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A B S T R A C T

In this paper, we studied the thermotropic behavior and phase diagrams of blends of two platinum-based met-
allomesogens with different oxidation states and ligands, which are prone to self-association through the for-
mation of a mixed-valence system via PtII⋅⋅⋅Cl-PtIV interactions. The constituent molecules are cis-[PtCl2(CNL)2] 
(CNL = 2-(6-(4-isocyanophenoxy)hexyloxy)-3,6,7,10,11-pentakisdodecyloxytriphenylene) and [PtCl4(Bipy)] 
(Bipy = didodecyl 2,2′-bipyridyl-4,4′-dicarboxylate), which display an organic/inorganic segregated multi-
columnar mesophase and a lamellar mesomorphism, respectively. Firstly, the phase diagram was constructed 
using polarized optical microscopy, differential scanning calorimetry and X-ray scattering data. The results 
indicated that compositions exceeding 50 % of [PtCl2(CNL)2] led to columnar mesophases very similar to the one 
of pure [PtCl2(CNL)2], where triphenylene cores and platinum moieties are segregated into different columnar 
units. Then, employing tight-binding quantum chemical methods, we studied the supramolecular organization in 
the columnar mesophases, as well as the electronic structure properties of mixtures with compositions larger than 
50 % of [PtCl2(CNL)2]. The results revealed that the formation of the metal–organic columns relies on a fine 
balance between PtII⋅⋅⋅PtII and PtII⋅⋅⋅Cl-PtIV intermolecular interactions, which strongly depend on the compo-
sition of the system. A deep analysis of the density of states showed that lower concentrations of [PtCl4(Bipy)] 
result in a hole-doped system, while at higher [PtCl4(Bipy)] concentrations the intervalence charge transfer 
between the metal center in different oxidation states significantly changes the electronic structure.

1. Introduction

Metallomesogens constitute a class of functional materials that can 
be tailored for specific applications in optoelectronics, display technol-
ogies, chemo-sensing, bio-related fields or even in catalysis [1–7]. The 
great versatility of these systems is due to the combination of features 
arising from the metal-based coordination complex (such as specific 
metal-based interactions, luminescence, magnetism, catalytic activity, 
or redox behavior) along with the supramolecular organization and 
fluidity of the mesophase [1,8,9]. In this sense, a large variety of metals 
and ligands have been used to prepare metal-containing liquid crystals 
[10]. Among them, discotic metallomesogens that self-assemble into 
columnar mesophases are particularly intriguing. The unique properties 
of these materials, derived from their columnar structure, make them 
promising materials for applications such as conductive devices, field- 
effect transistors, or photovoltaic solar cells. These properties are 
largely determined by the inter-disc separation within the columnar 
stacking and, consequently, by the intermolecular interactions that hold 

the molecules together in the supramolecular structure. Currently, 
considerable efforts are being made toward the rational design of met-
allomesogens with enhanced properties for use in optoelectronic de-
vices. Among these, complexes exhibiting square-planar coordination, 
such as PtII or PdII, have attracted great attention as promising func-
tional materials for multiple applications [11–18].

A widely studied family of columnar liquid crystals is based on 
hexasubstituted triphenylenes, which are classical examples of semi-
conducting mesophases. Their properties can be easily modulated 
through chemical functionalization of the triphenylene system with a 
wide variety of functional groups, including metal complexes [19–34]. 
In this sense, functionalizing the triphenylene system at the end of one 
alkoxy substituent has proven to be an interesting strategy for the for-
mation of hybrid organic/inorganic mesophases with segregated col-
umns of different nature [35–43].

A useful and well-known alternative to chemical functionalization 
for fine-tuning the properties of liquid crystal materials is doping or 
mixing two or more species [44–50]. This strategy has already been used 
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to control temperature range, electrical permittivity and viscosity in 
nematic mesophases, as well as charge mobility in semiconducting 
columnar mesophases [31–34,51]. In addition, chemical blending is also 
being explored as an economical and environmentally friendly alter-
native to chemical synthesis for producing a great variety of new 
advanced materials such as metal–organic frameworks [52], polymers 
[53,54], or biocomposites [55]. Surprisingly, reports on liquid crystal-
line blends involving metallomesogens are limited to a few examples, 
which can be broadly categorized into two different types. The first type 

comprises mixtures of two complexes with the same metal center but 
different ligands [56–58]. The second class is less common and involves 
blends based on different metal-containing molecules, so called liquid 
crystalline molecular alloys [59–61]. In this context, we have recently 
reported an uncommon modulation of organic/inorganic segregation in 
columnar mesophases of metal–organic triphenylene liquid crystals, by 
mixing two structurally dissimilar metallomesogens of PtII [62].

Moving to more complex systems, here we have turned our attention 
to mesomorphic blends of two platinum complexes in different oxida-
tion states, prone to generating mixed valence systems (see Scheme 1) 
[61,63–65]: cis-[PtIICl2(CNL)2] (CNL = 2-(6-(4-isocyanophenoxy)hex-
yloxy)-3,6,7,10,11-pentakisdodecyloxytriphenylene), that displays an 
organic/inorganic segregated columnar mesophase [27], and 
[PtIVCl4(Bipy)] (Bipy = didodecyl 2,2′-bipyridil-4,4′ dicarboxylate), 
which exhibits lamellar mesomorphism [61]. Both components were 
chosen based on their miscibility, absence of ligand scrambling re-
actions, and aiming to study the effect of metal-based interactions in the 
mesophase [61,63–65]. For compositions equal to or greater than 50 % 
of [PtCl2(CNL)2], we found liquid crystalline molecular alloys displaying 
multicolumnar mesophases supported by synergistic π-π and halogen- 
bridged PtII⋅⋅⋅Cl-PtIV interactions. The effect of the mixture composi-
tion on the supramolecular arrangement of the molecules in the 
columnar mesophase at the molecular level and electronic structure 
properties of the mesophase have been studied by quantum chemical 

Scheme 1. Chemical structure of [PtCl2(CNL)2] and [PtCl4(Bipy)] molecules 
forming the liquid crystalline molecular alloys here studied.

Table 1 
Optical, Thermal and Thermodynamic Data for mixtures [PtCl2(CNL)2]/ 
[PtCl4(Bipy)] in the whole range of compositions.

m (%mol[PtCl2(CNL)2]) Transition a Temperature b (◦C) ΔH b (kJ/mol)

0 Cr → Lam 
Lam → I

55c

140c
31.0 c

14.7 c

10 GLam → Lam 
Lam → I

24 
117

−

1.3
15 G → I 26 −

20 G → I 26 −

30 G → I 23 −

40 G → I 25 −

45 G → I 27 −

50 Cr → Colrec 

Colrec → I
–23 
73

7.4 
3.6

60 Cr → Colrec 

Colrec → I
− 25 
70

10.7 
5.6

70 Cr → Colrec 

Colrec → I
− 17 
81

16.8 
6.7

80 Cr → Colrec 

Colrec → I
− 14 
81

23.3 
11.7

90 Cr → Colrec 

Colrec → I
− 13 
84

26.5 
10.3

100 Cr → Colrec 

Colrec → I
− 13 
83

26.3 
13.2

a Cr: crystal phases; G: glassy phases; Glam: glassy phases with columnar 
mesophase; Colrec: columnar rectangular mesophase; Lam: lamellar mesophase; 
I: isotropic liquid. DSC measurements were performed at a scanning rate of 10 
◦C/min.

b Data collected from the second heating DSC cycle. The transition tempera-
tures are given as peak onsets.

c Data collected from the first heating DSC.

Fig. 1. Heating DSC scans of the [PtCl2(CNL)2]/[PtCl4(Bipy)] mixtures. The 
compositions are given in brackets. All the mesomorphic mixtures display 
enantiotropic mesomorphism. The DSC scans (first heating, first cooling and 
second heating) for all studied mixtures are given in the supporting information 
part (Figs. S1-S13).

Fig. 2. [PtCl2(CNL)2]/[PtCl4(Bipy)] phase diagram. The boundary of the white 
region could not be clearly determined.
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calculations. The size of the studied model systems (up to 3703 atoms) 
and their complexity, resulting from their metal–organic nature, surpass 
common theoretical studies on supramolecular systems, including liquid 
crystals. Specifically, extended tight-binding methods (xTB) [66,67] 
have been successfully applied to study [PtCl2(CNL)2]/[PtCl4(Bipy)] 
mixtures with composition larger than 50 % of [PtCl2(CNL)2]. xTB 
methods have been specifically designed to accurately describe molec-
ular structure and non-covalent interactions in large systems with a 

reduced computational cost compared to other approaches such as 
Density Functional Theory (DFT) or composite methods.

2. Results and discussion

2.1. Thermal behavior and mesogenic properties

Both [PtCl2(CNL)2] [27] and [PtCl4(Bipy)] [61] compounds were 

Fig. 3. Diffraction patterns in the mesophase state of pure complex [PtCl4(Bipy)], along with the 10 % [PtCl2(CNL)2]/90 % [PtCl4(Bipy)] mixture in the Lam 
mesophase (100 ◦C).

Fig. 4. Optical polarizing microscopy photographs (x100, crossed polarizers) on cooling from the isotropic phase of a) pure [PtCl4(Bipy)2] at 120 ◦C; b) pure 
[PtCl2(CNL)2] at 70 ◦C; c) 90 % [PtCl4(Bipy)]/10 % [PtCl2(CNL)2] at 120 ◦C; d) 30 % [PtCl4(Bipy)]/70 % [PtCl2(CNL)2] at 70 ◦C.

E. de Domingo et al.                                                                                                                                                                                                                            Journal of Molecular Liquids 431 (2025) 127663 

3 



synthesized following procedures described in the literature. The binary 
mixtures of pure compounds were prepared by dissolving the corre-
sponding weights of the two compounds together in dichloromethane at 
ambient temperature, followed by solvent removal under vacuum. The 
choice of this solvent was based on the high solubility of the pure pre-
cursors in this medium, its low coordinating ability towards transition 
metals, and its easy removal in vacuum.

The phase diagram of binary [PtCl2(CNL)2]/[PtCl4(Bipy)] system 
(where m represents the percentage in %mol of [PtCl2(CNL)2] com-
pound) was established using polarized optical microscopy (POM), dif-
ferential scanning calorimetry (DSC), and X-ray scattering data. 
Transition temperatures and thermal data are collected in Table 1 and 
Fig. 1, while the corresponding phase diagram is shown in Fig. 2.

The enantiotropic mesomorphic behavior of this system is highly 
dependent on the composition. For concentrations lower than 10 % of 
[PtCl2(CNL)2], when the samples are heated to the melting tempera-
tures, the system exhibits only a lamellar mesophase (Lam) with similar 
features to that of the parent precursor [PtCl4(Bipy)] (see reference [62] 
and Figs. 3 and 4). Subsequent heating produces the transition from the 
mesophase to an isotropic liquid. Both transitions appear in the DSC 
scans as two endothermic peaks. In contrast to the pure [PtCl4(Bipy)] 
compound, the width of the peaks in the 10 % [PtCl2(CNL)2]/90 % 
[PtCl4(Bipy)] mixture indicates the presence of a quite disordered solid 
rather than a crystalline phase (Fig. 1 and Fig. S2 in the Supplementary 
material). For compositions between 15 and 45 %, the solid phases melt 
directly to an isotropic liquid and these mixtures are not liquid crystals. 
In this range of compositions, the DSC scans display the characteristic 
patterns of disordered solid, showing the corresponding glass transition 
temperatures. When the concentration exceeds 50 %, a rectangular 
columnar mesophase, analogous to that of the [PtCl2(CNL)2] complex, is 

observed (Fig. 4). In this case, both the crystal/mesophase and meso-
phase/isotropic transitions are observed by DCS as two exothermic 
peaks similar to those of the pure PtII complex, whose structure contains 
simultaneously, π-stacking of the triphenylene discs in columns, and 
aggregation of the metallic moieties into segregated columnar zones 
[27]. This suggests that in the mesophase, the PtII and PtIV moieties 
should be arranged within the same columnar region, likely associated 
through Cl-PtIV-Cl⋅⋅⋅PtII⋅⋅⋅ interactions, as has been reported for related 
systems [61,63–65,68]. These results show at least two notable aspects 
that deserve further study: i) the columnar mesophase only emerges for 
compositions greater than 50 % in PtII; and ii) the presence of the 
octahedral complex of PtIV in the mixture does not produce any signif-
icant effect on the columnar mesomorphic behavior of the PtII square 
planar complex.

2.2. Supramolecular structure of [PtCl2(CNL)2] and [PtCl2(CNL)2]/ 
[PtCl4(Bipy)] mixtures in the columnar phases

To further analyze the supramolecular arrangement of the molecules 
in the Colrec phase for [PtCl2(CNL)2]/[PtCl4(Bipy)] mixtures, we carried 
out theoretical calculations by using Grimme’s extended semiempirical 
tight-binding method (GFN2-xTB) [66,67,69]. This tight-binding 
method includes electrostatic and exchange correlation Hamiltonian 
terms and the D4 dispersion model [70]. The GFN2-xTB was designed to 
accurately describe molecular structure and non-covalent interactions 
for large systems like those reported herein with a reduced computa-
tional cost [67]. In addition, this method has proven effective to study 
non-covalent interactions with various contexts, such as biochemical 
systems [67,71], transition metal complexes [72] and supramolecular 
materials [73,74], including liquid crystals [62,75,76].

Theoretical calculations were first conducted for the pure compound 
[PtCl2(CNL)2] and subsequently for [PtCl2(CNL)2]/[PtCl4(Bipy)] mix-
tures with composition greater than 50 % of [PtCl2(CNL)2]. Please refer 
to the “Computational Details” section in the Supplementary information
for a more detailed description.

2.2.1. Pure [PtCl2(CNL)2] (m = 100)
As previously mentioned, [PtCl2(CNL)2] exhibits a columnar meso-

phase, which structure is formed by the segregation of organometallic 
columns (coming from the packing of the metallic fragments at the 
nodes of a rectangular lattice), which are intercalated by a network of 
organic columns (resulting from the π-stacking of triphenylene moieties) 
[27]. Both organometallic and organic columns are surrounded by the 
aliphatic continuum, making each column electronically independent of 
the others. Thus, the resulting properties should arise from the in-
teractions between fragments (organometallic or triphenylene) within 
the same column. The study of such columnar mesophase through 
quantum chemical methods would require expensive and complex 
theoretical calculations including several thousand atoms. However, as 
a first approach, this arrangement can be studied through a minimum 
energy model of the supramolecular stack of [PtCl2(CNL)2] molecules, 
where alkoxy side chains have been replaced by methoxy groups for 
computational economy.

The study of the stacking of two [PtCl2(CNL)2] molecules (please 
refer to the “Building the supramolecular cluster model of [PtCl2(CNL)2]” 
section in the Supplementary information for a more detailed descrip-
tion) shows that the most stable arrangements would be found for cores 
rotated each other around 135◦ along the stacking axis (z-axis). The 
rotation of each monomeric unit around the stacking axis leads to each 
triphenylene core overlaps through π-π interactions with another tri-
phenylene disc of the next stacking molecule. This supramolecular 
model produces a columnar organometallic region with the triphenylene 
fragments distributed in its periphery, where the triphenylene discs 
should not give rise to a continuous stacking of triphenylene units, but 
rather organic columnar regions with empty areas between triphenylene 
groups. The two-dimensional expansion of this supramolecular 

Fig. 5. a) Diffraction patterns in the mesophase state of pure complexes 
[PtCl2(CNL)2] and [PtCl4(Bipy)], along with the 70 % [PtCl2(CNL)2]/30 % 
[PtCl4(Bipy)] mixture in the Colrec mesophase (70 ◦C) b) Diffraction patterns in 
the mesophase state of pure complex [PtCl2(CNL)2], along with the 70 % 
[PtCl2(CNL)2]/30 % [PtCl4(Bipy)] mixture in the Lam mesophase (100 ◦C).
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arrangement, trough the complementary interpenetration of the organic 
regions (triphenylene) from neighboring organometallic columns, leads 
to the columnar rectangular lattice, in agreement with the reported re-
sults [27]. In this simple molecular model, each Pt fragment is sur-
rounded by three triphenylene discs, two of them originate from the 
same molecule, while the third extra disc comes from a neighboring 
molecule, which metallic fragment would be in a different metallic 
column.

Fig. 6a-c) displays the optimized structure of an octamer cluster 
(containing 1752 atoms) describing the columnar phase of 
[PtCl2(CNL)2]. Since the optimized octamer structure exhibits terminal 
effects, we have focused on the main structural parameters obtained 
from the central region. The stacking of [PtCl2(CNL)2] molecules shows 
that the most stable arrangement was found for cores rotated each other 

along the stacking axis (z-axis) 138.3◦ and with an intermolecular 
PtII⋅⋅⋅PtII distance of 2.96 Å. The mean values for the PtII⋅⋅⋅PtII distances, 
azimuthal angle along the stacking axis (z-axis) and twisting angle be-
tween phenyl ring and PtII atom are 2.96Å, 138.3◦ and 155.6◦, respec-
tively. The rotation of each [PtCl2(CNL)2] molecule around the stacking 
axis results in the sandwiching of each triphenylene core between one 
triphenylene core coming from the adjacent molecule and an extra tri-
phenylene (whose metallic motif would be in a different metallic col-
umn). The arrangement between the triphenylene leads to typical π-π 
stacking distances 3.39Å / 3.19Å (measured as the distance between 
mass centers / as the shortest distance between adjacent triphenylene). 
It is noteworthy that theoretical π-π stacking distances are consistent 
with experimental data obtained from SAXS measurements [27].

The interaction energy (ΔE) per [PtCl2(CNL)2] molecule was 

Fig. 6. A) side view of the minimum-energy optimized structure calculated at the GFN2-xTB level for the octamer cluster of [PtCl2(CNL)2]; Molecules stacked along 
z-axis are labelled 1–8. Molecules 3–6 are shown in red, purple, green and orange, respectively; extra triphenylene molecules are in blue. Hydrogen atoms are 
omitted. b) upper and c) side views of four central molecules taken from the central region, along with the main intermolecular structural parameters. Units: 
intermolecular distances are in Å, angular and azimuthal angles are in degrees. d) Calculated binding Energies (ΔE) for [PtCl2(CNL)2] compound. e) RDG isosurfaces 
(isovalue = 0.5 a.u.) of [PtCl2(CNL)2] (for the sake of clarity, only molecules 3–7 are represented with special interest on organic and organometallic regions). The 
color of the RDG isosurfaces is related to the nature of the intermolecular interactions, indicating repulsive or steric (red), van der Waals (green) or strong attractive 
(blue) interactions.
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calculated according to: 

ΔE =
[
En − n

(
E[PtCl2(CNL)2 ] − Eextra− triphenylene

) ]
/n (1) 

where En, E[PtCl2(CNL)2 ]
and Eextra− triphenylene represent the total energy of the 

cluster, [PtCl2(CNL)2] monomer and extra triphenylene molecules, 
respectively; n corresponds to the number of [PtCl2(CNL)2] monomers in 
the cluster. Eq. (1) quantifies the change in energy upon the formation of 
the columnar structure from its constituent molecules. In general, highly 
negative ΔE values would indicate highly favored process [85]. As 
shown in Fig. 6d), |ΔE| exhibits hyperbolic behavior with an asymptotic 
limit of ~ 460.0 kJ/mol. As our system is comprised of on-chemically 
interacting columns, ΔE can be expressed as the sum of the binding 
energy resulting from the interaction between metallic fragments in the 
inorganic column (ΔEmetal) and the staking between the triphenylene 
units within the organic columns (ΔEtriphenylene): ΔE = ΔEmetal +

ΔEtriphenylene. See supplementary materials for a more detailed descrip-
tion about energy decomposition. |ΔEtriphenylene| reaches an asymptotic 
value 145.0 kJ/mol, i.e., a contribution of 32 % to the total ΔE. 
Regarding |ΔEmetal|, it asymptotically approaches a value of ~ 155.0 kJ/ 
mol (34 % contribution to ΔE). It is noteworthy that the dispersion en-
ergy contribution to the ΔEmetal (ΔEmetal,dis) constitutes ~63 % of ΔEmetal. 
The ΔEmetal,dis originates from the van der Waals interactions between 
adjacent organometallic regions to the Pt atoms. Therefore, our theo-
retical calculations suggest that the formation of stable columnar 
structure is due to dispersion interactions withing the organic columns 
and the interplay been PtII⋅⋅⋅PtII and van der Waals interaction in the 
organometallic columns. These results are consistent with previous 
studies indicating that PtII⋅⋅⋅PtII and π⋅⋅⋅π interactions are the main 
driving force for the formation of columnar mesophase in Pt metal-
lomesogens [78–80].

Finally, an analysis of the intermolecular interactions has been car-
ried out considering Reduced Density Gradient (RDG) isosurfaces [77] 
to illustrate the strength and nature of the intermolecular interactions 
(Fig. 6e). As previously discussed, the columnar phase of [PtCl2(CNL)2] 
is mainly supported by a combination of: i) dispersion (or van der Waals) 
interactions between triphenylene cores that define the organic columns 
(greenish-surfaces between triphenylene discs); ii) metal–metal and 
dispersion interactions (blue and green RDG isosurfaces between 

adjacent organometallic fragments).

2.2.2. [PtCl2(CNL)2]/[PtCl4(Bipy)] mixtures
For [PtCl2(CNL)2]/[PtCl4(Bipy)] mixtures with compositions greater 

than 50 % in the PtII component, as previously discussed, only a hex-
agonal columnar structure (Colrec) practically identical to that of pure 
compound [PtCl2(CNL)2] is observed (Figs. 1, 2, 4 and 5). This finding 
suggests that the organometallic columns are formed through self- 
assembly of the metal–organic fragments of PtII and PtIV, while 
organic columns arise from the stacking of triphenylene units.

Starting from the cluster model system for [PtCl2(CNL)2], several 
supramolecular clusters have been built to study the columnar structure 
of [PtCl2(CNL)2]/[PtCl4(Bipy)] mixtures with m > 50, in which 
[PtCl4(Bipy)] molecules have been uniformly distributed along the 
structure (see Table 2). Hence, each [PtCl4(Bipy)] molecule is consis-
tently located between two PtII fragments, allowing the formation of 
PtII⋅⋅⋅Cl-PtIV-Cl ⋅⋅⋅PtII interactions [61,63–65,68]. In addition, each 
platinum unit, whether PtII or PtIV, is surrounded by three triphenylene 
discs in a very similar molecular arrangement to that described in the 
supramolecular cluster model of [PtCl2(CNL)2]. As shown below, our 
supramolecular model structures for [PtCl2(CNL)2]/[PtCl4(Bipy)] mix-
tures effectively describe the coexistence of segregated columns with 
different nature. Please refer to the “Building the supramolecular cluster 
models of x[PtCl2(CNL)2]/y[PtCl4(Bipy) mixtures” section in the Supple-
mentary information for a more detailed description.

As seen in Table 2, supramolecular structures have been categorized 
into three groups depending on the composition m (% in PtII): a) from 80 
% to 94 %, b) from 67 % to 75 %; and c) from 53 % to 57 %. In the first 
case (m = 80–94, structures labelled as ii-viii), mixtures have been 
studied through large supramolecular clusters with only one 
[PtCl4(Bipy)] molecule. As representative examples, Fig. 7 displays the 
optimized structure of the clusters for 8[PtCl2(CNL)2]/1[PtCl4(Bipy)] 
(m = 89) and 4[PtCl2(CNL)2]/1[PtCl4(Bipy)] (m = 80) mixtures. The 
columns formed by stacking of the triphenylene fragments are practi-
cally identical to those previously described for the [PtCl2(CNL)2] 
compound, displaying π-stacking distances of 3.40 Å, and ΔEtriphenylene 
values of around 145 kJ/mol Pt. As for the metal–organic region, the PtII 

and PtIV moieties self-associate by the formation of a mixed-valence 
system through PtII⋅⋅⋅-Cl-PtIV interactions with PtIV-Cl bonds and 

Table 2 
Description of the supramolecular models here used to study xPtCl2(CNL)2]/y[PtCl4(Bipy)] mixtures with m > 50.

Label m x a y a x + y
a

Number of atoms b Distribution c

i 100 8 8 1752 ||||||||
ii 94 d 16 1 17 3703 ||||||||¦||||||||
iii 93 d 14 1 15 3265 |||||||¦|||||||
iv 92 d 12 1 13 2827 ||||||¦||||||
v 91 10 1 11 2389 |||||¦|||||
vi 89 8 1 9 1951 ||||¦||||
vii 86 6 1 7 1513 |||¦|||
viii 80 4 1 5 1075 ||¦||
ix 75 6 2 8 1712 ||¦||¦||
x 73 8 3 11 2349 ||¦||¦||¦||

xi.i 67 d 8 4 12 2548 |¦||¦||¦||¦|
xi.ii 67 6 3 9 1911 |¦||¦||¦|
xi.iii 67 4 2 6 1274 |¦||¦|
xii 57 4 3 7 1527 |¦|¦|¦|
xiii 55 d 6 5 11 2309 |¦|¦|¦|¦|¦|
xiv 53 d 8 7 15 3145 |¦|¦|¦|¦|¦|¦|¦|

a x and y stand for the number of [PtCl2(CNL)2] and [PtCl4(Bipy)] molecules in the supramolecular cluster model.
b Total number of atoms in the cluster. Alkoxy side chains were replaced my methoxy groups for computational economy.
c Solid and broken vertical lines stand for [PtCl2(CNL)2] and [PtCl4(Bipy)] molecule distributions, respectively, along the columnar structure.
d Due to the large number of atoms, these systems were optimized using a GFN-FF partially polarizable generic force-field, which is adequate for the accurate 
description of structures and dynamics of large systems (see supporting information for more details) [81].
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PtII⋅⋅⋅Cl contacts of 2.37 Å and 3.71 Å, respectively (Fig. 7c). Although 
PtII⋅⋅⋅Cl intermolecular distances are larger than the sum of van der 
Waals radii, the presence of a green RDG isosurfaces between both atoms 
reveals weak interactions between them. On the other hand, the influ-
ence of [PtCl4(Bipy)] concentration on the structural properties of 
neighboring [PtCl2(CNL)2] stacked molecules has been assessed by 
comparing PtII⋅⋅⋅PtII distances and azimuthal angle with the pure 
[PtCl2(CNL)2]. The mean values are around 3.02Å and 138.3◦, respec-
tively. Thus, low concentrations of [PtCl4(Bipy)] do not significantly 
affect the columnar structure of [PtCl2(CNL)2].

For compositions in the range m = 67–75 (ix-xi), the mixtures have 
been studied through supramolecular clusters that exhibit an alternation 
of PtII⋅⋅⋅PtII and PtII⋅⋅⋅Cl-PtIV-Cl⋅⋅⋅PtII stacks, leading to ⋅⋅⋅(PtII⋅⋅⋅PtII⋅⋅⋅Cl- 
PtIV-Cl)⋅⋅⋅ chains along the metal–organic column (see Table 2). This 
implies that y = x/2 or x/2–1 (being x and y the number of 
[PtCl2(CNL)2] and [PtCl4(Bipy)] molecules in the supramolecular clus-
ter model), with the main difference lying in the number of 
[PtCl2(CNL)2] molecules at the border. Fig. 8 shows the optimized 
structure of the clusters for 6[PtCl2(CNL)2]/2[PtCl4(Bipy)] (m = 75) and 
6[PtCl2(CNL)2]/3[PtCl4(Bipy)] (m = 67) mixtures. Similar structural 

features are noted for 8[PtCl2(CNL)2]/3[PtCl4(Bipy)] (m = 73) and 4 
[PtCl2(CNL)2]/2[PtCl4(Bipy)] (m = 67) mixtures. As the first case, pre-
viously discussed, the PtII⋅⋅⋅Cl intermolecular distances (3.68 Å) are 
larger than the sum of the corresponding van der Walls radii, but the 
presence of a green RDG isosurface between both atoms reflects weak 
PtII⋅⋅⋅Cl intermolecular interactions. The PtII⋅⋅⋅Cl distances are slightly 
shorter than those found for mixtures with 80 < m < 90 (3.71 Å). This 
slight shortening can be related to the increase of strengthening of 
PtII⋅⋅⋅Cl interactions upon increasing [PtCl4(Bipy)] concentrations. The 
PtII⋅⋅⋅PtII distances and azimuthal angle are 3.07Å and 134.4◦ (average 
values taken from the central region), respectively. Hence, there is a 
small increase in the PtII⋅⋅⋅PtII distance for 65 < m < 75.

The last group involves structures with m = 53–57 (xii-xiv), which 
supramolecular structures are constituted by an alternation of 
[PtCl2(CNL)2] and [PtCl4(Bipy)] molecules. Considering that the per-
centages slightly higher than 50 % are due to the cluster size considered, 
the results obtained here also represent the case of a 50 % mixture. Fig. 9
illustrates the optimized structure of the cluster for 4[PtCl2(CNL)2]/3 
[PtCl4(Bipy)] (m = 57) mixture. Two main differences are observed in 
comparison with the previous supramolecular structures with 65 > m >
100. Firstly, due to the alternation between PtII and PtIV complexes, the 
interaction between PtII⋅⋅⋅PtII complexes disappears. Secondly, although 

Fig. 7. A) and b) upper and side views of the minimum-energy structure for 
supramolecularcluster of 8[PtCl2(CNL)2]/1[PtCl4(Bipy)] (m = 89) and 4 
[PtCl2(CNL)2]/1[PtCl4(Bipy)] (m = 80) mixtures. c) Emphasis on the organo-
metallic region for cluster of 4[PtCl2(CNL)2]/1[PtCl4(Bipy)] mixture, along 
with RDG isosurfaces (isovalue = 0.3 a.u.) and main average structural pa-
rameters. PtII and PtIV fragments are depicted in orange and pink, respectively, 
while triphenylene fragments and alkyl chains are in blue and grey, respec-
tively. Hydrogen atoms are omitted for clarity. Units: intermolecular distances 
are in Å and azimuthal angles are in degrees. The color of the RDG isosurfaces is 
related to the nature of the intermolecular interactions, indicating repulsive or 
steric (red), van der Waals (green) or strong attractive (blue) interactions.

Fig. 8. A), b) upper view of the minimum-energy structure for supra-
molecularcluster of 6[PtCl2(CNL)2]/2[PtCl4(Bipy)] (m = 75) and 6 
[PtCl2(CNL)2]/3[PtCl4(Bipy)] (m = 67) mixtures. c), d) Emphasis on the 
organometallic region, along with RDG isosurfaces (isovalue = 0.3 a.u.) and 
main average structural parameters. PtII and PtIV fragments are depicted in 
orange and pink, respectively, while triphenylene fragments and alkyl chains 
are in blue and grey, respectively. Hydrogen atoms are omitted for clarity. 
Units: intermolecular distances are in Å and azimuthal angles are in degrees. 
The color of the RDG isosurfaces is related to the nature of the intermolecular 
interactions, indicating repulsive or steric (red), van der Waals (green) or strong 
attractive (blue) interactions.
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the molecular arrangement is similar to that of the previous cases, each 
PtII moiety is not arranged symmetrically with respect to the PtIV frag-
ment, and two different PtII⋅⋅⋅Cl-PtIV intermolecular distances are found: 
3.66 Å and 6.56 Å. The latter being too long to allow any intermolecular 
interaction, which was confirmed by the absence of green RDG iso-
surfaces. Consequently, for compositions close to 50 %, the molecular 
packing of the metal–organic fragments does not form one-dimensional 
chains PtII⋅⋅⋅Cl-PtIV-Cl⋅⋅⋅PtII, and the metal–organic column is better 
described as a stacking of discrete PtII⋅⋅⋅Cl-PtIV-Cl dimers.

2.3. Binding energies for [PtCl2(CNL)2]/[PtCl4(Bipy)] mixtures with 50 
< m < 100

Similarly to pure [PtCl2(CNL)2], the interaction energy (ΔE) for su-
pramolecular structures describing the columnar mesophase of 
[PtCl2(CNL)2]/[PtCl4(Bipy)] mixtures can be expressed as the sum of the 
binding energy resulting from the interaction between metallic frag-
ments (ΔEmetal) and the triphenylene discs in organic columns 
(ΔEtriphenylene.). As stated, |ΔEtriphenylene| reaches values around 145 kJ/ 
mol Pt for all compositions. Fig. 10a) presents calculated ΔEmetal values. 
For the first set of supramolecular structures with m = 80–94, |ΔEmetal| 
increases with m, reaching a value close to 175.0 kJ/mol Pt. This value is 
similar to those calculated for the pure [PtCl2(CNL)2], indicating that for 
low [PtCl4(Bipy)] compositions, the organometallic column is mainly 
stabilized by interactions between PtII moieties. For supramolecular 
structures with m values in the range of 67–75 and 53–57, |ΔEmetal| falls 
between 152.5 kJ/mol Pt and 131.4 kJ/mol Pt, respectively. In all cases, 
the dispersion contribution to ΔEmetal (ΔEmetal,dis) accounts for approxi-
mately 61 % of ΔEmetal.

As seen in Fig. 10a), the variation of ΔEmetal with m fits wells to the 
ΔH data collected from the second DSC cycle for the Colrec→ I transition 
(similar conclusions can be drawn when comparing the total ΔE with ΔH, 
given that ΔEtriphenylene yields approximately the same value for all su-
pramolecular structures). The ΔH data collected for the Colrec → I 
transition represent the energy required to disrupt the supramolecular 
interactions between molecules within the columnar mesophases, 

leading to the isotropic liquid. Meanwhile, the calculated binding en-
ergies arise from the supramolecular interactions between molecules 
that form the columnar mesophase. Thus, both ΔH and binding energies 
are indicative of the strength of the interaction between molecules in the 
columnar mesophase.

ΔEmetal has been decomposed into contributions from PtII⋅⋅⋅PtII and 
PtII⋅⋅⋅Cl-PtIV-Cl⋅⋅⋅PtII stacks, i.e., ΔEPtII ⋅⋅⋅PtII and ΔEPtII ⋅⋅⋅Cl− PtIV , respectively. 
For each of these energies, the dispersion contribution (ΔEPtII ⋅⋅⋅PtII , dis and 
ΔEPtII ⋅⋅⋅Cl− PtIV , dis, respectively), arising from van der Waals interactions 
between adjacent organometallic regions to the Pt atoms, has been also 
obtained (see Fig. 10b). See Supplementary materials for a more detailed 
description about energy decomposition. According to the binding en-
ergies discussed in the previous paragraph, there are three concentration 
ranges with a distinct balance of PtII⋅⋅⋅PtII and PtII⋅⋅⋅Cl-PtIV-Cl⋅⋅⋅PtII in-
teractions contributing to the stabilization of the organometallic col-
umns. Mixtures with m around 50 could be described through structures 
xii-xiv (m = 53–57), implying an alternation between PtII and PtIV 

organometallic centers. In this situation, ΔEPtII ⋅⋅⋅Cl− PtIV is the main 
contribution to ΔEmetal, with values around |ΔEPtII ⋅⋅⋅Cl− PtIV | = 107.5 kJ/ 
mol Pt (where ΔEPtII ⋅⋅⋅Cl− PtIV , dis constitutes 65 % of ΔEPtII ⋅⋅⋅Cl− PtIV ). Because 
this is the primary contribution, structures xii-xiv (m = 53–57) structures 
yield similar ΔEmetal values.

As m increases (structures ix – xi with m = 67–75), the supramo-
lecular structures result in the formation of ⋅⋅⋅(PtII⋅⋅⋅PtII⋅⋅⋅Cl-PtIV-Cl)⋅⋅⋅ 
chains. Thus, in addition to ΔEPtII ⋅⋅⋅Cl− PtIV , there is also a contribution 
from ΔEPtII ⋅⋅⋅PtII . Both |ΔEPtII ⋅⋅⋅Cl− PtIV | and |ΔEPtII ⋅⋅⋅PtII | energies average 
109.4 kJ/mol Pt and 81.2 kJ/mol Pt, with the dispersion contribution 
around 71 % and 56 %, respectively. Therefore, for this range of con-
centrations, there is a small increase of |ΔEmetal| mainly due to the 
appearance of interactions between couple of PtII organometallic frag-
ments located between [PtCl4(Bipy)] molecules. In comparison to 
structures xii-xiv, ΔEPtII ⋅⋅⋅Cl− PtIV is not considerably affected, while 
ΔEPtII ⋅⋅⋅Cl− PtIV , dis yields higher values. This is because now both Cl atoms 
in the axial plane of [PtCl4(Bipy)] are forming an intermolecular inter-
action with adjacent PtII.

Finally, for higher compositions of PtII complex (structures ii-viii with 
m = 84–90), wherein one [PtCl4(Bipy)] molecule (y = 1) is located be-
tween large stacks of [PtCl2(CNL)2], three contributions are present. 
|ΔEPtII ⋅⋅⋅Cl− PtIV | that yields average values of 104.4 kJ/mol Pt (with a 61 % 
dispersion contribution), and two kinds of PtII⋅⋅⋅PtII contributions: one 
coming from PtII⋅⋅⋅PtII stacks adjacent to the [PtCl4(Bipy)] unit and the 
interaction energy from the whole stack of [PtCl2(CNL)2] molecules 
around [PtCl4(Bipy)], denoted as ΔEPtII ⋅⋅⋅PtII and ΔEPtII ⋅⋅⋅PtII , stack, respec-
tively. |ΔEPtII ⋅⋅⋅PtII | falls between 77.5 kJ/mol Pt and 93.3 kJ/mol Pt for m 
= 80 and 93, respectively. Meanwhile |ΔEPtII ⋅⋅⋅PtII , stack| ranges between 
77.5 kJ/mol Pt and 143.8 kJ/mol Pt for m = 80 and 91, respectively 
(dispersion contribution 61 % instead of m). Hence, ΔEPtII ⋅⋅⋅PtII , stack rea-
ches similar values than those obtained to the pure [PtCl2(CNL)2] for 
high m compositions. Thus, at higher m compositions |ΔEmetal| grows 
with m mainly due to the increasing contribution of ΔEPtII ⋅⋅⋅PtII , stack, while 
ΔEPtII ⋅⋅⋅Cl− PtIV and ΔEPtII ⋅⋅⋅PtII remain slightly less affected.

As seen in Fig. 10, for the transition between structures ix – xi (m =
67 – 75) and ii – viii (m = 80–94), there is a diminution of |ΔEmetal| for m 
= 80–86, which have been analogized to a decrease in ΔH around m =
80–90. For m = 80 (structure viii), both |ΔEPtII ⋅⋅⋅C− PtIV | and |ΔEPtII ⋅⋅⋅PtII | 
contributions are something lower than those calculated for structures ix 
– xi (m = 67–75); meanwhile for compositions something larger than m 
= 80, both diminutions are not compensated for the contribution of 
ΔEPtII ⋅⋅⋅PtII , stack, thus there is a diminution in the |ΔEmetal| for m = 80–86. 
From this point, the increase of |ΔEPtII ⋅⋅⋅PtII , stack| contribution (although 
|ΔEPtII ⋅⋅⋅PtII | also slightly increases) is enough to compensate the 
|ΔEPtII ⋅⋅⋅PtII | diminution, leading to an increase of |ΔEmetal| and ΔH at high 
m values up to reaching similar values to the pure [PtCl2(CNL)2] 
compound.

Fig. 9. A) upper view of the minimum-energy structure for supra-
molecularcluster of 4[PtCl2(CNL)2]/3[PtCl4(Bipy)] (m = 57) mixture. b) 
Emphasis on the organometallic region, along with RDG isosurfaces (isovalue 
= 0.3 a.u.) and main average structural parameters. PtII and PtIV fragments are 
depicted in orange and pink, respectively, while triphenylene fragments and 
alkyl chains are in blue and grey, respectively. Hydrogen atoms are omitted for 
clarity. Units: intermolecular distances are in Å and azimuthal angles are in 
degrees. The color of the RDG isosurfaces is related to the nature of the inter-
molecular interactions, indicating repulsive or steric (red), van der Waals 
(green) or strong attractive (blue) interactions.
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2.4. Electronic structure properties

Halogen bridged PtII/PtIV mixed-valence complexes can be consid-
ered one-dimensional (1D) electronic systems due to the formation of Cl- 
PtIV-Cl⋅⋅⋅PtII⋅⋅⋅ interactions. These kind of systems are attracting 
considerable attention as 1D materials because of their attractive 
physical properties [65,82–84], such as larger third-order nonlinear 
optical susceptibilities, luminescence with a significant Stokes shift, 
long-range migration of spin-solitons and polarons along 1D chain, 
among others.

Finally, this section explores the electronic structure of 
[PtCl2(CNL)2]/[PtCl4(Bipy)] mixtures, beyond ⋅⋅(Cl-PtIV-Cl⋅⋅⋅PtII)⋅⋅⋅ 
chains, also including electronic structure properties of ⋅⋅⋅(PtII⋅⋅⋅PtII⋅⋅⋅Cl- 
PtIV-Cl)⋅⋅⋅ chains, as well as the presence of small quantities of PtIV in 
⋅⋅⋅(PtII⋅⋅⋅PtII)⋅⋅⋅chains. Fig. 11 illustrates the density of states (DOS) for 
supramolecular structures of pure [PtCl2(CNL)2] and x[PtCl2(CNL)2]/y 
[PtCl4(Bipy)] mixtures. The total energy density of states (DOS) has been 
decomposed as the sum of the partial density of states (PDOS) contri-
butions corresponding to the organic and organometallic columns. 

Furthermore, the latter can also be expressed as the sum of the PDOS 
corresponding to the PtII and PtIV fragments.

Despite the composition, column segregation results in an electronic 
structure characterized by independent contributions from both organic 
and organometallic columns. The partial density of states contributions 
from the organic columns remains mainly unaffected by the composi-
tion, with an energy difference of approximately 2.4 eV between occu-
pied and unoccupied states. As a result, the analysis of the electronic 
structure has been focused on the PDOS from the organometallic region. 
The electronic structure of [PtCl2(CNL)2] resembles the DOS reported 
for a single molecule (see Fig. S18). According to the partial density of 
states (PDOS), both the valence band maximum (VBM) and conduction 
band minima (CBM) are largely made up of PtII (5d) orbitals combined 
with Cl (3 s and 3p) orbitals. Though, there is a slightly larger contri-
bution from PtII to the VBM.

For x[PtCl2(CNL)2]/y[PtCl4(Bipy)] mixtures, the increase in 
[PtCl4(Bipy)] concentration (i.e., lower m values) can be understood as a 
p-doping, leading to a hole-doped system derived from the substitution 
of PtII organometallic fragments by PtIV ones. Thus, there is a 

Fig. 10. a) Calculated binding energies of the organometallic collum (ΔEmetal) for [PtCl2(CNL)2]/[PtCl4(Bipy)] mixtures along to experimental ΔH data collected 
from the second heating DSC cycle for Colrec → I transition (see Table 1). Data for pure [PtCl2(CNL)2] compound are also displayed. b) ΔEmetal decomposition in 
ΔEPtII ⋅⋅⋅PtII and ΔEPtII ⋅⋅⋅Cl− PtIV contributions. See Table 2 for labelling i-xiv.
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Fig. 11. Density of states (DOS) for [PtCl2(CNL)2] and x[PtCl2(CNL)2]/y[PtCl4(Bipy)] supramolecular structures. Partial density of states (PDOS) contributions from 
both organic (dark blue) and organometallic (clear blue) columns are also displayed. In addition, for the organometallic column, PDOS corresponding to PtII and PtIV 

organometallic fragments (orange and green solid lines, respectively), as quell as from the Pt atoms (PtII and PtIV, dotted lines) are shown. The zero of energy was set 
at the Fermi level energy (vertical dotted line).
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considerable shift of the Fermi level deeper into the occupied bands 
upon increasing [PtCl4(Bipy)] concentrations. The Fermi level changes 
from changes from − 8.4 eV / − 8.5 eV for m = 100 / 96 to − 9.8 eV for m 
= 53. The PDOS plots also reveal that both the valence and the con-
duction bands have been modified, even at low [PtCl4(Bipy)] concen-
trations. Like the binding energy trends with m, three different 
tendencies can be found as a function of the composition. For structures 
ii-viii (m = 80–96), new levels appear between VBM and CBM of 
[PtCl2(CNL)2] due to PtIV complex. The appearance of new contributions 
in both VBM and CBM, mainly originating from Cl (3 s and 3p) orbitals in 
the axial plane of [PtCl4(Bipy)], is attributed to the intermolecular in-
teractions above described between Cl and PtII atoms. For m = 96–91, 
the Fermi level is situated at the valence band. Moving to m = 89–80, the 
Fermi level continues to shift within the occupied bands, with contri-
butions from PtIV organometallic moiety becoming dominant in both 
edge bands.

For structures ix-xi (m = 67–75), the states initially defined as the 
VBM for [PtCl2(CNL)2] originating from PtII orbitals now appear empty. 
These levels are located above the Fermi level, which continues to move 
inside the occupied states. This is due to an intervalence charge transfer 
(IVCT) between Pt centers in different oxidation states [65,82,83]. For 
m = 75, 73 (structures ix, x), the state hybridization between PtII and Cl 
(coming from PtIV) orbitals due to the PtII⋅⋅⋅Cl-PtIV intermolecular in-
teractions is also observed, now at energies above the Fermi level. For m 
= 67 those levels become mostly attributed to PtIV ligands. Thus, for this 
composition, the electronic structure can be described with both valence 
and conduction bands originating from PtII moieties, resulting in an 
energy gap of around of around 2.0 eV. Additionally, there is also an in- 
gap empty states, mainly attributed to [PtCl4(Bipy)], which would lead 
to a wide intermediate band just below the CBM. This in-gap band re-
sults in an energy gap of around 0.5 eV with VBM. For compositions m =
53–57 (structures xii-xiv), a considerable IVCT occurs, leading to an 
electronic structure with no gap between empty and filled states.

3. Conclusions

A series of liquid crystalline molecular alloys, based on PtII and PtIV 

organometallic complexes with different ligands, have been studied 
using a combined experimental and computational approach. The 
coexistence of Pt atom in two different oxidation states allows the for-
mation of halogen-bridged mixed valence compounds through PtII⋅⋅⋅Cl- 
PtIV interactions. The constituent complexes are an isocyano- 
triphenylene derivative labeled as [PtCl2(CNL)2], exhibiting an 
organic/inorganic segregated columnar mesophase, and [PtCl4(Bipy)] 
(Bipy: didodecyl 2,2′-bypyridyl-4,4′-dicarboxilate) displaying a lamellar 
mesomorphism.

The thermal behavior and mesogenic properties of [PtCl2(CNL)2]/ 
[PtCl4(Bipy)] mixtures across the entire range of concentrations were 
studied using optical microscopy, differential scanning calorimetry and 
X-ray scattering. The resulting phase diagram reveals three main re-
gions. Compositions falling between 15 % and 45 % of [PtCl2(CNL)2] do 
not exhibit liquid crystal behavior. Meanwhile, for compositions 
exceeding 50 % of [PtCl2(CNL)2], a single mesophase is obtained, closely 
resembling the columnar structure of [PtCl2(CNL)2], i.e., with a segre-
gation between organic and organometallic columns.

Quantum chemical calculations based on extended tight-binding 
density functional methods were applied to study the supramolecular 
self-assembly of molecules within the columnar mesophases at the mo-
lecular level. For the pure [PtCl2(CNL)2], theoretical calculations were 
conducted on a model system composed of eight stacked molecules 
(containing 1752 atoms). While some approaches were done for 
computational economy, our model system provided a satisfactory 
description of the columnar segregation at a molecular level. In addition, 
the formation of stable columnar structure is due to dispersion in-
teractions in the organic columns and the interplay been PtII⋅⋅⋅PtII and 
van der Waals interaction in the organometallic columns. For 

[PtCl2(CNL)2]/[PtCl4(Bipy)] mixtures several supramolecular model 
systems were built varying the number of [PtCl2(CNL)2] (x) and 
[PtCl4(Bipy)] (y) molecules, with the composition m defined as x/(x +
y)⋅100. The size of the model systems reached up to 3703 atoms. Again, 
our supramolecular model structures effectively describe the coexis-
tence of segregated columns with different natures, where the properties 
derived from the organic columns are like those described for the pure 
compound. Regarding the supramolecular structure within the organo-
metallic column, supramolecular structures were categorized into three 
groups: 1) model systems leading to m = 80–94, composed of one 
[PtCl4(Bipy)] molecule located between large stacks of [PtCl2(CNL)2] 
molecules; 2) Structures with m = 67–75, exhibiting an alternation of 
PtII-PtII and PtII⋅⋅⋅Cl-PtIV-Cl⋅⋅⋅PtII stacks, leading to ⋅⋅⋅(PtII⋅⋅⋅PtII⋅⋅⋅Cl-PtIV- 
Cl)⋅⋅⋅ chains along the organometallic column; 3) Structures with m =
53–57 characterized by an alternation of [PtCl2(CNL)2] and 
[PtCl4(Bipy).

Despite the composition, PtII⋅⋅⋅Cl-PtIV-Cl⋅⋅⋅PtII stacks yielded PtII⋅⋅⋅Cl 
intermolecular contacts of approximately 3.7 Å. Meanwhile, in-
teractions between neighboring PtII molecules were not significantly 
affected. Calculated binding energies nicely describe the tendency of ΔH 
experimentally measured for the rectangular columnar mesophase → 
isotropic liquid transition. Our findings showed that there is distinct 
balance of PtII-PtII and PtII⋅⋅⋅Cl-PtIV-Cl⋅⋅⋅PtII interactions contributing to 
the stabilization of the organometallic columns as a function of the 
composition. Mixtures with m = 53–57 mainly imply PtII⋅⋅⋅Cl-PtIV in-
teractions, while for larger concentrations, there is also a contribution 
from PtII⋅⋅⋅PtII interactions, being the latter lower for m = 67–75. 
However, for m > 90 the strength of PtII⋅⋅⋅PtII interactions surpasses 
PtII⋅⋅⋅Cl-PtIV ones. Finally, the analysis of the density of states for the 
studied supramolecular model systems shows that the electronic struc-
ture is characterized by independent contributions from both organic 
and organometallic columns. Additionally, the increase in [PtCl4(Bipy)] 
concentration led to a transition from a hole-doped system at low con-
centrations of [PtCl4(Bipy)] to a system with a significant intervalence 
charge transfer between Pt centers in different oxidation states for m =
53–75, resulting in an electronic structure with no gap between empty 
and filled states.
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[71] A.S. Christensen, T. Kubař, Q. Cui, M. Elstner, Semiempirical Quantum Mechanical 
Methods for Noncovalent Interactions for Chemical and Biochemical Applications, 
Chem. Rev. 116 (2016) 5301–5337, https://doi.org/10.1021/acs. 
chemrev.5b00584.

[72] M. Bursch, H. Neugebauer, S. Grimme, Structure Optimisation of Large Transition- 
Metal Complexes with Extended Tight-Binding Methods, Angew. Chem. Int. Ed. 58 
(2019) 11078–11087, https://doi.org/10.1002/anie.201904021.

[73] E.E. Greciano, J. Calbo, J. Buendía, J. Cerdá, J. Arago, E. Ortí, L. Sánchez, 
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