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 A B S T R A C T

A novel time-domain approach to the characterization of the forces induced by a pedestrian is proposed. 
It focuses on the vertical component while walking, but thanks to how it is conceived, the algorithm can 
be easily adapted to other activities or any other force component. The work has been developed from 
the statistical point of view, so a stochastic data-driven model is finally obtained after the algorithm is 
applied to a set of experimentally measured steps. The model is composed of two mean vectors and their 
corresponding covariance matrices to represent the steps, as well as some more means and standard deviations 
to account for the step scaling and double support phase, under the assumption that the random variables 
follow normal distributions. Velocity and step length are also provided, so the model and the latter data enable 
the realistic generation of virtual gaits. Some application examples at different walking paces are shown, in 
which comparisons between the original steps and a set of virtual ones are performed to show the similarities 
between both. For reproducibility purposes, the data and the developed algorithm have been made available.
1. Introduction

Walking is quite a complex process that involves numerous human 
abilities, such as balance and force, required to make a person advance 
while overcoming gravity, terrain irregularities, and air friction. This 
process is activated not only for traversing straight paths, but also for 
making closed turns, avoiding obstacles, and going up and down stairs 
or slopes. The movement is produced by the force that people develop 
with their feet and legs. The forces exerted on the ground to facilitate 
movement are typically called Ground Reaction Forces (GRFs) and have 
three components [1]: a longitudinal one, which propels the person 
forward; a transversal one, associated with the natural sway movement 
occurring during the transition from one foot to another; and a vertical 
one, linked to the pedestrian’s weight and the feet leaving and returning 
to the ground. The complexity of walking makes it a non-deterministic 
action, meaning the forces developed in a particular step under certain 
circumstances are statistically similar but not identical to those of the 
previous or next step, making accurate modeling and prediction chal-
lenging  due to the necessity of not neglecting the natural randomness 
of gait. Characterizing this action is crucial in areas such as biomechan-
ics, physiotherapy, and structural engineering. Biomechanics examines 
limb interaction for movement like walking, aiding applications such as 
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artificial motion replication [2] and risk assessment related to specific 
movements [3]. Physiotherapy focuses on walking disorders, diagnosed 
through force measurements over time [4]. Structural engineering, in 
turn, analyzes human-induced forces on the ground, with particular 
interest in the dominant vertical component of the GRF and its inherent 
variability, which this study focuses on in particular.

Many authors have dealt with the characterization of walking 
forces in several ways. Racic et al. [1] presented a comprehensive 
state of the art on this topic and divided the main techniques used 
to model the GRFs into two categories: time-domain and frequency-
domain techniques. Time-domain techniques use the registered time 
series directly to estimate model parameters, typically mathematical 
expressions based on periodic functions, with amplitudes, frequencies, 
and phases optimized to represent the measured data. The model can 
also include velocity or step length. There are two approaches in the 
time domain: deterministic, where parameters are fixed values, and 
stochastic, where parameters are described by probability density func-
tions to account for variability. On the other hand, frequency-domain 
techniques compute the frequency content and energy distribution 
across a frequency band of interest. The algorithm developed in this 
work is framed within time-domain techniques. After [1], more works 
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focused on developing stochastic methodologies and algorithms to 
model the GRFs accurately that account for their randomness have 
been proposed. Racic et al. presented several works where vertical 
GRFs were modeled in various situations: in [5] for walking, in [6] 
for running, and in [7] for bouncing. These all used Auto Spectral Den-
sity techniques, applying Gaussian functions to preserve the random 
nature of the forces, avoiding the deterministic Fourier decomposition 
method that assumes a perfectly periodic signal. These approaches have 
resulted in robust stochastic models capable of reproducing the de-
scribed actions, as well as step-by-step variability of a single individual, 
although they do not explicitily account for the potential difference 
between the forces of each foot analyzing each time series individually, 
which may have an influence in the reproduction of the resultant 
action.

In the same way, other authors such as Pancaldi et al. [8], presented 
a time-domain stochastic model for GRFs and a simplified version for 
comparison. The study uses both Fourier series and random variables 
to approximate a step: the first models step shape accurately, while the 
second assumes a constant force during each step and zero between 
steps. Continuous forces are obtained by summing individual steps. 
Peters et al. [9] recovered the Fourier decomposition of the vertical 
force and, by means of a Bayesian and frequentist approach and using 
a significantly large experimental dataset, proposed a stochastic model 
of these forces. The previous works were developed assuming that 
pedestrians walk on a rigid surface and, as the previous ones already 
cited, do not explicitily account for potential forces variability across 
feet. The work of Ahmadi et al. [10] proposed a novel set up, combining 
the GRFs measurement with the structural response, in order to show 
how the structural vibration affects the way people walk, as well as 
demonstrating the existence of a significant human–structure interac-
tion, something that should not be disregarded when human loading is 
to be applied on a slender structure with low natural frequencies.

Recently, a time-domain approach based on physical models, rather 
than purely mathematical ones, has also been developed. Cacho and 
Lorenzana [11] and Lin et al. [12] presented a bi-pedal mechanical 
model with mass, springs, dampers, and dynamic forces, adjusted to 
replicate in some way human-like GRFs. The first was theoretical, while 
the second used registered data for fitting. Kumar et al. [13] proposed 
a single-degree-of-freedom oscillator model to replicate human motion. 
Similarly, Wang et al. [14] developed a mass–spring-damper model fit-
ted to data from instrumented insoles for walking and bouncing actions. 
Koshio et al. [15] applied Inertial Measurement Units and a 3D forward 
dynamics model in sports activities. These studies demonstrated that 
simple mechanical systems can effectively reproduce pedestrian GRFs 
and their properties. The need for modeling pedestrians as a walking 
mechanism stems from the concept of human–structure interaction, 
where understanding the GRFs is crucial for analyzing the effects 
on structures. Nevertheless, although these works are interesting and 
robust, they mostly treat GRFs as deterministic and symmetric actions, 
which has already been identified as a limiting factor for a rigorous 
modeling of human gait.

Finally, optimization techniques and Machine Learning models have 
also been explored to enhance the modeling and prediction of GRFs in 
human walking. These methods have been applied to datasets in order 
to capture patterns in gait data, achieving high accuracy in GRF predic-
tion under varying conditions. These models can complement physical 
models, offering improved adaptability to different scenarios [16,17]. 
These algorithms have shown good capabilities in generating virtual 
gaits that match experimental and reference data.

Considering all the topics discussed previously, this paper proposes 
a time-domain method for characterizing the forces exerted by a pedes-
trian while walking, focusing on the vertical component but adaptable 
to others. A stochastic, data-driven model is developed from experimen-
tally measured steps without using Fourier decomposition or Gaussian 
approximations, and preserving the walking action’s randomness. Each 
foot’s GRF is processed individually, with the resultant total action 
2 
evaluated at the end, taking into account explicit differences across 
feet. The method detects and characterizes steps from raw force data, 
deriving mean vectors and covariance matrices for each foot, assum-
ing a multivariate normal distribution. This enables the generation of 
random steps through a purely data-driven stochastic procedure. Mean 
values and standard deviations represent step scaling and the double 
support phase as univariate normal distributions, enabling virtual GRF 
generation. Examples of applications at different walking paces are 
provided, comparing the original data with the virtual steps.

The document is organized as follows: this Section 1 is devoted to in-
troducing the topic and providing a thorough state of the art; Section 2 
briefly presents the human gait and sets up some terminology used 
throughout the article; Section 3 presents the methodology, including 
how the experimental data were gathered and the algorithm required 
to process all the data; Section 4 describes the results of the application 
examples in terms of the characteristics of the statistical model and 
the virtual forces for the walking paces analyzed; finally, Section 5 
summarizes the main conclusions. The end of the document is devoted 
to the acknowledgments and references.

2. Brief description of human gait and terminology

Before addressing the methodology, the main concepts and termi-
nology associated to human gait are briefly presented in this section 
in order to ease the necessary descriptions in the following ones. As 
presented in the introduction, walking is a highly complex process that 
involves several human abilities. As a consequence, although trying 
to walk similarly, every individual gait is different. Nonetheless, some 
general characteristics are shared among a wide range of pedestrians 
when walking, and they are described here.

Walking is a four-phase process that periodically repeats in the so-
called gait cycle. Fig.  1 shows a schema of those four phases and an 
example of the vertical forces that are being induced on the floor. 
During two phases, the double support or double limb phases (first and 
third in the schema), both feet are in contact with the floor. The first 
one starts with the left heel striking the floor and ends with the right 
toe off. The third stage happens in the exactly opposite way, with the 
right heel striking the floor and ends with the left toe off. In between, 
two swing or aerial phases occur: during the second phase the right 
foot is not in contact with the floor; while during the fourth phase, it 
is the left foot which is swaying in the air.

The typical vertical GRFs applied during a gait cycle are shown 
under the walking schema in Fig.  1. As can be seen, in both left and 
right feet forces, a local maximum (𝑃1) is found right after a heel 
strikes the floor, a process during which a significant fraction of the 
body weight is loaded on that foot for a very short time. Another 
local maximum (𝑃3) occurs during a toe off due to the impulse made 
by that foot to keep the forward movement. A local minimum (𝑃2) 
is found between both maxima. Regarding the resultant force, which 
is the effective force applied on the ground by the pedestrian, it is 
important to note that the greatest maxima (𝑃4) occur when both 
feet are in contact with the floor. The height of the peak is closely 
related to the double support time, i.e., the time both feet forces 
overlap: 𝑡𝑅𝐿 when the left foot force starts before the right foot force 
ends, or 𝑡𝐿𝑅 in the opposite scenario. This occurs twice per gait cycle 
and is responsible for the primary frequency component of this force, 
which is the walking pace (steps/min), or walking frequency (Hz). 
Note that this description is valid for a comfortable walking of healthy 
pedestrians [18]. Other walking conditions, actions (such as running 
or bouncing), or pedestrian diseases may alter this schema, which the 
authors will explore in future works.
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Fig. 1. Example of left (blue) and right (red) vertical GRFs together with the sum of both (black), the four phases of the gait cycle and the overlapping time variables 𝑡𝑅𝐿 and 
𝑡𝐿𝑅.
Fig. 2. Overview of the developed algorithm.
3. Methodology

This section is devoted to presenting the proposed methodology and 
how the experimental data for the application examples are registered. 
As stated in the introduction, the main objective of this work is to de-
velop an algorithm aimed at processing the experimental data gathered 
while a pedestrian is walking in order to model it, so similar virtual 
forces can be generated.

Fig.  2 shows an overview of the developed algorithm. As can be 
seen, it is divided into a total of four stages: a pre-processing stage to 
clean the data; an automatic step detection process, to avoid an analyst 
to mark when every step starts and ends; the step characterization, to 
obtain the stochastic model of the left and right feet separately; and an 
overlap characterization, focused on obtaining two statistical models of 
the double support phase times, 𝑡𝐿𝑅 and 𝑡𝑅𝐿 separately. Each stage is 
detailed in subsequent sections.

3.1. GRF measurement

In this work, the vertical GRFs are measured by means of a pair of 
instrumented insoles. Several solutions have already been used by other 
authors, such as force plates [3,8,19], which do not allow forces to be 
continuously measured while walking along a path, or instrumented 
treadmills [6,20,21], which are quite bulky, expensive and complicated 
to calibrate and set up. This equipment is regarded as the gold standard 
in accuracy and test-retest reliability for GRF measurement. However, 
in addition to the previously aforementioned limitations, it is also 
restricted to controlled laboratory settings, which may influence and 
cause an pedestrian’s gait to differ from the natural walking pattern in 
uncontrolled environments.

The selection of the instrumented insoles addresses the necessity of 
measuring GRFs over a complete and relatively long path, in a situation 
as close as possible to a natural, uncontrolled setting, and with accept-
able accuracy compared to force plates and treadmills. Initially, custom 
insole-like devices were developed [22], but modern commercial so-
lutions, such as the Loadsol® insoles from Novel GmbH (Fig.  3(a)), 
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now offer an acceptable performance at reasonable prices. Provided 
in pairs, these insoles measure the resultant vertical force exerted by 
the foot and transmit data via Bluetooth to a smartphone datalogger 
at a sampling rate of 100 S/s. In this work, they are worn inside 
the footwear, with the battery and communication unit conveniently 
attached using the built-in clamping device (Fig.  3(b)).

The Loadsol® insoles have been validated for measuring vertical 
GRFs during activities such as walking and running, demonstrating a 
high correlation with force plate measurements, as well as good test-
retest reliability. Additionally, studies comparing these insoles with the 
aforementioned force plates report mean biases of 0.6% to 3.4% and 
Intraclass Correlation Coefficients up to 0.97 [23,24], demonstrating an 
acceptable precision, though not superior to gold standard equipment. 
However, their ability to measure forces in real environments like 
flexible structures, in a situation as natural as possible, can compensate 
for potential deficiencies.

The registered data are used in this work to show how the algorithm 
is applied and the quality of the model that can be expected. In the next 
subsections, the algorithm is explained and application examples with 
real data are provided in Section 4. For reproducibility purposes, both 
the data and the algorithm are available online at [25].

3.2. Pre-processing

Both vectors representing the forces exerted by each foot are pro-
cessed separately. Only one pre-processing operation is considered in 
this work, which is a selection of the relevant data; although more could 
be obtained if required, such as detrending or filtering. The type and 
number of pre-processing operations depend on several factors, such 
as data quality, type of test or special conditions, which may affect the 
expected force shape described in Section 2. The goal is to clean and 
prepare the data in order to ease the next stages.

The selection process is a manual stage intended to remove spurious 
forces caused by movements different from walking that can typically 
be found at the beginning and ending of the raw recorded data. The 
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Fig. 3. (a) Loadsol® Instrumented insoles and (b) Example of instrumented insoles usage.
final data arrays should contain as many consecutive steps as possible. 
Otherwise, the developed algorithm and the statistical analysis may not 
provide meaningful results. This task is usually performed by manually 
setting a time interval [𝑡𝑚𝑖𝑛, 𝑡𝑚𝑎𝑥] during which the relevant data 
have been recorded and any data falling outside that time interval are 
discarded.

3.3. Step detection

After the data to be analyzed have been selected, the algorithm 
starts by identifying the steps taken by each foot. The detection algo-
rithm is applied to both vectors separately and it provides two output 
vectors per foot: one with the specific samples at which every step starts 
and another with the samples at which every step finishes. To do so, 
a flag (true/false) is raised based, on a four-samples window, which is 
moved sample by sample along the vector under analysis: the window 
can be said to be inside a step if the flag is set to true, or outside if 
the flag is set to false. For the 𝑖th window 𝑤𝑖 = [𝑤𝑖1, 𝑤𝑖2, 𝑤𝑖3, 𝑤𝑖4], with 
𝑖 > 1, a step is detected when it meets the following conditions:

• The previous window, 𝑤𝑖−1, was outside a step (the flag was set 
to false)

• Its elements monotonically increase, so 𝑤𝑖1 < 𝑤𝑖2 < 𝑤𝑖3 < 𝑤𝑖4
• The value of its first sample is above a previously determined 
threshold (𝑤𝑖1 ≥ 𝐹𝑡ℎ)

If the three conditions are met, the flag is set to true: 𝑤𝑖1 is saved as 
the step’s starting sample, and the current and subsequent windows are 
marked as part of the detected step. Fig.  4(a) shows an example where 
the flag is set to false at the beginning. The window composed of the 
samples 1, 2, 3 and 4 does not monotonically increase, so it does not 
activate the detection flag. The samples 4, 5, 6 and 7 monotonically 
increase, but the first sample is below the specified threshold. The step 
is detected, and the flag is set to true, by the window formed by the 
samples 5, 6, 7 and 8, while sample 5 is saved as the starting one for 
that step. The window formed by the immediately following samples 
are said to be inside the step so, even if they monotonically increase 
and the first sample is above the threshold, a new step is not detected 
as the first condition is not met.

The end of a step is detected similarly. The 𝑖th window 𝑤𝑖 =
[𝑤𝑖1, 𝑤𝑖2, 𝑤𝑖3, 𝑤𝑖4] must satisfy these conditions in order to set the flag 
to false:

• The previous window must be inside the step (flag equals true)
• Its elements monotonically decrease, so 𝑤𝑖1 > 𝑤𝑖2 > 𝑤𝑖3 > 𝑤𝑖4
• The fourth element of the window must be below the threshold, 
𝑤 ≤ 𝐹
𝑖4 𝑡ℎ
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When a window satisfies the conditions, the flag is set to false; the 
fourth element of the window, 𝑤𝑖4, which is the one right below 𝐹𝑡ℎ, 
is saved as the ending sample. An example is also shown in Fig.  4(b), 
where the flag is set to true at the beginning. The window composed 
of the samples 2, 3, 4 and 5 meets the previous criteria, so sample 5 is 
saved as the last sample of the current step and the flag is set to false. 
The next windows are considered to be outside the step, so eventually 
a new step could be detected some samples later.

Note that the threshold value 𝐹𝑡ℎ is required in order to avoid issues 
associated with noise around 0 N, mainly caused by sensor noise. The 
value of this threshold should be higher than the sensor noise, but small 
enough to lose as few samples as possible at the start and end of the 
detected steps. In this regard, a value of 20 N is used. Note that losing 
some extreme points may make the steps look shorter than they actually 
are and may affect the modeling of the double support phase. In the 
next section, a way to overcome this issue is proposed.

3.4. Step characterization

Once the steps are detected, they are isolated, scaled, and resampled 
to ease the subsequent statistical analysis.

3.4.1. Segmentation
The complete set of samples for each step is extracted from the 

original force vectors using information from the previous section. 
Each step 𝑖 may have a different number of samples 𝑛𝑖, resulting in 
varying durations. Additionally, the 𝑛𝑖 samples may not correspond 
to uniform relative time intervals. Fig.  5 illustrates this: the black 
continuous line represents the true force at the start of the step, while 
the blue, red, and green points represent different discretizations. Due 
to discretization and threshold-based detection algorithm, the initial 
sample appears slightly after the step onset, varying across discretiza-
tions (e.g., 14.070 s for blue, 14.073 s for red, and 14.067 s for green), 
leading to inaccuracies in step duration and double support times 𝑡𝐿𝑅
and 𝑡𝑅𝐿.

To address this issue, a technique based on extrapolation is pro-
posed. The core concept is to extrapolate the first and last few samples 
to estimate the time instants at which the step force reaches 0 N, de-
noted as 𝑡∗0 at the beginning and 𝑡∗𝑒𝑛𝑑 at the end. The symbol ∗ indicates 
that these values are approximations. While not exact, this method 
improves upon assuming the step begins and ends at the first and last 
recorded samples. The proposed extrapolation uses the first and last 
four samples and applies a linear extrapolation that reaches 0 N (non-
linear methods might yield curves that fail to cross the horizontal axis). 
Fig.  5 illustrates this process: the blue points are linearly extrapolated 
to provide a better estimate of the step start time (𝑡 ≈ 𝑡∗ = 14.064 s) 
0 0
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Fig. 4. (a) First samples of a step and (b) last samples of a step with a threshold of 𝐹𝑡ℎ = 20 N (100 S/s).
Fig. 5. Various discretizations of the same step (100 S/s) and extrapolation of the blue 
one to estimate its start.

compared to the first detected sample at 14.07 s. As a result, two 
artificial samples are added to each step: (𝑡∗0 , 0) and (𝑡∗𝑒𝑛𝑑 , 0). The total 
duration of the 𝑖th step is then estimated as 𝛿∗𝑖 = 𝑡∗𝑒𝑛𝑑,𝑖 − 𝑡∗0,𝑖.

Before proceeding with the scaling and resampling procedures, an 
initial selection of steps is needed. As previously mentioned, individual 
steps differ and, statistically, some steps may be significantly less 
representative than others. Including all steps in the analysis, regardless 
of their significance, could result in stochastic models that fail to 
accurately characterize how a person walks. Therefore, it is crucial to 
identify and remove less significant steps prior to stochastic character-
ization. Two criteria are proposed for marking steps for removal: one 
based on step duration and another based on step shape.

Regarding the duration, which is assumed to be a normally dis-
tributed random variable (this assumption will later be validated with 
real data), outliers are identified using the associated quartiles (Q1 
at 25%, Q2 at 50%, and Q3 at 75%) and the interquartile range 
(IQR = Q3 − Q1). In this study, outliers are defined as steps with 
durations exceeding 1.5⋅IQR above the upper quartile Q3 or below the 
lower quartile Q1. For reference, in the case of symmetrical normal 
distributions, this corresponds to excluding values outside the range 
±2.698𝜎𝛿 around the mean 𝜇𝛿 . Notably, this criterion is independent 
of the specific shape of the step force and can be applied universally, 
regardless of the type of activity being analyzed (e.g., walking, running, 
etc.).

Finally, concerning the shape of the step and referring to the general 
description in Section 2, walking steps typically exhibit two relative 
maxima and an intermediate local minimum. The second criterion for 
marking steps for removal involves verifying the presence of these 
three elements. Numerous algorithms exist for identifying local maxima 
in numerical data, while the intermediate minimum can be located 
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by finding the maximum of the negative series of data between the 
two preceding maxima. To be deemed significant, a step must contain 
exactly these three elements, and each element must not be an outlier 
of its own distribution; otherwise, it is marked for removal before sta-
tistical modeling. This outlier detection method is applicable only when 
measuring the vertical GRFs of healthy people walking comfortably. For 
other cases, where different shapes are expected, the detection criteria 
should be adapted or the outlier removal process omitted.

3.4.2. Step scaling and resampling
Each step has an estimated duration 𝛿∗𝑖  and a different number of 

samples 𝑛𝑖. Before performing the statistical analysis, it is necessary to 
standarize all steps to have the same duration and number of samples. 
Each step is normalized by subtracting the initial time value, 𝑡∗0, from 
all time values and dividing by the total duration. As a result, all steps 
start at 𝜏 = 0 and end at 𝜏 = 1. The scaling factors, 𝜆𝑖,𝐿 for left and 
𝜆𝑖,𝑅 for right steps, are recorded for stochastic modeling. To recover 
original durations, the normalization is reversed using the mean values 
(𝜇𝜆,𝐿, 𝜇𝜆,𝑅) and standard deviations (𝜎𝜆,𝐿, 𝜎𝜆,𝑅) of the assumed normal 
distributions (validation in Section 4) of each foot individually.

Once steps have the same duration, the sample number issue is 
addressed through interpolation. By fixing the first and last sam-
ples at (0,0) and (1,0), 𝑁 points are interpolated between the orig-
inals. All steps are then resampled with the same number of points 
(𝑁1 = 𝑁2 = ⋯ = 𝑁). Cubic Hermite interpolation, ensuring 𝐶1 conti-
nuity, i.e., continuity and interpolation up to the first derivative of the 
interpolated sample, is used to preserve the step shape. The resulting 
steps share the same sample count between (0,0) and (1,0).

3.4.3. Stochastic modeling of the steps
With the previous stages completed, the statistical model represent-

ing one foot’s steps is obtained. Each of the 𝑁 samples from the 𝑚
resampled steps is treated as a stochastic variable with 𝑚 observations 
(one per step). Assuming all variables are dependent, generating new 
steps requires using a multivariate random number algorithm to gener-
ate all points simultaneously. As described in [26], the model is based 
on the means of each variable and the covariance matrix. The diagonal 
elements represent the variances, while the off-diagonal elements show 
how they relate to each other. Thus, the means of the 𝑁 variables 
for each foot, 𝜇𝐿 or 𝜇𝑅, and the covariance matrices, 𝑆𝐿 or 𝑆𝑅, are 
computed and saved as two 𝑁-dimensional stochastic models, one per 
foot. Separate models are necessary if gait symmetry is not assumed, 
allowing individual analysis of each foot’s GRF. Fig.  6 summarizes the 
methodology presented in this and the previous subsections.

Finally, the resampled steps can be randomly divided into two 
sets following this strategy: one subset is used to obtain the statisti-
cal model, while the other is reserved to validate the generation of 
virtual steps afterwards. This division ensures that the model is built 
independently of the validation process, allowing for an assessment of 
its accuracy in terms of geometry and shape of the virtual steps, as well 
as generalization to unseen data. This is done in Section 4.
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Fig. 6. Overview and summary of the step characterization methodology for each foot.
3.5. Double support characterization

The model obtained after applying the algorithm described in Sec-
tion 3.4 represents the right or left steps separately, but it does not 
account for how they relate to each other. After the vector containing 
the forces is segmented to isolate the steps, the double support times, 
𝑡𝐿𝑅 and 𝑡𝑅𝐿, are no longer represented in the data being processed. As 
stated in Section 2, this variable is crucial if the resultant GRF is of 
interest, since it is closely related to the maxima of the resultant force 
that a pedestrian applies to the ground while walking. To start with, 
the data recorded by each separate insole must be synchronized with 
each other. This is ensured, if not done automatically by the datalogger, 
using trigger signals at the beginning of each walk.

The double support time is not constant over time, but a random 
variable that needs to be characterized. In order to do so, the starting 
and ending times for each step estimated in Section 3.4 are used to 
calculate how much time both feet are on the ground, as shown in 
Fig.  7. This can be done by subtracting the start time, 𝑡∗0, of a certain 
step taken with one foot from the ending time, 𝑡∗𝑒𝑛𝑑 , of the previous 
step taken with the other foot. Eq. (1) represents more precisely the 
mathematical definition of the double support times 𝑡𝐿𝑅 and 𝑡𝑅𝐿, where 
the letters 𝐿 and 𝑅 have been appended to the subscripts of 𝑡∗0 and 𝑡∗𝑒𝑛𝑑
to refer to the left and right foot, respectively. 
𝑡𝐿𝑅 = 𝑡∗𝑒𝑛𝑑,𝐿 − 𝑡∗0,𝑅
𝑡𝑅𝐿 = 𝑡∗𝑒𝑛𝑑,𝑅 − 𝑡∗0,𝐿

(1)

Multiple values for 𝑡𝐿𝑅 and 𝑡𝑅𝐿 are computed, and all steps are 
included in this process, even those marked as outliers in the preceding 
stages. Since there is a strong relationship between the duration of the 
double support phase and the main peak of the resultant GRF (𝑃4 in 
Fig.  1), a very short overlapping time would result in unrealistically 
low peaks, while an excessively long overlap time would lead to 
unrealistically high peaks. To address this issue, a simple yet efficient 
strategy is incorporated into the methodology.

1. The main peaks of the resultant force are calculated and stored 
for each double support phase. Both LR and RL phases are 
identified after labeling overlapping times using Eq. (1)

2. Peaks are analyzed for misdetections (absent values) or out-
liers (using the IQR method). Overlapping times producing such 
situations are removed

3. A new IQR-based outlier removal is applied with times associ-
ated with atypical peaks (low or high) already excluded

Double support times 𝑡𝐿𝑅 and 𝑡𝑅𝐿 are assumed to be properly 
represented by a normal distribution and their corresponding means 
(𝜇𝐿𝑅 and 𝜇𝑅𝐿) and standard deviations (𝜎𝐿𝑅 and 𝜎𝑅𝐿) are computed in 
order to obtain the sought stochastic models.
6 
3.6. Virtual GRF generation

The stochastic model obtained in the previous section is composed 
of the following:

• Means, 𝜇𝜆,𝐿 and 𝜇𝜆,𝑅, and standard deviations, 𝜎𝜆,𝐿 and 𝜎𝜆,𝑅, of 
the scaling factors of left and right feet (Section 3.4.2)

• Two mean vectors, 𝜇𝐿 and 𝜇𝑅, and the corresponding covariance 
matrices, 𝑆𝐿 and 𝑆𝑅, that account for the individual steps (left 
and right separately). The size of this model is 𝑁 , the number of 
samples in which the steps have been resampled (Section 3.4.3)

• Means, 𝜇𝐿𝑅 and 𝜇𝑅𝐿, and standard deviations, 𝜎𝐿𝑅 and 𝜎𝑅𝐿, of 
the double support times (Section 3.5)

The total number of variables (𝑇𝑉 ) that the model comprises of, 
and the corresponding total number of parameters (𝑇𝑃 ), are given in 
Eq. (2). Each scaling factor and double support time represent a single 
random variable with two associated parameters (𝜇) and (𝜎), leading 
to a fixed total of 4 variables and 8 parameters. Since the size of each 
step model is 𝑁 , an additional 2𝑁 random variables are introduced (left 
and right feet). The minimum number of unique parameters associated 
with these variables is 2𝑁 + 𝑁(𝑁 + 1), as the covariance matrix is 
square and symmetric (𝑁 × 𝑁), and each random variable of the 
multivariate distribution has a mean (all gathered together in mean 
vectors of length 𝑁). Taking this into account, 𝑁 has to be chosen 
in order not to oversize the model, while also ensuring that there is 
sufficient information available. 

𝑇𝑉 = 4 + 2𝑁

𝑇𝑃 = 𝑁2 + 3𝑁 + 8
(2)

The virtual GRF generation is divided into two stages: step gen-
eration and step concatenation. By means of a multivariate normal 
distribution generation algorithm, a set of 𝑁𝑔,𝐿 + 𝑁𝑔,𝑅 steps are first 
generated, 𝑁𝑔,𝐿 for the left and 𝑁𝑔,𝑅 for the right foot. This stage makes 
use of the mean vectors, 𝜇𝐿 and 𝜇𝑅, and their corresponding covariance 
matrices, 𝑆𝐿 and 𝑆𝑅. In this work, the algorithm programmed in the 
MATLAB function mvnrnd() is used for the task. Note that, as a 
consequence of how the stochastic model has been obtained, the virtual 
steps are normalized in time, so they all cover the range between 
𝜏 = 0 and 𝜏 = 1. To solve this, the minimum common number 
𝑁𝑔 = min

(

𝑁𝑔,𝐿, 𝑁𝑔,𝑅
) of pseudo-random numbers are generated by 

using the means 𝜇𝜆,𝐿 and 𝜇𝜆,𝑅, and standard deviations, 𝜎𝜆,𝐿 and 𝜎𝜆,𝑅, 
associated to the scaling factors. Normalization is then reversed by 
using those numbers, one per step, so each step now has a different 
duration (𝑡𝐿,𝑖 for the left steps and 𝑡𝑅,𝑖 for the right ones).

The resulting steps are then concatenated. The virtual double sup-
port time between two consecutive steps (LR and RL) is generated 
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Fig. 7. Example of overlapping time of the double support phase for the two scenarios, LR and RL (100 S/s).
Fig. 8. Example of virtual GRF generation (100 S/s) with the order in which virtual steps are sorted (pink).
through their means, 𝜇𝐿𝑅 and 𝜇𝑅𝐿, and standard deviations, 𝜎𝐿𝑅 and 
𝜎𝑅𝐿. The overlap values are used to assign the starting time for each 
step based on the time at which the previous step ends. More specifi-
cally, as shown in Fig.  8, the first step is assigned to start at 𝑡 = 0. It 
ends at a certain time, 𝑡 = 𝑡𝐿,1. The second step, which is taken by the 
other foot, is assigned to start at 𝑡 = 𝑡𝐿,1 − 𝑡𝐿𝑅,1, where 𝑡𝐿𝑅,1 is the first 
virtual 𝑡𝐿𝑅 overlapping time. The process is repeated until 2𝑁𝑔 steps 
(𝑁𝑔 of each foot) have been assigned a starting and ending time in a 
global time axis, common to both left and right feet.

GRFs have uneven time vectors, since each step has a different 
time increment (as a consequence of reversing their scaling, keeping 
the same number of samples per step) and the time it takes from the 
end of one step and the beginning of the next one is notably greater. 
To fix this, both vectors are resampled simultaneously in order to 
share a common time axis. It is important to note that the new values 
interpolated between two consecutive steps made by the same foot need 
to be zero. These points are associated to the swing phase of the walking 
process, and the force made by that foot in that situation is zero by 
definition (Fig.  1).

As a result of the previous process, two new vectors with virtual 
GRFs are generated. These forces are statistically similar to the ones 
used to obtain the stochastic model, so they are assumed to be similar 
to the forces that the pedestrian who generated the original data 
7 
may induce. Note that the model associated to a specific pedestrian 
may change due to several factors: walking pace, type of shoes, floor 
vibration level, accompanying people, etc. One different stochastic 
model should be available for each different situation, leading to a high 
amount of information to be handled. In this work, only the possibility 
of changing the walking pace is illustrated.

4. Application examples

This section is devoted to showing and discussing the results ob-
tained after applying the described methodology to a set of registered 
steps at different walking paces. With the obtained models, virtual GRFs 
are generated and compared with the experimental ones to show the 
goodness of the developed algorithm.

4.1. Measured signals and testing protocol

The data were recorded using the insoles described in Section 3.1 
and Fig.  3, worn by a 55-year-old healthy male (93.3 kg, common med-
ical scale, 177 cm in height). The pedestrian walked at four different 
paces (steps/min): 110, 120, 130, and 140, assisted by a digital portable 
metronome. Trials were performed on a 𝐿 = 100 m straight, obstacle-
free path. The recorded data consist of two force vectors (one per foot) 
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Table 1
Walking paces and their corresponding average velocities and step lengths in the 
conducted trials.
 Pace (steps/min) Freq. (Hz) Velocity (m/s) Step length (m) 
 110 1.82 1.19 0.654  
 120 1.99 1.37 0.688  
 130 2.15 1.63 0.758  
 140 2.32 1.77 0.763  

Fig. 9. Example of recorded resultant force (110 steps/min).

sampled at 100 S/s, with consecutive points separated by 𝛥𝑡 = 0.01 s. 
As the insoles are synchronized, the 𝑖th samples from both vectors are 
assumed to occur simultaneously.

The testing protocol involved the pedestrian wearing the insoles and 
calibrating them individually for each foot at the beginning of the first 
trial (110 steps/min) using the previously measured body weight. At 
the start of each trial, data recording was initiated, and the pedestrian 
walked the 100 m path. Upon reaching the end, the recording was 
stopped and the data saved. After a 2 min rest period, the pedestrian 
performed another trial, increasing the walking pace by 10 steps/min. 
Additionally, for synchronization purposes, the start and end of each 
trial were marked with a small trigger (a light static jump) applied 
simultaneously with both feet. Average velocities and step lengths are 
presented in Table  1 and were estimated for each walking pace as 
follows: 

1. Average velocity was calculated as 𝑣 = 𝐿∕𝑡, where 𝑡 is the total 
trial duration, while frequencies correspond to the first harmonic 
(𝑓0) of the resultant GRF’s Fast Fourier Transform

2. Average step length for both feet was computed by obtaining the 
ratio between estimated walking velocity and walking frequency 
(𝑣∕𝑓0)

After pre-processing the vertical GRF signals to make a first selection 
of the relevant data (Section 3.2), a total of 560 steps were detected 
(see Table  3), with both 76 left and right foot steps at 110 steps/min, 
followed by 73 left and 72 right at 120 steps/min. At 130 steps/min, 66 
left and 67 right steps were logged, and 65 for each foot at the fastest 
trial (140 steps/min). Since 𝐿 is fixed at 100 m, the number of steps 
decreases as the rate increases. Each trial is analyzed and processed 
individually. Fig.  9 illustrates a detail of the recorded left and right 
GRFs at 110 steps/min and the corresponding resultant force, where 
the peaks during the double support phase are well visible.

4.2. Stochastic model

The recorded force vectors are processed as described in Section 3.3. 
The threshold is set at 20 N, with steps starting when the 4-sample 
8 
Table 2
Shapiro–Wilk normality test results (𝛼 = 0.05) for step durations.
 Walking pace 𝑝-value 𝑊

 (steps/min) 𝛿∗𝐿 𝛿∗𝑅 𝛿∗𝐿 𝛿∗𝑅  
 110 0.6411 0.3726 0.9862 0.9818 
 120 0.04883 0.9841 0.9656 0.9939 
 130 0.2657 0.2181 0.9767 0.9766 
 140 0.01749 0.1804 0.9531 0.9743 

window exceeds this value, and ending when the last sample is slightly 
below 20 N.

Segmented steps are first extended by extrapolating the first and 
the last four samples to find the times at which the force equals 0 N. 
As stated in Section 3.4, this is necessary to improve their duration 
estimation and better model the double support time. Most steps now 
start at a negative relative time (𝑡∗0 < 0 s), but this is easily corrected 
by summing 𝑡∗0 to all the values in the time vector. In any case, it is 
now easier to estimate the step duration by subtracting the estimated 
starting time value 𝑡∗0 from the end time value 𝑡∗𝑒𝑛𝑑 . In addition, note 
that any outlier step has not yet been removed. Fig.  10 depicts the 
steps at 110 steps/min with the duration outliers marked for removal. 
For example, Fig.  10(a) depicts 4 left steps that last significantly more 
than the others (𝛿∗ > Q3+1.5 ⋅ IQR), while one step lasts significantly 
less (𝛿∗ < Q1-1.5 ⋅ IQR). In Fig.  10(b), 2 steps are longer than usual 
and one is shorter. The first step detected in both feet is not plotted for 
representation purposes, as its 𝑡∗0 makes it a clear outlier.

After removing the duration outliers (first stage of the outlier re-
moval process), histograms of the associated step duration of each 
foot are shown in Fig.  11. Each random variable is assumed to fol-
low a normal distribution, so this hypothesis is now tested using the 
Shapiro–Wilk normality test (MATLAB function available at [27]) in 
order to generate the required pseudo-random values for all the walking 
paces, not just the one at 110 steps/min used as an example here. 
The test results are shown in Table  2, by means of the correspond-
ing 𝑝-values, test statistics (𝑊 ), and a standard significance level of 
𝛼 = 0.05. Results show that most of the step duration data follow 
a normal distribution (𝑝-Value > 𝛼), with some close but bearable 
exceptions at 120 and 140 steps/min (left steps).

The next modeling stage consists of the step normalization, which 
transforms the absolute time axis [𝑡∗0 , 𝑡∗𝑒𝑛𝑑 ] into a relative one [𝜏 =
0, 𝜏𝑒𝑛𝑑 = 1]. The scaling factor is the inverse of the step duration and 
it is modeled through its mean (𝜇𝜆,𝐿 for the left steps and 𝜇𝜆,𝑅 for the 
right steps) and standard deviation (𝜎𝜆,𝐿 and 𝜎𝜆,𝑅). These values are 
useful for generating the necessary pseudo-random values to reverse 
the normalization of virtual steps.

A second outlier removal stage is performed by checking, step by 
step, the proper presence of two local maxima and intermediate local 
minimum. Furthermore, the steps whose maxima or minima values 
are significantly different from the others are also treated as outliers. 
Fig.  12 shows the identified local maxima and the intermediate local 
minimum for both left and right feet at 110 steps/min. In all of the 
proposed trials at different walking paces, all of the steps possess both 
local maxima and the local minimum, so no step has been removed for 
that reason. However, some values fall outside the acceptation bounds, 
which are defined as 1.5⋅IQR under Q1 and above Q3. Table  3 shows 
the remaining steps at each walking pace after the outlier removal 
process. Taking into account this stage, the final normal parameters 
of the scaling factors (and Shapiro–Wilk test results) are presented 
in Table  4. Note that normality test results differ from the ones in 
Table  3 for 𝛿∗, since now the scaling factors associated to the shape 
outliers have been removed. Except a slight discrepancy for 𝜆𝐿 at 
140 steps/min, the whole data set is inside test limits.

Now, the remaining steps, which share a common normalized time 
axis but differ in the number of samples, are resampled (Hermite 
interpolation, Section 3.4.2) to make all their points share the same 𝑁
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Fig. 10. Steps extended up to the 0 N value and duration outliers (110 steps/min): (a) left steps; (b) right steps.
Fig. 11. Histograms and normal distributions of step durations (110 steps/min): (a) left steps; (b) right steps.
Fig. 12. Detected local maxima and minima with outliers (110 steps/min): (a) left steps; (b) right steps.
timestamps, which are fixed at a total of 50. The latter value has been 
chosen because of the insoles sampling rate (100 S/s), which implies 
that all steps originally have approximately less than 70 samples (this 
number decreases once the walking pace increases), so 𝑁 = 50 makes 
it a good choice to ensure enough points without oversizing the model 
in terms of the variables and parameters used (Section 3.6 and Eq. (2)). 
Table  5 shows a comparison of the different increasing values of 𝑁 and 
9 
the corresponding number of variables (𝑇𝑉 ) and parameters (𝑇𝑃 ). Since 
the dependence of 𝑇𝑃  with 𝑁 is cuadratic, higher values of 𝑁 must be 
avoided for a simpler model.

Each sample, at a certain relative time 𝜏, can be considered as 
an observation of the random variable associated to that instant. Fig. 
13 shows an example of how these variables must be interpreted. In 
the horizontal plane, the normalized and resampled steps associated 
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Table 3
Number of steps after each outlier removal stage, shown as left–right (L-R).
 Pace (steps/min) Original Stage 1 Stage 2 
 110 76–76 70–73 63–63  
 120 73–72 71–69 62–65  
 130 66–67 64–65 59–54  
 140 65–65 63–63 57–58  

Fig. 13. Example of five distributions at five normalized time instants associated to 
the left steps (110 steps/min).

to the left foot (110 steps/min) are plotted. For an example of five 
different relative time instants of the whole 𝑁 points, the associated 
histograms are plotted to show how each set of samples can be modeled 
by means of a normal distribution, with their own mean and standard 
deviation values. Furthermore, the mean, median and quartiles Q1 and 
Q3 are computed. Fig.  14 shows these values for the left steps at 110 
steps/min, where now only approximately 70% of the total steps after 
the full outlier removal are used to generate the stochastic model, so 
shape can be graphically tested later with the rest of the unseen step 
data (as stated in Section 3.4.3). This is replicated for each walking 
pace. The mean and median values are very close to each other, a sign 
of the distribution symmetry. In addition, both quartiles Q1 and Q3 
are relatively close to the mean and median values, indicating narrow 
distributions, something that can also be appreciated in Fig.  13.

As mentioned in Sections 3.4 and 3.6, the entire set of 𝑁 variables 
that describe the steps of one foot is treated as a multivariate normal 
distribution. This means that each variable is correlated with the others, 
and when generating random steps, all the samples must be generated 
together. If virtual steps were generated sample by sample, unrealistic 
noise would occur because each sample could deviate from its mean 
independently of neighboring samples. Therefore, generating all the 
samples simultaneously avoids this issue. To fully describe the multi-
variate normal distribution, the set of mean values for each variable 
must be obtained, and the covariance matrix, rather than standard 
deviations or variances, needs to be computed. This matrix is square, 
with dimensions equal to the number of samples in the resampled 
normalized steps, 𝑁 . Fig.  15 checks the normality hypothesis for each 
of the 𝑁 variables, foot and walking pace, by means of the correspond-
ing 𝑝-values after testing with the Shapiro–Wilk normality test. The 
majority of the variables are found to follow a normal distribution (𝑝
above 𝛼).

Now, Fig.  16 shows representations of the covariance matrices, 
𝑆𝐿 and 𝑆𝑅, associated to the left and right feet of all the examples, 
where each pixel is associated to a matrix value. Red represents strong 
dependencies between variables, something that typically occurs during 
the first (lower left corner of Figs.  16(a) to 16(d)) and ending samples 
of the step (upper right corner of Figs.  16(c) and 16(d)). As can be 
10 
Fig. 14. Statistical description of the normalized and resampled left steps 
(110 steps/min).

seen, differences arise between both feet and the different walking 
paces, which allows us to conclude that there exists differences between 
both feet of this specific pedestrian, since the GRF shape is not the 
same for both. To give additional evidence of this, Fig.  17 depicts a 
graphic comparison between the means of the model, showing higher 
peaks and deeper valleys once the walking pace increases, something 
that is directly related to the covariance scale, which is different for 
each trial. Note that the proposed method is fully compliant with these 
differences.

The presented mean value vectors and covariance matrices consti-
tute a complete model of a multivariate normal distribution that can 
be used to generate virtual steps, as done in  Section 4.3. In order to 
generate complete virtual GRFs and compute their sum, the double 
support time needs to be characterized as a final task for the stochastic 
modeling, as stated in Section 3.5. This is done by calculating the time 
both feet are on the ground simultaneously for each pair of left–right 
(and right-left) steps. For each phase, the mean and standard devia-
tion are computed to form the model for generating pseudo-random 
values after outliers are removed, including those associated with the 
main peaks of the GRF. Fig.  18 shows example histograms of the 
double support phase durations (110 steps/min), which are modeled 
as normally distributed. As before, the Shapiro–Wilk normality test 
results (for 𝑡𝐿𝑅 and 𝑡𝑅𝐿) are provided in Table  6, where means and 
standard deviations are also indicated. Once again, results show that 
most data exhibit behavior consistent with normality, though some 
deviations occur (at 130 steps/min, 𝑡𝑅𝐿 shows significant deviation, 
𝑝 = 0.001221 and 𝑊 = 0.9281). Despite this, and along the same lines 
as the previous random variables, normal behavior across different 
conditions is found, suggesting that the data can generally be modeled 
by normal distributions.

4.3. Virtual forces

The stochastic models obtained in the previous section are now 
used to generate new, virtual steps and GRFs in order to compare 
them to the experimental ones. First, virtual steps at each walking 
pace are randomly generated by using a multivariate algorithm like 
the one programmed in the mvnrnd() function, using the calculated 
means and covariance matrices. The number of normalized virtual steps 
differ for each walking pace, since a different number of experimental 
steps were reserved for testing their shape (70% for modeling, rest for 
graphical comparison). So, the number of virtual steps corresponds to 
approximately 30% of the original remaining, 𝑁𝑔,𝐿 and 𝑁𝑔,𝑅. This is 
depicted in Figs.  19(a) to 19(h).
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Table 4
Shapiro–Wilk test results (𝛼 = 0.05) for scaling factors and normal distribution parameters.
 Walking pace 𝑝-value 𝑊 𝜇𝜆 𝜎𝜆
 (steps/min) 𝜆𝐿 𝜆𝑅 𝜆𝐿 𝜆𝑅 𝜆𝐿 𝜆𝑅 𝜆𝐿 𝜆𝑅  
 110 0.6159 0.4356 0.9846 0.9809 1.464 1.457 0.02026 0.02558 
 120 0.1552 0.7756 0.9713 0.9899 1.603 1.596 0.02601 0.02300 
 130 0.2251 0.2344 0.9735 0.9735 1.762 1.761 0.02649 0.02442 
 140 0.0151 0.2966 0.9460 0.9758 1.896 1.901 0.04055 0.04011 
Fig. 15. Shapiro–Wilk test results (𝛼 = 0.05) for step modeling variables (𝑁 = 50): (a) left steps; (b) right steps.
Fig. 16. Covariance matrices for each foot and walking pace (𝑁 = 50 samples/step, ≈70% of the steps).
s
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As can be seen, the set of new steps are all different from each other, 
ut resemble the original ones in the overall shape, including the slight 
lope changes at the beginning, mainly caused by the heel striking the 
loor. Now, scaling of the normalized virtual steps set is possible by 
eversing the generated scaling factors from their normal distributions, 
f

11 
o virtual step durations are achieved for both left and right feet. 
dditionally, concatenation of 2𝑁𝑔 steps (𝑁𝑔 = min(𝑁𝑔,𝐿, 𝑁𝑔,𝑅)) is 
ade by using two sets of double support time values (left–right 𝑡𝐿𝑅
nd right-left 𝑡𝑅𝐿). The resulting GRFs are summed and the resultant 
orce is obtained. In Fig.  20, the virtual force is compared with the 
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Fig. 17. Comparison between step model means for each walking pace: (a) left steps (𝜇𝐿); (b) right steps (𝜇𝑅).
Fig. 18. Histograms and normal distributions of the double support times (110 steps/min): (a) 𝑡𝐿𝑅; (b) 𝑡𝑅𝐿.
Table 5
Increase (%) in 𝑇𝑉  and 𝑇𝑃  for different values of 𝑁 , with 50 as a reference.
 𝑁 𝑇𝑉

𝑇𝑉 − 𝑇𝑉 ,50

𝑇𝑉 ,50
 (%) 𝑇𝑃

𝑇𝑃 − 𝑇𝑃 ,50
𝑇𝑃 ,50

 (%) 
 50 104 – 2658 –  
 100 204 96.15 10308 287.81  
 200 404 288.46 40608 1427.77  

experimental one for each walking pace, where virtual GRFs are finally 
adjusted to the original insoles sampling rate (100 S/s). Only a 5 s zoom 
is shown for clarity once both time signals have been phase-aligned. Ad-
ditionally, the differences presented before while creating the stochastic 
models are also present here, since the resultant GRF peaks do not show 
the same behavior for the two possible double support phases, and the 
virtual forces account for this.

Time-domain virtual signals resemble the pattern presented in Fig. 
9. Fig.  21 shows the corresponding Fourier amplitude spectra, where 
12 
several prominent peaks can be seen at the fundamental walking fre-
quency 𝑓0 and its harmonics (2𝑓0, 3𝑓0, 4𝑓0, etc.). Finally, Table  7 
shows a numeric comparison between peak frequencies obtained from 
both virtual and experimental transforms at each walking pace, show-
ing a good match between both with the majority of the errors below 
2%.

5. Conclusions

This paper proposes a time-domain method for characterizing the 
forces exerted by a pedestrian while walking, focusing on the ver-
tical component, but adaptable to other components and activities. 
Consequently, an efficient stochastic, data-driven model has been de-
veloped from experimentally measured steps without using Fourier 
decomposition or Gaussian approximations. The method/algorithm de-
tects and characterizes steps from the raw force data vectors of each 
foot individually, deriving mean vectors and covariance matrices for 
each foot, assuming a multivariate normal distribution. This enables 
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Table 6
Shapiro–Wilk test results (𝛼 = 0.05) for double support times and normal distribution parameters.
 Walking pace 𝑝-value 𝑊 𝜇𝐷𝑆 𝜎𝐷𝑆

(

×10−3
)

 (steps/min) 𝑡𝐿𝑅 𝑡𝑅𝐿 𝑡𝐿𝑅 𝑡𝑅𝐿 𝑡𝐿𝑅 𝑡𝑅𝐿 𝑡𝐿𝑅 𝑡𝑅𝐿  
 110 0.5857 0.4936 0.9856 0.9845 0.1424 0.1345 8.755 11.11 
 120 0.9797 0.3579 0.9937 0.9806 0.1282 0.1225 9.001 8.954 
 130 0.4171 0.001221 0.9800 0.9281 0.1113 0.1018 6.621 6.312 
 140 0.1065 0.03666 0.9668 0.9572 0.0978 0.09791 8.822 9.063 
Fig. 19. Graphical shape comparison between virtual steps and the remaining experimental ones.
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Table 7
Peak frequencies of both experimental and virtual GRFs for each walking pace in steps/min.
 Experimental (Hz) Virtual (Hz) Error (%)
 110 120 130 140 110 120 130 140 110 120 130 140  
 𝑓0 1.82 1.99 2.15 2.32 1.82 1.99 2.15 2.32 <0.01
 2𝑓0 3.69 3.97 4.36 4.63 3.64 3.97 4.29 4.63 1.36 <0.01 1.61 <0.01 
 3𝑓0 5.51 6.01 6.51 7.01 5.51 6.01 6.57 7.01 <0.01 <0.01 0.922 <0.01 
 4𝑓0 7.38 8.00 8.72 9.33 7.33 8.00 8.72 9.26 0.682 <0.01 <0.01 0.750 
Fig. 20. Comparison between the experimental vertical resultant GRFs and the virtual ones (100 S/s).
 
 

 
 
 

 
 
 
 
 

 
 
 
 

 
 
 

the generation of virtual random steps through a purely data-driven
stochastic procedure. Mean values and standard deviations represent
step scaling and the double support phase as univariate normal distri-
butions, enabling the generation of virtual resultant GRFs. Examples of
applications at different walking paces have been provided, comparing
the original data with the generated steps. For reproducibility purposes,
the data and the MATLAB code have been made available at [25].

The model is composed of two parts: the stochastic model of both
separate feet, required to generate the virtual GRFs made with each
one; and the stochastic model associated to the parameters that describe
the double support phase, necessary to appropriately concatenate the
virtual steps and obtain virtual GRFs. One of the main advantages is
that the algorithm analyzes each foot individually prior to step con-
catenation, something useful when forces differ across feet. Although
it has been developed in the context of a healthy pedestrian walking at
different paces, this methodology could be adapted to other situations
by modifying the step detection and the outlier removal conditions.
Other, not only vertical GRFs, could be modeled and analyzed, corre-
sponding to steps recorded while running, jumping, or performing any
activity that entails a near periodic action of the human locomotion
activities. Biomechanics, sports technology, physiotherapy (specifically
in locomotion disease diagnosis) and structural engineering – including
 

14 
human–structure interaction – are fields of study in which the present 
methodology could be applied in the future.

In developing the stochastic models, normal distributions have been 
used to model the random variables involved. While some deviations 
from normality have been observed after conducting normality tests, 
the majority of the random variables follow normal distributions, al-
lowing the results obtained to remain robust and reliable. However, it 
is important to acknowledge certain limitations. First, the accuracy of 
the instrumented insoles used in data collection could be improved as 
stated in the literature. Second, since normality checking relies on the 
Shapiro–Wilk test conducted only with the present data, a larger dataset 
could further reinforce this assumption. Additionally, some parameters, 
such as the choice of 𝑁 = 50 in step resampling, could potentially 
be refined using proper optimization criteria. As a final remark, please 
note that the stochastic model may differ from the one presented in this 
work if the data are gathered in different conditions. The pedestrian 
may also wear a different footwear, and their biometric parameters 
(height, weight, etc.) may differ. However, although different from the 
results presented here, the resulting stochastic model will accurately 
represent the forces exerted by that pedestrian under those conditions, 
and the forces generated by that model will only reflect that scenario. 
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Fig. 21. Fourier amplitude spectra of both the experimental and virtual GRFs in Fig.  20.
In other words, the validity of the obtained model is restrained to the 
conditions under which the experimental data are registered.
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