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 A B S T R A C T

The Dirac equation is considered with the recently proposed generalized gravitational interac-
tion (Kepler or Coulomb), which includes post-Newtonian (relativistic) and quantum corrections 
to the classical potential. The general idea in choosing the metric is that the spacetime 
contributions are contained in an external potential or in an electromagnetic potential which 
can be considered as a good basis for future studies of quantum physics in space. The forms 
considered for the scalar potential and the so-called vector (magnetic) potential, can be viewed 
as the multipole expansion of these terms and therefore the approach includes a simultaneous 
study of multipole expansions to both fields. We also comment on the special case of the 
problem with merely a relativistic correction in terms of Heun functions. The impossibility 
of solving our equation for the quantum-corrected Coulomb terms using known exact or quasi-
exact nonperturbative analytical techniques is discussed, and finally the Bethe-ansatz approach 
is proposed to overcome this challenging problem.

. Introduction

The study of quantum mechanics in non-Minkowskian spacetimes has been pursued for decades with various motivations, 
ncluding the desire to find a relationship between quantum theory and general gravity [1,2]. Interest in this field has been revived 
y the remarkable applications of the curved spacetime formulation in particle and solid state physics [3], as well as by the opening 
f recent lines of research in both quantum optics and quantum technologies [4–8]. This is, of course, part of the beauty of physics, 
here seemingly uncorrelated fields can be inherently related. The reviews entitled ‘‘Quantum fields in curved space–time’’ [1], 
‘Quantum physics in space’’ [2] and ‘‘Gauge fields in graphene’’ [3] provide an excellent exposition of the physical and mathematical 
oundations needed to address this topic. In the following, we will review some more recent research in this field, which will allow 
s to properly contextualize our future work.
Starting with quantum condensed matter applications, let us note that solutions of the Dirac equation were derived using the 

o-called frozen Gaussian approximation and the results were applied to investigate scattering on deformed graphene surfaces [9]. 
n pioneering work, Genov and his collaborators linked strange artificial materials, called metamaterials, which find exceptional 
pplications in modern quantum technologies, with the curved formalism of spacetime, a task that might seem strange at first 
lance [4]. Motivated by the recent revisit of fundamental physics ideas in relation to quantum technologies, the current state 
f space quantum technologies is reviewed in [2,10]. The structure of slightly curved graphene sheets was analyzed by Cortijo 
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and Vozmediano [11] and Neto et al. [12] and the low-energy properties of graphene wormholes were derived using the curved 
space Dirac equation in [13]. A comprehensive review of graphene gauge fields in curved spacetime was performed in [3]. The 
continuum limit of time-dependent and space-dependent discrete-time quantum walks was studied based on an analogy with the 
propagation of a massless Dirac particle in a gravitational field [14]. A cylindrical graphene sample was analytically studied within 
the framework of a curved spacetime Dirac equation using an appropriate Kubo formula [15]. The general belief regarding the 
curved space description of elastically deformed monolayer graphene was seriously criticized in [16], where the authors claim that 
such model is valid only for special and extremely tight conditions. Various aspects of the Dirac equation for curved spacetime were 
discussed at the graduate level in Collas’s instructive book [17]. The change in atomic levels imposed by high intensity lasers and 
the connection with the Dirac equation of curved space was studied in [18]. Bagchi and his collaborators studied the motion of 
charge carriers in curved Dirac materials when a local Fermi velocity [19] is present.

As regards the domain of optics and quantum optics, we can mention that Schultheiss experimentally analyzed the effect of 
the curvature of space on the evolution of light for surfaces with constant Gaussian curvature [5] and Bruschi et al. investigated 
the consequences of curved spacetime on space-based quantum communication protocols [6]. Gravitational effects were simulated 
in [7] with optical wave packets and long-range nonlinearities, which mathematically resemble the Newton–Schrödinger system. 
Again, Schultheiss and others reviewed Hanbury Brown and Twiss measurements in curved space and commented on the analogy 
with cosmological models [8]. Using a dual light-pulse atomic interferometer, Asenbaum et al. reported the phase shift due to tidal 
force [20]. Starting from basic concepts of general relativity, some nanophotonic structures were proposed in which the temporal 
evolution is controlled by the spatial curvature of the medium [21]. Using the Huygens–Fresnel principle, Xu and Wan formulate a 
basis for studying light propagation on 2D surfaces of arbitrary curvature [22] and using the wave equation corresponding to curved 
space, a generalized formula for the light path in curved space is obtained in [23]. Using transformation optics, Sheng et al. studied 
various transformation structures in a curved spatial approach [24]. The phenomenon of branched light flux on surfaces of Gaussian 
curvature was studied in [25] and the effect of a weak gravitational field on optical solitons in a nonlinear medium was analyzed 
in [26]. The confinement problem of Dirac fermions in a two-dimensional curved space was investigated in [27], while in [28] an 
exact mapping between the Dirac equation of (1+1)-dimensional curved spacetime and a multiphoton Rabi model is addressed.

From the point of view of mathematical physics, there are interesting papers investigating various wave equations, including 
the Dirac equation in curved space. The anomalous properties of Dirac particles in curved space were studied by Griffith [29] 
and the Dirac theory in a curved Riemann–Cartan frame was formulated by Nieh and Yan [30]. The Dirac equation in one 
spatial dimension was solved for the Robertson–Walker spacetime and the Cigar metrics in [31] and the two-dimensional Dirac 
equation in the presence of an electromagnetic field was solved by Panahi and Jahangiri [32], while the motion of rotating 
particles in curved spacetime was analyzed in [33]. Maxwell’s equations were reformulated in anti-de Sitter spacetime in [34]. 
In [1] a comprehensive review of various quantum fields in curved spacetimes was carried out and in [35] Dirac fermions in 
curved spacetime originating from a massive charged object were studied for the Reissner–Nordström case. Kobakhidze and his 
collaborators analyzed the Zitterbewegung effect in a curved spacetime frame [36]. Winstanley [37] investigated the stability of 
sphaleronic black holes in the Einstein–Yang–Mills-Higgs theory with a Higgs doublet in anti-de Sitter spacetime. As far as quantum 
models are concerned, the one-dimensional Dirac equation in curved spacetime was solved analytically by Ghosh and Roy and 
the existence of bound states was discussed for various cases [38], and the hydrogen atom, Morse oscillator and a linear radial 
potential were solved within the framework of curved spacetime Dirac equation by Oliveira and Schmidt [39]. The Dirac equation 
modified with constant curvature was solved for the Dunkl oscillator in [40] and the Dirac equation with a position-dependent 
mass was investigated in a two-dimensional curved-space for PT/non-PT-symmetric potentials including Morse and Scarf potentials 
in [41]. The correspondence between the one dimensional curved spacetime Dirac equation and a nonlinear Schrödinger model 
was commented on by a (1 + 1)−dimensional bosonization in [42]. Holography in anti-de Sitter space was studied using an integral 
transformation approach [43]. The analogy between the (1+1) and (2+1) curved spacetime Dirac equation with spacetime-dependent 
quantum walks was addressed in [44,45]. The Dirac oscillator problem in curved spacetime was revisited in the so-called spin and 
pseudospin symmetry limits [46]. Solutions of the Dirac equation in curved space were reported in a novel approach by Yagdijan and 
Galstian in connection with the generalized Euler–Poisson–Darboux equation via an integral transformation approach [47]. Using 
a Madelung transformation, the hydrodynamic representation of the Dirac equation in curved spacetime was formulated [48]. The 
problem of locality of higher spin gravity in Euclidean anti-de Sitter space was exhaustively analyzed by Neiman [49]. Using the 
Wentzel–Kramers–Brillouin approximation, the Dirac equation was analyzed in a curved background and several concepts were 
studied, including the spin Hall effect and the Berry curvature [50]. On the other hand, very recently, a generalized gravitational 
potential is proposed which includes an inverse square term as the relativistic correction as well as an inverse cubic term as the 
dominant quantum correction to the classical term [51–53]. This can be thought of, in a conceptual sense, as a kind of unified 
interaction, broadly speaking, and therefore it will be interesting to consider the new potential within a special form of curved 
space. Furthermore, interesting discussions have been addressed in [54–56] on the integral treatment of Coulomb term trajectories 
in curved spacetime, as well as on the duality structure of singular cases.

The structure of the present study is as follows. In Section 2 we first review the most essential formulae of the Dirac equation in 
the desired metric. Using the Bethe-ansatz approach, in Section 3.1 we report the general solution for arbitrary 𝑛, while solutions for 
the ground state and the first excited state are presented in Sections 3.2 and 3.3, respectively, being the special case of the Coulomb 
problem also derived in Section 3.4. We have included Appendix to discuss the impossibility of solving our problem using other 
commonly used nonperturbative analytical techniques, and thus clarify why we use the Bethe-ansatz approach [57–60]. The article 
ends with some final conclusions.
2 



M. Baradaran et al. Annals of Physics 478 (2025) 170033 
2. Curved spacetime Dirac equation with a generalized metric

Let us start by remembering the fundamental formulas that will be necessary, in order to preserve the continuity of our work 
with some of the references already mentioned. The Dirac equation [17] 

(

𝑖𝛾𝜇∇𝜇 − 𝑚𝑐
)

𝛹 = 0, (2.1)

where the relevant Hilbert space is 𝑐𝑢𝑟𝑣𝑒𝑑 = {𝛹 ∈ ∫ |𝛹 (𝐫)|2
√

−𝑔 𝑑3𝑟 < ∞}, will be considered for the metric 

𝑔𝜇𝜈 = diag
(

𝑒2𝑓 (𝑟),−𝑒2𝑔(𝑟),−𝑟2,−𝑟2 sin2 𝜃
)

, (2.2)

where, in principle, 𝑓 (𝑟) and 𝑔(𝑟) are arbitrary functions of the radial coordinate, and it is clearly seen that the angular parts are the 
same as in Minkowski spacetime. Recalling that in curved spacetime ∇𝜇 = 𝜕𝜇+𝑖𝐴𝜇∕𝑐+𝛺𝜇 , where 𝜕𝜇 is the covariant derivative on flat 
spacetime and 𝛺𝜇 denotes the spin connection, and choosing 𝐴𝜇 = (𝑉 (𝑟), 𝑐𝐴𝑟(𝑟), 0, 0), after some calculation, which are developed 
completely in [39], we can write the spinor wave function as 

𝛹𝑐 (𝑟, 𝜃, 𝜙) = 𝑁
⎛

⎜

⎜

⎝

𝑅1(𝑟) 
|𝑚| 𝑗
𝑗+1∕2(𝜃, 𝜙)

𝑖𝑅2(𝑟) 
|𝑚| 𝑗
𝑗−1∕2(𝜃, 𝜙)

⎞

⎟

⎟

⎠

, (2.3)

where 𝑁 is the normalization constant and 

 𝑗=𝑙±1∕2𝑚
𝑙 (𝜃, 𝜙) = 1

√

2𝑙 + 1

⎛

⎜

⎜

⎜

⎝

±
√

𝑙 ± 𝑚 + 1
2 𝑌 𝑚−1∕2

𝑙 (𝜃, 𝜙)
√

𝑙 ∓ 𝑚 + 1
2 𝑌 𝑚+1∕2

𝑙 (𝜃, 𝜙)

⎞

⎟

⎟

⎟

⎠

(2.4)

are the spinor spherical harmonics, being 𝑌 𝑚
𝑙 (𝜃, 𝜙) the usual spherical harmonics. It should be noted that, for the particle and 

antiparticle, the corresponding radial equation is expressed in terms of 𝑅1(𝑟) and 𝑅2(𝑟), respectively, which will not be considered 
directly here. Instead, as the subsequent equations reveal, some transformations of these functions will be analyzed.

From now on we will take 𝑚 = ℏ = 1, 𝑐 = 1∕𝛼, with 𝛼 being the fine structure constant. In spherically symmetric metrics, 
including the Schwarzschild and Anti-de Sitter cases, the following relation 𝑔(𝑟) = −𝑓 (𝑟) is assumed. Here, however, we consider 
𝑓 (𝑟) = 𝑔(𝑟), with 𝑒𝑓 (𝑟) = 1 + 𝛼2𝑈 (𝑟), and introducing 𝑅1(𝑟) =

𝑢(𝑟)
𝑟 𝑒−𝑓 (𝑟)∕2 and 𝑅2(𝑟) =

𝑣(𝑟)
𝑟 𝑒−𝑓 (𝑟)∕2, we obtain 

⎛

⎜

⎜

⎝

1 + 𝛼2 (𝑉 (𝑟) + 𝑈 (𝑟)) −𝛼
[

𝑑
𝑑𝑟 −

𝜆
𝑟

(

1 + 𝛼2𝑈 (𝑟)
)

− 𝐴𝑟(𝑟)
]

𝛼
[

𝑑
𝑑𝑟 +

𝜆
𝑟

(

1 + 𝛼2𝑈 (𝑟)
)

+ 𝐴𝑟(𝑟)
]

−1 + 𝛼2 (𝑉 (𝑟) − 𝑈 (𝑟))

⎞

⎟

⎟

⎠

(

𝑢(𝑟)

𝑣(𝑟)

)

= 𝜖

(

𝑢(𝑟)

𝑣(𝑟)

)

. (2.5)

By introducing the transformation 𝑈 ′ = exp(𝑖𝜂𝜎2), where − 𝜋
2 ≤ 𝜂 ≤ 𝜋

2  and 𝜎2 denotes the second Pauli matrix, Eq.  (2.5) appears as 

⎛

⎜

⎜

⎝

𝐶 + 2𝛼2𝑉 (𝑟) − 𝜖 −𝑆 + 𝛼2

𝑆 (𝐶𝑉 (𝑟) − 𝑈 (𝑟)) − 𝛼 𝑑
𝑑𝑟

−𝑆 + 𝛼2

𝑆 (𝐶𝑉 (𝑟) − 𝑈 (𝑟)) + 𝛼 𝑑
𝑑𝑟 −𝐶 − 𝜖

⎞

⎟

⎟

⎠

(

𝜌1(𝑟)

𝜌2(𝑟)

)

= 0, (2.6)

where 
(

𝜌1(𝑟)
𝜌2(𝑟)

)

= 𝑈 ′
(

𝑢(𝑟)
𝑣(𝑟)

)

, 𝐶 = cos 2𝜂 and 𝑆 = sin 2𝜂. (2.7)

Eliminating one component in favor of the other using 𝐴𝑟(𝑟) = 𝛼𝐶
𝑆

[

𝑉 (𝑟)
𝐶 − 𝑈 (𝑟)

]

− 𝜆
𝑟

[

1 + 𝛼2𝑈 (𝑟)
]

, we find that the final equation 
is [39] 

[

𝑑2

𝑑𝑟2
+ 𝛼

𝑆
𝑑 (𝐶𝑉 (𝑟) − 𝑈 (𝑟))

𝑑𝑟
− 2 (𝑈 (𝑟) + 𝜖𝑉 (𝑟)) − 𝛼2

𝑆2
(𝐶𝑉 (𝑟) − 𝑈 (𝑟))2 + 𝜖2 − 1

𝛼2

]

𝜌1(𝑟) = 0, (2.8)

while the other component is simply obtained by 

𝜌2(𝑟) =
𝛼

𝐶 + 𝜖

[

−𝑆
𝛼

+ 𝛼
𝑆

(𝐶𝑉 (𝑟) − 𝑈 (𝑟)) + 𝑑
𝑑𝑟

]

𝜌1(𝑟). (2.9)

Simplifying Eq. (2.8) by 𝑉 (𝑟) = 𝑎𝑧(𝑟) and 𝑈 (𝑟) = 𝑏𝑧(𝑟), we arrive at [39] 
[

𝑑2

𝑑𝑟2
+ 𝛼

𝑆
(𝑎𝐶 − 𝑏)𝑧′(𝑟) − 2(𝑏 + 𝜖𝑎)𝑧(𝑟) − 𝛼2

𝑆2
(𝑎𝐶 − 𝑏)2𝑧2(𝑟) + 𝜖2 − 1

𝛼2

]

𝜌1(𝑟) = 0. (2.10)

Obviously, using the above relations, the original components can be derived in a straightforward manner.
For completeness, at the end of the paper we have included a short Appendix explaining why we use the Bethe-ansatz approach 

below, and where we attempt to provide a conceptual overview of frequently used analytical techniques [61–67], all of which fail 
in our case, to the best of our knowledge.
3 
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3. Solutions by the Bethe-ansatz approach

Based on the previous sections, we now know that we need to consider another approach to better understand the quasi/conditio-
nally exact analytical solutions of our problem. Let us consider 𝑧(𝑟) in (2.10) as follows 

𝑧(𝑟) = 𝑢
𝑟
+ 𝑣

𝑟2
+ 𝑤

𝑟3
, 𝑢 < 0. (3.1)

It is worth mentioning that, to our knowledge, this potential has only been investigated within the framework of the generalized 
uncertainty principle [59]. Substituting into (2.10), we arrive at a Schrödinger-like equation 

{

𝑑2

𝑑𝑟2
+

𝜖2𝑛 − 1
𝛼2

−
2𝑢(𝑎𝜖𝑛 + 𝑏)

𝑟
+ 1

𝑆2

(

𝛬2

𝑟2
+

𝛬3

𝑟3
+

𝛬4

𝑟4

)

−
𝛼2(𝑏 − 𝑎𝐶)2

𝑆2

(

𝑤2

𝑟6
+ 2𝑣𝑤

𝑟5

)

}

𝜌1,𝑛(𝑟) = 0, (3.2)

where 
𝛬2 = − 𝑏

(

2𝑆2𝑣 − 2𝑎𝛼2𝐶𝑢2 − 𝛼𝑆𝑢
)

− 𝑎𝛼𝐶𝑢(𝑎𝛼𝐶𝑢 + 𝑆) − 2𝑎𝑆2𝑣𝜖𝑛 − 𝛼2𝑏2𝑢2 ,

𝛬3 = − 2
(

𝑏
(

−2𝑎𝛼2𝐶𝑢𝑣 + 𝑆2𝑤 − 𝛼𝑆𝑣
)

+ 𝑎𝛼𝐶𝑣(𝑎𝛼𝐶𝑢 + 𝑆) + 𝑎𝑆2𝑤𝜖𝑛 + 𝛼2𝑏2𝑢𝑣
)

,

𝛬4 =𝛼(𝑏 − 𝑎𝐶)
(

3𝑆𝑤 − 𝛼(𝑏 − 𝑎𝐶)
(

2𝑢𝑤 + 𝑣2
))

,

(3.3)

where we have added the index 𝑛 to 𝜖 and 𝜌1(𝑟) to distinguish some states from others. Now, we propose 

𝜌1,𝑛(𝑟) = 𝑒𝛥(𝑟) 1,𝑛(𝑟), 𝛥(𝑟) = 𝛿 ln 𝑟 +
𝛾
𝑟2

+
𝛽
𝑟
+ 𝜆𝑟, (3.4)

where the new function 1,𝑛(𝑟) is a polynomial, and 𝜆 , 𝛽 , 𝛾 < 0 and 𝛿 > 0 are parameters to be determined. Substituting (3.4) into 
(3.2) and solving the resulting Riccati equation for 𝛥(𝑟), we obtain 

𝛿 = 3
2
+

𝛼𝑤(𝑏 − 𝑎𝐶) (2𝛼𝑢(𝑏 − 𝑎𝐶) − 3𝑆)
2𝜎𝑆2

, (3.5a)

𝜆 = −

√

1 − 𝜖2𝑛
𝛼2

, 𝛾 = −𝜎
2
, 𝛽 = − 𝑣

𝑤
𝜎 , (3.5b)

in which 

𝜎 =

√

𝛼2𝑤2(𝑏 − 𝑎𝐶)2

𝑆2
. (3.6)

Consequently, the differential equation for 1,𝑛(𝑟) simplifies to 
{

𝑟3 𝑑2

𝑑𝑟2
+
(

2𝜆𝑟3 + 2𝛿𝑟2 − 2𝛽𝑟 − 4𝛾
) 𝑑
𝑑𝑟

+
(

𝜉2 𝑟
2 +

𝜉1
𝑆2

𝑟 +
𝜉0
𝑆2

)}

1,𝑛(𝑟) = 0, (3.7)

where 
𝜉0 = − 2𝑎2𝛼2𝐶2𝑢𝑣 − 2𝑏

(

𝑆2𝑤 − 2𝑎𝛼2𝐶𝑢𝑣 − 𝛼𝑆𝑣
)

− 2𝑎𝑆
(

𝛼𝐶𝑣 + 𝑆𝑤𝜖𝑛
)

− 2𝛼2𝑏2𝑢𝑣

− 2𝑆2 (𝛽(𝛿 − 1) + 2𝛾𝜆) ,

𝜉1 = − 𝑎2𝛼2𝐶2𝑢2 + 𝑏
(

2𝑎𝛼2𝐶𝑢2 − 2𝑆2𝑣 + 𝛼𝑆𝑢
)

− 𝑎𝑆
(

𝛼𝐶𝑢 + 2𝑆𝑣𝜖𝑛
)

− 𝛼2𝑏2𝑢2

+ 𝑆2 ((𝛿 − 1)𝛿 − 2𝛽𝜆) ,

𝜉2 =2𝛿𝜆 − 2𝑢
(

𝑎𝜖𝑛 + 𝑏
)

.

(3.8)

To solve (3.7), we now assume polynomial solutions for 1,𝑛(𝑟) of the form [68,69] 

1,𝑛(𝑟) =

⎧

⎪

⎨

⎪

⎩

1, 𝑛 = 0,
𝑛
∏

𝑖=1
(𝑟 − 𝑟𝑖), 𝑛 ∈ N, (3.9)

where 𝑟𝑖 are distinct roots to be determined. The general solutions of (3.7) are given by the following set of equations 

𝜉2 + 2𝑛𝜆 = 0, (3.10a)

𝜉1 + 2𝜆
𝑛
∑

𝑖=1
𝑟𝑖 + 𝑛(𝑛 − 1) + 2𝑛𝛿 = 0, (3.10b)

𝜉0 + 2𝜆
𝑛
∑

𝑖=1
𝑟2𝑖 + 2(𝛿 + 𝑛 − 1)

𝑛
∑

𝑖=1
𝑟𝑖 − 2𝑛𝛽 = 0, (3.10c)

where 𝑟𝑖 are determined by the Bethe ansatz equations 
𝑛
∑ 1

𝑟 − 𝑟
+

𝜆 𝑟3𝑖 + 𝛿 𝑟2𝑖 − 𝛽 𝑟𝑖 − 2𝛾
3

= 0, 𝑖 = 1, 2,… , 𝑛. (3.11)

𝑗=1, 𝑗≠𝑖 𝑖 𝑗 𝑟𝑖

4 
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3.1. Solution for arbitrary 𝑛

In this section we will determine explicit general solutions of our Dirac equation (3.2). Note that the condition (3.10a) gives 
the energy relation, so that by substituting 𝜆 and 𝜉2 in (3.10a), after simple manipulations, the energy 𝜖𝑛 can be determined by the 
following closed-form expression 

𝜖𝑛 =
−4𝑎𝛼22𝑏𝑢2 ±

√

4𝛼22𝑢2(𝑎2 − 𝑏2)( −(2𝑛 + 3))2 + (−2𝑛 − 3 + )4

4𝑎2𝛼22𝑢2 + ( −(2𝑛 + 3))2
, (3.12)

in which 
 ∶=

√

𝛼2𝑆2(𝑏 − 𝑎𝐶)2,  ∶= 𝛼(𝑏 − 𝑎𝐶) (2𝛼𝑢(𝑏 − 𝑎𝐶) − 3𝑆) . (3.13)

Note that the denominator in (3.12) is obviously nonzero (in fact, positive) considering that 𝑎, 𝑆 and 𝜎 are nonzero. Note also 
that while it seems that the energy expression (3.12) depends only on the potential parameter 𝑢, the other two parameters 𝑣 and 
𝑤 also play an important role. More precisely, the other two Eqs. (3.10b) and (3.10c) result in severe constraints on the potential 
parameters as follows 

𝑣 =

𝛼(𝑎𝐶 − 𝑏)

(

2𝛼𝑢(𝑏 − 𝑎𝐶) − 𝑆
(

𝑛2 + 2𝑛 + 3 − 2
√

1−𝜖2𝑛
𝛼2

∑𝑛
𝑖=1 𝑟𝑖

)

)

+ 

2𝛼𝑆(𝑏 − 𝑎𝐶)
(

𝑏 −
√

1 − 𝜖2𝑛
√

(𝑏−𝑎𝐶)2
𝑆2 + 𝑎𝜖𝑛

) , (3.14a)

𝑤 =

𝑆
√

𝛼2(𝑏−𝑎𝐶)2
𝑆2

(

𝛼𝑣(𝑏 − 𝑎𝐶) + 𝑆
(

2
√

1−𝜖2𝑛
𝛼2

∑𝑛
𝑖=1 𝑟

2
𝑖 − (2𝑛 + 1)

∑𝑛
𝑖=1 𝑟𝑖

)

)

+

2
√

𝛼2(1 − 𝜖2𝑛 )(𝑏 − 𝑎𝐶)2 − 2(𝑎𝜖𝑛 + 𝑏)
√

𝛼2𝑆2(𝑏 − 𝑎𝐶)2
. (3.14b)

where

 = (𝑛 + 1)𝑆

√

𝛼2(𝑏 − 𝑎𝑐𝐶)2

𝑆2
(3𝑆 − 2𝛼𝑢(𝑏 − 𝑎𝐶)),

 = 𝛼(𝑏 − 𝑎𝐶)
(

𝛼(𝑏 − 𝑎𝐶)
(

(2𝑛 + 1)𝑣 + 2𝑢
𝑛
∑

𝑖=1
𝑟𝑖
)

− 3𝑆
𝑛
∑

𝑖=1
𝑟𝑖
)

.

On the other hand, the wave function associated with the energy (3.12), of (3.4) together with (3.5) and (3.9), is given by 
𝜌1,𝑛(𝑟) = 𝑒𝛥(𝑟) 1,𝑛(𝑟),

𝛥(𝑟) =
(

3
2
+

𝛼𝑤(𝑏 − 𝑎𝐶)(2𝛼𝑢(𝑏 − 𝑎𝐶) − 3𝑆)
2𝜎𝑆2

)

ln 𝑟 − 𝜎
𝑟2

( 𝑟𝑣
𝑤

+ 1
2

)

−

√

1 − 𝜖2𝑛
𝛼2

𝑟.
(3.15)

Note that the last term of the exponent 𝛥 ensures good behavior of the solution found when 𝑟 → ∞. In (3.14)–(3.15), the roots 𝑟𝑖
are determined by the following Bethe ansatz equations 

𝑛
∑

𝑗≠𝑖

1
𝑟𝑖 − 𝑟𝑗

−
𝑟𝑖𝑣 +𝑤

𝑟3𝑖

√

𝛼2(𝑏 − 𝑎𝐶)2

𝑆2
+

𝛼(𝑏 − 𝑎𝐶)(3𝑆 − 2𝛼𝑢(𝑏 − 𝑎𝐶))

2𝑟𝑖
√

𝛼2𝑆2(𝑏 − 𝑎𝐶)2
+ 3

2𝑟𝑖
−

√

1 − 𝜖2𝑛
𝛼2

= 0, (3.16)

𝑖 = 1, 2,… , 𝑛. In summary, for a given 𝑛, the general solutions of the Dirac equation (3.2) are given explicitly by the Eqs. (3.12)–(3.16).
Below we report explicit solutions for the ground state and the first excited state.

3.2. Ground-state solution

For 𝑛 = 0 it follows from (3.12) that the ground state energy 𝜖0 is given by 

𝜖0 =
−4𝑎𝛼22𝑏𝑢2 ±

√

4𝛼22𝑢2(𝑎2 − 𝑏2)( − 3)2 + ( − 3)4

4𝑎2𝛼22𝑢2 + ( − 3)2
, (3.17)

where  and  are given in (3.13). From (3.15) it follows that the associated wave function is 
𝜌1,0(𝑟) = 𝑐0 𝑒

𝛥(𝑟),

𝛥(𝑟) =
(

3
2
+

𝛼𝑤(𝑏 − 𝑎𝐶)(2𝛼𝑢(𝑏 − 𝑎𝐶) − 3𝑆)
2𝜎𝑆2

)

ln 𝑟 − 𝜎
𝑟2

( 𝑟𝑣
𝑤

+ 1
2

)

−

√

1 − 𝜖20
𝛼2

𝑟,
(3.18)

where 𝑐0 is the normalization constant. Furthermore, from (3.14), the potential parameters 𝑣 and 𝑤 are given in terms of 𝑢 as follows 

𝑣 =
(3𝑆 − 2𝛼𝑢(𝑏 − 𝑎𝐶))

(

𝑆
√

𝛼2(𝑏−𝑎𝐶)2
𝑆2 + 𝛼(𝑏 − 𝑎𝐶)

)

2𝛼𝑆(𝑏 − 𝑎𝐶)
(

𝑎𝜖0 + 𝑏 −
√

1 − 𝜖2
√

(𝑏−𝑎𝐶)2
2

) , (3.19a)
0 𝑆

5 
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Fig. 1. Allowed values of the parameters 𝑣 (on the left) and 𝑤 (on the right), given respectively by (3.19a) and (3.19b), depending on the Coulomb coefficients 
𝑢 and 𝑎, assuming 𝑏 = 2, 𝜂 = 3

2
 and 𝛼 ≈ 1

137
.

𝑤 =
𝛼(𝑏 − 𝑎𝐶)

(

𝑆
√

𝛼2(𝑏−𝑎𝐶)2
𝑆2 + 𝛼(𝑏 − 𝑎𝐶)

)

2
√

𝛼2(1 − 𝜖20 )(𝑏 − 𝑎𝐶)2 − 2(𝑎𝜖0 + 𝑏)
√

𝛼2𝑆2(𝑏 − 𝑎𝐶)2
𝑣. (3.19b)

Note that the Bethe ansatz Eqs. (3.16) play no role for the ground state solution since, as established in (3.9), 1,0(𝑟) ≡ 1.
Having obtained explicit solutions, let us now look at the Schrödinger-type potential appearing in (3.2). For this purpose, we 

rewrite (3.2) in the new form 
{

− 𝑑2

𝑑𝑟2
+ 𝑉𝑒𝑓𝑓 (𝑟)

}

𝜌1,0(𝑟) =
𝜖20 − 1

𝛼2
𝜌1,0(𝑟), (3.20)

where the effective potential 𝑉𝑒𝑓𝑓 (𝑟) ∶= 𝑉𝑒𝑓𝑓 (𝑟; 𝑢, 𝑣,𝑤, 𝜖0, 𝑎, 𝑏, 𝛼, 𝜂) has the following form 

𝑉𝑒𝑓𝑓 (𝑟) =
2𝑢(𝑎𝜖0 + 𝑏)

𝑟
− 1

𝑆2

(

𝛬2

𝑟2
+

𝛬3

𝑟3
+

𝛬4

𝑟4

)

+
𝛼2(𝑏 − 𝑎𝐶)2

𝑆2

(

𝑤2

𝑟6
+ 2𝑣𝑤

𝑟5

)

. (3.21)

Note that the potential parameters 𝑣 and 𝑤 appearing in (3.21), determined by (3.19), in turn depend on the ground state energy 
𝜖0 obtained in (3.17). Substituting then 𝜖0 of (3.17) in (3.19), the potential parameters 𝑣 and 𝑤 will be determined by the Coulomb 
coefficient 𝑢, which is a free parameter, and the other parameters 𝑎, 𝑏, 𝜂 and 𝛼. Two numerical examples are included below to 
better understand the analytical results obtained.

First, in Figs.  1 and 3, we plot respectively the allowed values of the potential parameters 𝑣 and 𝑤 as functions of the Coulomb 
coefficient 𝑢, and the two parameters 𝑎 and 𝜂, with other parameters fixed. Next, we select a pair of allowed values (𝑣,𝑤) for a fixed 
𝑢 from Figs.  1 and 3, and illustrate the associated ground-state wavefunction, along with the corresponding energy and potential 
behavior 𝑉𝑒𝑓𝑓 (𝑟), in Figs.  2 and 4, where it can be seen that the two results are qualitatively identical.

3.3. First excited state solution

For 𝑛 = 1, from (3.12), the first excited-state energy, 𝜖1, is given by 

𝜖1 =
−4𝑎𝛼22𝑏𝑢2 ±

√

4𝛼22𝑢2(𝑎2 − 𝑏2)( − 5)2 + ( − 5)4

4𝑎2𝛼22𝑢2 + ( − 5)2
, (3.22)

where  and  are given in (3.13). The associated wave function, from (3.15), is 
𝜌1,1(𝑟) = 𝑐1(𝑟 − 𝑟1) 𝑒𝛥(𝑟),

𝛥(𝑟) =
(

3 +
𝛼𝑤(𝑏 − 𝑎𝐶)(2𝛼𝑢(𝑏 − 𝑎𝐶) − 3𝑆)

)

ln 𝑟 − 𝜎 ( 𝑟𝑣 + 1) −

√

1 − 𝜖21 𝑟,
(3.23)
2 2𝜎𝑆2 𝑟2 𝑤 2 𝛼2

6 
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Fig. 2. On the left, the unnormalized ground-state wavefunction from (3.18), along with the corresponding energy from (3.17), with the lower sign. On the 
right, the potential function 𝑉𝑒𝑓𝑓 (𝑟) for allowed values of parameters 𝑣 ≈ −1.73127 and 𝑤 ≈ −0.235422 chosen from Figs.  1, for a fixed set of parameters 𝑢 = − 3

2
, 

𝑎 = 4, 𝑏 = 2, 𝜂 = 3
2
; note that in this case, 𝜖0 ≈ −0.999980002105.

Fig. 3. Allowed values of the parameters 𝑣 (on the left) and 𝑤 (on the right), given respectively by (3.19a) and (3.19b), depending on the Coulomb coefficient 
𝑢 and 𝜂, assuming 𝑏 = 3, 𝑎 = 5 and 𝛼 ≈ 1

137
.

Fig. 4. On the left, the unnormalized ground-state wave function from (3.18), along with the corresponding energy from (3.17), with the lower sign. On the 
right, the potential function 𝑉𝑒𝑓𝑓 (𝑟) for allowed values of parameters 𝑣 ≈ −1.52044 and 𝑤 ≈ −0.030596 chosen from Figs.  3, for a fixed set of parameters 𝑢 = −1, 
𝑎 = 5, 𝑏 = 3, 𝜂 = 1; note that in this case, 𝜖0 ≈ −0.999988476220.
7 
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where 𝑐1 is the normalization constant. Moreover, from (3.14), the potential parameters 𝑣 and 𝑤, again both in terms of the 
Coulombic coefficient 𝑢, are given by the expressions 

𝑣 =

2𝑆
√

𝛼2(𝑏−𝑎𝐶)2
𝑆2 (3𝑆 − 2𝛼𝑢(𝑏 − 𝑎𝐶)) − 2𝛼(𝑏 − 𝑎𝐶)

(

𝛼𝑢(𝑏 − 𝑎𝐶) + 𝑆

(

𝑟1

√

1−𝜖21
𝛼2

− 3

))

2𝛼𝑆(𝑏 − 𝑎𝐶)
(

𝑎𝜖1 + 𝑏 −
√

1 − 𝜖21

√

(𝑏−𝑎𝐶)2
𝑆2

) , (3.24a)

𝑤 =

𝑆
√

𝛼2(𝑏−𝑎𝐶)2
𝑆2

(

𝛼𝑣(𝑏 − 𝑎𝐶) + 𝑟1𝑆

(

2𝑟1

√

1−𝜖21
𝛼2

− 3

))

+ 𝛼(𝑏 − 𝑎𝐶)(𝛼(𝑏 − 𝑎𝐶)(2𝑟1𝑢 + 3𝑣) − 3𝑟1𝑆)

2
√

𝛼2(1 − 𝜖21 )(𝑏 − 𝑎𝐶)2 − 2(𝑎𝜖1 + 𝑏)
√

𝛼2𝑆2(𝑏 − 𝑎𝐶)2
. (3.24b)

The unknown parameter 𝑟1 appearing in (3.23)–(3.24) is determined from (3.16) using the following Bethe ansatz equation 

(𝑟1𝑣 +𝑤)

√

𝛼2(𝑏 − 𝑎𝐶)2

𝑆2
−

𝑟21
2

(

𝛼(𝑏 − 𝑎𝐶)(3𝑆 − 2𝛼𝑢(𝑏 − 𝑎𝐶))
√

𝛼2𝑆2(𝑏 − 𝑎𝐶)2
+ 3

)

+ 𝑟31

√

1 − 𝜖21
𝛼2

= 0. (3.25)

3.4. The special case of Coulomb interaction

We will now verify the results obtained by inspecting the special case of the Coulomb interaction, i.e. when 𝑣 = 𝑤 = 0 in (3.1), 
and compare the results with Ref. [39]. Due to the complicated structure of the potential constraints (3.14), it is a rather difficult 
task to do this for general 𝑛, but we can check it explicitly for the ground state. From (3.19), we see that the potential parameters 
𝑣 and 𝑤 vanish for (𝑏 − 𝑎𝐶)𝛼 = 3𝑆

2𝑢 . Substituting into  and  in (3.13), we get 

 = 3𝑆2

2
√

𝑢2
,  = 3𝛼𝑆(𝑏 − 𝑎𝐶) − 9𝑆2

2𝑢
. (3.26)

Replacing then  and  given by (3.26) in (3.17) gives that the ground state energy for the Coulomb interaction, denoted by 𝜖𝐶0 , 
is 

𝜖𝐶0 (𝑢; 𝑎, 𝑏, 𝐶, 𝑆, 𝛼) =
−4𝑎𝛼2𝑏𝑆2𝑢4 ± 𝑢2

√

4𝛼2𝑆2
(

𝑎2 − 𝑏2
)

( |𝑢| + 3𝑆𝑢)2 + ( + 3𝑆 sgn(𝑢))4

4𝑎2𝛼2𝑆2𝑢4 + ( |𝑢| + 3𝑆𝑢)2
, (3.27)

with  ∶= 3𝑆 − 2𝛼𝑢(𝑏 − 𝑎𝐶).
Now, to establish a comparison of our ground state energy (3.17) with equation  (47) of [39], we take 𝑎 = 𝑍 and 𝑢 = 1, so that 

(3.27) reduces to

𝜖𝐶0 (1;𝑍, 𝑏, 𝐶, 𝑆, 𝛼) =
−𝛼2𝑏𝑆2𝑍 ±

√

(−𝛼𝑏 + 𝛼𝐶𝑍 + 3𝑆)2
(

𝛼2𝑆2
(

𝑍2 − 𝑏2
)

+ (−𝛼𝑏 + 𝛼𝐶𝑍 + 3𝑆)2
)

−6𝛼𝑆(𝑏 − 𝐶𝑍) + 𝛼2(𝑏 − 𝐶𝑍)2 + 𝑆2
(

𝛼2𝑍2 + 9
) ,

and then one can easily verify that our ground state energy 𝜖𝐶0  matches equation  (47) in [46] for 𝑛 = 2.

4. Concluding remarks

Considering the importance of theoretical studies of curved spacetime in various fields, and based on very recent papers 
introducing inverse-square and inverse-cubic terms, respectively, as relativistic and quantum corrections to the Coulomb-type 
gravitational interaction, we consider the Dirac equation in three spatial dimensions with this generalized gravitational potential 
within a new metric where the curvature effects are embedded in an external field. The resulting differential equation turns out 
to be a generalization of the doubly confluent Heun equation, which is an unwieldy equation. Using the Bethe-ansatz approach, 
we address the analytical solution. It should be clear that the Bethe-ansatz technique used here has some limitations and that the 
problem can only be solved analytically for a certain choice of parameters. In other words, parts of the equations derived in the 
approach are interpreted as the constraint between the parameters involved. To ensure the validity of the solutions found, the special 
case of the Coulomb problem was derived and compared with a previous result.

Quite interestingly, the form considered for the scalar potential and the so-called vector (magnetic) potential, is the multipole 
expansion of these terms. We think this is the first time multipole expansions of the electrostatic and magnetic fields are 
simultaneously considered for the Dirac equation and an electronic structure.
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Appendix. Unsolvability of problem by other approaches

From what we have seen throughout the work, it seems that the common exact, quasi-exact or conditionally exact analytical 
techniques cannot solve our case. Additionally, approaches such as WKB and the quantization rule can be considered to see whether 
or not acceptable approximate solutions (not to be confused with exact or quasi-exact techniques) are available. Let us now see 
whether other techniques frequently used in mathematical physics can solve our problem or not.

A.1. Known special functions or forms

The special case of the problem of interest, where the inverse cube term is absent in (3.1), i.e., 𝑧(𝑟) = 𝑢
𝑟 + 𝑣

𝑟2
, where 𝑢 and 𝑣

are constants, implies a post-Newtonian, or relativistic, correction to the ordinary Coulomb interaction. For such an interaction, the 
resulting equation has the form 

𝑅′′(𝑟) +
(𝑎
𝑟
+ 𝑏

𝑟2
+ 𝑐

𝑟3
+ 𝑑

𝑟4
+ 𝑘

)

𝑅(𝑟) = 0, (A.1)

which is known as the doubly confluent Heun equation and has conditionally (quasi)exact solutions in terms of the doubly confluent 
Heun functions [61–63] or by Lie algebra [64–66]. A very recent connection of this problem to the Stäckel transform, which is the 
main step for the quasi-exact approach to work in this case, is discussed in [70].

A.2. Lie-algebraic approach

Following the standard idea of quasi-exact solvability [64–66,71,72], the most general form of a quasi-exactly solvable (QES) 
differential operator can be represented as a quadratic combination of the 𝑠𝑙(2) generators as 

𝐻𝑞𝑒𝑠 =
∑

𝑎,𝑏=0,±
𝐶𝑎𝑏  𝑎

𝑛 
𝑏
𝑛 +

∑

𝑎=0,±
𝐶𝑎  𝑎

𝑛 + 𝐶 , (A.2)

in which 𝐶𝑎𝑏, 𝐶𝑎, 𝐶 ∈ R, and the differential operators 

 +
𝑛 = 𝑟2 𝑑

𝑑𝑟
− 𝑛 𝑟,  0

𝑛 = 𝑟 𝑑
𝑑𝑟

− 𝑛
2
,  −

𝑛 = 𝑑
𝑑𝑟

, (A.3)

obey the 𝑠𝑙(2) commutation relations [ +
𝑛 , −

𝑛 ] = −2 0
𝑛  and [ ±

𝑛 , 0
𝑛 ] = ∓ ±

𝑛 . It seems that our case is not expressible in the form of 
(A.2). To prove this, it suffices to explicitly compute the term 𝐶++  +

𝑛  +
𝑛  in (A.2), i.e. 

𝐶++  +
𝑛  +

𝑛 = 𝐶++

(

𝑟4 𝑑2

𝑑𝑟2
+ 2(1 − 𝑛)𝑟3 𝑑

𝑑𝑟
+ 𝑛(𝑛 − 1)𝑟2

)

, (A.4)

which immediately proves the claim: comparing (A.4) with our Eq. (3.7), the coefficient of the second derivative term in (3.7) 
indicates that 𝐶++ = 0 while the remaining two terms violate this.

A.3. A class of integral transforms

The idea of using an integral transform to solve differential equations is based on solving an equivalent problem in a simpler 
basis and then obtaining the solution of the original problem by an inverse transformation. The most famous example of this idea in 
quantum physics is solving the wave equation in momentum space and then recovering the position space solutions by an inverse 
transformation [67].

In this subsection, to convey the main idea, we discuss the Laplace and Fourier transforms, although, generally speaking, a fairly 
similar argument applies to some other transforms. Before proceeding, it should be noted that the integral transform of special 
functions is a rather complex field. This is even more complicated in our case, since we are dealing with an equation that appears 
9 
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in a more general form than Heun’s. One might think that the Heun functions can be written in a straightforward way in terms of 
other well-known special functions, such as the Hermite, beta, and hypergeometric functions, however, the story is not that simple 
even using this idea because of the special form of the associated series. To convey the main idea, let us focus on the basic formulas 
of the Laplace integral transform, which is usually defined as [67] 

(𝑓 (𝑡)) = ∫

∞

0
𝑓 (𝑡)𝑒−𝑠𝑡 𝑑𝑡 = 𝐹 (𝑠). (A.5)

This operation transforms the function 𝑓 (𝑡) into the function 𝐹 (𝑠), which in many cases appears in a much simpler form. Once the 
equation for 𝐹 (𝑠) is solved, we can try to obtain the original function by means of the inverse Laplace transform −1𝐹 (𝑠) = 𝑓 (𝑡). As 
is well known, from the definition (A.5) it can be easily deduced that the derivative of order 𝑛 and the multiplication by a power 
of order 𝑛 are obtained respectively by 

(𝑓 (𝑛)(𝑡)) = 𝑠𝑛𝐹 (𝑠) −
∞
∑

𝑘=1
𝑠𝑛−𝑘𝑓 (𝑘−1)(0−) and (𝑡𝑛𝑓 (𝑡)) = (−1)𝑛𝐹 (𝑛)(𝑠). (A.6)

Thus, when dealing with a second order differential equation having a polynomial of order 𝑛 in the effective Hamiltonian in ordinary 
space, the Laplace transform of the equation appears as a differential equation of order 𝑛, which at most works smoothly for powers 
of order two, which of course is not our case. A rather similar argument applies to the Fourier transform, which is normally used to 
connect the position and momentum representations of wave functions. To this point we can add the problem of the initial values 
used in integral transforms, which requires an extensive discussion and is beyond the scope of the present work. To our knowledge, 
not even integral transforms of Heun functions, which are special cases of our problem, have been adequately addressed in the 
literature.

Data availability

No data was used for the research described in the article.
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