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Abstract  The notion of conceptual space, proposed by Gärdenfors as a framework for the 
representation of concepts and knowledge, has been highly influential over the last decade or 
so. One of the main theses involved in this approach is that the conceptual regions associated 
with properties, concepts, verbs, etc. are convex. The aim of this paper is to show that such a 
constraint –that of the convexity of the geometry of conceptual regions– is problematic; both 
from a theoretical perspective and with regard to the inner workings of the theory itself. On 
the one hand, all the arguments provided in favor of convexity rest on controversial assump-
tions. Additionally, his argument for the integral character of conceptual dimensions (in sup-
port of a Euclidean metric) is weak, and under non-Euclidean metrics the structure of regions 
may be non-convex. Furthermore, even if the metric were Euclidean, the convexity constraint 
could be not satisfied if concepts were differentially weighted. On the other hand, Gärdenfors' 
convexity constraint is brought into question by the own inner workings of conceptual spaces 
because: (i) some of the allegedly convex properties of concepts are not convex; (ii) the con-
ceptual regions resulting from the combination of convex properties can be non-convex; (iii) 
convex regions may co-vary in non-convex ways; and (iv) his definition of verbs is incompat-
ible with a definition of properties in terms of convex regions. Therefore, the mandatory char-
acter of the convexity requirement for regions in a conceptual space theory should be recon-
sidered in favor of a weaker constraint. 
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1 Introduction 

The notion of conceptual space, proposed by Gärdenfors (2000) as a framework for the repre-
sentation of concepts and knowledge, has been highly influential over the last fifteen years. 
Since his initial proposal, Gärdenfors (2014) has tried to extend the approach both to the 
modeling of actions and events, and to the semantics of verbs, prepositions and adverbs. One 
of the basic theses of his approach is that the conceptual regions associated with properties, 
concepts (or object categories), verb meanings, etc. are convex. The aim of this work is to 
show that such a constraint, that of the geometrical convexity of conceptual regions, is prob-
lematic; not only from a theoretical perspective, but also with regard to the inner workings of 
the theory itself. 

In Sect. 2, after this brief introduction, I expound the main features of Gärdenfors' theory 
of conceptual spaces, focusing on his definitions of property and concept. At the same time I 
aim to explain clearly the role played by the convexity constraint in the theory, as opposed to 
other possible criteria that could be imposed on the geometry of regions. In Sect. 3 I recap 
how the notion of similarity is characterized within a geometrical approach; and I introduce 
the distinction between standard and non-standard distances. 

Section 4 focuses on criticism of the major cognitive reasons for the convexity requirement: 
(a) co-implication with the prototype theory of concepts; (b) cognitive economy; (c) its per-
ceptual foundations; and (d) effectiveness of communication. I aim to show that none of them
compels us to accept the convexity constraint as compulsory.

Notwithstanding that, if the metric underlying conceptual spaces were the standard Euclid-
ean metric, then the convexity of regions would be guaranteed. With regard to this point, 
Gärdenfors argues that, for the case of integral dimensions, the (standard) Euclidean metric 
fits the empirical data better than the (standard) city-block metric. So, given that his defini-
tions of property and concept are for domains constituted by sets of integral dimensions, it is 
possible to conclude that the metric of conceptual spaces is the standard Euclidean metric, and 
that within them conceptual regions are convex. Then, Sect. 5 brings into question the empiri-
cal evidence that supports such an argument; evidence supposedly in favor of the relation of 
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mutual dependency between integral dimensions and the standard Euclidean metric. By ques-
tioning the evidence in this way, I intend to show that the metric underlying conceptual spaces 
cannot be Euclidean in a strong sense. If I am right, then the convexity constraint on regions 
does not hold, as I show in Sect. 6. After that, in Sect. 7, I demonstrate that, even if conceptu-
al spaces do function with a Euclidean framework, conceptual regions might be non-convex if 
distances of comparison in categorizations are weighted differently. 

Finally, Sect. 8 is devoted to proving that the convexity requirement is brought into ques-
tion by the very characterization of the inner workings of Gärdenfors' conceptual space theory 
itself. From all these arguments, I conclude (Sect. 9) that the mandatory character of the con-
vexity constraint should be rethought, perhaps in favor of a weaker (and non-mandatory) cri-
terion for the geometry of regions. 
 

2 Conceptual spaces and the convexity constraint 
 
Gärdenfors proposal consists of a non-connectionist theory of conceptual spaces based on the 
notion of similarity. In general terms, a similarity space theory of concepts can be described 
by the following fundamental thesis (Gauker 2007): the mind is a representational hyperspace 
within which (a) dimensions represent ways in which objects can differ, (b) points represent 
objects, (c) regions represent concepts, and (d) distances are inversely proportional to similar-
ities (between objects or concepts). Consequently, an object will belong to a concept if and 
only if its values in every dimension of that similarity space produce an n-tuple that lies inside 
the region associated with that concept. 
 

2.1 Gärdenfors' conceptual spaces 
 
Nonetheless, there are important differences between the conceptual space theory proposed by 
Gärdenfors (2000) and this general framework. Firstly, (natural) properties are convex re-
gions of a given domain (CRITERION P), and are typically associated with the meaning of ad-
jectives. Secondly, (natural1) concepts are bundles of properties (or, alternatively, sets of con-
vex regions) in a number of domains, together with the salience weights of those domains and 
information concerning how their regions are correlated (CRITERION C); and they typically 
represent the meaning of nouns. Finally, in this framework, the notion of domain is critical: it 
is defined as a set of integral2 dimensions that are separable from all other dimensions. 

In accordance with this general scheme, concepts are a result of the division of the similari-
ty space into convex regions (constituted by the sets of points representing those objects that 
exhibit the sensory properties characteristic of such regions). The convex regions are identi-
fied by Gärdenfors precisely with concepts. 

Lastly, in his most recent work, Gärdenfors and his collaborators have tried to extend this 
basic framework from the cases of properties and concepts (or, alternatively, from adjectives 
and nouns) to the representation of states, changes, actions and events; through these, to the 
semantics of verbs, adverbs and prepositions; and ultimately to apply it to the case of human 
communication (Gärdenfors & Warglien 2012, 2013; Warglien et al. 2012; Gärdenfors 2014). 
Very briefly sketched, Gärdenfors takes as a starting point the thesis that verbs typically rep-
resent dynamic properties of objects; are parts of events; and involve actions which are consti-
tuted by forces (commonly exerted by agents). In virtue of this, his proposal for verbs con-
sists, in effect, of a holistic model of actions, forces, events and verbs, characterized by means 
of conceptual spaces. Within such a framework, verbs denote changes in properties (that is, 

 
1 Although these two definitions are for natural properties and concepts, as a matter of fact Gärdenfors applies 
them almost universally: he does not distinguish between natural and non-natural properties or concepts (except 
in order to discriminate artificial non-convex properties or concepts, such as those associated with Goodman's 
term glue: green before a given date and blue after that date). 
2 Integral dimensions are those processed in a holistic and unanalyzable way, where the assignation of a value to 
a particular dimension requires a value to be given to the others. If dimensions are not integral, then they are 
separable. Gärdenfors' main domain example is the case of color, which would be constituted of three dimen-
sions: hue, intensity and brightness. 
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movements in the representation of objects or concepts within the conceptual space), and they 
both refer to and are represented by convex regions of vectors. 
 

2.2 The convexity constraint 
 
As is evident from the previous subsection, the requirement for the convexity of regions runs 
through all the conceptual space theory defended by Gärdenfors. Not only properties and con-
cepts (or object categories), but also the semantics of verbs, adverbs and prepositions 
(Gärdenfors 2014) are conceived and represented within his theory by convex regions. 

The convexity requirement can be thought of as a generalized definition of the conception 
of a natural kind as a qualitatively spherical region, expounded by Quine (1969) in his discus-
sion of the definition of natural kinds in terms of (comparative) similarity. Gärdenfors' aim is 
to characterize the geometrical form of natural properties and concepts, when acting as (opti-
mal) evolutionary tools in tasks such as problem-solving, memorizing, planning, communi-
cating, etc. To that end, he distinguishes three possible criteria which could constrain the geo-
metry of a region (see Fig. 1): 

− connectedness constraint: it must be possible to reach every point in the region from 
every other point by following a continuous path consisting only of points belonging 
to the region; 

− star-shapedness constraint (with respect to a point P): for every point x in the region, 
all the points between3 x and P must belong to the same region; 

− convexity constraint: the region must satisfy the star-shapedness constraint with re-
spect to all the points in the region, that is, for every two points in the region, all the 
points between them must also belong to the same region. 

The strength of these three criteria increases in order: every star-shaped region is a connected 
region and (trivially) every convex region is a star-shaped region. 
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Fig. 1  Representation of the three different criteria for the geometry of conceptual regions: connectedness, star-
shapedness and convexity. Paths containing exclusively points belonging to the considered regions are represent-
ed by solid lines. Paths also containing points outside the regions are represented by dashed lines. The problem-
atic points not belonging to the regions are represented by crosses (×). a Representation of a disconnected region 
R1 where the point A is not reachable from the point B following a continuous path of points belonging to R1. b 
Representation of a connected region R2 where every point x in R2 is reachable from every other point y in R2, 
following a continuous path of points belonging to R2. c Representation of a connected but non-star-shaped 
region R2 (the same as in graph b), where there is no point with respect to which R2 satisfies the star-shapedness 

 
3 Although the second and third constraints require the definition of betweenness (an axiomatic definition of 
which can be found in Gärdenfors (2000, p. 15)), I will not discuss that topic in this paper. 
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constraint (for instance, P1 cannot be that point because between P1 and C there are points not belonging to R2). 
d Representation of a connected and star-shaped region R3, where there is a point P2 in R3 such that, for every 
point x in R3, all the points between P2 and x also belong to R3. e Representation of a star-shaped but non-convex 
region R3 (the same as in graph d), where there are points D and E in R3 such that not all the points between them 
also belong to R3. f Representation of a star-shaped and convex region R4, where for every two points x and y in 
R4, all the points between x and y also belong to R4 

 

3 Geometric similarity measures 
 
There are four main approaches to characterizing the notion of similarity (Goldstone & Son 
2005): geometrical, feature based, alignment based and transformational. Here, in the spirit of 
Gärdenfors' conceptual spaces, I focus on geometric characterizations of similarity. Models 
based on this approach define similarity as a measure that is inversely proportional to dis-
tance, which is usually determined according to a Minkowski metric. Let us remember the 
expression for the distance (in a generic Minkowski metric) between two concepts (and/or 
objects) A and B located within an n-dimensional space, where [ ]Y

iX  represents the value of 
the i-th dimension associated with the concept Y: 

1
[ ] [ ]

1
( , )

pn pA B
i i

i
d A B X X

=

 = − 
 
∑

 

The value of the parameter p  determines the type of metric and distance: if 1p = , they are 
called Manhattan (or city-block); when 2p = , they are called Euclidean. 

This expression corresponds to ordinary Minkowski distances. Never the less, these dis-
tances can be weighted differently according to various criteria. For example, in the case of 
conceptual spaces, the weights could be a function of the number of exemplars on which a 
given concept is based. In such a case, the distance-of-comparison in categorizations of a cer-
tain object, O, with respect to a particular concept, Ci (represented within the conceptual 
space by the prototype CiP ), referred to as ( , )Ci Cid O P , could be expressed, under a multiplica-
tively weighted scheme4, as follows5: 

( , ) ( , )Ci Ci i Cid O P w d O P=  

where wi represents the weight assigned to that concept. In Sect. 7 below, I will show the im-
plications of non-standard weighting with regard to the convexity requirement. 
 

4 Gärdenfors' arguments for the convexity constraint 
 
In his work, Gärdenfors does not provide any 'definitive' argument in favor of the convexity 
constraint, but he offers a series of reasons that suggests a high degree of plausibility for it. 
My aim in this section is to show that none of those arguments is compelling: we do not have 
to accept convexity as a mandatory requirement for the geometry of regions. 
 

4.1 Mutual dependence with the prototype theory 
 
One of the six basic principles that Gärdenfors considers to be embodied by the cognitive ap-
proach to semantics is that concepts show prototypical effects which cannot be explained 

 
4 For a detailed review of approaches to weighting that are distinct from the multiplicative one, see Okabe et al. 
(1992, pp. 119-134). 
5 Ordinary distances used simply to be called distances (or standard distances), and that is what I will do in this 
work; conversely, I will use the terms weighted distance and non-standard distance indistinctly. 
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from the standpoint of classical theories of concepts. In fact, one of the main advantages of 
Gärdenfors' approach is that his conceptual spaces provide a natural explanation of prototypi-
cal effects for many concepts6 (Rosch 1978; Lakoff 1987). Let us see why. 

Prototypes are those members (whether real, or not7) of a category that best reflect the sim-
ilarity structure of the category as a whole. Additionally, the more prototypical a member of a 
category is: (i) the more attributes it shares with the other members of the category; and (ii) 
the fewer features it shares with the members of other categories (Rosch & Mervis 1975). Due 
to this, it is reasonable to think that prototypes are the result of a process of maximization of 
resemblance between the objects evaluated, and the tentative prototype of a particular catego-
ry. Hence, the shape and boundaries of the region associated with each category would be the 
result of such a maximization process, which can follow one of two approaches:  

[1] an evaluation of the similarities and dissimilarities between each object and all the other 
objects (both those belonging to the tentative category under consideration, and those 
belonging to other categories). 

[2] an evaluation of only the similarities and dissimilarities between each object and the 
prototypes (both of the tentative category and of other categories). 

Obviously, the second approach is much less time-consuming and consequently preferable in 
terms of cognitive efficiency. In this latter case, an object is only evaluated with respect to the 
centers of regions (that is, the prototypes associated with the relevant categories). (This point 
will be important when we consider the necessary character of the convexity constraint.) 

Based on this, it is possible to say that Gärdenfors' conceptual space theory provides a nat-
ural explanation of the behavior we expect a prototype theory of concepts to exhibit, given 
that: (i) the centers (or centroids) of the regions associated with each concept in a conceptual 
space can be identified with the most representative members according to the prototype theo-
ry of concepts; and (ii) prototypicality can be characterized as a measure that is inversely pro-
portional to the distance (of an object) from those centers (or centroids). 

With regard to this first claim, Gärdenfors defends the notion that those who adopt the proto-
type theory of concepts should expect a representation of concepts and properties as convex 
regions; and contrariwise, that if concepts are characterized as convex regions, then prototypi-
cal effects should be expected (Gärdenfors 2000, pp. 86-87; 2014, pp. 26-27). 

It is my view that this is the main argument offered by Gärdenfors in support of the convex 
geometry of regions. However, neither of the two assertions constitutes a reason in favor of 
the convexity requirement, given that both of them could also be applied to a star-shaped re-
gion, as I now explain. 

[A] If properties and concepts were defined as star-shaped regions then prototypical effects 
would also be expected: in a star-shaped region the typicality of an object with regard to 
a given category is also a function of the distance between the point representing that 
object and the prototype of its category. 

[B] The only thing that should be expected by a consistent prototype theorist is the star-
shapedness of conceptual regions: a prototype theorist should expect that if an object 
belongs to a certain category, then all the objects with the same proportional distances 
from the prototype but more similar to it (that is, all the objects between the object un-
der consideration and the prototype), should also belong to that category. This is exactly 
what happens under the star-shapedness constraint. In the Appendix I provide a proof of 
this relationship between the prototype theory of concepts and the star-shapedness of 
conceptual regions. There I show that if the prototype theory holds, then conceptual re-
gions must be star-shaped, given that: 

1. If an object, O, belongs to a concept, C (characterized by a prototype P), this im-
plies that the circle ( , )c O OP , centered at O and with radius OP, does not contain 
any other prototype distinct from P. 

2. For every object, A, between O and P, the circle ( , )c A AP  is included within 
( , )c O OP . 

 
6 Prototypical effects are associated with the fact that some members of a category are considered more repre-
sentative of it than others. For instance, robins are considered more representative of the BIRD category than 
eagles, and eagles more than chickens. 
7 That is, with or without real exemplars of them. 
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3. Therefore, P is the nearest prototype to A; that is, the object A also belongs to C 
and, in consequence, conceptual regions are star-shaped. 

Thus, giving up the convexity requirement for a less strong one (for example, star-
shapedness) would have no effect on the explanatory power of the conceptual space theory 
with respect to prototypicality. 
 

4.2 Cognitive economy 
 
When Gärdenfors (2000) originally defined properties in terms of convex regions, he mainly 
based his decision on the argument provided by Shepard (1987, p. 1319). Shepard argued that 
evolution would have led to consequential regions (in our psychological space) in a way such 
that the boundaries of those regions were not oddly shaped. Next Gärdenfors maintained that 
such an evolutionary preference could be supported by a principle of cognitive economy in 
terms of memory, learning and processing. 

However, the cognitive economy argument depends on the assumption that the handling of 
convex sets of points requires less memory, learning and processing resources than the han-
dling of regions with capricious forms. In his original work, Gärdenfors (2000) argues along 
the following lines. 

(i) If regions are convex, then a Voronoi tessellation of conceptual spaces is possible. 
(ii) A Voronoi tessellation could support cognitive processes such as concept modeling, 

concept learning and concept formation, as well as categorization tasks. 
(iii) Therefore, convex regions would explain cognitive efficiency in all those tasks and pro-

cesses. 
The problem is that (as I show in Sect. 6 below) with a non-Euclidean metric, the conceptual 
regions can be non-convex and yet compatible with a Voronoi tessellation. Moreover, given 
that the argument offered by Gärdenfors is not exclusive to convex regions, an independent 
reason for the greater cognitive efficiency of handling convex regions (over non-convex ones) 
is still required. 

I entirely support Gärdenfors' aim of basing the conceptual space theory on reasons related 
to cognitive economy; in fact, I think that most of his arguments are thoroughly valid with 
regard to such a general point. That is, a conceptual space theory is highly efficient from a 
cognitive point of view, given that: 

− only prototype locations have to be memorized; 
− in categorization tasks the only distances evaluated would be those between the evalu-

ated objects and the prototypes associated with the categories considered; and 
− concepts could be learned from a very small number of exemplars. 

Nonetheless, all these facts are common to every conceptual space that is compatible with the 
theory of prototypes, independently of the geometrical structure (convex or non-convex) of its 
conceptual regions. Consequently, cognitive efficiency cannot be a crucial reason to support 
the convexity criterion. 
 

4.3 Perceptual foundation 
 
Gärdenfors usually contends that many perceptually grounded domains, such as color, taste, 
vowels, etc., are convex, based on evidence in favor of the convexity of the regions associated 
with numerous typical properties of all those domains (Fairbanks & Grubb 1961; Sivik & Taft 
1994). The color domain, however, seems to be his preferred example of integral dimensions. 
In the case of color, the problem is that the work that Gärdenfors refers to as evidence is en-
tirely associated with sensory dimensions; there is no guarantee that things work in the very 
same way in non-perceptual domains. This last point is explicitly recognized by Gärdenfors 
(2014, p. 137) when he acknowledges that the evidence (mainly associated with the color 
domain) does not provide automatic support for the convexity constraint in other domains. 
 

4.4 Effectiveness of communication 
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One of the most recent arguments offered by Gärdenfors (2014, p. 26) for the convexity re-
quirement is that the convexity of conceptual regions is decisive in effective communication. 
In this case Gärdenfors argues that Jäger's research has shown that in language, convex re-
gions are a result of cultural evolution (Jäger 2007). However, Jäger's work does not consti-
tute an argument either in favor of or against the geometrical structure of conceptual spaces, 
given that he assumes the standard8 Euclidean metric (Jäger 2007, p. 554); so semantic cate-
gories have to be convex (see below for discussion of this point). Due to this, when Gärden-
fors cites Jäger's research in support of his thesis that conceptual regions are convex, he falls 
into petition principii: since Jäger starts from the standard Euclidean metric, his results simply 
do not disprove the convexity constraint thesis; but they cannot confirm it. 
 

5 Integral dimensions, Euclidean metric, and convexity 
 
As stated above, Gärdenfors' conceptual spaces rest on the assumption that regions are con-
vex, and this convexity is guaranteed under a Euclidean metric (Gärdenfors 2000, p. 88; Oka-
be et al. 1992, p. 57)9. By virtue of this, the theory requires that the metric underlying our 
psychological space is Euclidean. On this occasion, the main argument in favor of a Euclidean 
metric is that in the case of integral dimensions, a Euclidean metric fits the empirical data 
better than a city-block metric (the latter would be more appropriate in the case of separable 
dimensions). Furthermore, given that Gärdenfors' definitions of property and concept are for 
domains constituted of sets of integral dimensions, it is possible to conclude that the concep-
tual spaces underlying them function with a Euclidean metric and, consequently, that their 
associated regions are convex. 

However, this argument presents several problems, mainly due to the alleged mutual de-
pendency relationship between integral dimensions and the (standard) Euclidean metric. 

− First, Gärdenfors' argument runs in the opposite direction: "if the Euclidean metric fits the 
data best, the dimensions are classified as integral" (Gärdenfors 2000, p. 25). This trans-
forms the integral (or separable) character of a domain (or set of dimensions) into an em-
pirical question, which would depend on whether the Euclidean metric matches the em-
pirical data best or not. Here the problem is that, by virtue of the co-implication between 
integral domains and the Euclidean metric, there is no way to support the Euclidean char-
acter of the metric based on the integral character of domains, or vice versa: so both must 
be determined by experience. 

− Second, the empirical evidence referred to in favor of the integral or separable character 
of a particular set of dimensions is tied to perceptual domains10, such as color, sound, 
size, shape, etc. (Garner 1974; Maddox 1992; Melara 1992). All that work faces a three-
fold difficulty, when taken as evidence in favor of Gärdenfors' theses, as I now explain. 

[A] All the work is based on classification experiments and judgments of similarity at a 
conscious level, in which the integral character of dimensions (and, in consequence, 
the Euclidean character of the metric) could depend on how those classifications 
and judgments are consciously carried out, and not on the geometrical structure of 
the perceptual space. 

[B] The experiments were developed over a small number of perceptual domains, so 
accepting them as evidence of the geometry of conceptual spaces requires the as-
sumption that the behavior of the metric structure is the same across all perceptual 
and conceptual domains11. That is, it is necessary to assume that such behavior ex-
tends not only from the perceptual domains studied to all other perceptual domains, 
but also to all conceptual domains (in general not related to any of the perceptual 
domains studied), which might not be the case. 

 
8 According to the notions of standard and non-standard distances given in footnote 5 above. 
9 However, as I will show in Sect. 7 below, the convexity of regions is only guaranteed under the standard Eucli-
dean metric (or in other words, under a Euclidean metric with standard distances): not under a weighted, non-
standard, Euclidean metric (Okabe et al. 1992, p. 122). 
10 As happened with the perceptual foundation argument in favor of the convexity constraint (see Sect. 4). 
11 This behavior of the metric structure can be summed up as follows: separable dimensions are better character-
ized by a city-block metric, while the Euclidean metric is the best for integral dimensions. 
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[C] This kind of work is used to contrast Euclidean and city-block metrics, and shows 
that the former fits integral sets of dimensions better, while the latter provides a bet-
ter fit when the dimensions are separable. In the case in hand, however, the problem 
is that both metrics provide good fits, but not perfect fits. This ultimately means 
that the best metric is neither the Euclidean nor the city-block one; but is something 
between the two. 
For example, in Handel & Imai (1972, p. 110) the optimal parameter p  for integral 
dimensions in a general Minkowski metric is 1.7, which may be acceptable as rea-
sonably close to a Euclidean space, but with non-convex regions12 (given that their 
convexity would require a value of p  equal or much closer to 2). 
Therefore, what can be derived from this work is not that the (standard) Euclidean 
metric is warranted for integral dimensions, but only that the expected metric for in-
tegral domains will be closer to the (standard) Euclidean metric than to the city-
block metric. 

To sum up, all this evidence appears to be controversial; both that supporting the integral 
character of conceptual dimensions, and that which allegedly backs up the relationship be-
tween the integral character of dimensions and the Euclidean metric. The consequence is that, 
in both cases, the underlying metric could be non-Euclidean and, hence, conceptual regions 
could be non-convex. 
 

6 Conceptual spaces under a non-Euclidean metric 
 
Merely from attending to the basic requirements of a similarity space theory of concepts, it 
can be seen that the convexity constraint is unnecessary: nothing in the general conception of 
this kind of theories demands a Euclidean metric13, and under a non-Euclidean metric the re-
sulting regions can be non-convex. Nonetheless, a constant throughout all of Gärdenfors' 
work is that he explicitly adopts a Euclidean metric which apparently guarantees the convexi-
ty of the conceptual regions. The problem is that if the conceptual space metric is non-
Euclidean, then regions may be non-convex. The goal of this section is to describe what the 
consequences would be if the assumption was of a non-Euclidean metric. 

As introduced in Sect. 3 above, the formula for the (standard) distance, given a generic 
Minkowski metric, between two objects (or concepts) A and B located within an n-
dimensional space, is given by the expression: 

1
[ ] [ ]

1
( , )

pn pA B
i i

i
d A B X X

=

 = − 
 
∑

 

where the value of p  determines the specific type of distance ( 1p = , Manhattan; 2p = , Eu-
clidean), and it could take any positive real value (not only integer). The boundaries of con-
ceptual regions will then depend on the specific metric chosen, and so will the convex or non-
convex character of those regions (as illustrated by the graphs in Fig. 2). 

 
12 See Sect. 6 below for the meaning of the p parameter within the standard Minkowski metric. That section also 
contains a chart (Fig. 2) which shows that for a parameter p equal to 1.7 the conceptual regions are not convex. 
13 In Sect. 4 above I showed that there are no strong psychological reasons that support this assumption. 
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Fig. 2  Boundaries of the conceptual regions resulting from a maximization process implementing the prototype 
theory of concepts, for four distinct possible metrics. The final prototypes are represented by the four black dots, 
whose coordinates are (1.5,1), (1.8,2.7), (2,1.5) and (3,1). The boundaries of the conceptual regions are drawn as 
dotted dark-grey lines. a Boundaries for the city-block metric (parameter p = 1). b Boundaries for the Euclidean 
metric (parameter p = 2). c Boundaries for a conceptual space that fits the Euclidean metric better than the city-
block one (with parameter p = 1.7), as happened in Handel & Imai's (1972, p. 110) experiments. d Boundaries 
for a higher-order Minkowski metric (parameter p = 3) 

 
As is evident from Fig. 2, only the (standard) Euclidean metric satisfies the convexity require-
ment14, while the other metrics generate regions that are more or less non-convex. 

Consequently, if the metric of conceptual spaces is not Euclidean in a strong sense, then 
the convexity constraint on regions cannot be mandatory in that very same strong sense; con-
tradicting what Gärdenfors' theory requires of them. 
 

7 Conceptual spaces under a weighted Euclidean metric 
 
At this point I could assert that if the metric of conceptual spaces is non-Euclidean, then the 
mandatory convexity of regions is not warranted. Nevertheless, under a Euclidean metric, that 
convexity would be ensured. So, it seems that everything can be reduced to a question regard-
ing the assumption of a particular metric15: if the chosen metric is Euclidean, then conceptual 
regions will be convex; and, as Gärdenfors says, such a choice is an empirical question. 

However, things are not that simple because, even if the metric of conceptual spaces was 
Euclidean, it is possible that conceptual regions would not be convex. This could obviously 
not be case, as just explained in the section above, under the standard Minkowski distance 
which, for the Euclidean case ( 2p = ), is defined as: 

( )2[ ] [ ]

1
( , )

n
A B

i i
i

d A B X X
=

= −∑
 

 
14 For a formal demonstration of this, see Okabe et al. (1992, p. 57). 
15 This assumption is partially questioned in Sect. 5 above. 
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But let us think for a moment about how, in a theory such as Gärdenfors', concepts are pro-
duced. In a first instance, if a particular concept is not innate, then it should have been learnt 
sometime in the past from a particular set of exemplars. Additionally, it could be argued that 
the size of the sample of exemplars has an effect on how objects are categorized under a par-
ticular concept. 

For example, let us imagine a subject who had been exposed to hundreds of exemplars of 
the concept DOG, but only a few exemplars of the concept FOX. Then it could be thought that 
if that same subject were exposed to one new exemplar of FOX, different from all the foxes 
already encountered and with a certain resemblance to the concept DOG already acquired, a 
judgment of the new exemplar as fitting the concept DOG could be more confidently reached 
than one of it fitting the concept FOX. That would mean (within a conceptual space theory of 
the mind), that the subject could ascribe a greater weight to the concept DOG than to the con-
cept FOX. 

A phenomenon such as this could occur even under a Euclidean metric (that is, even if the 
underlying conceptual space were Euclidean), where base distances were calculated using the 
formula above for ( , )d A B . However, if objects were categorized as just been described, the 
distances associated with each concept would be differently weighted depending on the num-
ber of exemplars on which that concept were based. These differently weighted distances 
would correspond with the non-standard multiplicatively-weighted distances introduced in 
Sect. 3 above. Consequently, the formula for the distance-of-comparison, ( , )Ci Cid O P , in cate-
gorizations of a particular object O with regard to a given concept Ci (represented by a proto-
type CiP ) would be: 

( , ) ( , )Ci Ci i Cid O P w d O P=  

Here, the value of wi represents the weight associated with each concept, which would be a 
function of the number of exemplars, ni, on which such a concept is based. Indeed, the lower 
the number of exemplars, ni, the greater both the weight of the distances wi and the distance-
of-comparison ( , )Ci Cid O P , and hence, the lower the similarity claimed between O and Ci. The 
weight wi could be, for example, a function ranging from two (if the number of exemplars is 
very small) to one (when that number is large enough), as given by 1 1/i iw n= +  (see Fig. 3). 
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Fig. 3  Representation of the weight function 1 1/i iw n= + , that could underlie a non-standard multiplicatively-
weighted Euclidean space 

  
The point is that a conceptual space that functioned in this way would produce non-convex 
conceptual regions, which contradicts the assumption with regard to the convexity constraint. 
The graphs in Fig. 4 contrast the boundaries of convex regions in the standard Euclidean 
space, with the boundaries of non-convex regions in a prototype-weighted Euclidean space, 
for the case of the same four prototypes considered in the previous section. 
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Fig. 4  Boundaries of the conceptual regions resulting from a maximization process implementing the prototype 
theory, for different weightings of concepts. The final prototypes are represented by the four black dots, whose 
coordinates are (1.5,1), (1.8,2.7), (2,1.5) and (3,1). The boundaries of the conceptual regions are drawn as dotted 
dark-grey lines. a Boundaries for the standard Euclidean space, where the weights of all the prototypes are equal 
to 1. b Boundaries for a non-standard (prototype-weighted) Euclidean space, where the weights of each proto-
type are equal to 1, except for the weight of the central prototype (with coordinates (2,1.5), and denoted by P), 
whose weight  is equal to 1.15 

 
Consequently, if concepts were weighted differently (depending on the sizes of their sets of 
exemplars, for example) then, even within a Euclidean space, conceptual regions could be 
non-convex; and this contradicts the thesis regarding the convexity of regions16. 

Of course, the foregoing requires empirical contrast via psychological research. Neverthe-
less, my point is that, at least from a theoretical point of view, the size of the set of exemplars 
from which a given concept is learnt could influence the reliability of such a concept. There-
fore, there are significant reasons to think that not every concept has the same weight in the 
conceptual space structure. If this were indeed the case, then those distinct weights would lead 
to a non-standard Euclidean space, which would result in non-convex conceptual regions. 
 

8 Inner problems of convexity in Gärdenfors' theory 
 
So far I have shown the following. [1] None of the arguments provided by Gärdenfors for the 
convexity constraint constitutes a compelling reason in favor of that requirement, given that 
all of them rest on controversial assumptions. [2] His argument for the integral character of 
conceptual dimensions (in support of a Euclidean metric and, consequently, of the convexity 
of regions) is weak; while under a non-Euclidean metric, the structure of regions can be non-
convex. [3] Even if the metric were Euclidean the convexity constraint might be not satisfied; 
if, for example, distinct concepts were differently weighted in terms of the number of exem-
plars on which each of them is based. 

However it could be the case that, despite all of this, conceptual regions are in fact convex 
(as assumed by Gärdenfors). In this section, I show that Gärdenfors' convexity constraint is 
brought into question by his own characterization of conceptual spaces. On the one hand, I 
will prove that in some cases the regions associated with the properties of a concept are not 
convex (either taken individually, or as the result of their combination in that concept); while 
in other cases, the composition of convex regions associated with properties can lead to non-
convex concepts (depending on how the properties co-vary over those concepts). On the other 
hand, I will show that Gärdenfors' definition of properties in terms of convex regions is not 
compatible with his characterization of verbs as convex regions of vectors from one point to 
another. 
 

 
16 For a summary of the properties of a weighted conceptual space, see Okabe et al. (1992, pp. 120-123). One of 
those properties is that the regions resulting from a multiplicatively weighted Voronoi tessellation do not need to 
be convex (as shown in Fig. 4), or even connected; and that they can also contain holes. Additionally, according 
to this kind of approach, the region associated with a particular concept Ci will be convex if and only if the 
weights of all its adjacent regions are smaller than wi (in Fig. 4 that is the case of the region associated with the 
prototype P). 
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8.1 On the convexity of properties and concepts 
 
One of the most recent papers co-authored by Gärdenfors (Fiorini et al. 2014) provides a de-
tailed description, absent from previous work, of the inner workings of conceptual spaces. In 
that paper, Gärdenfors and collaborators represent the inner structure of the APPLE concept by 
the product space resulting from the properties in those quality domains that form such a con-
ceptual space (as shown in Fig. 5). 

APPLE space

color space

red

green

shape space

epicycloidx

taste space

x
sweet

sour

texture space

smoothx

nutrition space

nutritivex

 

Fig. 5  Inner form of the APPLE conceptual space, as a product space of different quality properties. The APPLE 
space is represented by the bigger rounded rectangle. Properties (such as red, green, epicycloid, etc.) are convex 
regions represented by the ellipses; for example, the property GREEN corresponds to a convex region of the color 
space, or color domain. Quality domains (such as color, shape, taste, etc.) are represented by the smaller round-
ed rectangles. (Adapted from Fiorini et al. 2014, p. 132) 

Difficulty 1  Some of the properties are not convex. 

This difficulty could be summed up as follows. There are non-convex physical properties, and 
it is not easy to conceive a convex approach for the representation of some of those non-
convex properties. The first point is largely uncontroversial, given that the physical shape of 
many objects is not convex, as happens with the shape of an apple. 

With regard to the shape properties, Gärdenfors proposes different models for representing 
them, suitable for different kinds of shapes. Nevertheless, none of them is proper for the char-
acterization of general shapes and, in particular, for a convex representation of the shape of an 
apple, as it will be shown in the following points: 

(A) The approach followed to represent rectangles (Gärdenfors 2000, pp. 93-94; 2014, pp. 
35-36) by the conditions satisfied by their quadruples of points in R2 can only be applied 
to very basic geometrical shapes (not including the epicycloid). 

(B) The model proposed for the analysis of general shapes (Gärdenfors 2000, pp. 95-96; 
2014, pp. 121-122), based on the work of Marr & Nishihara (1978), could be more or 
less applicable to the case of the shapes of animals, as a combination of cylinders (asso-
ciated with their different parts) together with information about how those cylinders are 
joined, but not to the shapes of arbitrary objects. 

 Therefore, neither of these two models allows us to represent the shape of an apple, dis-
tinguishing it from the shape of a lemon, pear or melon. And, although the second is 
useful for characterizing movements and actions, neither of them is compelling as a 
model for general shapes. 

(C) Thirdly, his approach to locative prepositions (Gärdenfors 2014, pp. 205-214) leads to 
an accurate formalization of the meaning of near, far, inside, outside, beside, etc. in 
terms of a polar coordinate system. In light of this, it seems that Gärdenfors' aim is to 
transfer how these prepositions are applied to shapes in the physical world, to the shapes 
of their associated conceptual spaces17. And the same can be said regarding to his de-
scription of the meaning of bumpy, as a structure in physical space constituted by "an 

 
17 The problem is that, for the convexity constraint to be met by the regions characterizing these prepositions, the 
convexity of the objects to which they apply is necessary. 
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even (but continuous) distribution of values on the vertical dimension of a horizontally 
extended object" (Gärdenfors 2014, p. 246). 
However, a direct translation of shapes from the physical space to a convex representa-
tion within a conceptual hyperspace is only possible if the shape of the considered ob-
ject is convex. The problem is that the shape of many objects is not convex, as happens 
with the EPICYCLOID18 for the case of apples. An epicycloid is a plane curve generated 
by the path of a point on a smaller circle (with radius r) as that circle rolls around a 
larger fixed circle (with radius nr, where n is an integer). The epicycloid is given by the 
following parametric equations: 

( ) ( 1)cos cos[( 1) ]
( ) ( 1)sin sin[( 1) ]

x r n r n
y r n r n

θ θ θ
θ θ θ

= + − +
= + − +

 

An apple shape could be associated with an epicycloid with a value of n equal to 1 or 2 
(see Fig. 6). 

(a) (b)

 
Fig. 6  Epicycloid curves representing the ideal two-dimensional (2D) contour of an apple. The apple's 
ideal shape will be the three-dimensional (3D) surface resulting from the rotation of any of these curves 
around the horizontal axis. a Epicycloid curve with ratio n = 1. b Epicycloid curve with ratio n = 2 

 
Nonetheless, neither of these 2D curves (and consequently, none of their associated 3D 
surfaces) is convex, because in both cases it is possible to find pairs of points within the 
regions they bound such that some points between them do not belong to the same re-
gion. 

Finally, this problem extends from the apple example to many other object categories whose 
shapes are not convex. And, although the fact that Gärdenfors is not able to provide a method 
for the convex representation of non-convex shapes (such as the shape of an apple) does not 
constitute a proof that no method exists, it is an evidence for the difficulty of conceiving a 
natural way of representing a non-convex shape by means of a convex conceptual region. 

Difficulty 2  The conceptual region resulting from the combination of convex properties (be-
longing to the same domain) can be non-convex. 

This characterization of the APPLE space sheds a great deal of light on how conceptual spaces 
are supposed to work internally, especially regarding the following point: different properties 
in the same domain can be associated with the same concept (for example, the properties RED 
and GREEN in the color domain, or SWEET and SOUR in the taste domain, for the case of the 
APPLE concept). 

Here the problem is that two properties from the same domain (RED and GREEN, for in-
stance) cannot be composed into a product space. Let us recall here that the product space, P, 
of a set of constitutive properties Q1, Q2, …, Qn, is equal to the set of objects19 belonging 

 
18 Although Fiorini, Gärdenfors & Abel describe the apple's shape as a cycloid, in fact the shape corresponds to 
an epicycloid. 
19 It may be thought that the conceptual space P was equal to the (not a) set of objects belonging simultaneously 
to Q1, Q2, …, and Qn. However, that is not the approach followed by Gärdenfors (2014, p. 29), who accepts the 
possibility of a non-rectangular conceptual space, which does not contain the whole set of points belonging sim-
ultaneously to all its constitutive properties (as is the case of the graphs shown in Fig. 8). That is the reason why 
the following logical conditions are necessary, but not sufficient. 
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simultaneously to Q1, Q2, …, and Qn. For instance, if the APPLE space were constituted only 
by the shape and texture spaces previously shown, then a particular object would be an apple 
if it were EPICYCLOID and SMOOTH. Or, from a logical point of view, for an object to be cate-
gorized as an apple, it is necessary (but not sufficient) that the following conjunction of prop-
erties is satisfied over those quality domains: 

EPICYCLOID SMOOTH( ) ( )shape texture= ∧ =  

All this works if the properties considered belong to different domains. The problem is that 
when two (or more) properties belong to the very same domain, they cannot be composed into 
a product space, because in this case the product space would not include the desired set of 
objects. For instance, if we now included the color domain for the case of the APPLE concept, 
the resulting product space would have to satisfy the condition: 

1 2RED GREEN EPICYCLOID SMOOTH( ) ( ) ( ) ( )color color shape texture= ∧ = ∧ = ∧ =  

This condition would certainly include all the red-and-green apples20, but not the green (but 
not red) apples, nor the red (but not green) apples. This is so because the kind of composition 
required when two or more properties belong to the very same domain is not their product 
space, but their addition space, that is, the region resulting from the union of the regions asso-
ciated with those properties. This kind of composition could be identified with a logical dis-
junction, so the condition associated with the APPLE space could be better expressed (with a 
unique color dimension) as: 

RED GREEN EPICYCLOID SMOOTH[( ) ( )] ( ) ( )color color shape texture= ∨ = ∧ = ∧ =  

The problem is that the conceptual space resulting from the addition of the RED and GREEN 
properties is not convex, given that the ORANGE color establishes a discontinuity between 
them; as is obvious from their representation in the color spindle (Fig. 7). Consequently, the 
resulting color space (associated with the APPLE concept) is not convex. 
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Fig. 7  Representation of the color spindle and its constitutive dimensions: hue, intensity and brightness. The re-
levant colors for the examples provided are denoted by their initials: R = red, G/G' = green, O = orange, Y = 
yellow, W = white, B = black. (Adapted from Churchland 2005, p. 536).  

 

 
20 At the expense of considering two different color dimensions (color1 and color2) as constitutive of the APPLE 
conceptual space, given that if both color dimensions were the same, the set of objects satisfying this condition 
would be void. Here I will not enter into the discussion of the problems associated with such implications. 
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An even clearer case would be that associated with the SWAN conceptual space, which would 
be constituted (following Gärdenfors' approach) by the product space resulting from a set of 
properties in the quality domains color, shape, etc. In this case, two different properties 
(BLACK and WHITE) are represented in the color domain. Those two properties should be rep-
resented by convex regions (in fact, points) within the color domain, but there is no path with-
in the color spindle between them that only passes through points representing the colors of a 
swan. In this case, the combination of the BLACK and WHITE properties determines a discon-
nected region, so it cannot be convex (or even star-shaped)21. 

Difficulty 3  The space resulting from the covariation of convex regions can be non-convex. 

As I say above, the conceptual space, P, resulting from a set of constitutive properties Q1, Q2, 
…, Qn can be non-rectangular when P does not contain all the points simultaneously belong-
ing to its quality dimensions (see footnote 19). In this case Gärdenfors mentions the work of 
Adams & Raubal (2009, p. 258), who showed that the region associated with the MOUNTAIN 
concept (constituted by the width and height dimensions) might not be rectangular, but trian-
gular: 

If a formation is very high, its width will not matter much; it will still be a mountain. How-
ever, a lower and very wide formation might not be called a mountain. Thus, the region in 
the product space that represents mountain has more or less a triangular shape. (Gärdenfors 
2014, p. 29) 

The point is that behind this last statement there is an implicit assumption regarding the fact 
that dimensions must co-vary in a convex way (which would be guaranteed if the conceptual 
space associated with MOUNTAIN were triangular). However, things could be different, since 
the conceptual space resulting from the combination of several convex regions (associated 
with properties that are individually convex in their respective domains) could be non-convex. 
For instance, in Adams & Raubal's previous example, the covariation between the width and 
height dimensions might not be triangular and convex, but non-standard triangular and, there-
fore non-convex (as shown in Fig. 8). 
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Fig. 8  Two different ways in which the covariation between the width and height dimensions of the MOUNTAIN 
conceptual space can happen. a Convex covariation may result in a triangular, and convex conceptual region. b 
Non-convex covariation may produce a non-standard triangular (with a concave curve as the hypotenuse), and 
therefore non-convex, conceptual space 

 
Moreover, given that neither Adams & Raubal nor Gärdenfors provides any reason for the 
convex covariation of dimensions (or against their non-convex covariation), the convexity of 
the resulting conceptual space is not guaranteed. 
 

8.2 On the compatibility of the convexity of properties and verbs 
 

 
21 Therefore, the SWAN conceptual space is a problem for any theory which attributes a mandatory character to 
the connectedness requirement for the geometry of conceptual regions. Obviously, this applies to any criterion 
stronger than the connectedness one (as is the case with the star-shapedness and convexity requirements). 
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Lastly, when Gärdenfors extends his conceptual space theory to the semantics of verbs, such 
an extended framework introduces a general problem (which could be described as structural). 
It is associated with his definition of verbs, and closely related to his basic conception of 
property. In this case, the problem is that his characterization of verb meanings, as vectors 
from one point to another, is not compatible with a definition of properties and concepts in 
terms of convex regions. 

In his extended theory, Gärdenfors identifies states and changes with zero and non-zero 
vectors; and based on them he defines events as changes in the state of a patient (usually due 
to the action of an agent). The problem is that, strictly speaking, states and changes cannot be 
identified with single vectors or points if properties are not represented by points, but by (al-
legedly) convex regions. In virtue of this, states should be represented by regions; and chang-
es therefore ought to be represented by sets of vectors from every point in the region associat-
ed with the initial property, to every point in the region associated with the final property. 

The same can be said with regard to the result vectors associated with a given verb. 
Gärdenfors defines a verb as a change in the properties of an object; that is, as a movement in 
its representation within the conceptual space. Based on this, such a change is represented by 
means of a vector from the position of the initial object to that of the final object. However, 
and given that a state is, in fact, not represented by a point (but by the region associated with 
the property described by such a state), a verb cannot be represented merely as a vector (or a 
mapping from one point to another), but must be represented as a mapping from one region to 
another. 

Thus, a verb should be represented not by a vector (or convex set of paths, with only one 
origin and one endpoint), but by a set whose elements are convex sets of paths (each with a 
different origin and/or end). In this case, the trouble is that it is not clear that this last set is 
convex. This is the case because the same doubts that Gärdenfors and collaborators raise in 
their discussion of the convex character of the regions associated with events, would also ap-
ply to the case of verbs, defined as mappings from one region to another: 

[T]he question of when a mapping function from a convex set of force vectors to a convex 
set of result vectors can itself be described as convex is complicated. (Warglien et al. 2012, 
p. 166) 

 

9 Conclusions 
 
One of the main theses of Gärdenfors' (2000, 2014) conceptual space theory is the convexity 
constraint on the geometry of the conceptual regions associated with properties, concepts (or 
object categories), actions, verbs, prepositions and adverbs. Nonetheless, in this paper I have 
shown that such a convexity constraint is problematic; both from a theoretical perspective, 
and with regard to the inner workings of the theory itself. 

On the one hand, I have been shown that none of Gärdenfors' arguments in favor of the 
convexity requirement compels us to accept it as a mandatory criterion for the geometry of 
regions. [1] With regard to his first argument, everything that can be said concerning the co-
implication of the prototype theory and the convexity of regions, could also be said regarding 
the star-shapedness constraint on regions. [2] In relation to the cognitive economy argument, 
it depends on the controversial assumption that handling convex regions requires fewer com-
putational resources than handling regions with capricious forms. [3] Regarding the perceptu-
al foundation argument, it relied on the hypothesis that perceptual and conceptual domains 
share the same geometrical structure, which might not be the case. [4] Finally, his argument 
concerning more effective communication is based on studies that assume the standard Eu-
clidean metric, so using them to support the convexity constraint falls into petition principii. 

On the other hand, and with regard to the kind of metric underlying conceptual spaces, un-
der the standard Euclidean metric (the metric that Gärdenfors assumes), the convexity of re-
gions would indeed be guaranteed. However, the question regarding the type of metric that 
can underlie conceptual spaces is an empirical one; and all of the evidence provided by 
Gärdenfors in support of the standard Euclidean metric is controversial. Firstly, and due to the 
co-implication between integral domains and the Euclidean metric, it is not possible to sup-
port the latter by the former. In fact, both should be demonstrated by experience. Secondly, 
the empirical evidence referred to in favor of the integral character of domains (and, in conse-
quence, in favor of the Euclidean metric and the convexity of regions) comes from a very 
small number of perceptual domains; things might not work in exactly the same way in other 
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perceptual and in non-perceptual domains. Thirdly, none of the work cited identifies integral 
domains with the Euclidean metric perfectly, but rather with a metric that is more similar to 
the Euclidean one than to the city-block metric; and such a kind of metric does not lead to 
convex conceptual regions22. Due to all of this, if the metric underlying conceptual spaces 
were standard, it may be that it would not be Euclidean in a strong sense; and in that case, it 
has been shown that the convexity constraint on regions is not valid. 

Additionally, it has been proved that, even if the metric underlying conceptual spaces were 
Euclidean, regions could be non-convex if the distances-of-comparison in categorizations 
were differently weighted; depending, for example, on the number of exemplars on which 
each concept is based. That is, convexity is guaranteed only under the standard Euclidean 
metric: not under a non-standardly weighted Euclidean metric. The problem is that, even if 
the psychological space is Euclidean, there are good reasons in favor of a non-standard multi-
plicatively-weighted determination of distances; under which, conceptual regions could be 
non-convex. 

Finally, even if none of the above problematic possibilities were the case, Gärdenfors' con-
vexity constraint is brought into question by his own characterization of the inner workings of 
conceptual spaces. The problems could be summed up as follows. [I] Some of the allegedly 
convex properties of concepts are not convex, as happens with those associated with the shape 
domain, and it is not clear how they could be represented in a convex way. [II] The conceptu-
al region resulting from the combination of two (or more) convex properties belonging to the 
same domain can be non-convex, and the same happens for its associated concept. [III] The 
space resulting from the covariation of different convex regions could be non-convex; as a 
theoretical possibility that needs for more empirical research. [IV] Gärdenfors definition of 
verbs, as vectors from one point to another, is not compatible with a definition of properties 
and concepts in terms of convex regions. 

Based on all this, I conclude that the mandatory character of the convexity requirement for 
regions in any similarity space theory of concepts (and so in Gärdenfors' conceptual spaces) 
should be reconsidered, in favor of a weaker constraint, such as a non-obligatory version of 
the star-shapedness constraint. Notwithstanding, this paper should not be seen as a defense of 
the star-shapedness requirement (or at least, not as an argument for it to be taken in isolation), 
given that such a constraint has its own problems, most of which are not mentioned here23. 
 

Appendix  
 
This appendix proves the relationship that exists between the prototype theory of concepts and 
the star-shapedness of conceptual regions. In it, I will show that if the prototype theory of 
concepts holds, then conceptual regions must be star-shaped. To that end, I prove that inside a 
conceptual space characterized by a general Minkowski metric (with a parameter 1p ≥ ), if an 
object O belongs to a particular concept C (whose associated prototype is denoted by P), then 
all the points between O and P will also belong to C. 

Let O be the point representing a given object within a conceptual space as just described, 
and C the region representing a certain concept whose prototype is located at the point P. Let 
us call ( , )c X R  the circle with center X and radius R based on a general Minkowski metric 
with parameter 1p ≥  (Fig. 9 shows unitary circles for different values of p). 

p→∞p = 4p = 2p = 1p = 0.5p = 0.25

 

 
22 As always happens when the underlying metric is not very close to the standard Euclidean one. 
23 These problems would nonetheless, also be associated with the convexity constraint (given that every convex 
region is also a star-shaped region). 
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Fig. 9  Unitary circles for different Minkowski metrics, associated to distinct values of the parameter p (includ-
ing some values less than 1) 

 
Based on all of this, if an object O belongs to the concept C, it means that within the circle 

( , )c O OP  (where OP is the distance between the object O and the prototype P24) there is no 
other prototype25 Q. This is so because if such a prototype Q existed, then O would belong to 
the concept associated with Q, and not to the concept associated with P. 

Let A be a given point located on the segment connecting O and P, that is, A OP∈ , and let 
( , )c A AP  be the circle with center A and radius AP. If it were possible to prove that this last 

circle is included within ( , )c O OP , that would imply that there is no other prototype Q within 
the circle ( , )c A AP  (given that there is no such prototype within ( , )c O OP ). So, consequent-
ly, every point, A, located between an object O and the prototype P associated with the con-
cept C it belongs to should also belong to C. Therefore, all we have to prove is that the fol-
lowing relationship is satisfied: 

( , ) ( , )c A AP c O OP⊆  

Without loss of generality, let us take the point O as the coordinate origin. Every point K be-
longing to the circle ( , )c A AP  is represented by a vector equal to the sum of the vectors OA


 

and AK


, whose lengths are OA and AK, respectively. Given that K belongs to ( , )c A AP , it 
holds that AK AP≤ . Meanwhile, Minkowski's inequality for norms leads to the triangle ine-
quality for Lebesgue spaces pL  (as considered here):   || || || || || ||p p pf g f g+ ≤ + , when 1p ≥ . 
That means that the length of the sum of two vectors is not longer than the sum of the single 
vector lengths, which, in this case, implies that: 

|| ||   || || || ||OA AK OA AK+ ≤ +
   

 

And given that, as previously shown, AK AP≤ , this last expression can be transformed as 
follows: 

|| ||   || || || ||   || ||OA AK OA AP OP+ ≤ + =
    

 

Therefore, every point belonging to the circle ( , )c A AP  will also belong to the circle 
( , )c O OP . Consequently, every point K located between a given object O and the prototype P 

(of the concept C to which O belongs), will also belong to the concept C associated with P. 
So, as we set out to prove, if the prototype theory of concepts holds, then conceptual regions 
must be star-shaped. 
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