarov et al., 2016; Amarilla and Eiroa, 2012; Kumar 
and Ghosh, 2020; Penrose and Floyd, 1971; Zahid et al., 2023; Khan et 
al., 2024; Rayimbaev et al., 2023; Belhaj and Sekhmani, 2022a,b; Belhaj 
et al., 2023; Gogoi et al., 2023b; Sekhmani et al., 2024a,b; Al-Badawi 
et al., 2024). In the recent past, several studies have been carried out 
on the subject of shadow processing in GR with a specific set of physi-
cal parameters or in different contexts as an extension of GR (Asuküla 
et al., 2024; Macedo et al., 2024). In this regard, within the context of 
Einstein-Maxwell dilaton-axion gravity (EMDA), the associated shadow 

behavior is performed in view of the action of suitable parameter spaces 
such that the dilaton and the spin (Sahoo et al., 2024). Similarly, within 
the context of 𝑓 (𝑇 ) teleparallel gravity, the corresponding BH shadow 
and chaos bound violation mechanisms have been explored by setting 
the appropriate parameter space (Addazi and Capozziello, 2023).

The comprehensive examination of the gravitational collapse in gen-
eralized Vaidya spacetime (Vertogradov, 2025; Vertogradov et al., 2025; 
Heidari et al., 2024; Vertogradov and Övgün, 2025; Vertogradov, 2024) 
indicated an avenue for naked singularity formation (Mkenyeleye et 
al., 2015) for arbitrary galactic matter distribution. It is widely ac-
cepted that a differential relation for a mass function is introduced by 
an equation of state (EoS). Both the barotropic EoS (Husain, 1996) and 
the Hagedorn EoS (Harko, 2003) have been explored in the literature 
(Mukhopadhyay and Ray, 2005; Chavanis, 2014). An EoS is a fundamen-
tal relation linking various state quantities characterizing the system. 
Generally, for a collapsing galactic matter, an EoS is defined when the 
pressure can be given as a function of the energy density 𝑃 = 𝑃 (𝜌). 
There are two equations of state typically regarded for perfect fluids at 
equilibrium. A barotropic relationship is expressed as 𝑃 = 𝛼𝜌, while a 
polytropic relationship is represented as 𝑃 = 𝛼𝜌𝛾 . The investigation of 
the collapse of a perfect fluid governed by the polytropic EoS is more 
intricate (Vertogradov, 2024).

In this study, the polytropic structure is considered as the fundamen-
tal block for the matter-source energy-impulsion in the Einstein equa-
tions. For that reason, it might be useful to describe polytropic struc-
ture as an anisotropic formalism background. Broadly speaking, a quite 
distinct classification exists, known as polytropic cosmological gases, 
which fulfill the anthropic principle. Indeed, polytropic structures are 
typically characterized by the non-linear EoS such that 𝑝(𝜌) = −𝜉𝜌1+

1
𝑛 

with 𝑛 is the polytropic index (1 < 𝑛 <∞) (Karami et al., 2009, 2014; 
Karami and Abdolmaleki, 2010; Karami et al., 2012; Banerjee and Paul, 
2024; Aboueisha et al., 2023; Cárdenas and Cruz, 2024; Jia et al., 2024). 
In particular, the corresponding EoS establishes in its form a negative 
pressure exhibiting similar behavior to dark energy fluids, where for the 
set 13 < 𝜉 < 1 and 𝑛→∞, the polytropic structure is referred to as the 
quintessence field solution, i.e., a dark energy candidate. The cosmo-
logical constant Λ0, on the other hand, is another candidate for dark 
energy, which results from the condition where 𝛾 = 1 and 𝑛→∞. Nev-
ertheless, the situation of the quintessence according to P. Steinhardt’s 
works (Zlatev et al., 1999; Steinhardt et al., 1999; Caldwell, 2002) is 
represented to be the second candidate of dark energy, which is treated 
as a scalar field predicting and explaining the accelerating of the uni-
verse.

Approaching the polytropic structure in the essence of gravitational 
compact objects, such as BHs, and from the point of view of cosmo-
logical investigations upon dark energy models constituted a concrete 
and verifiable framework (Karami et al., 2009, 2014; Karami and Abdol-
maleki, 2010; Karami et al., 2012; Banerjee and Paul, 2024; Aboueisha 
et al., 2023; Cárdenas and Cruz, 2024; Jia et al., 2024). In particular, 
from that point of view, the polytropic structure with the non-linear 
EoS can be regarded as an alternative way in such cosmological models 
leading to the polytropic cosmological 𝜉-models. Among several investi-
gations, carrying out an examination in terms of the dark energy with a 
cold matter scenario by considering the cosmological aspect of the poly-
tropic structure systems (Cárdenas and Cruz, 2024), which is properly 
leading to intriguing results and novel interpretations. Indeed, this in-
vestigation is realized by taking into account one of the important kinds 
of polytropic structure, nothing more than Chaplygin gas. In concrete 
terms, the Chaplygin gas here is described with EoS like 𝑝(𝜌) = −𝜉𝜌−1
with 𝑛 = −1

2 referred to the polytropic index. On the other hand, and 
similarly to the Chaplygin gas, the Quartessence is another dark fluid 
configuration unifying in a single component dark energy and dark mat-
ter (Bilic et al., 2002; Makler et al., 2003; Zhu, 2004). On the other hand, 
one of the interesting applications of the polytropic structure is the ac-
cretion of matter by a charged BH inside certain gaseous fluids (Jia et 
al., 2024). In this study, a number of critical points for possible accre-
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tion have been explored and some limits close to the event horizon for 
a Maxwell-Boltzmann gas have been discovered.

In the current study, the polytropic structure model memecis, like 
dark energy, was described by the non-linear EoS in the form 𝑝 =
−𝜉𝜌(1+𝑛). Various cosmological questions focus on the unified dark fluid, 
a hybrid of dark matter and dark energy, as a candidate for the Chaply-
gin gas. Starting from this insight, a static, spherically symmetric Anti 
de-Sitter BH solution surrounded by a modified Chaplygin gas (MCG) 
was derived. Taking into account the EoS of the MCG, 𝑝 =𝐴𝜌− 𝐵

𝜌𝛽
, its en-

ergy density was derived according to the radial coordinate (Sekhmani 
et al., 2024d).

The presence of a polytropic scalar field gas around BHs can be moti-
vated from both cosmological and astrophysical perspectives. Polytropic 
equations of state naturally arise in various gravitational and thermo-
dynamic systems, including modified dark energy models and gener-
alized fluid descriptions of cosmic acceleration. These models provide 
an alternative formulation of dynamical dark energy, often linked to 
entropy-driven cosmic evolution. Specifically, polytropic models have 
been explored as effective descriptions of dark energy that interpolate 
between quintessence-like and phantom-like behavior, offering a more 
flexible parameterization compared to the standard cosmological con-
stant Λ. From an astrophysical standpoint, the impact of exotic matter 
components such as polytropic scalar fields on BH solutions has been 
previously studied (Jia et al., 2024). These models predict modifications 
to black hole accretion processes. In particular, BH QNMs and greybody 
factors are sensitive to the surrounding matter content, allowing poten-
tial observational tests via gravitational wave experiments and electro-
magnetic observations. Several studies (Kokkotas and Schmidt, 1999b) 
have demonstrated that non-trivial matter distributions around BHs can 
significantly alter QNM spectra, providing a unique probe of exotic as-
trophysical environments. Furthermore, the EHT has provided strong 
constraints on BH geometries by measuring the shadow sizes of M87* 
and Sgr A* (The Event Horizon Telescope Collaboration, 2019a,b,c,d,e,f, 
2022a,b; Do et al., 2019; GRAVITY collaboration, 2022; GRAVITY Col-
laboration, 2020; Kocherlakota et al., 2021; Vagnozzi et al., 2023; Per-
lick and Tsupko, 2022). Polytropic matter distributions could influence 
these observables by modifying the effective potential governing pho-
ton orbits. Thus, the present study aims to extend these investigations 
by incorporating a polytropic scalar field gas with a nonlinear EoS and 
analyzing its implications for BH QNMs, greybody factors, and Hawking 
radiation.

In this paper, we explore a wide range of physical aspects such as 
QNMs, the stringent limit on grey-body factors, shadow behavior, and 
the rarity of a BH surrounded by a polytropic structure that closely em-
ulates the dark energy model. To this end, the study is structured in the 
following stages: The next Sec. 2, together with Sec. 3, is devoted to the 
survey of a BH physical solution surrounded by polytropic structure. In 
doing so, we will be able to verify a number of constraints imposed by 
curvature singularities and energy conditions. In Sec. 4, the sparsity of 
Hawking radiation is revealed. In Sec. 5 we analyze GWs taking into 
account a massless scalar perturbation based on the Wentzel-Kramers-
Brillouin (WKB) approximation method with 3rd order. The primary 
focus of Sec. 6 is the investigation of grey body bonds. To proceed with 
the study of optical properties in terms of BH shadow analysis, Sec. 7
involves a complete study. In Sec. 8, the energy emission rate process is 
carried out within the polytropic parameter space. The findings and our 
conclusions are reported in section 9.

2. Polytropic gas model of dark energy with EoS: 𝒑=−𝝃𝝆𝟏+ 𝟏
𝒏

The main task considered in this section is to probe the implication 
of the role of a scalar gas field with a polytropic EoS in the GR. For this 
purpose, an adequate action needs to be thoroughly studied, which can 
be expressed as follows

 = ∫ 𝑑4𝑥
√
−𝑔  

2𝛼2
+ Poly. (1)

In this study, the Ricci scalar is represented by , 𝑔𝜇𝜈 refers to the 
symmetric tensor with a determinant designated by 𝑔 = det(𝑔𝜇𝜈), and 
Poly represents the contribution of the polytropic structure. Throughout 
the remainder of this study, we assumed that 𝛼 = 8𝜋𝐺 = 1 = 𝑐, where 
𝐺 and 𝑐 are respectively the Newtonian gravitational constant and the 
speed of light.

It follows that the variation of the action (1) with respect to the 
metric tensor 𝑔𝜇𝜈 gives rise to the following field equations,

𝜇𝜈 =𝜇𝜈 −
1
2
𝑔𝜇𝜈−  Poly

𝜇𝜈 = 0, (2)

where  Poly
𝜇𝜈 is the energy-momentum tensor for the polytropic structure.

Exploring the impact of the polytropic structure within the GR leads 
us to consider a static, spherical and symmetrical four-dimensional met-
ric ansatz with 𝑔𝑡𝑡 𝑔𝑟𝑟 = −1, given by

d𝑠2 = −𝑔(𝑟) d𝑡2 + 𝑔(𝑟)−1 d𝑟2 + 𝑟2 dΩ2, (3)

where 𝑔(𝑟) is a metric function to be determined and dΩ2 describes the 
line element of a 2-dimensional unit sphere with a curvature constant 
of 2. It can be represented by

dΩ2 = d𝜃2 + d𝜙2 sin2 𝜃 (4)

with 𝑡, 𝑟 ∈ (−∞,+∞), 𝜃 ∈ [0, 𝜋], 𝜙 ∈ [0,2𝜋].
The choice of the nonlinear EoS for the polytropic scalar field gas, 

given by 𝑝(𝜌) = −𝜉𝜌1+
1
𝑛 , is motivated by several theoretical and obser-

vational considerations.
First, polytropic models naturally arise in gravitational systems, in-

cluding stellar structures, cosmological fluids, and modified gravity 
frameworks. The above form of EoS extends the classical polytropic 
model to include negative pressure effects, making it a viable candidate 
for describing exotic dark energy-like matter surrounding BHs. Such 
a formulation is particularly useful when considering self-gravitating 
scalar field distributions that exhibit polytropic behavior due to under-
lying field interactions.

A key advantage of this choice is its connection to generalized dark 
energy models. Alternative EoS formulations, such as the Chaplygin 
gas model 𝑝(𝜌) = −𝐴

𝜌 , and standard quintessence models, impose spe-

cific constraints on the matter pressure that may lead to instabilities or 
causality violations in strong gravity regimes (Chimento, 2004; Kamen-
shchik et al., 2001). The polytropic EoS avoids these issues by introduc-
ing an additional degree of freedom through the index 𝑛, which governs 
the pressure-density relation.

Additionally, the stability of this model can be analyzed via the adi-
abatic sound speed, defined as

𝑐2
𝑠
= 𝑑𝑝 
𝑑𝜌

= −𝜉
(
1 + 1

𝑛 

)
𝜌

1
𝑛 , (5)

which ensures that under certain parameter choices, the scalar field gas 
remains stable against perturbations. The negative pressure component 
effectively modifies BH accretion dynamics, influencing mass accretion 
rates and the late-time behavior of matter infall (Jia et al., 2024).

Furthermore, observational constraints on polytropic dark energy 
models have been explored in the context of cosmic expansion, with 
Planck and supernova data favoring scenarios where polytropic param-
eters yield viable late-time acceleration (Planck Collaboration, 2020; 
Perlick and Tsupko, 2022). Given the rich phenomenology associated 
with polytropic fluids, our work provides a novel application of this 
framework to BH physics by analyzing its impact on spacetime struc-
ture and radiation properties.

It may be useful, for the sake of the present study, to envisage the 
perfect fluid state, which is typified by the stress-energy tensor,

𝜇𝜈 = (𝜌+ 𝑝)𝑢𝜇𝑢𝜈 + 𝑝𝑔𝜇𝜈 . (6)

In this case, 𝜌 and 𝑝 are respectively the energy density and the isotropic 
pressure, which are gauged by an observer moving with the fluid, and 
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𝑢𝜇 corresponds to its four-velocity vector. Numerous studies are cur-
rently being carried out in the field of GR, featuring spherically symmet-
ric static solutions with the surrounding perfect fluid (dust, radiation, 
dark energy, or ghost energy) with an EoS 𝑝 = 𝜔𝜌 (Kiselev, 2003; Li, 
2014; Setare, 2007; Benaoum, 2012; Chen and Jing, 2005). There is 
also convincing proof that the perfect cosmological fluid surrounding 
the BH can be regarded as an anisotropic fluid due to the gravita-
tional effect. It ensures that the polytropic structure has to emerge as 
an anisotropic fluid from various points of view, one of which claims 
a scalar tachyon field 𝜙 which is thought to be the source of dark en-
ergy, and a tachyon field potential 𝑉 (𝜙), with the Born-Infeld type Dirac 
Lagrangian 𝜙 = −𝑉 (𝜙)

√
1 − 𝑔𝜇𝜈𝜕𝜇𝜙𝜕𝜈𝜙 (Garousi, 2000). On the other 

hand, following concepts based on a scalar field of 𝑘-essence, the poly-
tropic structure can be rebuilt as a scalar field gas. This reconstruction 
is produced by looking at the action of the scalar field of 𝐾 -essence. 
𝑆 = ∫ d4𝑥

√
−𝑔 𝑝(𝜙,𝜒) with 𝑝(𝜙,𝜒) being the Lagrangian density (Mag-

alhaes Batista et al., 2010; Raposo et al., 2019). Based on the above, the 
polytropic structure is properly modeled such that its radial pressure 
is different from the tangential pressure. These are anisotropic fluids, 
which entails a covariant form of the stress-energy tensor for the poly-
tropic structure, as follows:

𝜇𝜈 = (𝜌+ 𝑝𝑡
)
𝑢𝜇𝑢𝜈 − 𝑝𝑡𝑔𝜇𝜈 +

(
𝑝𝑟 − 𝑝𝑡

)
𝜒𝜇𝜒𝜈 , (7)

in which the radial pressure in the direction of 𝜒𝜇 means 𝑝𝑟, while the 
tangential pressure orthogonal to 𝜒𝜇 is none other than 𝑝𝑡 and 𝜒𝜇 is the 
unit space vector orthogonal to the velocity 𝑢𝜇 . It further turns out that 
𝑢𝜇 and 𝜒𝜇 should satisfy the condition 𝑢𝜇𝑢𝜇 = −𝜒𝜇𝜒𝜇 = 1.

We consider the frame to be co-moving with the fluid, such that 𝑢𝑎 =√
𝑔(𝑟) 𝛿𝑎0 and 𝜒𝑎 = 1∕

√
𝑔(𝑟) 𝛿𝑎1 . Starting from this premise, the stress-

energy tensor (7) takes on the following form,

 𝜈
𝜇
= −
(
𝜌+ 𝑝𝑡

)
𝛿0
𝜇
𝛿𝜈0 + 𝑝𝑡𝛿

𝜈
𝜇
+
(
𝑝𝑟 − 𝑝𝑡

)
𝛿1
𝜇
𝛿𝜈1 . (8)

Here, the term 𝑝𝑟 − 𝑝𝑡 is designated as the anisotropic factor from which 
its disappearance allows Eq. (8) to describe a standard isotropic back-
ground.

To obtain a complete description of the polytropic structure as an 
anisotropic fluid, we consider the scalar field gas to be in a state across 
an event horizon defined by the stress-energy tensor (8). It is worth 
pointing out that inside the horizon where 𝑔𝑟𝑟 < 0 and 𝑔𝑡𝑡 > 0, the be-
havior of the spatial component 𝑟 is the same as that of the temporal 
component 𝑡. The energy density is thus  𝑟

𝑟
= 𝑝𝑟, while the pressure 

in the spatial direction 𝑡 is expressed by  𝑡
𝑡
= −𝜌. From this correspon-

dence, the energy density and pressure remain continuous provided that 
the requirement 𝑝𝑟 = −𝜌 is satisfied. In the case of 𝑝𝑟 ≠ −𝜌 and 𝜌(𝑟ℎ) ≠ 0, 
though, the pressure at the horizon is discontinuous and the phase of the 
solution varies dynamically.

In the following, we will only cover the situation where 𝑝𝑟 = −𝜌
(Kiselev, 2003), so that the polytropic structure is static, and, under 
restrictions on the solution, the energy density is continuous across the 
horizon. Adopting the ideas of anisotropic fluids, the tangential pressure 
𝑝𝑡 is constrained by taking the isotropic mean over the angles and stating 
that ⟨ 𝑗

𝑖
⟩ = 𝑝(𝑟)𝛿𝑗

𝑖
. In this way we can obtain

𝑝(𝑟) = 𝑝𝑡 +
1
3
(
𝑝𝑟 − 𝑝𝑡

)
, (9)

where the formula ⟨𝛿1
𝑖
𝛿
𝑗

1⟩ ≡ 1
3 is used. Conceptually, the standard 

tangential pressure expression for quintessential dark energy can be 
described using the standard formulation of Eq. (9) such that 𝑝𝑡 =
1
2 (3𝜔+ 1)𝜌, which is per the radial pressure 𝑝𝑟 = −𝜌.

The polytropic structure is characterized by a non-linear EoS 𝑝 =
−𝜉𝜌1+

1
𝑛 , with 𝜉 a positive parameter. Using the equation 𝑝𝑟 = −𝜌, the 

tangential pressure of the polytropic structure may be calculated as 𝑝𝑡 =
1
2𝜌(𝑟) −

3
2 𝜉𝜌

1+ 1
𝑛 . As a result, we may express the components of the 

polytropic structure’s stress-energy tensor as follows:

 𝑡
𝑡
=  𝑟

𝑟
= −𝜌, (10)

 𝜃1
𝜃1

=  𝜃𝑖
𝜃𝑖

= 1
2
𝜌(𝑟) − 3

2
𝜉𝜌

1+ 1
𝑛 . (11)

We further demonstrate that the anisotropy of the polytropic structure 
fades and that the EoS 𝑝 = −𝜉𝜌1+

1
𝑛 is maintained on the cosmological 

scale.

3. Exact analytical solutions

Since the spacetime is spherically symmetric and static, the require-
ment  𝑡

𝑡
=  𝑟

𝑟
has to be fulfilled. As a result, the gravitational field 

equations are explicitly given as

𝑡
𝑡
= 𝑟

𝑟
= 𝑔′(𝑟)

𝑟 
+ 1 
𝑟2
(𝑔(𝑟) − 1), (12)

𝜃
𝜃
= 𝜙

𝜙
= 𝑔′′(𝑟)

2 
+ 𝑔′(𝑟)

𝑟 
. (13)

To probe the surrounding polytropic solution, it ought to consider the 
gravitational field equations (10)-(11) with the polytropic fluid fields 
equations (12)-(13). Thus, quite a few computations based on the con-
servation law related to the polytropic structure provide the following 
first-order differential equation:

𝑟 𝜌′(𝑟) + 3 𝜌(𝑟) − 3 𝜉 𝜌(𝑟)1+
1
𝑛 = 0 , (14)

where the prime represents a first derivative with respect to the radial 
variable 𝑟. Thus, the energy density of the polytropic structure is solved 
precisely by the equation (14) which is explicitly stated as follows

𝜌(𝑟) =
(
𝐴2 𝑟

3
𝑛 + 𝜉

)−𝑛
. (15)

In this context, 𝐴 is a formalization factor holding information about the 
intensity of the polytropic fluid matter. Upon further scrutiny, equation 
(15) implies the conservation law outcome of the stress-energy tensor 
𝜕𝜇𝑇

𝜇𝜈 = 0.
Note that at certain limits, the polytropic energy density is altered. 

At large radial coordinates (i.e. 𝐴2𝑟
3
𝑛 ≫ 𝜉), we obtain

𝜌(𝑟) ∼𝐴−2𝑛∕𝑟3 , (16)

which infers that the polytropic structure looks like a positive cosmo-
logical constant in a large-scale setting and that the nearer it is to the 
BH, the greater its gravitational clumping. For small radial coordinates 
(i.e., 𝐴2𝑟

3
𝑛 ≪ 𝜉), we are able to obtain 𝜌(𝑟) ∼ 1∕𝜉𝑛, indicating that the 

polytropic scalar field gas appears as a content of matter with an energy 
density that varies with 𝑟3. 

Choosing 𝑟 → ∞, on the other hand, turns out to give 𝑝𝑟 → −𝜉−𝑛
and 𝑝𝜃,𝜙 → −𝜉−𝑛, showing that the polytropic structure is isotropic 

and fulfills 𝑝 = −𝜉∕𝜌1+
1
𝑛 exclusively on the cosmological scale. It is 

noteworthy that a cosmological fluid obeying a generic EoS such that 
𝑝(𝜌) = −𝜉∕𝜌1+

1
𝑛 , in which the radial pressure is sufficient to satisfy the 

constraint 𝑝𝑟 = −𝜌when it encloses a central BH, thus, showing isotropic 
tendencies on the cosmological scale. Based on Table 1, we work out the 
large-distance limits of the pressure components in the polytropic struc-
ture, proving that the anisotropic factor cannot asymptotically reach 
zero, unlike the effects found in the quintessential fluid and the CDF, 
where the anisotropy declines with distance. In the case of the poly-
tropic structure, the anisotropy factor falls to zero at 𝜉 = 4(𝑟3∕𝑛𝐴2)∕3. 
This ongoing anisotropy leads to a series of implications for the evo-
lution of the universe, notably the Hubble expansion anisotropies and 
the mass mechanism fluxes. These insights are underpinned by a whole 
series of observations, such as those targeting clusters of galaxies and 
type Ia supernovae (SN Ia) in the context of the Lemaitre-Tolman-Bondi 
(LTB) models.

We now seek the BH solution surrounded by polytropic structure 
from the considerations of the field equations (10)-(11) and (12)-(13) 
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Table 1
Characteristics of quintessence, Chaplygin dark fluid (CDF) and polytropic structures.

anisotropic fluid EoS 𝑝𝑟 𝑝𝑡 𝜌 asymptotic behavior 

Quintessence 𝑝 = 𝜌𝜔 (−1 < 𝜔 < −1∕3) −𝜌 1
2
(3𝜔+ 1)𝜌 6𝑐 𝜔 

4𝑟3(𝜔+1)

𝜌 → 0
𝑝𝑟 → 0
𝑝𝑡 → 0

CDF 𝑝 = −𝛾∕𝜌 (𝛾 > 0) −𝜌 1
2
𝜌− 3𝛾

2𝜌 
√
𝛾 + 𝑄2

𝑟6

𝜌 →
√
𝛾

𝑝𝑟 → −
√
𝛾

𝑝𝑡 → −
√
𝛾

Polytropic 𝑝 = −𝜉𝜌1+
1
𝑛 (𝜉 > 0) −𝜌 1

2
𝜌− 3 

2𝜉𝜌1+
1
𝑛 

(
𝐴2 𝑟

3
𝑛 + 𝜉

)−𝑛 𝜌 → 𝐴−2𝑛

𝑟3

𝑝𝑟 → − 𝜉−2𝑛

𝑟3

𝑝𝑡 → −𝑝𝑟
(
3−1 + 2𝜉𝑝1∕𝑛𝑟

)

and the resultant expression for the polytropic energy density (15). So, 
the field equation (𝑡, 𝑡) provides the differential equation:(
𝑟 𝑔′(𝑟) + 𝑔(𝑟) − 1

)
+ 𝑟2
(
𝐴2 𝑟

3
𝑛 + 𝜉

)−𝑛
= 0 ,

which leads through the procedure of solving the first-order differential 
equations to an analytical solution for 𝑔(𝑟) in the following form

𝑔(𝑟) = 1 − 2𝑀
𝑟 

− 1
3
𝑟2𝜉−𝑛 2𝐹1

(
𝑛, 𝑛;𝑛+ 1;−𝐴

2𝑟3∕𝑛

𝜉

)
, (17)

where 𝑀 is the relevant physical mass for the BH solution. In this BH 
solution, the hypergeometric function 2𝐹1[𝛼, 𝜈;𝜆; 𝜉] represents the reg-
ular solution of the hypergeometric differential equation, which is set 
for |𝜉| < 1 through a power series of the form

2𝐹1[𝜆1, 𝜆2;𝜆3;𝜆4] =
∞ ∑
𝑘=0

[
(𝜆1)𝑘(𝜆2)𝑘∕(𝜆3)𝑘

]
𝜆𝑘4∕𝑘!, (18)

with (𝑛)𝑘 is the (rising) Pochhammer symbol (Blümlein et al., 2023).
Exploring the asymptotic behavior of the metric function 𝑔(𝑟) re-

quires us to assume the limit 𝑟 → ∞. We then have 𝑔(𝑟) → 1. More 
detailed analysis revealed that the BH solution can be reduced to the 
Schwarzschild BH along with the consideration of the limit 𝜉→∞ such 
that

𝑔(𝑟) ∣𝜉→∞= 1 − 2𝑀
𝑟 
. (19)

In the asymptotic regime 𝑟→∞, the metric function (17) must repro-
duce the expected Schwarzschild–(A)dS behavior when the contribution 
of the polytropic scalar field is dominant. Thus, for sufficiently large 
𝑟, the argument 𝑧 = −𝐴2𝑟3∕𝑛

𝜉
, becomes large in magnitude. In such a 

regime, one can invoke the analytic continuation of the hypergeometric 
function. According to standard results (see, e.g., Bateman and Erdelyi 
(1953)), for 𝑧→ −∞ one obtains

2𝐹1 (𝑛, 𝑛;𝑛+ 1;𝑧) ∼ Γ(𝑛+ 1)
Γ(𝑛)2

(−𝑧)−𝑛
[
1 + 

(1
𝑧 

)]
. (20)

Substituting 𝑧 = −𝐴2𝑟3∕𝑛

𝜉
so that −𝑧 = 𝐴2𝑟3∕𝑛

𝜉
yields

2𝐹1

(
𝑛, 𝑛;𝑛+ 1;−𝐴

2𝑟3∕𝑛

𝜉

)
∼ Γ(𝑛+ 1)

Γ(𝑛)2

(
𝐴2𝑟3∕𝑛

𝜉

)−𝑛 [
1 + 

(
𝜉

𝐴2𝑟3∕𝑛

)]
.

(21)

Substituting Eq. (21) into Eq. (17), we obtain

𝑔(𝑟) ∼ 1 − 2𝑀
𝑟 

− 1
3
𝑟2 𝜉−𝑛

Γ(𝑛+ 1)
Γ(𝑛)2

(
𝐴2𝑟3∕𝑛

𝜉

)−𝑛 [
1 + 

(
𝜉

𝐴2𝑟3∕𝑛

)]
= 1 − 2𝑀

𝑟 
− 1

3
𝑟2 𝜉−𝑛

Γ(𝑛+ 1)
Γ(𝑛)2

𝜉𝑛

𝐴2𝑛𝑟3

[
1 + 

(
𝜉

𝐴2𝑟3∕𝑛

)]
= 1 − 2𝑀

𝑟 
− Γ(𝑛+ 1)

3Γ(𝑛)2
1 
𝐴2𝑛

1
𝑟 

[
1 + 

(
𝜉

𝐴2𝑟3∕𝑛

)]
. (22)

At first glance, Eq. (22) indicates a modification to the effective mass 
term, with corrections decaying as 1∕𝑟. However, when one systemati-
cally includes the next-order corrections in the expansion of the hyper-
geometric function, an additional term proportional to 𝑟2 emerges. In 
fact, the full asymptotic expansion, accounting for subleading correc-
tions, yields

𝑔(𝑟) ∼ 1 − 2𝑀
𝑟 

−
Λeff
3 

𝑟2, (23)

where the effective cosmological constant is given by Λeff = 𝐶∕𝐴2𝑛, and 
the constant 𝐶 is explicitly determined by 𝐶 = 𝜉−𝑛 𝐴2𝑛. Thus, under 
the assumptions that 𝑛 > 0 and 𝜉 > 0, the metric solution in Eq. (17)
asymptotically approaches the Schwarzschild–de Sitter form, with

𝑔(𝑟) ∼ 1 − 2𝑀
𝑟 

− 𝜉−𝑛

3 
𝑟2, or equivalently 𝑔(𝑟) ∼ 1 − 2𝑀

𝑟 
−

Λeff
3 

𝑟2,

where Λeff = 𝜉−𝑛 (or, expressed in the form Λeff = 𝐶

𝐴2𝑛 , with 𝐶 =
𝜉−𝑛𝐴2𝑛). This confirms that our solution transitions from the Schwarzs-
child metric in the limit of negligible polytropic effects to a Schwarzs-
child–de Sitter geometry at large distances, thereby naturally incor-
porating an effective cosmological constant induced by the polytropic 
scalar field gas. In accordance with this situation, similar asymptotic 
limits have been reported in earlier investigations on BH spacetimes 
with dark energy components (Xu and Wang, 2024; Liu and Zhao, 2025). 
In our study, the explicit role of the polytropic index 𝑛 in determining 
the decay rate of the polytropic term is emphasized, marking a clear 
distinction from those studies where the index is either absent or fixed.

For a more in-depth analysis of the behavior of the BH in relation 
to the parameter space of the polytropic structure, Fig. 1 provides an 
appropriate observation in terms of the (𝑔(𝑟), 𝑟) plane. Thus, it can be 
observed that for each parameter variation on the corresponding pa-
rameter space of the BH (𝜉,𝐴, 𝑛,𝑀), the set of possible horizon radii is 
constrained to a single real root, which is nothing other than the event 
horizon radius 𝑟+. On the other hand, using the mass 𝑀 as the unit, the 
event horizon radius 𝑟ℎ in relation to pair parameters of the polytropic 
structure is depicted in Fig. 2 for different values of each parameter, 
namely, 𝜉 and 𝐴. In addition, We plot the extremal BH mass with vary-
ing 𝐴 and 𝜉.

Subsequently, we will employ tools to forecast the curvature singu-
larities to examine the properties of the BH solution. Furthermore, we 
need an analysis made up of scalar invariants to provide an appropriate 
uniqueness and singularity proof of our BH solution. These types of in-
formation are, respectively, the Ricci scalar, the squared Ricci, and the 
Kretschmann scalar, which are provided by

 =
𝜉−𝑛(𝐴

2𝑟3∕𝑛

𝜉
+ 1)−𝑛

(
𝐴2𝑟3∕𝑛 + 4𝜉

)
𝐴2𝑟3∕𝑛 + 𝜉 

, (24)

𝛼𝛽𝛼𝛽 =
𝜉−2𝑛(𝐴

2𝑟3∕𝑛

𝜉
+ 1)−2𝑛

(
4𝐴2𝜉𝑟3∕𝑛 + 5𝐴4𝑟6∕𝑛 + 8𝜉2

)
2
(
𝐴2𝑟3∕𝑛 + 𝜉

)2 , (25)
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Fig. 1. The metric function 𝑔(𝑟) representation (17) as a function of 𝑟 for various value of the parameter space. 

Fig. 2. The horizon radius behaviors as a function of the pair polytropic parameter (𝜉,𝐴) for 𝑛 = 3 (upper row). The extremal BH mass with varying 𝐴 and 𝜉 for 
𝑛 = 3 (lower row).
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𝛼𝛽𝜇𝜈𝛼𝛽𝜇𝜈 = 4
3
𝜉−2𝑛 2𝐹1

(
𝑛, 𝑛;𝑛+ 1;− 𝑟

3∕𝑛𝐴2

𝜉

)

×
(
12𝑀𝜉𝑛

𝑟3
−

(𝐴
2𝑟3∕𝑛

𝜉
+ 1)−𝑛

(
5𝐴2𝑟3∕𝑛 + 2𝜉

)
𝐴2𝑟3∕𝑛 + 𝜉 

)
+ 4

3
𝜉−2𝑛 2𝐹1

(
𝑛, 𝑛;𝑛+ 1;− 𝑟

3∕𝑛𝐴2

𝜉

)2
+ 48𝑀2

𝑟6

−
8𝑀𝜉−𝑛(𝐴

2𝑟3∕𝑛

𝜉
+ 1)−𝑛

(
5𝐴2𝑟3∕𝑛 + 2𝜉

)
𝑟3
(
𝐴2𝑟3∕𝑛 + 𝜉

)
+ 𝜉−2𝑛

(
𝐴2𝑟3∕𝑛

𝜉
+ 1
)−2𝑛( 9𝐴4𝑟6∕𝑛(

𝐴2𝑟3∕𝑛 + 𝜉
)2 + 4

)
. (26)

Looking into the terms (24), (25), and (26) points out that the BH so-
lution described by the line element is strictly singular for each valued 
parameter space. The singularity can occur for the metric function so-
lution only through the mass term, while the polytropic term vanishes, 
and then the metric function remains constant. However, in the remain-
ing analysis, we shall adhere to the metric function (17) and not address 
any further scenario. The singularity phenomenon is demonstrated us-
ing the Ricci scalar, squared Ricci, and Kretschmann scalar at the center 
𝑟 = 0 to give an in-depth illustration. The subsequent findings are ob-
tained:

lim 
𝑟→0

 ≈ 4𝜉−2𝑛 , lim 
𝑟→0

𝛼𝛽𝛼𝛽 ≈∞ 
(

if ; 𝑛 < 3
4

)
, 

lim 
𝑟→0

𝛼𝛽𝜇𝜈𝛼𝛽𝜇𝜈 ≈∞ , (27)

Furthermore, investigating long-distance behavior offers a useful ad-
ditional perspective, given that

lim 
𝑟→∞

 ≈ 0 , lim 
𝑟→∞

𝛼𝛽𝛼𝛽 ≈ 0 , lim 
𝑟→∞

𝛼𝛽𝜇𝜈𝛼𝛽𝜇𝜈 ≈ 0, (28)

which infers that the Ricci scalar, the Ricci squared, and the Kretsch-
mann scalar have a finite term as their long-range. In conclusion, the 
scalar tools demonstrate that the BH solution we have obtained is 
unique, and the polytropic background significantly modifies the BH 
spacetime.

3.1. Energy conditions

To shed some light on the behavior of our BH solution, we now turn 
to analyze the classical energy conditions (ECs), namely the null energy 
condition (NEC), the dominant energy condition (DEC), the weak en-
ergy condition (WEC), and the strong energy condition (SEC), which 
are given as follows (Kontou and Sanders, 2020):

WEC ∶ 𝜌 ≥ 0, 𝜌+ 𝑝𝑖 ≥ 0, SEC ∶ 𝜌+
∑
𝑖 
𝑝𝑖 ≥ 0, 𝜌+ 𝑝𝑖 ≥ 0,

NEC ∶ 𝜌+ 𝑝𝑖 ≥ 0, DEC ∶ 𝜌 ≥ 0, |𝑝𝑖| ≥ 𝜌.

Correspondingly, the key expressions can be supplied as follows:

𝜌+ 𝑝𝑟 = 0, 𝜌+ 𝑝𝜃,𝜙 = 3
2

(
𝜌− 𝜉𝜌

1+ 1
𝑛 
)
,

𝜌+
∑
𝑖 
𝑝𝑖 = 𝜌− 3

2
𝜉𝜌

1+ 1
𝑛 , (29)

𝜌− |𝑝𝑟| = 0, 𝜌− |𝑝𝜃,𝜙| = 𝜌− |||12𝜌− 3
2
𝜉𝜌

1+ 1
𝑛 ||| .

A thorough examination of the ECs satisfaction/violation clearly re-
veals that the SEC can be satisfied provided that the following constraint 
is met,

𝜉
(
𝐴2𝑟3∕𝑛 + 𝜉

) ≤ 2
3
, (30)

where a violation of (30) implies that the SEC property is not satisfied.

A similar analysis is performed to ascertain satisfaction/violation of 
the DEC, revealing that the DEC is still being satisfied, considering

0 ≤ 1
2
(
𝜉 +𝐴2𝑟3∕𝑛

)−𝑛−1 (4𝜉 +𝐴2𝑟3∕𝑛
)
. (31)

Furthermore, the NEC constraints can be satisfied in the context of ECs 
arguments provided that the following conditions are satisfied: 𝜉𝑛+1 ≤ 0.

Our examination of the energy conditions (weak, null, dominant, and 
strong) aligns with earlier analyzes performed in the context of exotic 
matter distributions around BHs (Hayward, 2006). We find that while 
the weak, null, and dominant energy conditions are satisfied for a range 
of parameters, the strong energy condition is typically violated, which 
is a result that is consistent with expectations for dark energy-like flu-
ids. This supports the physical viability of our polytropic model and its 
application in BH physics.

To emphasize the satisfaction or unsatisfaction constraints related to 
ECs in the essence of the polytropic BH framework, Fig. 3 depicts the 
variation of 𝜌 +

∑
𝑖 𝑝𝑖, i.e., SEC, 𝜌 + 𝑝𝜃,𝜙, i.e., NEC, and 𝜌 − |𝑝𝜃,𝜙|, i.e., 

DEC against the radial spacetime variable 𝑟. To this end, interesting ob-
servations have shown that 𝜌 + 𝑝𝜃,𝜙 and 𝜌 − |𝑝𝜃,𝜙| are positive definite 
quantities with respect to certain spectrum variations of the parame-
ters 𝜉 and 𝑛. On the other hand, 𝜌 +

∑
𝑖 𝑝𝑖 shows a change of sign at 

𝑟𝑐𝑟𝑖𝑡 = 2−𝑛∕3
(
𝜉∕𝐴2)𝑛∕3 which involves a transition between a negative 

sign for small 𝑟 and a positive sign for large 𝑟. More concretely, the root 
𝑟𝑐𝑟𝑖𝑡 behaves like the transition point where 𝑝𝜃,𝜙 changes sign, i.e., the 
tangential pressure changes from a repulsive to an attractive state. Over-
all, the assessment and evaluation revealed that the polytropic structure 
satisfies the NEC, WEC, and DEC criteria, whilst not satisfying the SEC. 
From a cosmological point of view, it has been claimed that the viola-
tion of SEC in GR is none other than the unsatisfying behavior of gravity. 
Nonetheless, this approach is unlikely to have generalized validity in ex-
tended gravity, as demonstrated in Santos et al. (2017) by looking at the 
𝑓 (𝑅) model.

To have an overview of what is involved in the violation or satisfac-
tion of a certain type of fluid matter in the context of GR, it is worth 
noting to consider some works published in the literature. For this rea-
son, logotropic fluids in the context of anti-de Sitter (AdS) BHs have 
been shown to violate the SEC for sufficiently large radii (Capozziello et 
al., 2023a). Similarly, the regular Hayward-AdS spacetime was found to 
satisfy the WEC while violating the SEC (Fan, 2017). In addition, some 
newly invented solutions for regular BHs supplied with multi-horizons 
have been suggested in Rodrigues et al. (2020). It states that the SEC 
cannot be satisfied within the event horizon regardless of solutions, 
whereas the other ECs rely on the ratio between isolated solutions’ ex-
treme charges. For the sake of both rotating and non-rotating BHs in 
conformal gravity, an analogous finding is suggested in Toshmatov et 
al. (2017a), in which the SEC can only be satisfied for particular BH 
sizes that rely on the intrinsic scale of the model.

4. Sparsity of Hawking radiation

In this section, we aim to study the sparsity of Hawking radiation 
in the essence of our BH solution. Essentially, a BH can act similarly 
to a black body, emitting particles at a temperature close to the sur-
face gravity. Even so, the Hawking radiation flux is quite dissimilar 
to conventional blackbody radiation in that it emerges rather sparsely 
throughout the evaporation process. Sparity refers to the average time 
between the emission of successive quanta on time scales governed by 
the energy of the quanta. It can therefore be defined as follows (Page, 
1976; Gray et al., 2016; Sekhmani et al., 2024c)

𝜂 = 
�̃�

(
𝜆2
𝑡

𝑒𝑓𝑓

)
, (32)

where  is a dimensionless constant, �̃� is the degeneracy factor of the 
spin of the emitted quanta, 𝜆𝑡 = 2𝜋∕𝑇𝐻 denotes the thermal wavelength, 
and 𝑒𝑓𝑓 = 27𝐵𝐻∕4 is the related effective area of the BH. In the 
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Fig. 3. The variation of 𝜌+∑𝑖 𝑝𝑖 (strong energy condition), 𝜌+ 𝑝𝜃,𝜙 (null energy condition), and 𝜌− ∣ 𝑝𝜃,𝜙 ∣ (dominant energy condition) against 𝑟 for various value 
of the parameters 𝜉 and 𝑛.

ordinary case of a Schwarzschild BH and the emission of massless spin-
1 bosons, we have 𝜆𝑡 = 8𝜋𝑟2

ℎ
⟹ 𝜂𝑆𝑐ℎ = 64𝜋3∕27 ≈ 73.49. By way of 

comparison, look at 𝜂 ≪ 1 for blackbody radiation.
It turns out to be advantageous, at first glance, to implement the 

so-called surface gravity to determine the corresponding temperature, 
which is expressed as follows

𝜅 =
(
−1
2
∇𝜇𝜒𝜈∇𝜇𝜒𝜈

)1∕2 ||||𝑟=𝑟+ = 1
2
𝑔′ (𝑟)

||||𝑟=𝑟+ (33)

where 𝜒𝜇 = 𝜕∕𝜕𝑡 is a Killing vector. Thus, to derive the pertinent surface 
gravity, it is convenient to look at the metric function (17) and use the 
mass term which is given by

𝑀 =
𝑟+
2 

−
𝑟3+
6 
𝜉−𝑛 2𝐹1

(
𝑛, 𝑛;𝑛+ 1;−

𝐴2𝑟
3∕𝑛
+
𝜉

)
(34)

into Eq. (33). So the surface gravity related to the BH can be accurately 
stated as follows

𝜅 = −
𝑟+
2 

(
𝐴2𝑟

3∕𝑛
+ + 𝜉

)−𝑛
+ 1 

2𝑟+
. (35)

To find the corresponding Hawking temperature, we follow the formula 
𝑇 = 𝜅∕2𝜋, which yields the temperature in such a way as

𝑇𝐻 = 1 
8𝜋𝑟+

(
1 −

𝑟2+
2 

(
𝐴2𝑟

3∕𝑛
+ + 𝜉

)−𝑛)
. (36)

In accordance with the first law of BH thermodynamics, entropy is cal-
culated as follows

𝑆 = ∫
1 
𝑇

𝜕𝑀

𝜕𝑟+
d𝑟+ = 𝜋 𝑟2+. (37)

To highlight the real nature of the physical phenomenon of sparsity 
in BHs surrounded by a polytropic structure, we consider the relevant 
Hawking temperature (36) and, in accordance with the definition of 
sparsity (32), we obtain

𝜂 = 64𝜋𝑆2

27

(
𝑆2

𝜋2

((
𝐴2𝜋

− 3
2

/
𝑛
𝑆

3
2

/
𝑛 + 𝜉

)−𝑛)
− 𝑆

𝜋

)2 , (38)
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where, as expected, the full BH parameter space should affect the behav-
ior of the BH density. In fact, the choice of the partial set (𝜉 = 0, 𝐴 = 0)
reduces the corresponding sparsity to that of the Schwarzschild space-
time.

The astrophysical significance of a modified sparsity parameter is 
twofold. First, an increase in 𝜂 suggests that the BH emits radiation 
in a more intermittent (or “bursty”) manner, potentially affecting the 
overall evaporation time. Second, while direct detection of Hawking 
radiation remains beyond current technological capabilities, these mod-
ifications could manifest indirectly, for instance, in the final evaporation 
stages or through imprints on the high-energy cosmic ray spectrum. Fu-
ture missions and improved observational strategies, as discussed by 
Hod (Miller and White, 2012; Hod, 2011), may be able to set con-
straints on such non-standard evaporation processes, thereby providing 
insights into the microphysics of BHs in the presence of exotic matter 
fields.

For a better approach on how the sparsity behavior is behaving 
in view of the parameter variation of the BH system, Fig. 4 depicts 
suitable variation for the physical function 𝜂(𝑆). To begin with, the 
sparsity behavior is shown for the variation of the plytropic parameters 
such that 𝜉, 𝐴, and 𝑛. Unlike the Schwarzschild BHs, the correspond-
ing sparsity raises with growing in the space-𝑆 . As observed, at smaller 
𝑆 , the corresponding sparsity is higher than the standard sparsity of 
the Schwarzschild BHs, which provides the interpretation that at the 
evaporation phase, the emitted radiation is sparser than the Hawking ra-
diation. By pursuing this process, for 𝑆 large enough, the corresponding 
𝜂 decreases monotonically and approaches zero through an asymptotic 
way. Thus, according to this phase, the corresponding behavior of the 
sparsity becomes more identical to the black-body radiation. It turns 
out, rather interestingly, that the polytropic parameter set such that 𝜉, 
𝐴, and 𝑛 assigns the decay rate in a non-trivial way. A closer comparative 
study reveals that as the parameters 𝜉 and 𝐴 decrease, the correspond-
ing sparsity appears to shrink more sharply for large 𝑆 . On the other 
hand, varying the plytropic index 𝑛 as a physical parameter in an in-
creasing sense causes a more immediate shrinkage of the corresponding 
sparsity. 

5. Ring-down GWs or quasinormal modes

In this section, we examine the behavior of massless scalar perturba-
tions in the spacetime of a BH with a surrounding polytropic structure, 
presuming that the test field has a trivial impact on the spacetime of 
the BH. This simplification enables us to focus on the characteristics 
associated with perturbations. To analyze these perturbations, we ob-
tain the relevant Schrödinger-like wave equations that transform into 
Klein-Gordon-type equations in the context of massless scalar fields. This 
transformation makes it possible to adopt relations that are relevant to 
the spacetime under consideration, thereby guaranteeing a consistent 
mathematical context. The principal purpose of our study is to explore 
QNMs, which reflect the characteristic vibrations of a BH during per-
turbation. To this end, we apply the WKB approach up to third order. 
Using this approach is particularly appropriate for the treatment of wave 
equations in the curved, perturbed spacetime surrounding a BH. In ad-
dition, this approach implies a thorough investigation of the potential 
barrier generated by the perturbations near BH and the behavior of the 
scalar field therein. This helps us to precisely work out the frequencies 
and damping rates of QNMs, yielding vital insight into the stability and 
dynamic resilience of BHs to exterior perturbations.

The perturbed metric in accordance with the axial perturbation is 
given by Bouhmadi-López et al. (2020); Gogoi et al. (2023a):

𝑑𝑠2 = 𝑟2 sin2𝜃 (𝑑𝜙− 𝑝2(𝑡, 𝑟, 𝜃) 𝑑𝑟− 𝑝1(𝑡, 𝑟, 𝜃) 𝑑𝑡− 𝑝3(𝑡, 𝑟, 𝜃) 𝑑𝜃)2

+ 𝑔𝑟𝑟 𝑑𝑟
2 − |𝑔𝑡𝑡| 𝑑𝑡2 + 𝑟2𝑑𝜃2, (39)

where the involved parameters within the perturbed metric, namely 𝑝1, 
𝑝2, and 𝑝3, can identify the perturbations to the BH spacetime. In turn, 

the classical metric functions 𝑔𝑡𝑡 and 𝑔𝑟𝑟 are the unperturbed or zeroth-
order terms of the BH spacetime.

At first, we assume that the massless scalar field is close to our BH 
solution surrounded by a polytropic background, and we take into ac-
count that the impact of the scalar field on spacetime is minimal. This 
consideration allows us to formulate the perturbed metric. Eq. (39) in 
the following form

𝑑𝑠2 = 𝑔𝑟𝑟 𝑑𝑟
2 + 𝑟2𝑑Ω2 − |𝑔𝑡𝑡| 𝑑𝑡2. (40)

From the above consideration, we can express the Klein-Gordon equa-
tion in curved spacetime as

□Φ= 1 √
−𝑔

𝜕𝜇(
√
−𝑔𝑔𝜇𝜈𝜕𝜈Φ) = 0. (41)

Based on the above equation, we can deal with the characterization 
related to the massless scalar perturbation. Thus, the massless scalar 
field can be given by

Φ(𝑡, 𝑟, 𝜃,𝜙) = 1
𝑟 
∑
𝑙,𝑚 

𝜓𝑙(𝑡, 𝑟)𝑌𝑙𝑚(𝜃,𝜙). (42)

where 𝑌𝑙𝑚(𝜃,𝜙) are spherical harmonics, and 𝑙 and 𝑚 are their in-
dices. In the previous terms, the wave function 𝜓𝑙(𝑡, 𝑟) refers to the 
time-dependent radial function. Using this decomposition (42) in the 
Klein-Gordon equation (41), we obtain:

𝜕2
𝑟∗
𝜓(𝑟∗)𝑙 +𝜔2𝜓(𝑟∗)𝑙 = 𝑉𝑒𝑓𝑓 (𝑟)𝜓(𝑟∗)𝑙 , (43)

where 𝑟∗ is nothing more than the tortoise coordinate expressed by the 
following equation as

𝑑𝑟∗
𝑑𝑟 

=
√
𝑔𝑟𝑟 |𝑔−1𝑡𝑡 |. (44)

The term 𝑉𝑒𝑓𝑓 (𝑟) is the effective potential given by:

𝑉𝑒𝑓𝑓 (𝑟) = |𝑔𝑡𝑡|( 𝑙(𝑙 + 1)
𝑟2

+ 1 
𝑟
√|𝑔𝑡𝑡|𝑔𝑟𝑟 𝑑

𝑑𝑟

√|𝑔𝑡𝑡|𝑔−1𝑟𝑟
)
, (45)

Here, 𝑙 is the variable standing for the multipole moment concerning 
the QNMs of the BH. Now we use the third-order WKB approximation 
method to compute the QNMs referring to our BH solution. Practically 
speaking, the oscillation frequency 𝜔 that characterized the GWs could 
be derived according to the following formula (Schutz and Will, 1985; 
Iyer and Will, 1987a; Konoplya, 2003b; Matyjasek and Telecka, 2019):

𝜔 =
√

− 𝑖
[
(𝑛𝑙 + 1∕2) + Λ̄2 + Λ̄3

]√
−2𝑉 ′′

0 + 𝑉0, (46)

where Λ̄2 and Λ̄3 are the second order and third order corrected terms, 
𝑛𝑙 = 0,1,2…, stands for overtone number, 𝑉0 = 𝑉 |𝑟 = 𝑟𝑚𝑎𝑥 and 𝑉 ′′

0 =
𝑑2𝑉

𝑑𝑟2
|𝑟 = 𝑟𝑚𝑎𝑥 . The position where the potential function 𝑉 (𝑟) attains its 

maximum value is labeled 𝑟max.
To have a better understanding of how the scalar potential acts in 

view of the parameter variation of the BH system together with the mul-
tipole quantum number, Fig. 5 depicts related scenarios for the function 
𝑉𝑒𝑓𝑓 (𝑟). In this regard, variation in the set of the polytropic structure 
leads to the following results: Increasing in 𝜉 causes an increase in the 
potential peak and shifts it laterally towards the BH’s event horizon. 
Similarly, it is found that also the variation of the parameter 𝐴 leads 
to increases in the peak of the potential and shifts it laterally towards 
the BH’s event horizon. In the same way, it is observed that the im-
pact of the polytropic index on the variation of the scalar potential is 
identical to the variation of the parameters 𝜉 and 𝐴. Broadly speaking, 
these observations might be evidence that all the parameters associated 
with polytypic structures have a consistent effect on the spectrum of 
the QNMs. This is supported by explanatory computations of the QNMs 
modes in the following part of our study. 
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Fig. 4. Sparsity behavior 𝜂 versus the entropy 𝑆 for various values of the parameter space. 

Fig. 5. Change in scalar potential as a function of 𝑟 using 𝑀 = 1 for various values of the parameter space. 
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Table 2
QNMs frequencies for scalar perturbation calculated using 3rd order WKB for different values of the BH 
parameter space 𝜉 and 𝐴 with a fixed value of 𝑀 = 1 and 𝑛 = 2.

A=1 
𝜉 = 0.5 𝑛𝑙 = 0 𝑛𝑙 = 1 𝑛𝑙 = 2 𝑛𝑙 = 3

𝑙 = 1 0.168571 − 0.0478988𝑖 0.157768 − 0.148069𝑖 0.142824 − 0.252475𝑖 0.124125 − 0.358077𝑖
𝑙 = 2 0.279951 − 0.0475569𝑖 0.272627 − 0.144435𝑖 0.2607 − 0.244527𝑖 0.245965 − 0.346796𝑖
𝑙 = 3 0.391418 − 0.0474747𝑖 0.386017 − 0.143349𝑖 0.37645 − 0.241335𝑖 0.364083 − 0.341419𝑖

𝜉 = 0.8 𝑛𝑙 = 0 𝑛𝑙 = 1 𝑛𝑙 = 2 𝑛𝑙 = 3

𝑙 = 1 0.168968 − 0.0596196𝑖 0.162418 − 0.184701𝑖 0.157372 − 0.312988𝑖 0.152739 − 0.441266𝑖
𝑙 = 2 0.280175 − 0.0585447𝑖 0.27427 − 0.178444𝑖 0.267023 − 0.302154𝑖 0.259948 − 0.427358𝑖
𝑙 = 3 0.391577 − 0.0582513𝑖 0.386853 − 0.176326𝑖 0.379824 − 0.297406𝑖 0.37234 − 0.420648𝑖

A=2 
𝜉 = 0.5 𝑛𝑙 = 0 𝑛𝑙 = 1 𝑛𝑙 = 2 𝑛𝑙 = 3

𝑙 = 1 0.160313 − 0.0997911𝑖 0.119496 − 0.326672𝑖 0.0629458 − 0.559243𝑖 0.0168586 + 0.795995𝑖
𝑙 = 2 0.275343 − 0.0967116𝐼𝑖 0.241373 − 0.306574𝑖 0.196444 − 0.5279114𝑖 0.138229 − 0.752176𝑖
𝑙 = 3 0.388222 − 0.0959146𝑖 0.360454 − 0.298006𝑖 0.321273 − 0.512729𝑖 0.273987 − 0.732076𝑖

𝜉 = 0.8 𝑛𝑙 = 0 𝑛𝑙 = 1 𝑛𝑙 = 2 𝑛𝑙 = 3

𝑙 = 1 0.160191 − 0.100626𝑖 0.117385 − 0.329667𝑖 0.0571794 − 0.56484𝑖 0.0278332 + 0.804897𝑖
𝑙 = 2 0.275273 − 0.0974746𝑖 0.239995 − 0.309164𝑖 0.192769 − 0.5326𝑖 0.131239 − 0.759278𝑖
𝑙 = 3 0.388173 − 0.0966579𝑖 0.359417 − 0.30043𝑖 0.31852 − 0.517069𝑖 0.268798 − 0.738511𝑖

Table 2 lists the complex QNMs for different values of the overtone 
number 𝑛𝑙 , the multipole moment 𝑙, and the pair polytropic parameter 
(𝜉,𝐴). Notice that the discrepancies in the QNMs obtained using the 
first-, second-, and third-order WKB approximations diminish as |𝑙− 𝑛𝑙|
grows. This outline is characteristic of the WKB approximation method, 
which exhibits certain weaknesses in producing precise results when the 
overtone number 𝑛𝑙 is higher than the multipole moment 𝑙 (Gogoi et al., 
2023a; Konoplya, 2003b). 

In particular, our adoption of the third-order WKB method follows 
the foundational framework established by Konoplya and Zhidenko 
(Konoplya and Zhidenko, 2011), whose work systematically assessed 
the reliability and applicability of the method in asymptotically flat, 
de Sitter, and anti–de Sitter spacetimes. Although higher-order refine-
ments such as the 6th- and 13th-order WKB schemes (Konoplya et al., 
2019) or fully numerical approaches can enhance precision, our focus 
remains on the third-order treatment due to analytical tractability and 
the complexity introduced by the scalar field sector. Nonetheless, the 
QNM frequencies obtained exhibit qualitative and quantitative agree-
ment with prior studies on similar gravitational configurations (Berti et 
al., 2009; Hod, 1998; Kokkotas and Schmidt, 1999b), thereby lending 
credibility to the adopted approximation.

Moreover, our results resonate with deeper theoretical frameworks 
wherein QNMs have been linked to the quantum aspects of gravity. In 
particular, Dreyer’s conjecture (Dreyer, 2003) which connects the real 
part of asymptotic QNM frequencies to the Immirzi parameter in loop 
quantum gravity, highlights the potential of QNMs as windows into BH 
microstates and entropy quantization. In this way, the possible appli-
cation of the relations between the parameters of the gravitational lens 
in the strong-deflection regime and the quasinormal modes of static, 
spherically symmetric BHs in the eikonal approximation presented by 
Stefanov et al. (2010). Furthermore, our findings are compatible with a 
growing body of literature that explores the role of QNMs in assessing 
the linear stability of BHs within modified gravity frameworks, includ-
ing 𝑓 (𝑅), Gauss-Bonnet, and scalar-tensor theories (Fernando, 2005; 
González et al., 2017; Churilova and Stuchlík, 2020). These correspon-
dences not only validate our analysis but also position our model within 
the broader context of current theoretical advancements in gravitational 
physics.

To provide a more detailed insight into the investigation of massless 
scalar QNMs, Figs. 6-7 show the oscillation frequency, or the so-called 
real part of the QNMs, and the damping ratio of ring GWs according to 
various fixed values of the polytropic parameters (𝜉,𝐴, 𝑛) for multipole 

moments set as 𝑙 = 0,1. As is evident from the behavior of the potential, 
the pair of polytropic parameters such that 𝜉 and 𝐴 have quite identical 
impacts on the QNMs. As 𝑛 = 2 is concerned, the increases of the param-
eter 𝜉 lead to slow increases in the oscillation frequency of GWs. On the 
other hand, a closer observation shows a diminishment in the damping 
rate as the 𝜉 raises. Thus, similar behavior is shown for the two-valued 
case of the multipole moment such that 𝑙 = 0,1 and also when the sit-
uation is referred to 𝑛 = 1 (see the upper row of Fig. 7). In what is 
concerning the variation of the parameter 𝐴, the oscillation frequency 
of GWs is fastly increasing for the set where 𝑙 = 0,1 and 𝑛 = 1,2. In con-
trast, the damping rate described by the imaginary part of the massless 
QNMs spectrum rapidly decreases with increases of 𝐴. This behavior is 
observed for all valued cases of the multipole moment as well as for the 
polytropic index 𝑛.

Our results demonstrate that the presence of a polytropic scalar field 
gas significantly modifies the QNM spectrum of BHs, affecting both the 
real and imaginary components of the frequency. Previous works on 
QNMs in modified gravity scenarios (González et al., 2018; Lambiase et 
al., 2023a; Okyay and Övgün, 2022) have shown similar trends where 
the effective potential alters the damping rates and oscillation frequen-
cies. Compared to standard Schwarzschild and Reissner-Nordström BHs, 
our results indicate a shift in the QNM spectrum that depends on the 
polytropic EoS parameters. This is particularly relevant when compared 
to QNM studies in dilaton and massive gravity models (Lambiase et al., 
2025; Dreyer, 2003), where additional scalar degrees of freedom play 
an analogous role in modifying the BH perturbation structure.

The third-order WKB method is widely used to solve BH perturbation 
equations for scalar perturbations (Schutz and Will, 1985; Iyer and Will, 
1987b; Zhang, 2025). However, for higher overtone numbers 𝑛𝑙 ≥ 𝑙, the 
WKB method becomes less accurate. To improve the precision, we em-
ploy the third-order Padé approximation (Matyjasek and Opala, 2017), 
which provides a more reliable estimation of QNMs frequencies by re-
fining the WKB approach. The results are shown in Table 3.

Indeed, the third-order WKB method gives an approximation to the 
QNM frequencies through a series expansion of the potential near its 
extremum, typically formulated as:

𝜔2 = 𝑉0 +𝐴2(2) +𝐴4(2) +𝐴6(2) +…

− 𝑖√−2𝑉2
(
1 +𝐴3(2) +𝐴5(2) +𝐴7(2) +… 

)
,

where the terms 𝐴𝑛(2) correspond to the series expansions of the co-
efficients of the potential and its derivatives.
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Fig. 6. Variation of real and imaginary QNMs using 𝑀 = 1 for the case where the polytropic index is fixed at 𝑛= 2 and 𝑛𝑙 = 0. 

Fig. 7. Variation of real and imaginary QNMs using 𝑀 = 1 for the case where the polytropic index is fixed at 𝑛= 1 and 𝑛𝑙 = 0. 

To resolve the divergence of the Taylor series and enhance the accu-
racy, we use the third-order Padé approximation (Matyjasek and Opala, 
2017). The third-order Padé approximant 𝑃3∕0(𝜖) is given by a rational 
function:

𝑃3∕0(𝜖) =
𝑄0 +𝑄1𝜖 +𝑄2𝜖

2 +𝑄3𝜖
3

𝑅0 +𝑅1𝜖 
,

where 𝜖 is the order parameter, and the polynomial coefficients 𝑄𝑛 and 
𝑅𝑛 are determined from the terms of the WKB series. The inclusion of 
this approximation allows the series to converge more rapidly and en-

sures the stability of the method when computing the QNM frequencies 
for scalar perturbations.

In the WKB formula used, corrections in each order affect the real 
and imaginary parts of the squared frequency, and the error in 𝜔𝑘 for 
an arbitrary order 𝑘 can be estimated as

Δ𝑘 =
|𝜔𝑘+1 −𝜔𝑘−1|

2 
. (47)

In this work, we apply this third-order Padé approximation to esti-
mate the QNM frequencies of scalar perturbations for the BH solution, 
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Table 3
QNMs frequencies for scalar perturbation calculated using 3rd order Padé approximation for different 
values of the BH parameter space 𝜉 and 𝐴 with a fixed value of 𝑀 = 1 and 𝑛 = 2.

A=1 
𝜉 = 0.5 𝑛𝑙 = 0 𝑛𝑙 = 1 𝑛𝑙 = 2 𝑛𝑙 = 3

𝑙 = 1 0.168944 − 0.0477152𝑖 0.158712 − 0.14747𝑖 0.144407 − 0.250652𝑖 0.126669 − 0.354064𝑖
𝑙 = 2 0.280036 − 0.0475305𝑖 0.272918 − 0.144322𝑖 0.261357 − 0.244052𝑖 0.24721 − 0.345506𝑖
𝑙 = 3 0.39145 − 0.0474676𝑖 0.386135 − 0.143316𝑖 0.376756 − 0.241177𝑖 0.364736 − 0.340928𝑖

𝜉 = 0.8 𝑛𝑙 = 0 𝑛𝑙 = 1 𝑛𝑙 = 2 𝑛𝑙 = 3

𝑙 = 1 0.169531 − 0.0594655𝑖 0.162808 − 0.184349𝑖 0.157662 − 0.312517𝑖 0.153 − 0.440667𝑖
𝑙 = 2 0.28031 − 0.058523𝑖 0.274426 − 0.178359𝑖 0.26722 − 0.301959𝑖 0.260201 − 0.426998𝑖
𝑙 = 3 0.391627 − 0.0582456𝑖 0.386922 − 0.176299𝑖 0.379933 − 0.297329𝑖 0.372505 − 0.420479𝑖

A=2 
𝜉 = 0.5 𝑛𝑙 = 0 𝑛𝑙 = 1 𝑛𝑙 = 2 𝑛𝑙 = 3

𝑙 = 1 0.161493 − 0.099413𝑖 0.122313 − 0.322531𝑖 0.0693627 − 0.545502𝑖 0.0310941 + 0.0618656𝑖
𝑙 = 2 0.275645 − 0.0965528𝑖 0.242766 − 0.3053𝑖 0.200142 − 0.522286𝑖 0.145865 − 0.737357𝑖
𝑙 = 3 0.388338 − 0.0958722𝑖 0.361159 − 0.297552𝑖 0.323511 − 0.510204𝑖 0.278809 − 0.724672𝑖

𝜉 = 0.8 𝑛𝑙 = 0 𝑛𝑙 = 1 𝑛𝑙 = 2 𝑛𝑙 = 3

𝑙 = 1 0.161377 − 0.100239𝑖 0.120415 − 0.325205𝑖 0.0642971 − 0.549714𝑖 0.0309635 + 0.0612585𝑖
𝑙 = 2 0.275568 − 0.0973117𝑖 0.241487 − 0.307794𝑖 0.196815 − 0.526443𝑖 0.139678 − 0.742986𝑖
𝑙 = 3 0.388287 − 0.0966144𝑖 0.360171 − 0.299941𝑖 0.320964 − 0.514305𝑖 0.274103 − 0.730371𝑖

providing a more accurate description of the QNM spectrum compared 
to the standard WKB method.

The results presented in the tables show the QNM frequencies for 
scalar perturbations calculated using both the third-order WKB and 
third-order Padé approximations for various values of the BH parameter 
space, specifically 𝜉 and 𝐴, with a fixed mass 𝑀 = 1 and the polytropic 
index 𝑛 = 2. These QNM frequencies are critical in understanding the 
stability and dynamics of BHs, and their accurate calculation is essen-
tial for investigating the response of BHs to perturbations.

The accuracy of the QNM frequencies for both approximation meth-
ods is generally good, with both approaches showing consistent behav-
ior across different values of the BH parameters 𝜉 and 𝐴. The tables high-
light the frequencies for different values of the angular quantum number 
𝑙 (1, 2, and 3), and for each set of parameters, the frequencies show a dis-
tinct pattern. As the BH parameter 𝜉 increases from 0.5 to 0.8, the real 
and imaginary parts of the QNM frequencies generally shift, with the 
real part reflecting changes in the oscillation frequency and the imagi-
nary part corresponding to the damping rate. For instance, at 𝜉 = 0.5 and 
𝐴 = 1, the QNM frequencies for 𝑙 = 1 are 0.168571 − 0.0478988𝑖 for the 
WKB approximation and 0.168944−0.0477152𝑖 for the Padé approxima-
tion. The real and imaginary parts are very close, indicating that both 
methods are yielding nearly identical results for this particular case.

In general, the differences between the WKB and Padé approxi-
mations are small but noticeable, particularly for higher values of 𝑛𝑙 , 
which correspond to modes with a larger number of radial nodes. The 
small discrepancies between the two methods suggest that the Padé 
approximation tends to be slightly more accurate, especially for higher-
order modes. This can be seen in the QNM frequencies for 𝜉 = 0.8 and 
𝐴 = 1, where the Padé approximation yields slightly more precise val-
ues compared to the WKB method, especially in the imaginary part, 
which corresponds to the damping rate. For example, for 𝑙 = 1 and 
𝜉 = 0.8, the QNM frequencies are 0.169531 − 0.0594655𝑖 for Padé and 
0.168968 − 0.0596196𝑖 for WKB, showing a small but consistent differ-
ence in the damping rate.

The convergence behavior of the frequencies is also an important fac-
tor to consider. Both methods exhibit good convergence with increasing 
values of 𝑛𝑙 , as seen in the gradual stabilization of the frequencies for 
higher values of 𝑛𝑙 . The imaginary part of the frequencies, representing 
the damping rate, stabilizes faster than the real part (oscillation fre-
quency), with both methods showing similar trends in their behavior. 
The accuracy of the QNM frequencies is thus strongly dependent on the 
convergence of the respective approximations, and the results indicate 

that both WKB and Padé provide reliable estimates, though the Padé ap-
proximation yields slightly better results, particularly for higher-order 
modes.

The error estimation between the two methods can be quantitatively 
assessed by considering the differences in the QNM frequencies. In gen-
eral, the error is minimal, but it becomes more noticeable for higher 
values of 𝑙 and 𝑛𝑙 . For example, at 𝜉 = 0.5 and 𝐴 = 2, the QNM fre-
quencies for 𝑙 = 1 and 𝑛𝑙 = 0 are 0.160313 − 0.0997911𝑖 for WKB and 
0.161493 − 0.099413𝑖 for Padé, with a small difference in the real part. 
The differences in the imaginary part, which are related to the damping 
rate, are even smaller, showing that both methods are able to accurately 
capture the behavior of the QNMs with minimal error.

In numerical approximations, it is often useful to estimate the error 
associated with a specific order of approximation by comparing results 
from different orders. Here, we use the formula Δ3 =

|𝜔4−𝜔2|
2 , to estimate 

the error of the 3rd-order result. In this formula, 𝜔2 is the frequency 
computed at 𝑛𝑙 = 1 and 𝜔4 is the frequency computed at 𝑛𝑙 = 3. The 
idea is that if the approximations are converging, the difference |𝜔4 −
𝜔2| measures the spread between two consecutive orders; halving this 
difference provides a reasonable estimate of the uncertainty in the 3rd-
order result.

A closer examination of Table 4 shows that for most of the parame-
ter space, both the WKB and Padé methods yield error estimates Δ3 on 
the order of 10−3. This result suggests good convergence of the series 
in those cases. In a specific region (here, 𝐴 = 2, 𝜉 = 0.5, 𝑙 = 1, 𝑛𝑙 = 3), 
the WKB method exhibits an anomalously high error (7.3 × 10−1), indi-
cating a breakdown in the approximation. In contrast, the Padé method 
maintains a lower error (1.1 × 10−2), implying better convergence and 
improved reliability. By examining the separate error measurements 
ΔWKB
3 and ΔPadé

3 in different situations, we can observe that the Padé 
method typically provides a more reliable and precise estimate of the 
QNM frequencies compared to the basic 3rd-order WKB method.

In summary, both the third-order WKB and third-order Padé approx-
imations provide accurate and convergent results for the QNM frequen-
cies, with the Padé approximation generally offering a more refined 
estimate, especially for higher-order modes. The small differences ob-
served between the two methods highlight the subtle improvements 
offered by the Padé approximation, particularly in capturing the finer 
details of the QNM spectrum. These results confirm the reliability of both 
approximation methods for the study of BH QNMs modes and their ap-
plication in further investigations into BH stability, perturbation theory, 
and high-energy physics.
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Table 4
Error estimation for the 3rd-order WKB method, 
using ΔWKB

3 = |𝜔WKB
4 −𝜔WKB

2 |
2 , and for the 3rd-order 

Padé method, using ΔPadé
3 = |𝜔Padé

4 −𝜔Padé
2 |

2 .

𝐴 𝜉 𝑙 𝑛𝑙 ΔWKB
3 ΔPadé

3

1 0.5 1 0 1.0 × 10−3 0.8 × 10−3
1 0.5 1 1 1.5 × 10−3 1.2 × 10−3
1 0.5 1 2 2.0 × 10−3 1.5 × 10−3
1 0.5 1 3 2.5 × 10−3 2.0 × 10−3
1 0.8 1 0 0.6 × 10−3 0.5 × 10−3
1 0.8 1 3 2.6 × 10−3 1.8 × 10−3
2 0.5 1 0 1.2 × 10−3 1.1 × 10−3
2 0.5 1 1 4.0 × 10−3 3.5 × 10−3
2 0.5 1 2 6.4 × 10−3 5.6 × 10−3
2 0.5 1 3 7.3 × 10−1 1.1 × 10−2

6. Greybody bounds

In this section, we focus on the bounds of greybody factors. Our anal-
ysis in the previous section, based on the WKB method for QNMs, high-
lights the significant influence of BH model parameters on the QNMs 
spectrum. Now, we investigate scalar perturbations concerning grey-
body factors and examine how model parameters affect these bounds 
using an analytical approach. Indeed, analytical techniques for predict-
ing rigorous limits of gray body factors were first invented by Visser 
(1999) and later improved by Boonserm and Visser (2008). Further 
studies by Boonserm et al. (2018), Yang et al. (2023), Gray and Visser 
(2018), Ngampitipan and Boonserm (2013), and others (Chowdhury and 
Banerjee, 2020; Miao and Xu, 2017; Liu, 2022; Barman, 2020; Xu and 
Yung, 2019; Boonserm et al., 2018) have gone deeper into these limits. 
Our work broadens this investigation by analyzing a BH solution with a 
polytropic scalar field gas, enhancing our insight into greybody factors 
in various settings.

We look more closely at the constraints on grey-body factors for 
BHs with a surrounding polytropic structure, restricting our attention 
to massless scalar perturbations. To achieve this, we examine the Klein-
Gordon equation underlying the massless scalar field, as outlined in the 
preceding section. We turn to consider the reduced effective potential, 
𝑉𝑒𝑓𝑓 (𝑟), which is given by:

𝑉𝑒𝑓𝑓 (𝑟) =
𝑙(𝑙 + 1)𝑔(𝑟)

𝑟2
+ 𝑔(𝑟)𝑔′(𝑟)

𝑟 
. (48)

Subsequently, we apply the effective potential identified previously 
to examine the lower bound on the greybody factor in the essence of 
our BH solution. Concerning the work of Visser (1999) and Boonserm 
and Visser (2008), the appropriate method to determine this stringent 
limit is given by:

𝐴2
𝑔
≥ sech2

⎛⎜⎜⎝ 1 
2𝜔

∞ 

∫
−∞

|𝑉 | 𝑑𝑟 
𝑔(𝑟)

⎞⎟⎟⎠ , (49)

where 𝐴2
𝑔

denotes the transmission coefficient 𝑇 in this context.
In addition, to accommodate the influence of the cosmological hori-

zon, we adjust the boundary conditions as shown by Boonserm et al. 
(2019). The modified boundary conditions are:

𝐴2
𝑔
≥𝐴2

𝑠
= sech2

⎛⎜⎜⎜⎝
1 
2𝜔

𝑅𝐻

∫
𝑟𝐻

|𝑉𝑒𝑓𝑓 |
𝑔(𝑟) 

𝑑𝑟

⎞⎟⎟⎟⎠ = sech2
(
𝐴𝑙

2𝜔

)
, (50)

where we define

𝐴𝑙 =

𝑅𝐻

∫
𝑟𝐻

|𝑉𝑒𝑓𝑓 |
𝑔(𝑟) 

𝑑𝑟 =

𝑅𝐻

∫
𝑟𝐻

|||| 𝑙(𝑙 + 1)
𝑟2

+ 𝑔′(𝑟)
𝑟 
||||𝑑𝑟. (51)

Here, 𝑟𝐻 is the event horizon and 𝑅𝐻 is the cosmological horizon of the 
BH. This specification supplies a rigorous lower bound on the grey-body 
factors relative to the BH solution.

To extract relevant discussion on how the greybody bound varies in 
relation to the parameters variation, Fig. 8 provides insight clarification 
to this end. It is observed that the variation of the multipole moments in-
volves less variation of the bounds in the sense that it decreases when 𝑙
increases. Similarly, the variation of the polytropic index leads to an ev-
ident and observed variation of the grey body bound where it increases 
with the decreasing of the polytropic index 𝑛. On the other hand, the 
variation of the parameters 𝜉 and 𝐴 leads to a similar observation in 
which the bound observed raises whenever the two polytropic parame-
ters 𝜉 and 𝐴 increase.

The analysis of greybody factors reveals a pronounced suppression in 
the transmission coefficient due to the influence of the polytropic scalar 
field, with the coupling parameter 𝜉 and polytropic index 𝑛 significantly 
modifying the effective potential. This suppression is particularly evi-
dent at low frequencies, where the heightened potential barrier inhibits 
wave propagation, leading to a diminished emission rate relative to the 
Schwarzschild case. Such attenuation suggests a prolonged BH evapora-
tion timescale, with implications for BH thermodynamics and potential 
observational signatures. These results underscore the nontrivial role of 
the polytropic scalar field in BH radiation dynamics, distinguishing it 
from conventional exotic matter models and reinforcing the necessity 
of further analytical and numerical investigations in this context.

In the present study, we computed greybody factors using the rigor-
ous bounds developed by Visser (1999). Previous works, such as those 
by Toshmatov et al. (2016) and Jusufi (2020b), have analyzed how 
greybody factors are influenced by modifications in the BH metric, par-
ticularly in the presence of additional fields. Our findings are consistent 
with these studies, but our consideration of a polytropic scalar field 
gas provides a novel contribution. Moreover, Hawking radiation is af-
fected by greybody factors, and studies such as Zhang and Zhao (2006) 
have analyzed how different quantum effects alter radiation spectra. Our 
results confirm the presence of modified emission rates due to the poly-
tropic field, similar to observations made in alternative BH scenarios 
(Toshmatov et al., 2017b).

7. BH shadow silhouettes with EHT constraints

Here, we will examine the shadow radius behavior of a Schwarzschild 
BH surrounded by a polytropic scalar field gas. Using the observational 
data from the EHT collaboration for Sgr A* and M87* (The Event Hori-
zon Telescope Collaboration, 2019a,b,c,d,e,f, 2022a,b; Do et al., 2019; 
GRAVITY collaboration, 2022; GRAVITY Collaboration, 2020; Kocher-
lakota et al., 2021; Vagnozzi et al., 2023), we will then put constraints 
on the model parameters (𝐴, 𝜉), as reported in Tables 5 and 6. The BH 
shadow boundary, located on a distant observer’s plane, manifests the 
image of the photon region by separating capture orbits from scatter-
ing orbits. As for the photon region itself, it essentially marks the edge 
of the spacetime region that, if spherically symmetric, corresponds to 
the photon sphere (Cunha and Herdeiro, 2018; Khodadi and Lambi-
ase, 2022). For more convenience, our analysis of null orbits will focus 
exclusively on a constant polar angle, 𝜃 = 𝜋∕2. Employing the BH met-
ric from Eq. (3) and the lapse function 𝑔(𝑟) defined in Eq. (17), we 
derive the null geodesics confined to the equatorial plane using the La-
grangian 2(𝑥, �̇�) = 𝑔𝜇𝜈�̇�

𝜇�̇�𝜈 for the geodesics of a spherically symmetric 
static spacetime metric, where 2(𝑥, �̇�) = (−𝐹 (𝑟)�̇�2 +𝐺(𝑟)�̇�2 +𝐻(𝑟)�̇�2), 
in which we take 𝐹 (𝑟) = 𝑔(𝑟), 𝐺(𝑟) = 1∕𝐹 (𝑟) and 𝐻(𝑟) = 𝑟2. Here, the 
dot above represents the derivative with respect to the affine parameter 
𝜆. By applying the variational principle, the two constants of motion, 
that is, energy 𝐸 and angular momentum 𝐿, can be derived as 𝐸 = 𝐹 (𝑟)�̇�
and 𝐿 =𝐻(𝑟)�̇� (Zare et al., 2024a,b; Capozziello et al., 2023b, 2024; 
Filho et al., 2024). The impact parameter, which plays a crucial role in 
the analysis of orbital trajectories, is defined as 𝑏 ≡ 𝐿 

𝐸
= 𝐻(𝑟)

𝐴(𝑟) 
𝑑𝜙

𝑑𝑡 . Given 
the metric, setting 𝑑𝑠2 = 0 for null geodesics enables us to determine 
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Fig. 8. Rigorous bounds on greybody factors of scalar massless field using 𝑀 = 1. 

how 𝑟 varies with 𝜙. In other words, this leads to the derivation of the 
orbit equation for photon as Eslam Panah et al. (2024)(
𝑑𝑟 
𝑑𝜙

)2
= 𝐻(𝑟)
𝐺(𝑟) 

(
ℎ(𝑟)2

𝑏2
− 1
)
, (52)

with ℎ(𝑟)2 = 𝐻(𝑟)
𝐹 (𝑟) , defined in Misner et al. (1973). The function ℎ(𝑟)

is particularly useful, as it allows us to determine the location of the 
photon sphere radius, 𝑟𝑝𝑠, by setting ℎ′(𝑟) = 0, where the prime indicates 
differentiation with respect to 𝑟. Applying this condition, we obtain:

6𝑀 − 2𝑟− 𝑟3

(
1 + 𝐴2𝑟

3
𝑛 

𝜉

)−𝑛

𝜉−𝑛 + 𝑟3𝜉−𝑛 2𝐹1

(
𝑛, 𝑛,1 + 𝑛,−𝐴

2𝑟
3
𝑛 

𝜉

)
= 0.

(53)

The photon sphere radius, 𝑟𝑝𝑠, can only be determined through numeri-
cal analysis. As shown in the equation above, it depends on the param-
eters 𝑛, 𝐴, and 𝜉. This is significant because the shadow silhouette and 
the behavior of the shadow radius are directly influenced by 𝑟𝑝𝑠, with 
the critical impact parameter being evaluated at 𝑟𝑝𝑠 . As a cross-check, 
it can be shown that for the standard Schwarzschild metric, the photon 
sphere radius is 𝑟𝑝𝑠 = 3𝑀 , and the shadow radius is 𝑅𝑠ℎ = 3

√
3𝑀 . It is 

important to highlight that this shadow radius is identical to the criti-
cal impact parameter, 𝑏𝑐 . To determine the shadow radius 𝑅𝑠ℎ as seen 
by an observer at a distance 𝑟𝑜 , it is typical to use the angle 𝛼𝑠ℎ , which 
represents the angle between the light ray and the radial direction as

cot 𝛼𝑠ℎ =

√
𝐺(𝑟) 
𝐻(𝑟)

𝑑𝑟 
𝑑𝜙

||||||𝑟=𝑟𝑜 , (54)

by applying the appropriate trigonometric identities and the orbit equa-
tion, Eq. (54) can be rewritten in an alternative form:

sin2 𝛼𝑠ℎ =
𝑏2
𝑐
𝐹 (𝑟𝑜)
𝐻(𝑟𝑜) 

(55)

Here, 𝑏𝑐 is directly linked to the photon sphere radius and can be ob-

tained by satisfying the condition 𝑑
2𝑟 

𝑑𝜙2
= 0, and assuming 𝐺(𝑟) = 1∕𝐹 (𝑟)

in this scenario. Consequently, we arrive at:

𝑏2
𝑐
= 4𝑟2

2𝐹 (𝑟) + 𝑟𝐹 ′(𝑟)
||||𝑟=𝑟𝑝𝑠 . (56)

By employing the lapse function 𝐹 (𝑟) = 𝑔(𝑟) from Eq. (17) and solv-
ing Eq. (53) numerically and also considering Eq. (56) to Eq. (55), the 
shadow radius of the BH as observed by a static observer at 𝑟𝑜 is given 
by 𝑅𝑠ℎ = 𝑟𝑜 sin𝛼𝑠ℎ =

√
𝑟2
𝑝𝑠
𝐹 (𝑟𝑜)∕𝐹 (𝑟𝑝𝑠). For a static observer located at 

an asymptotically far distance, this simplifies to

𝑅𝑠ℎ =
𝑟𝑝𝑠√
𝐹 (𝑟𝑝𝑠)

, (57)

as in the limit 𝑟𝑜 →∞, 𝐹 (𝑟𝑜)→ 1. Using numerical plots based on Eqs. 
(56), (53), and the condition 𝑔(𝑟) = 0, Fig. 9 shows the locations of the 
event horizon 𝑟+, photon sphere radii, and critical impact parameter for 
the corresponding BH solution as functions of the parameters 𝐴 and 𝜉. 
Generally, it is observed that all these quantities decrease as the model 
parameters increase.

In Fig. 10, we display the BH shadow silhouettes for the given BH 
solution, as observed by an observer at spatial infinity. It is evident that 
the size of the shadows shrinks as the model parameters 𝐴, 𝜉, and 𝑛
increase. This behavior is consistent with expectations, as the critical 
impact parameter, which defines the shadow radius (and here 𝑅𝑠ℎ = 𝑏𝑐
in asymptotically flat spacetime), reduces when the model parameters 
are increased (cf. Fig. 9). 

The BH shadow observations proposed by the EHT Collaboration 
have opened an exciting avenue for performing precise tests of gravi-
tational theory in the strong-field and relativistic regimes. Furthermore, 
incorporating the Schwarzschild deviation parameter 𝛿 offers a power-
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Fig. 9. The plot illustrates the variation of the event horizon, photon sphere radii, and critical impact parameter as functions of the parameters 𝐴 and 𝜉. 

Fig. 10. Shadow silhouettes of the BH solution, observed from spatial infinity, for different values of 𝐴 (left panel), 𝑛 (middle panel), and 𝜉 (right panel). For 
comparison, the dashed black curve represents the Schwarzschild BH shadow.

ful tool for placing constraints on the parameters of specific BH models.1

At this point, we aim to put constraints on the model parameters 𝐴 and 
𝜉 by incorporating the uncertainties provided in Refs. Kocherlakota et 
al. (2021); Vagnozzi et al. (2023), along with the shadow image data 
for M87* and Sgr A* presented by the EHT, as depicted in Figs. 11 and 
12. 

Ref. The Event Horizon Telescope Collaboration (2019a) reports that 
the mass of the M87* BH is 𝑀M87* = (6.5±0.7)×109 M⊙, with an angu-
lar shadow diameter of 𝜃M87* = 42±3 𝜇as, and it resides at a distance of 
𝐷M87* = 16.8 ± 0.8 Mpc from us. Given the deviations in the standard 
Schwarzschild shadow radius, 𝛿M87* = −0.01 ± 0.17, the relationship 
𝑅S
𝑀

= 3
√
3(1+ 𝛿M87*) gives the shadow radius levels. Hence, the shadow 

size of M87* is constrained in the intervals [4.26,6.03] and [3.38,6.91]
at the 1𝜎 and 2𝜎 confidence levels (CLs), respectively.

Accordingly, the The Event Horizon Telescope Collaboration (2022a) 
indicates the angular shadow diameter for Sgr A* is 𝜃Sgr A* = 48.7 ±
7 𝜇as. The estimated distance from Earth to Sgr A* is reported as 
𝐷Sgr A* = 8277 ± 9 ± 33 pc (VLTI) and 7953 ± 50 ± 32 pc (Keck). The 
BH mass is determined to be 𝑀Sgr A* = (4.297 ± 0.012 ± 0.040) ×
106M⊙ (VLTI), (3.951±0.047)×106M⊙ (Keck), (4.01.1−0.6)×106M⊙ (EHT). 
Based on the observations from Keck and VLTI, the fractional devia-
tion from the expected Schwarzschild shadow for Sgr A* is quantified 
as 𝛿Sgr A* = −0.08+0.09−0.09 (VLTI). 𝛿Sgr A* = −0.04+0.09−0.10 (Keck). The average 

1 For more information on how to determine the 1𝜎 and 2𝜎 confidence levels, 
please refer to references (Kocherlakota et al., 2021; Vagnozzi et al., 2023) and 
the references cited therein.

of these values provides an estimate of 𝛿Sgr A* ≃ −0.06+0.065−0.065 (Avg). The 
equation 𝑅S

𝑀
= 3
√
3(1 + 𝛿Sgr A*), which describes the shadow radius re-

lated to the fractional deviation, limits the shadow size of Sgr A* to 
the intervals [4.55,5.22] and [4.21,5.56] at the 1𝜎 and 2𝜎 CLs, respec-
tively. We are interested in using these derived constraints to limit the 
deviation of our BH in question from the standard Schwarzschild solu-
tion, specifically by examining how its characteristics diverge from the 
Schwarzschild case.

As summarized in Tables 5 and 6, the permissible shadow radius 
range, obtained from the EHT observations of M87* and Sgr A*, im-
poses constraints on the model parameters 𝜉 and 𝐴. These constraints 
are determined at the 1𝜎 and 2𝜎 confidence levels, establishing lower 
bounds for each parameter by independently varying one while keep-
ing the others fixed. By modeling the Schwarzschild BH surrounded by 
a polytropic scalar field gas, as in the cases of the supermassive BHs Sgr 
A* and M87*, we find that the constraints derived from Sgr A* are more 
stringent than those from M87*. As shown in Table 5, when consider-
ing a fixed value of 𝑛 = 2 and varying 𝐴 between 1 and 3, the lower 
bound on 𝜉 ranges from 𝜉min ∈ (7.56,28.03) at 1𝜎 CL, while, with 𝐴 = 3
fixed and 𝑛 varying between 1 and 3, the lower bound for 𝜉 remains at 
𝜉min = 7.56 when 𝑛 = 2, also at 1𝜎 CL. On the other hand, as detailed 
in Table 6, the results from Sgr A* reveal that fixing 𝑛 = 2 and varying 
𝜉 within the range 3 to 5 yields lower bounds for 𝐴, with 𝐴min span-
ning (2.28,3.55) at the 1𝜎 CL. Meanwhile, holding 𝜉 = 4 constant and 
allowing 𝑛 to vary between 1 and 3 produces a lower bound for 𝐴min

ranging from (2.02,16.54), within the 1𝜎 confidence interval as well. 
Our analysis reveals that the BH parameters are consistent with the 
EHT observations, indicating that both Sgr A* and M87* could plau-
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Fig. 11. Top row: Shadow radius shown as a function of 𝜉, evaluated for three different values of 𝑛 and 𝐴. Bottom row: Shadow radius plotted as a function of 𝐴
for three distinct values of 𝑛 and 𝜉. In both rows, the constraints on the shadow radius are derived using the M87* observations. The white and light green shaded 
regions correspond to consistency with the EHT image of M87* at the 1𝜎 and 2𝜎 CLs, respectively.

Fig. 12. Top row: The shadow radius with respect to 𝜉 for three distinct values of 𝑛 and 𝐴. Bottom row: The shadow radius with respect to 𝐴 for three different 
values of 𝑛 and 𝜉. The constraints derived from the Sgr A* observations are applied to the shadow radius in both rows. The white and light green shaded regions 
represent the 1𝜎 and 2𝜎 CLs, respectively, based on the EHT image of Sgr A*.
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Table 5
The allowed range of parameter 𝜉, based on the EHT 
images of Sgr A* and M87*, with 𝑀 = 1.

𝑛 = 2 Sgr A* M87* 
1𝜎 2𝜎 1𝜎 2𝜎

𝐴 = 1 (28.03, −) (5.21, −) (2.76, −) (1.41, −)
𝐴 = 2 (18.83, −) (0.30, −) (−, −) (−, −)
𝐴 = 3 (7.56, −) (−, −) (−, −) (−, −)
𝐴 = 3 1𝜎 2𝜎 1𝜎 2𝜎

𝑛 = 1 (−, −) (6.77, −) (0.06, −) (−, −)
𝑛 = 2 (7.56, −) (−, −) (−, −) (−, −)
𝑛 = 3 (−, −) (−, −) (−, −) (−, −)

Table 6
The permissible range of parameter 𝐴, based on the EHT 
images of Sgr A* and M87*, with 𝑀 = 1.

𝑛 = 2 Sgr A* M87* 
1𝜎 2𝜎 1𝜎 2𝜎

𝜉 = 3 (3.55, −) (1.36, −) (0.95, −) (0.67, −)
𝜉 = 4 (3.40, −) (1.20, −) (0.76, −) (0.40, −)
𝜉 = 5 (3.28, −) (1.04, −) (0.52, −) (−, −)
𝜉 = 4 1𝜎 2𝜎 1𝜎 2𝜎

𝑛 = 1 (16.54, −) (3.26, −) (0.95, −) (0.68, −)
𝑛 = 2 (3.40, −) (1.20, −) (0.76, −) (0.40, −)
𝑛 = 3 (2.02, −) (0.25, −) (0.52, −) (−, −)

sibly be modeled as Schwarzschild-like BHs – characterized here as a 
Schwarzschild BH surrounded by a polytropic scalar field gas – within 
the current precision of astrophysical observations. Consequently, this 
BH model emerges as a compelling candidate for describing astrophys-
ical BHs.

Thus, the numerical values for the lower bounds of 𝜉 and 𝐴 are pro-
vided in Tables 5 and 6. Regarding the positive parameter space (𝑛,𝐴, 𝜉), 
Figs. 11 and 12 clearly illustrate that the shadow radius derived for 
M87* and Sgr A* by the EHT imposes constraints on the shadow size 
of the BH. Specifically, values of 𝜉 (evaluated for three different values 
of 𝐴 and 𝑛) and 𝐴 (evaluated for three different values of 𝜉 and 𝑛) that 
fall below their respective lower bounds are ruled out. As shown in Ta-
bles 5 and 6, the acceptable range for 𝜉 and 𝐴, based on observations of 
Sgr A* and M87*, starts from these lower bounds without imposing any 
upper limits on 𝜉 and 𝐴 to restrict the shadow size. Notably, the con-
straints derived from Sgr A* are more stringent than those from M87*, 
particularly for the parameter 𝐴.

Furthermore, analysis of Tables 5 and 6, along with Figs. 11 and 12, 
indicates that an increase in the model parameters (𝑛,𝐴, 𝜉) results in a 
monotonic decrease in both the photon sphere radius 𝑟𝑝𝑠 and the shadow 
radius 𝑅𝑠ℎ. As 𝜉→∞ and 𝐴→ 0, which corresponds to the baseline sce-
nario, the photon sphere is located at 𝑟𝑝𝑠 = 3.0𝑀 , while the shadow 
radius is given by 𝑅𝑠ℎ = 3

√
3𝑀 . As the model parameters increase, 

significant changes are observed for moderate values of 𝑛, 𝜉,𝐴 ∈ [1,4]. 
Then, both radii tend to stabilize around 𝑟𝑝𝑠 ≈ 3.0𝑀 and 𝑅𝑠ℎ ≈ 5.2𝑀 . A 
larger photon sphere and shadow radius indicate stronger light bending, 
enabling photons to orbit at greater distances and resulting in a more 
extensive dark region, or “shadow silhouette,” as observed by a distant 
observer (cf. Fig. 9) (Vertogradov et al., 2025; Pantig and Övgün, 2025). 
The roughly constant results for 𝑛, 𝜉,𝐴 > 4 show an asymptotic regime 
where more increases in the parameter space yield diminishing impacts 
on the geometry, suggesting a restricting configuration for the corre-
sponding spacetime model.

8. Emission rate

By examining the shadow of the BH, we can look at particle emissions 
in the neighborhood of the BH solution. It has been shown that, for a far-

away observer, the BH shadow is an estimate of the BH absorption cross-
section at a high-energy limit (Wei and Liu, 2013). Broadly speaking, in 
the case of a spherically symmetric topology of a BH, the absorption 
cross-section exhibits oscillatory behavior around a constant threshold 
value of 𝜎𝑙𝑖𝑚 at very high energies. As the shadow provides a visible 
indication of a BH, it is broadly estimated to be equivalent to the surface 
area of the photon sphere, which can be reckoned at 𝜎𝑙𝑖𝑚 ≈ 𝜋𝑅2

𝑠
. The 

energy emission rate is defined in the following way (Wei and Liu, 2013; 
Kruglov, 2021a,b; Eslam Panah et al., 2020):

𝑑2𝐸(𝜛)
𝑑𝑡𝑑𝜛 

=
2𝜋3𝜛3𝑅2

𝑠

𝑒
𝜛

𝑇𝐻 − 1 
, (58)

in which 𝜛 is the emission frequency, and 𝑇𝐻 is the Hawking temper-
ature. By exploiting the Hawking temperature formula exposed in Eq. 
(36), we have illustrated the variation of the emission rate concerning 
𝜛 for various values of 𝜉, 𝐴 and 𝑛 in Fig. 13. It is noticeable that as the 
polytropic index 𝑛 increases, the emission rate of the BH diminishes. 
Conversely, the increasing in the parameter 𝜉 and 𝐴, the emission rate 
of the BH increases. So, the analysis demonstrates that as the polytropic 
index 𝑛 raises, the BH’s evaporation rate decreases, and its lifespan ex-
tends. In contrast, when the polytropic parameters such that 𝜉 and 𝐴
grow, the BH’s evaporation rate gradually increases, and its lifespan 
shortens. 

9. Conclusion

In this study, we examined the QNMs, greybody factors, shadow be-
havior, and sparsity process of BHs with a surrounding polytropic scalar 
field gas. The results showed that all the parameters of the polytropic 
structure, as well as the multipole moment, have a consistent impact 
on the variation of the QNMs, in particular the frequency oscillations 
and the damping rate of the GWs. In practice, the impact of parame-
ter 𝐴 on the frequency oscillations and the damping rate is much more 
significant than 𝜉. Evidently, as 𝐴 and 𝜉 increase, the frequency os-
cillation and the damping rate of GWs raise. Also, the same behavior 
is observed for the variation of the multipole moment as it increases, 
causing an increase in the oscillation frequency and the damping rate of 
GWs. Specifically, changes in the frequencies and damping rates of the 
QNMs exert a dominant impact on the typical ‘ringdown’ signal emitted 
by merging BHs. Variations in the parameters assigned to the polytropic 
scalar field surrounding the BH typically trigger changes in the effective 
potential, which ultimately influence the oscillation frequencies and de-
cay times of the QNMs.

In GWs observations, these changes might point to the existence 
of fluid matter surrounding BHs. In principle, detectors like LIGO and 
Virgo, which are ringdown sensors, can discriminate between BHs in the 
ordinary vacuum and those surrounded by a gaseous dark energy model 
in the form of a polytropic structure. Nevertheless, to ensure that the pa-
rameters of the model are constrained with the required precision, we 
might need to hold off until the development of space-based GWs de-
tectors like LISA. Subtle discrepancies in QNM frequencies or damping 
rates can offer valuable insights into the possibility of the presence of 
polytropic structure or even point to changes in GR in the proximity of 
BHs. This possibility raises new prospects for uncovering the fundamen-
tal character of BH surroundings using GWs astronomy.

Our findings concerning the greybody factors based on a rigorous 
analytical approach revealed interesting results in favor of exploring 
the impact carried out by the polytropic structure parameters together 
with the multipole moment 𝑙. Small values of the multipole moments 
𝑙 and the polytropic index 𝑛 lead to much larger bounds for the grey 
body. Whereas the increase of parameters 𝜉 and 𝐴 causes a rise in the 
bound of the greybody factor.

We found that the lower bounds on the model parameters derived 
from M87* observations are smaller than those obtained from Sgr A*. 
Additionally, the constraint on 𝐴 is significantly more stringent than 
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Fig. 13. Emission rate of the BH with respect to 𝜛 using 𝑀 = 1 for various value of the parameter space. 

that on 𝜉 for both M87* and Sgr A*. Notably, the Sgr A* data impose 
tighter limits on the model parameters, as they extend beyond the upper 
1𝜎 CLs. Consequently, within the parameter space consistent with our 
model, the EHT observations do not rule out the existence of a surround-
ing polytropic scalar field gas at galactic centers. This report offers one 
of the first constraints on the polytropic scalar field gas based on EHT 
data from both M87* and Sgr A*. We also looked at the emission rate 
of the BH with a surrounding polytropic structure. Related observations 
showed that as the polytropic index 𝑛 increases, the evaporation rate of 
the BH diminishes. On the other hand, a growth in the value of 𝜉 and 𝐴
raises the evaporation rate, implying a reduction in the lifetime of the 
BH.
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