
Biomedical Signal Processing and Control 108 (2025) 107894 

A
1
n

 

Contents lists available at ScienceDirect

Biomedical Signal Processing and Control

journal homepage: www.elsevier.com/locate/bspc  

Enhancing user experience in c-VEP-based BCI: Effects of visual stimulus 
opacity on performance and visual fatigue
Ana Martín-Fernández a ,∗, Víctor Martínez-Cagigal a,b , Selene Moreno-Calderón a , 
Eduardo Santamaría-Vázquez a,b , Roberto Hornero a,b
a Grupo de Ingeniería Biomédica (GIB), Universidad de Valladolid, Paseo de Belén, 15, Valladolid, 470011, Castilla y León, Spain
b Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain

A R T I C L E  I N F O

Keywords:
Brain-computer interfaces (BCI)
Code-modulated visual evoked potentials 
(c-VEP)
Opacity
Visual fatigue

 A B S T R A C T

Brain-computer interfaces (BCI) based on code-modulated visual evoked potentials (c-VEP) enable users to 
control devices through brain activity. These systems typically employ black and white flashes encoded 
via pseudo-random binary sequences to synchronize brain responses with specific commands. However, this 
traditional encoding often induces visual fatigue in users. Additionally, the sharp contrast of black and 
white commands can obscure the background on which they are displayed, complicating the integration 
of this technology in dynamic environments. Using semi-transparent stimuli could address these issues by 
reducing eyestrain and enabling compatibility with diverse backgrounds. However, the impact of opacity in 
c-VEP stimuli remains unexplored. This study aims to assess how varying visual stimulus opacity influences 
system accuracy and user experience. Six different opacity and background combinations were tested with ten 
healthy participants, who rated visual fatigue on a scale from 0 (none) to 10 (extreme) after each condition. 
Results showed that traditional encoding achieved 100% accuracy but induced high fatigue (6.4 points). A 
configuration with 100% opacity for black and 50% for white maintained high accuracy (99.38%) while 
reducing fatigue to 3.7 points. Brain responses were consistent when both black and white stimuli were 
present, but patterns changed when one color was omitted. Spatial filters revealed stable c-VEP decoding 
from the parieto-occipital cortex, with slightly higher activation in low-contrast conditions. The findings from 
this study suggest that adjusting the opacity of stimuli in c-VEP-based BCI can optimize the balance between 
performance and user experience. Implementing a reduction in opacity not only improves visual fatigue but 
may also facilitate the integration of c-VEP systems into lifelike environments.
1. Introduction

Brain-computer interfaces (BCI) enable online interaction with the 
environment through decodification of brain signals [1]. This tech-
nology could have particular relevance in several fields, including 
inducing neuroplasticity in the rehabilitation context [2], contributing 
to the video game industry [3] and assisting motor-impaired patients 
(e.g., wheelchair control, alternative communication, etc.) [4]. Typi-
cally, brain activity is recorded using electroencephalography (EEG) 
due to its non-invasive nature, portability, and cost-effectiveness com-
pared to other methods [5]. Signal processing algorithms are then 
applied to EEG signals to extract and classify features that help to 
identify user intentions. Finally, these intentions are translated into 
specific actions by the system. However, it is important to note that 
EEG signals alone do not literally translate user thoughts into command 
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execution; rather, measurable neural activity changes (i.e., control 
signals) are needed to decode user intentions [1].

Among the various control signals used in BCI, code-modulated 
visual evoked potentials (c-VEP) have recently emerged in the literature 
as a promising alternative for developing fast and accurate systems [6]. 
These BCI have demonstrated the ability to achieve accuracies ex-
ceeding 90%, with calibration times ranging from one to five min-
utes and selection times between one and five seconds per command
[7–9]. These potentials are voltage changes in the EEG signal produced 
in response to external pseudo-random visual stimulation. Typically, 
visual stimulation is presented to the user as a series of black and 
white flashes that blink according to a pseudo-random binary sequence. 
When the user focuses on a flashing command, brain activity responds 
in a distinctive manner that is related to the sequence encoding the 
observed command. This allows the system to determine where the 
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user is looking at and execute different commands accordingly. Fur-
thermore, this approach enables the encoding of multiple commands 
through various sequences or shifted versions of the same sequence, 
effectively increasing the range of commands that can be executed in 
response to user attention [6].

Despite the promising results of c-VEP, they also present some 
limitations. A significant drawback is the visual fatigue experienced by 
users during prolonged exposure to the flashing stimuli [10]. The high 
contrast between the black and white flickering patterns can lead to 
eyestrain and discomfort, which not only impacts users physically but 
also affects their ability to concentrate and stay engaged. Furthermore, 
the traditional black and white coding of c-VEP commands poses a chal-
lenge for integrating this technology within dynamic environments. The 
opaque nature of these flashes can obscure background details, which 
is particularly problematic in settings where users need to maintain 
awareness of the environment, such as when BCI are combined with 
extended reality (XR) technologies.

Studies in scientific literature have approached user visual fatigue 
in various ways. One well-established solution is using monitors with 
higher refresh rates for c-VEP display. Conventional screens typically 
operate at 60 Hz, but several studies show that increasing the refresh 
rate to 120 Hz reduces visual fatigue while allowing for faster selec-
tions [11–13]. Another research area focuses on the generation pseudo-
random codes. Typically, maximum-length sequences (m-sequences) 
are employed. However, studies such as those by Shirzhiyan et al. 
(2019) [14], Castillos et al. (2023) [9] and Lai et al. (2024) [15] suggest 
alternative sequences that concentrate most of their power in higher 
frequencies, which has been demonstrated to reduce visual fatigue. 
Additionally, non-binary m-sequences that shift across a broader gray 
scale range, instead of traditional black and white encoding, have been 
shown to improve user experience [13,16]. Lastly, recent research by 
Fernández-Rodríguez et al. (2023) [17] found that some variations of 
spatial frequency in checkerboard-like stimuli (e.g., 16 × 16 squares per 
stimulus) are also effective in minimizing visual fatigue.

Currently, there are no studies in the literature exploring the in-
tegration of c-VEP-based BCI into realistic environments, nor how 
presentation of visual stimuli might influence such integration. How-
ever, research on other control signals, such as steady-state visual 
evoked potentials (SSVEP), has approached this integration through 
combination of BCI with XR technologies [18,19]. In SSVEP-based 
BCI combined with XR, some studies have investigated how different 
aspects of visual stimuli may influence technology performance. For ex-
ample, Du and Zhao (2022) [20] examined the effect of stimulus colors 
on SSVEP-based BCI in augmented reality, or Zehra et al. (2023) [21] 
evaluated various stimuli based on size and brightness levels. Addi-
tionally, Liu et al. (2024) [22] explored the effects of 2D versus 3D 
stimuli, including a 3D-blink condition where flickering stimuli were 
presented as white-transparent, completely omitting the black stimulus. 
Their research found that accuracy decreased from 86.17% in the 
3D condition to less than 80% in the 3D-blink condition. However, 
participants reported the 3D-blink condition as more comfortable [22]. 
Although these results are intriguing, there is a lack of a comprehensive 
analysis regarding how completely making one stimulus transparent 
affects both system performance and brain response.

Opacity, in the context of visual stimuli, refers to the degree to 
which an element prevents visibility through it. Adjusting opacity 
from visual stimuli could offer an innovative solution to some of 
the challenges faced by c-VEP-based BCI. On the one hand, using 
semi-transparent stimuli would reduce the contrast of flickering stim-
uli, which could alleviate visual fatigue. On the other hand, semi-
transparency would allow for better background visibility, which could 
be beneficial for integrating c-VEP-based BCI into lifelike environments. 
Despite the various attempts to enhance user experience and achieve 
practical BCI, there are still no studies in the scientific literature that 
have examined the effect of stimulus opacity on c-VEP-based BCI 
performance and user experience, nor how this factor could facilitate 
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integration with dynamic environments by allowing commands to be 
superimposed on realistic scenarios without obscuring content. The 
key innovations proposed in this study are: (i) introducing a degree 
of transparency to c-VEP commands and (ii) integrating commands 
into a lifelike background. This raises two central questions: (1) is 
there a relationship between variations in visual stimulus opacity and 
c-VEP decoding performance, and (2) do these opacity variations affect 
user experience, particularly in terms of visual fatigue? Thus, the main 
objective of this study lies in answering these questions by analyzing 
how stimulus opacity influences both system performance and user 
experience in c-VEP-based BCI.

2. Methods

2.1. Participants

A total of 10 healthy participants were recruited to participate in 
the study, with a mean age of 26.70 ± 4.80 years. Among them, 6 
were male and 4 were female. All participants had normal or corrected 
to normal vision. Prior to the experiment, all of them were informed 
about the purpose of the study, the possible risks, and the experimental 
protocol to be performed. All participants gave informed consent.

2.2. Signals

For EEG signal recording, a g.USBamp amplifier (g.Tec, Guger Tech-
nologies, Graz, Austria) was used. The equipment had a sampling fre-
quency of 256 Hz and 16 active electrodes (F3, Fz, F4, C3, Cz, C4, CPz, 
P3, Pz, P4, PO7, POz, PO8, Oz, I1, I2) placed on the scalp according 
to the International 10-10 System [23]. The ground electrode was 
positioned at AFz, while the common reference was placed at the right 
earlobe (A2). The equipment was connected to an Intel Core i7-13700 
PC with 32 GB of RAM. MEDUSA© [24] was employed to monitor the 
data via the lab streaming layer protocol [25], as well as to run the 
application and perform online signal processing. The application was 
displayed on a Full HD 144 Hz LED monitor, which was capable of 
presenting the c-VEP sequence at a sampling rate of 120 Hz.

2.3. Code generation

In this research, the sequence used to encode visual stimuli was an 
m-sequence. M-sequences are among the most commonly used pseudo-
random sequences in c-VEP-based BCI [6]. These binary sequences 
exhibit a flat autocorrelation profile, with value 1 for unshifted version 
of the sequence and −1∕𝑁 for shifted versions of the sequence, where 𝑁
is the length of the m-sequence [26]. This allows multiple commands to 
be encoded using a single sequence and its temporally shifted versions, 
following the circular shifting paradigm [6]. As a result, the calibration 
time is drastically reduced, as there is no need to calibrate the system 
for each command individually. Instead, the brain response to the 
original version of the sequence is computed, and templates for the 
remaining commands are derived by temporally shifting the signal [6].

This type of sequence can be generated using a linear feedback shift 
register (LFSR) [27]. A shift register is a logic circuit consisting of a 
series of cascaded flip-flops (states), where the output of each flip-
flop is connected to the input of the next. In an LFSR, the input bit 
is determined by a linear transformation of two or more bits within 
the register. With each clock signal, the bits shift through the states. 
The output from an LFSR can be made pseudo-random by appropriately 
initializing the states with a seed different from a zero vector and using 
a primitive feedback polynomial. This process generates m-sequences of 
length 𝑁 = 2𝑚 − 1 [28].

The LFSR used to generate the m-sequence for this study contained 
six states, resulting in an m-sequence of 63 bits (𝑁 = 26 − 1). The seed 
used to initialize the states is (𝑆0 = 1, 𝑆1 = 1, 𝑆2 = 1, 𝑆3 = 1, 𝑆4 = 1, 𝑆5 =
0). Lastly, the linear transformation applied to the input value (𝑆 ) was 
0
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Fig. 1. Application architecture and workflow. Left : App components within 
MEDUSA©platform, their interactions, and communication with the GUI. Right : Ap-
plication workflow showing required steps, user decision points (Y: Yes, N: No), and 
possible states. More information at https://docs.medusabci.com/.

performed through an XOR operation between the bits of the fifth (𝑆4) 
and sixth states (𝑆5). This transformation can be represented by the 
polynomial 𝑥6+𝑥5+1. Once the m-sequence was generated, the circular 
shifting paradigm was used to obtain all possible temporally shifted 
versions of the sequence. Each of these versions, would subsequently 
encode different commands for the implemented c-VEP application [6].

2.4. App design

The c-VEP app used in this research is part of the MEDUSA© 
software ecosystem [24], a Python-based platform designed to facili-
tate and accelerate BCI development. From version 3.10 onward, the 
‘‘c-VEP Speller’’ app, available on the MEDUSA© website (https://
medusabci.com/market/cvep_speller/), includes the necessary features 
for adjusting opacity values and customizing background scenarios.

The main app components involved in the study were: (a) the 
background, which could be configured to display either a solid color or 
any image selected by the user from the file browser; (b) the command 
box, which appeared over the background and was black when the 
sequence bit was 0, and white when it was 1; and (c) the command 
character, which was positioned over the box and took either black 
or white, but in contrast to the box color to ensure visibility. Both 
the command box and character had adjustable opacity for each of 
their possible colors (black or white), resulting in four distinct opacity 
settings that could be customized from 0% to 100%, according to user 
preferences.

The graphical user interface was designed in Unity, primarily for 
two reasons: (i) it allows precise control over monitor refresh rates, 
which is essential in c-VEP to synchronize EEG signals with stimuli, 
and (ii) it provides a robust development environment for creating 
interactive applications. On the other hand, EEG signal processing was 
performed with Python, a programming language widely recognized for 
its flexibility and versatility in biomedical data processing. To imple-
ment the communication between Unity and Python, an asynchronous 
and bidirectional TCP/IP protocol was used. This communication was 
full-duplex, enabling simultaneous data transmission and reception at 
both ends of the communication channel. In the implemented c-VEP 
app, MEDUSA© functioned as the server, while Unity operated as the 
client. For a detailed view of the application architecture and workflow, 
refer to Fig.  1, which illustrates the components within MEDUSA© 
platform and their interactions, as well as the step-by-step process of 
the application workflow.
3 
2.5. Evaluation protocol

All 10 users participating in the study followed a standardized 
evaluation protocol. The evaluation was conducted in a single session 
lasting 1 h. This session was divided into six sections (i.e., conditions), 
each featuring different opacity and background settings. To ensure a 
consistent progression, the conditions were presented in the same order 
for all participants, starting from higher opacity and gradually moving 
to lower opacity. This approach enabled direct comparisons between 
consecutive conditions, providing a clear reference point throughout 
the session. To minimize visual fatigue accumulation, participants were 
offered flexible breaks between conditions, allowing sufficient recovery 
time based on individual needs.

Each section included both training and testing phase. During the 
training phase, participants were instructed to observe a command that 
flickered according to the original m-sequence. A total of 3 recordings 
were made, with each recording consisting of 5 trials, and each trial 
containing 10 cycles, meaning by a cycle a complete repetition of the 
m-sequence. This resulted in a total of 150 cycles for training the model 
in each condition and for each user. The screen refresh rate was set to 
120 Hz, yielding a cycle duration of 0.525 s (63 bits/120 Hz) and a 
total calibration time of 78.75 s.

In the testing phase, a 4 × 4 matrix was configured, consisting of 16 
commands, corresponding to the letters ‘‘A’’ through ‘‘P’’ in alphabetical 
order. Each command had a lag of 𝜏 = 4 bits. The number of cycles 
per selection was set at 10, resulting in a selection time of 5.25 s per 
command. Participants were instructed to make 16 selections in the 
exact order of the commands displayed. In the event of an incorrect 
selection, participants were instructed to proceed to the next command 
without attempting to correct the mistake.

The opacity and background settings were unique to each condition. 
The visual appearance of these settings is shown in Fig.  2, and the 
specific parameters for each condition are described as follows:

• 100 Plain Scenario (PS): All four opacity parameters set to 
100%, with a uniform color background.

• 100 Realistic Scenario (RS): All four opacity parameters set to 
100%, with a lifelike image as the background.

• 100/50: Command box and character opacity set to 100% when 
the bit is 0 (black box, white character), and 50% when the bit 
is 1 (white box, black character), with a lifelike image as the 
background.

• 100/0: Command box and character opacity set to 100% when 
the bit is 0, and 0% when the bit is 1, with a lifelike image as the 
background.

• 50/0: Command box opacity set to 50% and character opacity set 
to 100% when the bit is 0; both set to 0% when the bit is 1, with 
a lifelike image as the background.

• 0/0: Command box opacity set to 0% and character opacity set 
to 100% when the bit is 0; both set to 0% when the bit is 1, with 
a lifelike image as the background.

The tested conditions were carefully chosen to balance session 
duration and meaningful data collection. Pilot tests confirmed that 
three opacity levels (100%, 50%, and 0%) were sufficient to study 
the effects of opacity variation, with the impact of intermediate levels 
potentially extrapolated from these conditions. Additionally, the white 
box was made transparent while keeping the black box, as a prior study 
has shown that dark colors elicit greater amplitude brain responses in 
appearance–disappearance patterns [29]. The six selected conditions 
were deemed sufficient to analyze opacity effects while ensuring the 
session remained short enough to prevent participant discomfort.

The evaluation protocol also included the application of question-
naires to measure both the functionality of the application and the user 
experience. Two main questionnaires were conducted: one to assess 
visual fatigue and another to evaluate overall satisfaction. The visual 
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Fig. 2. Appearance of the application under the six experimental conditions (100 PS, 
100 RS, 100/50, 100/0, 50/0, and 0/0), with variations in background (plain scenario 
or realistic scenario) and opacity settings (ranging from 0% to 100% for both black 
and white stimuli in both command box and character elements).

fatigue questionnaire was performed separately and in greater detail as 
evaluating visual fatigue is a key objective of the study. It is especially 
important considering that visual fatigue is a well-documented issue 
in c-VEP-based BCI and remains one of their major limitations [10]. 
In this questionnaire, users rated their level of fatigue at the end of 
each experimental condition on a scale from 0 (no visual fatigue) to 
10 (extreme visual fatigue). The overall satisfaction questionnaire was 
designed to capture the broader user experience, as there are multiple 
factors beyond visual fatigue that influence the usability of the system. 
For instance, aspects such as user comfort – including the fit and feel of 
the EEG cap and the overall setup – the duration of the session, and the 
required concentration can significantly impact satisfaction [30]. This 
questionnaire was administered at the end of the session and included 
alternating positive and negative statements to control for acquiescence 
bias. Participants rated these statements on a Likert scale [31] ranging 
from 1 (strongly disagree) to 5 (strongly agree) and provided additional 
comments and suggestions through an open-ended question.

2.6. Signal processing

All EEG signals were pre-processed online using a notch filter at 
50 Hz to eliminate network interference, along with a filter bank 
comprising three bandpass filters at the following frequencies: 1–60 Hz, 
12–60 Hz, and 30–60 Hz [32]. All filters were of the infinite impulse re-
sponse (IIR) Butterworth type and of order 7. Additionally, epochs with 
a standard deviation greater than three times the standard deviation of 
the other channels were rejected, as these epochs were considered to 
contain artifacts or noise.

For each filtered signal, further processing was performed using the 
reference c-VEP pipeline [6]. During calibration, the user observed a 
command encoded by the original m-sequence, repeated over a specific 
number of cycles. The initial EEG signal was reorganized by concate-
nating the individual cycles sequentially, resulting in a matrix with 
dimensions 𝑘𝑐𝑁𝑠×𝑁𝑐 , where 𝑘𝑐 is the number of cycles, 𝑁𝑠 the number 
of samples, and 𝑁𝑐 the number of channels. Simultaneously, the signal 
was divided into epochs corresponding to a full cycle to compute the 
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average, producing a signal with dimensions 𝑁𝑠 ×𝑁𝑐 , which was repli-
cated 𝑘𝑐 times to match the dimensions of the first signal [6]. Averaging 
enhances the event-related potential (ERP) components since individual 
epochs are often highly contaminated by noise. By averaging, the non-
task-related components (i.e., noise) are reduced due to their random 
nature, allowing the event-related components to be amplified.

Once the two signals, concatenated (𝐴) and averaged (𝐵), were 
obtained, they were introduced into a canonical correlation analysis 
(CCA) function [33]. The objective of this function is to find the coeffi-
cients that, when multiplied to the signals, maximize their correlation. 
This process is described by the following equation: 

max
𝑊𝑎 ,𝑊𝑏

𝑊 𝑇
𝑎 𝐴𝑇𝐵𝑊𝑏

√

𝑊 𝑇
𝑎 𝐴𝑇𝐴𝑊𝑎 ⋅𝑊 𝑇

𝑏 𝐵𝑇𝐵𝑊𝑏

. (1)

From the coefficient matrices 𝑊𝑎 and 𝑊𝑏 returned by Eq.  (1), only the 
first component of 𝑊𝑏 (i.e., the first column), denoted as 𝑤𝑏, was taken. 
This component, with dimensions 𝑁𝑐 × 1, acts as a spatial filter that 
weighs the importance of each channel when creating the template. 
The signal 𝐵 was projected onto this vector, generating a template of 
dimensions 𝑁𝑠 × 1 that represents the user response to the original 
m-sequence. Additionally, by circularly shifting a specified number of 
samples (𝜏), all possible templates for the displaced versions of the m-
sequence were created. In total, 𝑀 ×3 templates were obtained, where 
𝑀 represent the number of available commands and 3 corresponds to 
the number of filters that comprised the filter bank [6].

During the testing phase, the EEG signal was recorded while the user 
focused on an unknown command, with the goal of identifying it. The 
recorded signal was pre-processed the same way it was during calibra-
tion, with each filtered signal from the filter bank divided into epochs 
corresponding to selection cycles. Epoch averaging was performed, and 
the resulting signal was projected using 𝑤𝑏. The projection was then 
compared to all templates generated during calibration using Pearson 
correlation. Finally, the command with the highest average correlation 
across the filter bank was selected as the predicted command [6].

3. Results

3.1. Accuracy

The accuracy analysis involved examining the results of the spelling 
task completed by users under each condition. Detailed results for 
10 selection cycles are presented in Table  1. In addition, for each 
participant and condition, the analysis assessed the outcome of each 
cycle against the target labels, calculating accuracy per cycle, user 
and condition. The average accuracies across participants for the six 
conditions were then computed, and an accuracy curve was plotted for 
each condition, as shown in Fig.  3. The full set of unfolded accuracy 
results for each selection cycle, user, and condition is provided in the 
supplementary material.

Statistical analysis was performed using the Wilcoxon signed-rank 
test to conduct pairwise comparisons between conditions, with differ-
ences assessed across 10 selection cycles. To control for the false dis-
covery rate (FDR), the Benjamini–Hochberg method was employed. The 
results indicated statistically significant differences (𝑝-value < 0.05) 
in accuracy between the 100 PS, 100 RS, and 100/50 conditions 
compared to the 100/0, 50/0, and 0/0 conditions. Detailed 𝑝-values 
for all pairwise comparisons are illustrated in the upper triangle of the 
matrix in Fig.  4. Additional results from the statistical analysis at cycle 
level can be found in the supplementary material.

3.2. Spatial filters

The vector 𝑤𝑏 obtained from CCA serves as a spatial filter, applying 
weights to the signal from each EEG channel. The highest absolute 
magnitude values in 𝑤  are those that most significantly contribute to 
𝑏
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Table 1
Accuracy (%) with 10 selection cycles for each condition and user.
User 100 PS 100 RS 100/50 100/0 50/0 0/0

U01 100.00 100.00 100.00 100.00 100.00 93.75
U02 100.00 100.00 100.00 93.75 93.75 93.75
U03 100.00 100.00 100.00 100.00 93.75 68.75
U04 100.00 100.00 100.00 68.75 68.75 62.50
U05 100.00 100.00 100.00 93.75 87.50 87.50
U06 100.00 100.00 100.00 62.50 50.00 56.25
U07 100.00 100.00 93.75 43.75 87.50 87.50
U08 100.00 100.00 100.00 93.75 100.00 81.25
U09 100.00 100.00 100.00 93.75 93.75 87.50
U10 100.00 100.00 100.00 100.00 100.00 100.00

Mean 100.00 100.00 99.38 85.00 87.50 81.88
SDa 0.00 0.00 1.88 18.58 15.31 13.82

a SD: standard deviation.

Fig. 3. Average accuracy curves per selection cycle for each of the six experimental 
conditions. The lower 𝑥-axis represents the cycle number, while the upper 𝑥-axis 
indicates the decoding time in seconds for each cycle.

Fig. 4. Matrix of 𝑝-values obtained from statistical analyses using the Wilcoxon signed-
rank test and Benjamini–Hochberg for FDR control. The upper triangle of the matrix 
displays results from the accuracy analysis, while the lower triangle presents results 
from the visual fatigue analysis.

maximizing the correlation between the ERP derived from averaging 
multiple cycles and the concatenated signal containing a single epoch. 
When projecting the signal of 𝑁 × 𝑁  dimensions onto this vector 
𝑠 𝑐

5 
Fig. 5. Grand-averaged topographic plots from the spatial filters (|𝑤𝑏|) derived from 
calibration for each condition.

with dimensions 𝑁𝑐 × 1, the channels with higher importance for VEP 
formation will receive a higher weighting.

To analyze this spatial filter, the vector 𝑤𝑏 was visualized using 
average topographic plots across participants, with one plot created for 
each condition. First, 𝑤𝑏 values were transformed to their absolute val-
ues. Next, the maximum value from all filters was used to standardize 
the visualization scale across conditions. The resulting topographies, 
shown in Fig.  5, illustrate the spatial distribution of the 𝑤𝑏 weight 
vector on the scalp, with electrodes represented as points based on 
their locations, and data interpolated for a continuous representation. 
Topographic plots for each user and condition are available in the 
supplementary material.

3.3. Brain responses

EEG data analysis involved computing brain response signals for 
each condition using calibration recordings (150 cycles per condition 
and user). In the time domain, epochs were averaged across users and 
cycles to derive a grand-averaged brain response per condition. The 
resulting signals were visualized in the POz and Oz channels due to 
their proximity to the primary visual cortex, where VEP formation oc-
curs [34,35]. For time–frequency domain analysis, spectrograms were 
computed for each epoch using 250 ms windows with 93.75% overlap 
and 256 FFT points. These spectrograms were then averaged across 
cycles and users to obtain a single spectrogram per condition. Only the 
POz channel was used in this and subsequent analyses, as it showed 
stronger activation in trained spatial filters than Oz. The frequency 
range was restricted to 4–30 Hz, determined by the 250 ms windowing 
(which set the 4 Hz lower limit) and minimal activity above 30 Hz. Both 
time-amplitude and time–frequency analyses are presented in Fig.  6(a).

Subsequently, comparisons between conditions were conducted us-
ing dynamic time warping (DTW) [36] and correlation analysis. DTW 
is a time-series algorithm that measures similarity between temporal 
sequences by finding an optimal alignment. It accommodates variations 
in sequence length and temporal shifts by adjusting the time axis, 
making it especially useful for EEG analysis [37], where latency shifts 
can occur. In this study, DTW was employed to identify characteristic 
alignment patterns between conditions, which may reflect consistent 
components across different brain responses. To ensure reliable com-
parisons, conditions were grouped into (1) 100 PS, 100 RS, 100/50 
and (2) 100/0, 50/0, 0/0, avoiding inconsistencies in the transition 
from 100/50 to 100/0. The resulting alignment paths, shown in Fig. 
6(b), illustrate how responses in one condition adjusted to another. 
Next, a correlation analysis was performed to quantify the similarity 
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Fig. 6. (a) Top: Grand average of calibration epochs across users for each condition at the POz (continuous blue line) and Oz (dashed gray line) channels. Lines showing mean 
and shaded regions 95% confidence interval. Bottom: Grand average spectrograms of calibration epochs across users for each condition at POz. (b) DTW alignment paths, reference 
signal at POz (blue) matched with the conditions under comparison at POz (orange). Four representative peaks, selected as examples of consistent components across groups of 
conditions, are labeled. (c) Correlation matrix among all grand-averaged brain responses at POz.
between brain responses across conditions. Spearman correlation met-
ric was chosen since linear relationships among conditions could not 
be assumed. The resulting correlation matrix is displayed in Fig.  6(c).

Finally, to further investigate key components of the visual re-
sponse, four peaks per group were selected based on DTW findings and 
a relatively even temporal distribution. Peaks in the first group were 
labeled A1–A4, while those in the second group were labeled B1–B4. 
These peaks are marked in Fig.  6(b), with their amplitude and latency 
values summarized in Table  2.

Brain responses at individual level, DTW alignment paths relative 
to each condition and the DTW-based distance matrix are available at 
the supplementary material.
6 
3.4. Questionnaires

The results from the questionnaires completed by users were col-
lected and analyzed. Individual scores were averaged to obtain a mean 
visual fatigue score for each condition, along with mean scores for 
each item on the overall satisfaction questionnaire. The mean visual 
fatigue scores, rated on a scale from 0 (none) to 10 (extreme), for the 
conditions 100 PS, 100 RS, 100/50, 100/0, 50/0, and 0/0 were 6.4, 
5.5, 3.7, 2.8, 2.4, and 1.1, respectively. Fig.  7 displays a boxplot illus-
trating the distribution of scores for each condition. For the satisfaction 
questionnaires, the mean scores and standard deviations for each item 
are summarized in Table  3. Additionally, individual user responses can 
be found at the supplementary material.
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Table 2
Amplitude (μV) and latency (ms) of selected peaks (A1–A4, B1–B4) across different conditions.
 100 PS 100 RS 100/50 100/0 50/0 0/0  
 A1 Latency (ms) 59 82 62 B1 Latency (ms) 43 39 51  
 Amplitude (μV) 2.55 2.02 2.07 Amplitude (μV) 0.75 0.72 0.57 
 A2 Latency (ms) 234 234 211 B2 Latency (ms) 117 117 117  
 Amplitude (μV) 1.60 2.68 1.79 Amplitude (μV) 1.36 1.60 0.99 
 A3 Latency (ms) 344 344 320 B3 Latency (ms) 301 297 312  
 Amplitude (μV) 3.15 2.61 2.57 Amplitude (μV) 2.13 1.50 1.31 
 A4 Latency (ms) 418 418 410 B4 Latency (ms) 430 430 430  
 Amplitude (μV) 4.28 5.98 3.04 Amplitude (μV) 1.65 1.42 1.41 
Table 3
Mean scores and standard deviations of satisfaction questionnaire items on a Likert scale (1: strongly disagree, 5: strongly agree).
 Item Mean SDa 
 The session duration was adequate. 4.8 0.4  
 I had difficulty maintaining my concentration during the session. 1.9 0.8  
 The system is intuitive and easy to use. 4.7 0.6  
 I experienced discomfort during the session. 1.7 0.8  
 By varying opacity I have noticed significant changes in visual comfort and eyestrain. 4.3 0.8  
 In general, the system has not responded in accordance with my intentions. 1.7 0.6  
 I consider that the system could be useful in extended reality scenarios. 4.7 0.5  
a SD: standard deviation.
Fig. 7. Score from 0 (none) to 10 (extreme) of visual fatigue experienced by users.

Statistical comparisons were conducted on the visual fatigue scores 
for each condition. Pairwise comparisons were performed using the 
Wilcoxon signed-rank test, with the Benjamini–Hochberg method ap-
plied to control for the FDR. This analysis revealed statistically sig-
nificant differences (𝑝-value < 0.05) across all pairwise comparisons. 
Detailed 𝑝-values for these comparisons are presented in the lower 
triangle of the matrix in Fig.  4.

4. Discussion

4.1. Stimulus opacity and c-VEP decoding performance

The first research question addressed in this study was to investigate 
the relationship between visual stimulus opacity and c-VEP decod-
ing performance. The accuracy results from the evaluation protocol, 
presented in Table  1, provide valuable insights into this relationship. 
The results indicate that changing the background over which the 
commands are visualized does not impact accuracy, as both the 100 
PS and 100 RS conditions consistently yielded 100% average accuracy. 
However, reducing the opacity of the visual stimuli resulted in statisti-
cally significant variations in accuracy, as shown by the 𝑝-values in Fig. 
4. For instance, in the 100/50 condition, average accuracy remained 
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high at 99.38%, but as opacity was further reduced – with the white 
color being made completely transparent in the 100/0 condition – 
average accuracies dropped to 85.00%, 87.50%, and 81.88% for the 
100/0, 50/0, and 0/0 conditions, respectively.

While the overall accuracy for 10 selection cycles is noteworthy, 
further analysis reveals additional details. For the 100/0 condition, 7 
out of 10 participants maintained accuracies equal to or above 93.75%. 
When considering the median, which is less influenced by outliers, 
the accuracy for this condition reaches 93.75%, underscoring that the 
majority of participants were only mildly affected by the change in 
opacity. However, a subset of participants experienced a sharp de-
cline in performance from 100/50 to 100/0. This suggests that while 
most users can tolerate some reduction in stimulus opacity without a 
substantial impact on performance, a minority are highly sensitive to 
such changes. One notable outlier was participant U07, who exhibited 
poor accuracy for the 100/0 condition but then showed significant 
improvement for the 50/0 and 0/0 conditions. This unexpected result, 
where accuracy improved under conditions that would be expected to 
perform worse, suggests that individual variability or external factors 
(i.e., attention loss, tiredness, etc.) may have influenced performance 
during this specific condition.

An additional finding of interest concerns the accuracy curves over 
selection cycles and time shown in Fig.  3. For the conditions 100 PS, 
100 RS, and 100/50, the accuracy curves plateaued after a few selec-
tion cycles, indicating that optimal performance was reached quickly. 
However, for the 100/0, 50/0, and 0/0 conditions, the accuracy curves 
grew more slowly and had not plateaued after 10 selection cycles, 
suggesting that performance might improve with longer selection times. 
This indicates that while reducing stimulus opacity negatively impacts 
short-term accuracy, extending the selection time could mitigate these 
effects and allow for improved performance.

Despite the considerable decline in average performance from
100/50 to 100/0, the accuracy results across all six conditions remain 
optimal for BCI control and are comparable to the performance of other 
c-VEP-based BCI spellers reported in the literature. For instance, Gem-
bler et al. (2019) [38] achieved 95.9% accuracy with their c-VEP-based 
spelling system, Nagel et al. (2019) [39] reported an accuracy of 98.2% 
in their keyboard system for healthy participants, and Verbaarschot 
et al. (2021) [40] demonstrated c-VEP-based communication systems 
for ALS patients, with accuracy rates ranging from 79.3% to 94.3%, 
depending on the group. Furthermore, a similar drop in accuracy when 
one of the two flickering stimuli is made transparent was previously 
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observed by Liu et al. (2024) [22] using SSVEP. In that case, accuracy 
decreased from 86.17% to less than 80%.

To gain a more comprehensive understanding of the relationship 
between stimulus opacity and c-VEP performance, it is important to 
go beyond analyzing accuracy alone. Additional analyses, particularly 
those focused on spatial filters obtained from CCA and EEG data, 
provide deeper insights into how opacity influences the decoding of 
c-VEP. Regarding spatial filter analysis, the topographic plots in Fig. 
5 indicate that the parieto-occipital region remains the most relevant 
across all conditions, with the highest absolute values for 𝑤𝑏 around 
POz. However, there is a slight increase in the absolute weights of elec-
trodes in this region for the last conditions compared to the first, which 
may hint at a connection to the observed decrease in performance.

The EEG analysis presented in Fig.  6 reveals that the significant 
drop in accuracy between the 100/50 and 100/0 conditions is linked to 
changes in the morphology of the brain response signals obtained from 
averaging calibration epochs in the POz and Oz channels. As shown 
in Fig.  6(a), the brain responses for the first three conditions (100 
PS, 100 RS, and 100/50) exhibit similar patterns, while those for the 
last three conditions (100/0, 50/0, and 0/0) diverge considerably. This 
divergence is further confirmed by the correlation analysis, which in-
dicates strong correlations among the first three conditions and among 
the last three, but minimal correlation between any of the first three 
and any of the last three, as illustrated in the correlation matrix in Fig. 
6(c). Additionally, the DTW analysis reinforces this distinction, clearly 
separating the first three conditions from the last three. When grouped 
into these two sets, components of the different brain responses align 
well, as shown in 6(b). However, aligning a condition from the first 
group with one from the second proves more challenging (see supple-
mentary material for more details). This suggests that visual response 
components are not necessarily related when opacity conditions are 
altered.

The time–frequency domain analysis shows that most brain activity 
occurs within the 4–30 Hz range, with minimal power detected above 
30 Hz. The 100 PS condition exhibits the highest spectral power, 
peaking around 400 ms in the 10–15 Hz range, a trend also observed in 
the 100 RS condition and, to a lesser extent, in the 100/50 condition. 
However, this pattern is absent in other conditions. In general, the 
time–frequency domain analysis offers limited insights, with no clear 
relationship to opacity adjustment.

When examining the peak characteristics identified and analyzed 
for each group of conditions (Table  2), it can be said that the A peaks 
exhibit greater variability in both latency and amplitude across the 
different conditions compared to the B peaks. Moreover, the amplitudes 
of the A peaks are generally greater than those of the B peaks. In the 
first set of conditions, both the latency and amplitude of all peaks tend 
to decrease for the 100/50 condition. In the second set of conditions, 
latencies remain consistent, except for B1, while amplitudes generally 
decrease as the conditions transition to more transparent stimulation. 
It is important to consider that these peaks are not components of the 
VEP itself, but rather represent features of the observed brain responses. 
Given the nature of c-VEP, it is not possible to extract an isolated 
VEP; rapid stimulus alternation leads to overlapping responses, and 
studies have shown that nonlinear interactions play a significant role 
in shaping c-VEP responses [6].

Synthesizing the information extracted from the EEG analysis, it can 
be stated that there is a notable change in the brain visual response 
when transitioning from 100/50 to 100/0, but not when going from 
100/100 to 100/50. These findings suggest that incorporating some 
transparency into the stimuli may have a smaller impact on the brain 
response than initially expected, provided that the black-white contrast 
is preserved. In the 100/0 condition, it is important to note that one of 
the two stimuli is effectively absent, resulting in a flickering effect that 
appears black-transparent. This resembles appearance–disappearance 
stimulation rather than pattern reversal [29]. Unlike the white-black 
flickering that offers maximum contrast and yields the highest VEP 
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amplitude [41], the absence of one stimulus in the 100/0 condition 
reduces overall contrast. This diminished contrast leads to a lower 
amplitude brain response, as there is a relationship between the neu-
ral mechanisms responsible for processing visual stimuli and stimulus 
contrast [41,42]. Indeed, A peaks are no longer identifiable under 
black-transparent stimulation conditions. This suggests that the change 
in visual response is significant enough to alter the signal components, 
preventing DTW analysis from aligning the same peaks across all 
conditions when determining optimal sequence alignment paths.

4.2. Stimulus opacity and user experience

The second research question focused on user experience and the 
impact of visual stimuli, particularly concerning visual fatigue ex-
perienced by users. As shown in Fig.  7, visual fatigue significantly 
decreased as users progressed to settings with greater transparency. 
However, transparency alone was not the only factor contributing to 
this reduction; transitioning from a plain background to a realistic 
scenario also enhanced user experience. This improvement is evident 
when comparing the scores between the 100 PS and 100 RS conditions, 
where a statistically significant decline in user ratings was observed. 
This finding underscores the potential for integrating c-VEP into XR 
environments, as it aligns with previous BCI-XR studies indicating 
that immersive experiences enhance user engagement, motivation, and 
overall experience [30,43].

Fig.  4 highlights the statistically significant reductions in visual 
fatigue as opacity is reduced, with all proposed conditions achieving 
𝑝-values < 0.05 when compared to either the initial or any preceding 
conditions. The most notable reduction occurred when transitioning 
from the 100 RS condition to the 100/50 condition, where the mean 
score dropped from 5.5 to 3.7—a decrease of 1.8 points. Interestingly, 
an inverse relationship was observed between user comfort and accu-
racy: enhancing user experience led to a decrease in accuracy, and vice 
versa. For instance, while the 0/0 condition resulted in the lowest visual 
fatigue score, approaching zero, it also produced the lowest accuracy. 
To balance these two aspects, the 100/50 condition is suggested, as it 
achieved 99.38% accuracy while significantly reducing visual fatigue, 
with scores nearly halved compared to the 100 PS condition. It is 
important to note that the nature of the evaluation protocol may 
have introduced potential bias due to the order in which conditions 
were presented, particularly in terms of accumulated visual fatigue. 
However, it is observed that participants reported lower fatigue scores 
for conditions completed later in the study. This suggests that the order 
of conditions did not introduce bias against our hypothesis and may 
have, in fact, reinforced the findings.

Other scientific approaches have also successfully reduced visual 
fatigue by implementing various changes in the c-VEP paradigm. As 
noted in the introduction, successful strategies have included using 
pseudo-random sequences that concentrate power in higher frequen-
cies [9,14], employing non-binary sequences [13,16], and presenting 
visual stimuli in a checkerboard pattern [17]. Visual fatigue scores from 
these studies have been standardized to a 0 to 10 scale for comparison. 
This comparison consisted of the difference between the score of the 
condition evaluated as reference, and the score of the condition that 
caused the least visual fatigue for the users. For this analysis, only 
the 100 PS, 100 RS, and 100/50 conditions will be considered, as the 
others showed a statistically significant decrease in accuracy. Table 
4 presents the results of this comparison, showing that changes in 
visual stimulus opacity achieved a significant improvement in visual 
fatigue, even surpassing other strategies aimed at optimizing the c-VEP 
paradigm to enhance user accessibility. Perhaps some of these strategies 
could be combined to further enhance user comfort while maximizing 
system performance.

Further insights were gained from the satisfaction questionnaires, 
as presented in Table  3. The system was perceived as intuitive and 
easy to use, with no notable discomfort experienced during the session. 
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Table 4
Comparison of user-reported visual fatigue scores across different studies approaching modifications to the c-VEP paradigm.
 Study Reference conditiona Score (0-10)c Suggested conditionb Score (0-10)c Difference 
 Shirzhiyan et al. 2019 [14] mseq 5.90 chaotic codes 4.80 1.10  
 Gembler et al. 2020 [16] binary 5.00 quintary 3.60 1.40  
 Martínez-Cagigal et al. 2023 [13] GF(26) 6.00 GF(72) 4.00 2.00  
 Fernández-Rodríguez et al. 2023 [17] C001 4.50 C016 3.50 1.00  
 Cabrera Castillos et al. 2023 [9] mseq 40 4.75 burst 40 3.00 1.75  
 Current study 100 PS 6.40 100/50 3.70 2.70  
a Reference condition used for comparison.
b Condition with best results in terms of visual fatigue score.
c Scores have been standardized to a 0–10 scale for comparability across studies.
Users also felt that the system adequately responded to their inten-
tions, reinforcing the positive impact of the design. Most importantly, 
variations in stimulus opacity resulted in significant improvements in 
user experience, further demonstrating the value of this adjustment. 
Notably, all users expressed that the application of c-VEP could be 
beneficial in XR scenarios.

4.3. Main contributions

This study makes significant contributions to the field of c-VEP-
based BCI by introducing the analysis of visual stimulus opacity, a 
previously unexplored factor. This innovation not only advances the 
design of more comfortable BCI but also enables the integration of 
these systems into lifelike environments, expanding their potential 
applications. The study comprehensively covers all stages of an exper-
imental investigation: design, implementation, validation, and result 
extraction, providing an in-depth perspective on the topic. Additionally, 
a thorough analysis of several conditions was conducted, offering a 
detailed understanding of how opacity in visual stimuli affects c-VEP 
performance. These efforts lead to valuable insights that could drive 
the advancement of c-VEP-based BCI, particularly in terms of enhancing 
user experience.

4.4. Limitations and future work

The present study is noteworthy for its innovative approach; how-
ever, several limitations must be acknowledged. The relatively small 
and homogeneous sample size, consisting exclusively of healthy young 
individuals, restricts the generalization of the findings. To enhance the 
robustness of future research, it would be interesting to increase the 
sample size and include a more diverse pool of participants, particularly 
individuals with motor disabilities.

Additionally, investigating a broader range of conditions, such as 
reverse opacity settings (50/100, 0/100, 0/50), or incorporating addi-
tional opacity levels (25% and 75%), could offer valuable insights into 
the relationship between stimulus opacity, user experience, and sys-
tem performance. Studying individual performance variability among 
users will be useful, particularly in characterizing those who are more 
susceptible to changes in opacity. Moreover, incorporating single VEP 
measurements for each experimental condition could help overcome 
the challenges posed by superimposed stimuli in c-VEP brain response 
analysis.

Furthermore, incorporating advanced techniques such as deep learn-
ing methods for signal processing, could improve the identification of 
complex patterns in brain activity, thereby enhancing system perfor-
mance. Future research should also consider incorporating eye-tracking 
technology to offer objective measurements of visual fatigue, providing 
a more reliable understanding of user experience. Finally, exploring 
the integration of c-VEP applications into various XR scenarios would 
enable a more realistic evaluation of these systems in lifelike envi-
ronments. Addressing these limitations could lead to more effective 
applications of c-VEP-based BCI research.
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5. Conclusion

In this study, a comprehensive and novel investigation was con-
ducted to assess the impact of stimulus opacity on both system accuracy 
and user experience in c-VEP-based BCI. The traditional paradigm was 
modified by progressively reducing the opacity of visual stimuli, allow-
ing commands to blend more seamlessly into lifelike environments. Six 
opacity combinations were tested with 10 healthy participants, yielding 
valuable insights into the interplay between system performance and 
user experience.

Reducing opacity has been shown to enhance user experience by 
minimizing visual fatigue, although it may impact system accuracy. Sig-
nificant differences emerged when transitioning from black and white 
to black and transparent stimulation, affecting both accuracy and brain 
responses. A balanced outcome was achieved with 50% white opacity 
and 100% black opacity, resulting in 99.38% accuracy and a visual 
fatigue score of 3.7/10. Under this condition, statistically significant 
differences were observed in visual fatigue scores; however, no sig-
nificant differences in accuracy were detected compared to traditional 
black and white stimuli at 100% opacity.

To summarize, the study presents important findings regarding the 
key research questions. On one hand, there is a relationship between 
c-VEP performance and stimulus opacity. Reducing opacity does not 
decrease average accuracy as long as black and white contrast is main-
tained; however, accuracy declines when one color becomes completely 
transparent. This decline is also associated with changes in the brain 
response signal. On the other hand, reducing the visual stimulus opacity 
enhances the user experience by significantly reducing visual fatigue. 
Furthermore, the introduction of partial transparency in visual stimuli 
facilitates the integration of c-VEP-based BCI into lifelike environments, 
supporting their use in immersive settings.
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