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Abstract—Large scale deployment of Internet-of-Things (IoT)
devices is projected to grow in the coming years. These devices are
expected to be low-cost while supporting applications with grow-
ing computational demands. To enable the necessary computa-
tions, offloading of computational tasks to Edge and Cloud nodes
is a fundamental technology. However, orchestration for such
networks is a complex problem which affects both the network
design and the decision system. To aid in solving this problem,
simulation tools are essential for predicting the performance of
networks in different conditions and under different orchestra-
tion policies. In this paper, we propose STEROCEN, a Cloud-
Edge network resource orchestration simulation and training tool
which allows for different configurations of up-to a four-layer
network composed of: (i) end-device, (ii) Close Edge, (iii) Far
Edge, and (iv) Cloud layers. Our tool collects delay metrics for
flexibly defined applications, especially in regard to computation
in the network nodes and including uncertainty in processing
times. Additionally, the tool only needs the initial configuration
and an independently defined orchestrator, allowing for testing
of many strategies. As an example, we provide results of testing
some Deep Reinforcement Learning (DRL) algorithms using the
same training and simulation environment.

Index Terms—Simulator, Orchestration, Edge-Cloud Comput-
ing, Computation Offloading, Reinforcement Learning, IoT.

I. INTRODUCTION

The ever-growing demand for more complex and demanding
applications puts significant stress on current and future net-
work design [1]. High computation and strict latency require-
ments are especially challenging when dealing with low-cost
devices, including Internet-of-Things (IoT) devices. Given the
large expected growth of the IoT industry [2], this problem is
a popular topic where many solutions are proposed.

One key solution is to offload computational tasks from
devices with low resources to better equipped servers [1], [3].
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By performing some or all computations remotely, small IoT
devices can support applications for which they are locally
under-equipped, which allows for the devices to, e.g., experi-
ence lower computational delays or conserve battery, among
other advantages. However, the problem of orchestration of the
computational task among the different network nodes, i.e., the
decision of where to offload different tasks, has no simple
solution. Different applications, network architectures and
orchestration algorithms significantly affect the performance
of the whole system, making the design of both network
and orchestration algorithms a complicated but fundamental
challenge [4], [5]. Moreover, testing different configurations
on real networks is challenging due to limitations imposed by
concerns for the effects that this can have on the quality of
service provided on those networks [6]. Meanwhile, setting up
large networks only for the sake of testing is expensive. For
these reasons, network simulation tools are essential.

In this paper, we propose an open-source Python train-
ing and simulation tool called STEROCEN for testing the
performance of different network configurations under the
management of user-defined orchestration policies. The tool
allows to define networks of up to four layers: (i) device
layer, (ii) close Edge, (iii) far Edge, and (iv) Cloud. Each
layer can be configured to have different nodes with different
computational resources, with customizable communication
links. Additionally, the tool allows for the applications run-
ning on the device-layer to be configured as well. More-
over, a standout feature is the configurability of processing
uncertainty, which is typically neglected in other tools and
accounts for unpredictable variations in the time to process
computational tasks. All this enables a great number of easily
definable network configurations, which can be tested against
different orchestration algorithms. We provide an example of
use for STEROCEN based on our previous work [7], where
four Deep Reinforcement Learning (DRL) algorithms were
trained and tested on a defined network, and compared against
some heuristic algorithms. We now demonstrate how many
more algorithms can be easily tested (sixteen), and we include



an analysis on the processing time uncertainty, which was
not previously considered. The results show that despite most
algorithms failing to perform well due to the complexity
of the defined scenario, using the tool we manage to find
an orchestration policy which complies with the applications
requirements close to 100% of the time. Moreover, in contrast
to [7], the focus of this paper is to show the design and
capabilities of the STEROCEN software tool and to make it
available to the research community. As such the contributions
of this paper are as follows:

• We provide an open-source Python training and simu-
lation tool called STEROCEN for easily testing orches-
tration algorithms in different network and application
scenarios.

• The tool allows for flexible network architecture, com-
putational node, communication link, application config-
urations, and processing uncertainty.

• We provide an example of use of STEROCEN by defin-
ing a challenging orchestration scenario and finding an
adequate policy using DRL that complies with application
latency requirements, and analyze the effect of processing
time uncertainty.

The rest of this paper is organized as follows. In Section II
we give a basic explanation of computation offloading and
DRL. Next, we provide an overview of similar works, i.e.,
other simulation tools, in Section III. Section IV describes
the open-source tool and the configurability it possesses. An
example use case with details of its experimental setup and
results is presented in Section V. Then, Section VI discusses
the flexibility and applicability of the network configuration.
Finally, Section VII concludes the paper.

II. BACKGROUND

In this section we briefly explain computation offloading and
orchestration to ease the understanding of the STEROCEN
simulation tool. Additionally, we provide an introduction to
DRL for the convenience of the readers given its relevance to
our use case example.

A. Computation offloading

Computation offloading consists of fully or partially pro-
cessing computational tasks of applications running on some
device remotely. Due to the resource limitations of low-cost
devices (such as IoT devices), it is a popular solution for many
applications [1], [3].

Many network architectures have been considered in the
past for computation offloading [7]–[9], but generally three
layers are defined: (i) Cloud, (ii) Edge, and (iii) end-device
layers. Typically, the closer a node is to the end-device layer,
the less resources it has available for local computations, but
it experiences lower communication delays. However, it is
possible to have networks diverting from these common ideas,
specifically, some layers may be omitted or separated into
multiple layers. Regarding the different metrics of interest, the
most popular ones are related to node resources (energy and
processing constrains), transmission and propagation delays of

the network links, task inter-dependencies, privacy concerns,
and mobility.

As described in Section IV, to provide as much flexibility as
possible, STEROCEN defines the previous three layers, with
the option to separate the Edge layer into two. Additionally, the
nodes and resources can be defined without limitations, except
for the Cloud layer. Regarding performance metrics, the focus
is on the computational delays caused by limited computing
resources on network nodes. Thus, the tool is useful for testing
whether network resources can realistically handle some load
and application requirements.

B. Deep Reinforcement Learning (DRL)

Reinforcement Learning (RL) is a field of machine learning
which uses an agent to interact with an environment through
actions. The environment is represented by a set of states,
where transitions between states are determined by the action
taken in each of them. By defining rewards associated to
transitions between states, the RL goal is to find an optimal
policy for taking actions at each possible state. This is done by
the agent through trial-and-error by exploring the state-space
of the environment and updating its own policy with the goal
of maximizing the long-term accumulated reward.

This can be done with relatively simple algorithms like Q-
learning [10] as long as the environment state-space is finite.
However, in most applications the state representation of the
environment is hard if not impossible to define as finite. In
these situations, a mechanism called function approximation
is required. Basically, states are mapped to a set of elements
which vary between certain values (potentially allowing for
infinite possible combinations). By the observation that, if
two states are very similar the optimal actions are probably
the same, an approximation to the optimal policy is still
obtainable. In such cases, the policy must be implemented
with, e.g., a neural network, to allow for approximating any
function. Thus, DRL builds on the original idea by extending
to problems with a very large or infinite state-space. It is
worth noting that RL and DRL techniques have been widely
proposed to address the computation offloading problem [1],
[7]–[9], [11].

For a detailed explanation of RL we refer the reader to [10],
and on the use of RL for computation offloading to [11].

III. RELATED WORK ON SIMULATION TOOLS

Multiple simulation tools which allow for testing dif-
ferent orchestration strategies have been made available.
CloudSim [12] is an extendable simulation toolkit which sup-
ports cloud computing systems with application provisioning.
For inter-cloud simulations, SimIC [13] is a discrete event sim-
ulator for multi-cloud collaborative and distributed services.
Meanwhile, HeROsim [14] targets serverless cloud computing
environments for dynamic cloud orchestration. Most recent
proposals shift their focus towards edge computing. Sphere [5]
is an edge computing simulator with flexible network topology,
orchestration strategy, source traffic, and task scheduling. For
edge and fog computing environments, iFogSim2 [6] allows
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simulations of service migration, dynamic distributed cluster
formation, and micro-service orchestration. Regarding the
testing of intelligent edge orchestration, ElSim [4] enables
task offloading and resource pricing simulations using tech-
niques such as DRL. Finally, focusing on network slicing,
SliceNet [15] perform flow-level simulations for optimization
of slicing techniques.

Based on the previous works we can see that there is a gap in
Cloud-Edge combined simulation environments. Additionally,
there is no readily available simulator that can model the
processing time uncertainty. Thus, these two elements become
the main design choices, as well as differentiating character-
istics of our simulator, which also focuses on orchestration,
but allows for a mix of user-configurable cloud and edge
computing scenarios with processing time uncertainty as an
explicit feature.

IV. STEROCEN DESCRIPTION

In this section we explain the inner-workings of STERO-
CEN1, which defines a layered network with computation
resources and treats applications running on end-devices as
traffic sources. The following subsections explain the different
elements that together allow for a customizable scenario to be
simulated.

A. Network

We consider computation offloading in a hierarchical net-
work to which generic end-devices are connected as shown
in Fig. 1. The network has four layers: (i) Cloud server, (ii)
Far Edge servers, (iii) Close Edge servers, and (iv) end-device
communities. In this architecture, the previously mentioned
Edge layer has been divided into Close and Far Edge to
give more granularity in the compromise between computation
resources and latency.

STEROCEN treats the Cloud layer as a special case com-
pared to the rest. First, the tool expects that at least one node is

1Software and software architecture available at https://github.com/gcoUVa/
STEROCEN

defined in each layer. Each node i is defined to have a specific
number of CPU cores (ni

CPU ), each capable of processing
a single computational task at a time with a certain clock
speed (CLKi) and queue size (Qi

lim). It is possible to define
the resources of nodes from different layers independently,
however nodes in the same layer are expected to all have
the same resources. Second, the special Cloud layer needs
to be defined with exactly one node. This single node only
requires a clock speed value (CLK0), as it is considered to
have infinite cores and queue. Essentially it simulates a black-
box node with virtually infinite resources. Another exception
is the end-device community nodes, which group from one-to-
many end-devices. The total number of end-devices is defined
per simulation and distributed uniformly across all end-device
community nodes. However, the end-devices in a community
node each have their own equal set of resources.

The links that connect different nodes can be placed freely,
but connecting nodes from non-adjacent layers (i.e., breaking
the hierarchy) is not possible. It is possible however to connect
Edge servers on the same layer with each other. Whichever the
configuration, the tool uses shortest path routing to determine
the paths that data transfers from and to end-devices will
take when communicating with each node. The links are
defined as bidirectional with specific transmission speeds and
propagation delays. This means that each individual link from
node i to j has a specific transmission rate ri−j

TX in Mbps and
propagation delay ti−j

prop in ms.
It is worth noting that while breaking the hierarchy defined

in Fig. 1 is not possible, it is possible to leave layers unused
from the top. This means that one can define a network
were an end-device community node is connected to a single
Edge server (layer 3). Additionally, this Edge server can be
defined with a large number of resources to emulate a large
Cloud server. It is also possible to configure the network so
that layer 2 and/or layer 3 nodes simply work as routers, by
preventing the orchestrator from using them for computation
offloading (see Section IV-C). Finally, while it is not possible
to directly define the number of end-devices per community
node explicitly (as the total is distributed across all end-device
community nodes), more than one end-device community node
can be connected to a single Edge server. This allows for
non-uniform distribution of end-devices connected to different
Edge servers, since multiple end-device community nodes are
functionally equal to a single end-device community node with
the sum of their end-devices.

B. Applications

To run simulations, a list of at least one application needs to
be defined. Each end-device runs an independent instance of
each defined application. Each application instance generates
tasks as input packets with no dependencies based on an
exponential distribution (Poisson process). Every time a packet
is generated, it must be processed to generate an output
packet that must be received at the originating node within
a defined maximum latency. The applications are defined with
six parameters, namely:

https://github.com/gcoUVa/STEROCEN
https://github.com/gcoUVa/STEROCEN


• Processing cost (Ac): The CPU cycles required to process
each bit of a single input packet (i.e. task) for this
application.

• Input packet size (Ain): The size of a single input packet
in kilobits.

• Output packet size (Aout): The size of a single output
packet in kilobits.

• Maximum latency (Ad): The maximum tolerable latency
in milliseconds to receive the output packet of an input
packet once generated.

• Average inter-packet time (At): The average time it takes
for the following input packet (i.e., task) to be generated
(that is, the mean of the exponential distribution).

• Priority (Ap): The priority of the application relative to
the others.

C. Orchestration interface
During simulations, all offloading decisions are managed by

an orchestrator implemented with, e.g., some DRL or heuristic
algorithm. The orchestrator’s task is to decide where to send
each input packet for processing. There are no limitations on
this except for the fact that tasks from one end-device can
never be offloaded to another end-device. Note that processing
a task locally (in the end-device that generated it) is a
possibility. This means that the agent must choose an action
which selects one of the network nodes or the local end-device
for processing. This is defined as:

Action ∈ [0,K) (1)

where K represents the number of candidate nodes, i.e., Cloud
server, Far Edge servers, Close Edge servers, and the end-
device. Notice that since the orchestrator is user defined, it is
possible to prevent it from offloading to certain nodes, giving
more flexibility to the defined scenarios.

For each request, the environment created by the tool will
return a representation of the load of all CPU core queues in
the network and end-device that generated the input packet
at the time of the request handling. Some information on
the parameters of the application which is involved with the
request and the end-device location (Close Edge server to
which it is connected) are also included. Additionally, the
orchestrator is facilitated a precalculated estimated delay for
offloading a packet of any defined application to any of
the candidate nodes. All this is formally defined by having
the orchestrator receive an observation per request which
concatenates the previous pieces of information:

Obs =

[Q1, ..., QX , Ac, Ain, Aout, Ad, D1, ..., DK , N1, ..., NM ] (2)

where Qx for x ∈ [1, · · · , X] is the current availability of all
X CPU cores queues in the candidate nodes defined as (3)
(with Qnode

lim the queue limit in ms for the respective node),
Dk is the expected delay for the processing at node k if no
other tasks are present and defined as (4) (with tkT,est being the
estimated total delay in ms), and Nm is the Close Edge server
to which the end-device is connected (one-hot encoded).

Qx =
free space in queue of CPU core x

Qnode
lim

(3)

Dk = max(0, 1−
tkT,est

Ad
) (4)

Thus, the orchestrator simply has to give the tool an action
upon receiving an observation, and the simulation will move
forward in time to the next request. Note that all this informa-
tion is simply provided, but the orchestrator has no obligation
to use it. When implementing an orchestrator for use with
STEROCEN one may choose to, e.g., ignore some parts of
the observation and only use others for the decision. Moreover,
one can choose to ignore some of the observations and provide
old ones to the orchestrator. For example, the observation
provided to the orchestrator could be updated periodically
(rather than for each request) to emulate a system where the
orchestrator does not possess accurate network metrics for
every single request.

As for the reward that the orchestrator may use to evaluate
its performance and update its model, the tool currently
provides two options: Penalty Reward (PR) and Weighted
Binary Reward (WBR). These rewards are given with each
observation, and account for the previous action. Once again,
note that an orchestrator does not need to use the rewards,
and it is also possible to create your own performance metrics
with the tool’s provided information. The rewards are based
on the real total delay tT that each packet experienced.

PR =


−1000, if unable to process
−100− (tT −Ad), if tT > Ad

0, if tT ≤ Ad

(5)

WBR =

{
−Ap, if tT ≥ Ad or unable to process
+Ap, if tT ≤ Ad

(6)

D. Scheduling
Whenever a request is handled by the orchestrator and

a node for processing an application packet is selected, a
scheduling process is initiated. The moment a node for pro-
cessing is selected, that node is notified of the upcoming
packet. The node will handle on its own the allocation of a
time slot in the queue of one of its CPU cores. The allocation
is performed based on a simple best-effort rule. The node will
minimize the processing delay of the packet by allocating the
earliest slot is has available taking into consideration all CPU
core queues. However, already scheduled tasks cannot have
their position in the schedule changed by this process.

The queues are not divided into fixed time slots, but instead
use dynamic ones. This means that the node uses the estimated
processing time (tproc,est as defined in (7)) and estimated time
of arrival (tarrival,est as defined in (8)) for the packet to find
a sufficiently large slot in the queue. This allocation does not
take into account any uncertainty that may arise from variable
transmission or propagation delays, as well as processing time
variations.

tproc,est =
Ain ·Ac

CLKnode
(7)
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tarrival,est =
∑
links

(rlinkTX ·Ain + tlinkprop) (8)

There are two possible mechanisms for deciding the slot in
a queue: with or without planning. ‘With planning’ employs a
void-filling mechanism [16] which considers sufficiently large
slots between scheduled tasks as suitable. ‘Without planning’
forces the new task to be scheduled at the end of the queues
[16]. Fig. 2 illustrates an example of the scheduling process.
The state of the queues changes between requests as time
moves forward, but the scheduling is performed based on a
snapshot at the time of the request.

E. Processing noise

Regarding uncertainty (i.e., noise), we only consider noise
in the processing times of computational tasks of CPU cores,
since STEROCEN is intended to study the effect of different
orchestration techniques given a certain network with some
computational resources. While other variations in delays due
to, e.g., transmission and propagation delays can affect system
performance, this has been extensively studied to date [1]. On
the other hand, to the best of our knowledge, no study on
the effect of processing time uncertainty has been conducted,
therefore we choose to isolate the effect of this factor and
include it as a configurable element.

We model the uncertainty in processing time based on an
additive Gaussian noise, where the standard deviation of the
normal distribution is proportional to the total processing time
of a single task. This is done by defining a specific value for
the Coefficient of Variation (CV ) and calculating the standard
deviation (as defined in (9)). Since the mean will be taken
as the estimated processing time (tproc,est), the noise affects
longer tasks more, i.e., it is proportional to the number of bits
to process. We limit the minimum and maximum time that can
be respectively added or subtracted from tproc,est by defining
tlim,min and tlim,max. This is illustrated in Fig. 3.

σ = CV · tproc,est (9)

Whenever a task that was scheduled requires more time
than expected, the following task in the respective queue might
become affected. If this happens the following task is simply

Processing

t = 0
t

t

New task

Old task

Guaranteed
processing time

Variable
processing time

+ Δt
tproc,real

tproc,est

tlim,maxtlim,min

Fig. 3. Uncertainty of processing time for a scheduled task based on Gaussian
noise.

delayed until the current task has finished processing. This
of course can lead to the second task in the queue pushing
the third, and so on. In those cases, they are all delayed the
minimum time possible using any time slots in between the
tasks. If a task is pushed in the queue to the point at which it
goes over Qlim, then it is discarded and will affect the next
reward as if the task had not been processed.

F. Limitations

STEROCEN has certain limitations which we now proceed
to explain. First, we do not consider mobility in the network.
Second, the tool also does not consider end-devices exiting and
entering the network during the simulation. This is realistic for
systems where end-devices are stationary, but deviates from
others, e.g., vehicular applications. That said, considering that
if the maximum latency per packet is very low and packets
are independent, an end-device changing its location will not
affect the overall results significantly, because the probability
of an end-device changing its connected Close Edge server
is very low per packet. Another important factor is task
dependencies, which are ignored by our simulator in its current
iteration but planned for future updates.

We also apply a simplification to our design which involves
the assumption that all communications that do not transport
application data are instantaneous, i.e., the delay of the control
plane which transports network information to the orchestrator
(physically located on some computing node) and its decisions
to the end-devices and network nodes. This simplification
includes the specific protocol interactions that are required
to perform offloading. This is done because we consider that
these exchanges are much lighter than the application data
packets. Still, if considered, the main difference would be
that the orchestrator managing the offloading would receive
requests and send commands with some delay. This adds to the
final delay that has to be considered in the application latency,
and on average can be estimated using the defined propagation
delay values. Finally, while device heterogeneity is accounted
for by considering end-devices as generic, our simulator does
not currently support the definition of multiple types of end-



TABLE I
DEFINED APPLICATIONS FOR EXAMPLE USE CASE.

App Processing cost,
Ac (CPU cycles/bit)

Input packet size,
Ain (kbits)

Output packet size,
Aout (kbits)

Max latency,
Ad (ms)

Avg. inter-packet time,
At (ms)

Priority,
Ap

1 1 700 200 1 100 1
2 400 10 5 4 100 1
3 1000 900 25 500 100 1
4 3000 100000 25000 200000 100 1
5 200 650 500 200 100 1
6 500 40 1 30 100 1

TABLE II
LINK PARAMETERS FOR EXAMPLE USE CASE.

Tx speed,
rTX (Mbps)

Propagation delay,
tprop (ms)

Layer 1-2 104 50
Layer 2-3 104 20
Layer 3-4 101 0.1

TABLE III
NODE PARAMETERS FOR EXAMPLE USE CASE.

CPU cores,
nCPU

Clock speed,
CLK (GHz)

Core queue length,
Qlim (ms)

Cloud server ∞ 3.6 -
Regional
Data Center 16 3.6 200

MEC server 8 2.4 200
End-device 2 1.2 200

devices for a single simulation. Both the device heterogeneity
and the control plane delays are planned as priority future
extensions to the simulator.

V. STEROCEN USE CASE

This section provides an example use case for STEROCEN,
where we first describe the experimental setup, and then give
details on what could be achieved by analyzing the results.
There are many possible experiments that can be performed,
e.g., evaluate the network offloading cost compared to pro-
cessing on the end-devices, testing orchestration algorithms,
etc. Here we provide one example.

A. Experimental setup

We run the simulations using a system with i7-11800H
CPU, with no GPU or multi-threading. STEROCEN is based
on Python 3.8. We have used the open-source library Chain-
erRL [17], which provides a set of DRL algorithms. In
particular, we have used Deep-Q Network (DQN), Double
DQN (DDQN), Residual DQN, Categorical DQN, Categor-
ical DDQN, Advanced Learning (AL), Persistent AL (PAL),
Double PAL, Dynamic Policy Programming (DPP), SARSA,
Asynchronous Avantage Actor-Critic (A3C), PCL, Trust Re-
gion Policy Optimization (TRPO), Proximal Policy Optimiza-
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Fig. 4. Network architecture for example use case.

tion (PPO), REINFORCE, and Implicit Quantile Networks
(IQN).

The configuration of the network architecture is set in
Comma-Separated Value (CSV) files by specifying the node
and link parameters in Tables II and III, and is available in
the GitHub repository. In this paper, we define the network
architecture based on [7] as illustrated in Fig. 4. We consider a
four-layer network with 50 end-devices connected to a Multi-
access Edge Computing (MEC) server. The MEC server is
in turn connected to a Regional Data Center (RDC) which
also grants access to a Cloud server with virtually infinite
resources. It should be emphasized that multi-node MEC and
RDC networks are possible as well.

The parameters used for links are described in Table II and
are shared for all links connecting the same type of nodes.
Meanwhile, the resources of all types of nodes are presented
in Table III. Regarding the traffic, we define six applications
with mixed requirements, the details of which can be seen in
Table I. All the values are based on the scenario defined in [7].

Based on the observations from [7] we will only use WBR
in this paper, since it improves the performance of DRL,
and ignore the already tested heuristic algorithms. All test
procedures are included in the GitHub repository.



TABLE IV
BEST OBTAINED CONFIGURATION FOR AL ALGORITHM.

Hyperparameter Best

Discount factor (γ) 0.5
Exploration type Linear decay
Exploration probability (ϵ) From 0.25 to 0.05

in 2.5 · 105 steps
Replay buffer size 5 · 105
Replay start 5 · 104
Target update interval 2.5 · 104
Activation function reLU()
Number of hidden layers 1
Number of neurons per hidden layer 60
Weight of persistent advantages (α) 0.9

B. Results

The goal of this use case is to show how STEROCEN
can be used for different purposes. Thus, we explain how
we performed the following: (i) training and optimization of
orchestration algorithms (DRL in this case), (ii) performance
comparison of different orchestrators, (iii) analysis of orches-
tration policy and its effects, and (iv) analysis of the effect of
processing uncertainty on orchestration policy.

1) Training and optimization of algorithms: First, STE-
ROCEN can be used to train and optimize algorithms. In
our use case we do this with DRL algorithms which require
both optimization of hyperparameters and training of their
neural networks. To train the algorithms we allow them to
orchestrate the simulated network with a random seed up to,
e.g., 106 requests. The trained algorithms can then be tested
with an independent simulation of, e.g., 105 requests. This
process can be repeated with different algorithm configurations
for optimization, where some metrics are considered. In this
use case we define (using information provided by the tool)
the success rate defined as the ratio between the number of
application tasks that are processed complying with their re-
spective latency requirements, and the total number of handled
requests.

While we did perform an in-depth optimization process for
all sixteen considered DRL algorithms, the focus of this paper
is STEROCEN and not the analysis of DRL algorithms. Thus,
for brevity, we provide the final obtained configuration of the
AL algorithm in Table IV, which showed the best results in
the comparison we provide next. For a better understanding
of this configuration we refer the reader to [17], [18].

2) Performance comparison: By using STEROCEN it is
easy to compare a variety of orchestrators (based on DRL
algorithms in this case). We simply have to run a simulation
with the same network configuration to test all of them
independently. Additionally, we can choose to simulate the
network with the same or different random seeds, which
determines the arrival of the application requests. Since DRL
algorithms are typically trained multiple times until a good
model is obtained, for our use case we choose to test four
different random seeds on all sixteen algorithms. As mentioned
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Fig. 5. DRL algorithm performance comparison with best results for each.

before, this is simple using the tool, as we just have to change
the seed for training and testing to obtain the final metrics.

The result of this process gives the performance of the algo-
rithms in all runs based on our success rate metric and is shown
in Fig. 5. As discussed previously, and in-depth analysis of the
DRL techniques (including their latency for offloading) is not
the focus on this paper, however looking at the comparison
we can clearly differentiate between algorithms that perform
well in the network and those that do not. Based on these
results we can conclude that the AL algorithm performs better
than the rest and is the best candidate for an orchestrator if
the system were to be implemented in real-life. Moreover, we
can observe that this algorithm has been successfully trained
once to obtain a success rate of 97%. Thus, we could now
use this trained orchestration policy and apply it to the same
network in real-life. While there might be some differences
due to the limitations discussed in Section IV-F, this is still a
more feasible deployment practice than training the algorithm
from scratch on the real network.

3) Analysis of orchestration policy: The previous two steps
of our analysis allowed us to optimize the configuration of
algorithms and train many orchestrators to find a suitable
one for the defined network. Now we proceed to use the
information provided by the tool to analyze the best policy.
Such an analysis is important to provide granular information
on why the policy works and what is the quality of service
for each of the defined applications. There are many metrics
one could choose to define and monitor, but for simplicity we
focus on each application individually both in success rate and
average total delay. Additionally, we define the processing rate
as the number of tasks that are processed in a node, but whose
output data packet does not necessarily reach the end-device
within the required latency.

Table V shows the success rates, processing rates and
average total delay of all applications for the best policy. With
this information we clarify that the orchestrator does in fact
deal with the processing of all applications regardless of their
frequency and requirements. Note that the average delay of
App 1 is higher than its maximum latency because a few
tasks during the simulation are offloaded to have a very high
latency (thus the success rate is not 100%). Additionally, in
Table VI we show the distribution of tasks for each application



TABLE V
INDIVIDUAL APPLICATION PERFORMANCE WITH BEST POLICY.

Success rate Processing rate Average total delay (ms)

App 1 98.00% 100% 1.25
App 2 98.53% 100% 3.69
App 3 100% 100% 482.88
App 4 100% 100% 95998.53
App 5 88.11% 100% 182.18
App 6 100% 100% 12.74

TABLE VI
OFFLOADING DISTRIBUTION FOR EACH APPLICATION.

Cloud server RDC MEC End-device

App 1 0% 0.03% 24.73% 75.24%
App 2 0% 0% 0.08% 99.92%
App 3 100% 0% 0% 0%
App 4 100% 0% 0% 0%
App 5 0% 0.43% 4.79% 94.78%
App 6 0% 0% 100% 0%

across the four nodes where the agent can decide to offload.
We chose to collect this data during the simulations too, as it
provides valuable insight into how the orchestrator decided
to deal with the requests. We can conclude that the AL
algorithm did in fact learn the differences between applications
and distributes their tasks across the network with regard to
their maximum tolerable latency and the nodes’ processing
capabilities. Moreover, we can see that since not all tasks from
any certain application are always offloaded to the same node,
the orchestrator considers the network load at the time of each
request.

To reiterate, our goal with this analysis is to showcase
the possibilities of using STEROCEN, not to analyze the
orchestrators themselves. We show how with the information
provided by the tool we can collect our own defined metrics
for the specific use case at hand and obtain a provably suitable
orchestration policy for the network.

4) Analysis of the effect of processing uncertainty: A
differentiating characteristic of STEROCEN is that is allows
for the configuration of processing time uncertainty (noise) to
simulate the CPU core queues non-deterministically. We note
that, to the best of our knowledge, we have not found any study
that takes this factor into account. Thus, to conclude our use
case example we repeat the previously described analysis but
with noise in the processing times defined with CV = 1 and
[Qlim,min, Qlim,max] = [0, 2tproc,est] (see Section IV-E). We
do not repeat the optimization or comparison process and only
apply the AL algorithm with the parameters from Table IV.

The results can be seen in Table VII and show an expected
degradation in performance. Out of four runs, the best policy
obtained an average success rate of 77.53%, which is reason-
able seeing the success rates of individual applications. Notice
how we can still see that the orchestrator manages to maintain
a very good processing rate for all applications. Based on
these results, we can conclude that the added noise affected

TABLE VII
INDIVIDUAL APPLICATION PERFORMANCE IN NOISY SCENARIO.

Success rate Processing rate Average total delay (ms)

App 1 67.60% 100% 8.23
App 2 52.12% 100% 7.60
App 3 100% 100% 482.88
App 4 100% 100% 95998.53
App 5 47.77% 94.79% 189.29
App 6 98.35% 100% 16.83

the system significantly as expected.
There are plenty of further analyses that could be conducted.

For example, we could apply the best policy from the AL
algorithm trained without noise on the noisy simulation and
compare its performance with the one that was trained directly
with processing noise. We could also tweak the noise values
to test how resilient we can make the network with a spe-
cific orchestrator to different levels of processing uncertainty.
Given the focus of this paper on STEROCEN, we choose to
exclude such details here, but encourage future research in this
direction.

VI. DISCUSSION ON TOOL APPLICABILITY

In the presented use case we have analyzed a network
configuration which easily adapts to the hierarchy that must
be followed in STEROCEN, as described in Section IV-A.
It is important to note that, while it is not possible to break
this hierarchy, this does not significantly limit the flexibility
of the configuration. Notice that the tool does not consider
the computational nodes in the different layers in different
ways, except for the Cloud layer. The only exception to this is
that offloading to other end-devices is forbidden. Additionally,
users can design their orchestrator to not offload to certain
nodes of the network. Thanks to these design choices, one can
use the Edge layer nodes as computational nodes or simply as
hops in the communication towards a higher layer. It is also
possible to exclude any layers above the second layer from the
offloading decision. Since the computational resources of the
nodes can be made as large or are small as desired, it is also
possible to simulate a virtually infinite computational node in
the Edge servers2.

All in all, it is possible to define networks of two, three or
four layers, with communication links connecting any Edge
servers to any other and to the Cloud server (this may require
using an Edge server as a router).

VII. CONCLUSION

In this paper, we have presented STEROCEN, an open-
source resource orchestration computational offloading sim-
ulation and training tool for evaluation of customizable Edge
and Cloud computing scenarios. A hierarchical network archi-
tecture is created with (i) a Cloud server, (ii) one or more Far

2However, we do not recommend this approach and instead the Cloud
layer should be used for this, since processing very large queues makes the
simulations run slower.



Edge servers, (iii) one or more Close Edge servers, and (iv)
generic end-devices. The bidirectional communication links of
the network can be placed freely with individual transmission
and propagation parameters, and the computation nodes are
defined with specific resources each (number of CPU cores,
clock speed, and size of their queue). While the network con-
figuration must follow certain rules, we provide information
on how to simulate networks which do not explicitly follow a
four-layer hierarchy. The orchestrators used with the tool have
to comply with a flexible interface, allowing for a variety of
algorithms to be applied. Moreover, the processing time can
be made uncertain by means of additive Gaussian noise, which
is a feature that, to the best of our knowledge, is absent from
other studies.

STEROCEN focuses on the effect of different orchestration
algorithms, providing a simplified communication modeling,
but with more detailed models of computational tasks in
the queues of individual CPU cores. The tool also has two
additional limitations in the form of end-device mobility and
control plane communications. However, we argue how these
simplifications can be handled so that estimations of the effects
of additional factors can be included in the simulations.

We have also presented an example use case where we
used the tool to optimize, train and compare 16 different
DRL algorithms in a computation offloading scenario. We
showed how this allows us to identify adequate hyperparameter
configurations and suitable algorithms for the problem at
hand. This information is useful before any real deployment
and is an inexpensive method to pre-train orchestrators. The
results show how we are able to effectively obtain a good
orchestration policy for the use case, and we are able to
explain the policy with additional information obtained from
the simulations. Moreover, we compared these results with
those obtained when considering processing uncertainty.

The tool can be downloaded from https://github.com/
gcoUVa/STEROCEN. We expect that interested researchers
may use this tool to aid in their endeavors in designing
and testing computational offloading orchestrators. We also
consider future extensions for the simulator which would have
the goal of adding additional features. Specifically, end-device
mobility and heterogeneity, communication delay uncertainty,
and control plane delays with a defined physical location for
the orchestrator on the network are planned and will enhance
the capabilities of the tool.
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