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Abstract—Multi-Access Edge Computing (MEC) network 

planning is performed considering a forecast of estimated 
workload in each coverage zone with the aim of offloading 
computationally expensive tasks from user’s devices to the 
nearest MEC Data Center (MEC-DC). Nevertheless, in some 
scenarios, these forecasts are exceeded temporarily due to 
sudden peaks in demand in a determined MEC-DC, making its 
planned computing resources (i.e., MEC servers) scarce, and 
introducing the need of a strategy to face this increment in 
demand. In this paper, we propose and evaluate an Integer 
Linear Programming (ILP) model for optimizing the task 
offloading considering a previously defined MEC network 
topology. Our model is based on the possibility of offloading 
some tasks to MEC-DCs different to the initially planned 
(nearest to the user) one, as long as the latency requirements are 
met, and the allocated server has enough idle computing power. 
Results show that the proposed strategy considerably increases 
the capacity of the network to face sudden workload increments 
compared to an approach that only assigns the nearest MEC 
server to every user. 

Keywords—Resource allocation, computation offloading, 
Multi Access Edge Computing MEC, resource optimization, 
Network operation. 

I. INTRODUCTION 
Multi-access Edge Computing (MEC) [1] networks need 

careful planning before deployment in order to reduce the cost 
and guarantee the technical requirements of the applications to 
be run on the servers. This planning is usually performed based 
on a forecast of how much computing power will be needed in 
a determined zone, and based on this forecast, a MEC Data 
Center (MEC-DC) in a nearby zone is provisioned with the 
required number of servers. Despite these demand forecasts 
are usually accurate enough under normal conditions, there are 
specific scenarios in which the network has to process more 

workload than usual, e.g., social events, concerts, sports 
matches, or any type of crowd. In such cases a static resource 
allocation in which all tasks are offloaded to the nearest MEC-
DC, yields to the overload of this MEC-DC, meaning a high 
number of unsuccessful tasks due to the sudden increment in 
demand. Moreover, since these workload peaks can be 
temporary, it is not convenient to deploy more MEC servers 
just to face these demand increments, hence a cheaper and 
temporary solution must be envisaged. 

Population decreasing is a growing issue in many zones 
around the world, such as some small villages of Spain. In such 
villages this problem is increased given the low offer of some 
services like hospitals, shops, entertainment, and good internet 
connections. The lack of services makes people move away 
from these villages, and the lack of people hinders the 
improvement of the services, producing positive feedback on 
the problem and making it harder to solve. One step towards 
overcoming this issue is to provide these villages with 
communication networks capable of offering last-generation 
services to the local population, as well as to potential visitors. 

When it comes to sparsely populated areas, the network 
resources are planned considering a low workload given the 
low population in the coverage zone. Therefore, it is especially 
important to implement a strategy to face temporary peaks in 
resources demand, allowing to offer stable and reliable 
services in crowdy events and encouraging the realization of 
such events in these zones without a big economic investment 
that is not fully exploited after finishing the event. 

In this paper, we propose and validate a computation 
offloading scheme considering a scenario just like the one 
mentioned above, in which the demand of resources is 
increased in a specific zone of a MEC network in a sparsely 
populated area, causing the nearest MEC-DC to be uncapable 
of handling all the incoming requests. In our proposal, we 
introduce the possibility of allocating resources of a MEC-DC 
different to the closest one to the user. Results show that the 
proposed scheme fulfils the latency constraints of MEC 
services, and considerably increases the success rate of the 
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offloaded tasks compared to the static allocation of only the 
nearest MEC-DC to all tasks. 

II. RELATED WORK 
The computation offloading and resource allocation 

problem in MEC networks has been previously studied. The 
work presented in [2] proposes an offload resource allocation 
algorithm for vehicular networks combining cloud computing, 
mobile edge computing and local computing, aiming at 
minimizing delay. In [3], authors propose a scheme to 
maximize user task completion within a tolerable time period 
while minimizing energy consumption, considering a network 
consisting of only one base station embedded with a MEC 
server, where the scheme determines the portion of the task to 
be offloaded to the server. The problem of computation 
offloading of vehicular applications is modeled in [4], where 
four Deep Reinforcement Learning (DRL) algorithms and four 
heuristics are compared in order to decide where each task 
should be executed. In [5], Lin et al., formulate the 
computation offloading decision making problem as a MEC 
server selection problem, where the objective is to minimize 
the communication cost, defined as both transmitting energy 
consumption and communication delay. The work presented 
in [6] formulate the offloading decision as a multiclass 
classification problem and formulate the MEC resource 
allocation as a regression problem using a multi-task learning 
(MTL) based feedforward neural network (MTFNN) model. 

In this paper, we consider a scenario where the resources 
demand (workload) suddenly increases in specific points of a 
MEC network based on optical-fiber point to point 
connections. This demand increase gives rise to the necessity 
of distributing the additional tasks among different MEC-DCs 
with the aim of maximizing the successfully offloaded tasks 
processed by the limited available resources. This paper 
addresses the mentioned problem considering a sparsely 
populated scenario where a MEC network based on optical 
fiber connections is planned for relatively low workloads. To 
test our proposed scheme, we simulated it over a network 
topology designed using the method proposed in [7], which 
presents a planning strategy for MEC networks in sparsely 
populated areas, minimizing the deployment cost of optical 
connections and MEC servers, and implementing a ring 
topology to interconnect MEC-DCs and the Wide Area 
Network Gateway (WAN Gateway). 

III. MEC RESOURCE ALLOCATION PROBLEM 
In MEC networks, users arrive at a determined time and 

request specific features for their connections depending on the 
service type they plan to use. In our problem definition, we 
consider the latency requirements of each application (user 
service), and the computing capacity that each of them needs.  

Considering a scenario in which there are more users than 
their nearest MEC-DC is capable of attending simultaneously, 
we design an ILP formulation for maximizing the number of 
successfully processed tasks, considering the relation between 
the propagation delay experimented by the user and his latency 
limit. 

The notation used in this model is summarized in Table 1. 
All symbols are parameters (previously known values), except  

𝑆𝑆𝑢𝑢𝑢𝑢 , which is a binary variable (value to be found) and 
represents if a task of user u is successfully performed in MEC-
DC n. 

TABLE 1: MODEL NOTATION 
Symbol Meaning 
𝑁𝑁 Number of MEC-DCs 
𝑈𝑈 Number of users 
𝑧𝑧𝑢𝑢𝑢𝑢 𝑧𝑧𝑢𝑢𝑢𝑢 ∈ {0,1},𝑢𝑢 ∈ [1,𝑈𝑈], 𝑙𝑙 ∈ [1,𝑁𝑁] . If 𝑧𝑧𝑢𝑢𝑢𝑢 = 1 indicates that 

user 𝑢𝑢 is in the local zone of MEC-DC 𝑙𝑙. 
𝐷𝐷𝑢𝑢 Distance limit of user 𝑢𝑢 (kms).  
𝑑𝑑𝑢𝑢𝑢𝑢 Distance in kms between MEC-DC 𝑙𝑙 and MEC-DC 𝑛𝑛. 𝑙𝑙 ∈

𝑁𝑁,𝑛𝑛 ∈ 𝑁𝑁. 
𝐶𝐶𝑢𝑢 Processing capacity (MEC servers) of MEC-DC 𝑛𝑛. 𝑛𝑛 ∈ 𝑁𝑁. 
𝑐𝑐𝑢𝑢 Processing requirement of user 𝑢𝑢. u ∈ 𝑈𝑈. 
𝛿𝛿 Importance factor for relative delay. 
𝑆𝑆𝑢𝑢𝑢𝑢 Binary variable. 𝑆𝑆𝑢𝑢𝑢𝑢 = 1 indicates that the task of user 𝑢𝑢is 

successful at MEC-DC 𝑛𝑛. 

According to the described notation, the objective of the 
formulation is given by (1). In essence we want to maximize 
the successful transmissions given by the sum of 𝑆𝑆𝑢𝑢𝑢𝑢 along all 
users and MEC-DCs. The negative term in the formula aims 
to reduce the relative latency of each task. We define the 
relative latency of a task as the ratio between the distance 𝑑𝑑𝑢𝑢𝑢𝑢 
to the allocated MEC-DC, and the maximum allowed latency 
𝐷𝐷𝑢𝑢 of the task. The parameter 𝛿𝛿 can be set according to the 
level of importance given to the delay compared to the 
successful tasks. 
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And (3)-(5) define the constraints of the model, described 
below. 

 𝑆𝑆𝑢𝑢𝑢𝑢 ∈ {0,1}        ∀ 𝑢𝑢 ∈ 𝑈𝑈,𝑛𝑛 ∈ 𝑁𝑁 
 

(2) 
 

 𝑆𝑆𝑢𝑢𝑢𝑢𝑧𝑧𝑢𝑢𝑢𝑢𝑑𝑑𝑢𝑢𝑢𝑢 ≤ 𝐷𝐷𝑢𝑢      ∀  𝑢𝑢 ∈ 𝑈𝑈,𝑛𝑛 ∈ 𝑁𝑁, 𝑙𝑙 ∈ 𝑁𝑁 
 

(3) 
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According to (2), for each user u and MEC-DC n, 𝑆𝑆𝑢𝑢𝑛𝑛 can 
be either zero or one. Constraint (3) makes sure that for a 
successful task, the distance between the user’s nearest MEC-
DC and the allocated one is not more than the distance limit 
for the specific user application. Constraint (4) states that every 
user will have at most one successful task in only one MEC-
DC. Finally, constraint (5) only allows a task allocation in a 
MEC-DC if the center has enough processing power available. 

IV. CASE STUDY: ALLOCATION IN VALLADOLID PROVINCE 
For testing the model, we used as basis a simulated network 

topology from a previous work [7], this topology is suitable for 
our purpose since it was proposed for a sparsely populated 
area, which is the Valladolid province of Spain, and given that 



it is one of our previous works, we have enough knowledge 
and data about it. Some data about Valladolid province can be 
found in Table 2. Valladolid province has many small villages 
with low population, which make this province a suitable case 
study for studying sudden peaks in networks planned for low 
workloads. In this study we assume that the workload of each 
BSs is proportional to the population near it. We combined a 
population dataset from [8] and a BS’s location dataset from 
[9], and we generated a merged dataset which we used to our 
studies and which is available at [10]. 

For the performed simulations, we assume that a single 
MEC-DC has an overload, while the rest of them have some 
available capacity, hence, the load that cannot be handled 
locally must be forwarded to other locations. Note that both 
the model and the simulation can handle simultaneous 
overload of multiple nodes, but to make the results easier to 
show and interpret, in this paper we only study an example of 
one overloaded node.  

TABLE 2.          VALLADOLID PROVINCE CHARACTERISTICS 

Characteristic Value 
Area (km²) 8111 

Total population 517975 
Main city’s population 295639 
Minimum population 18 
Average population 2314 

Fig. 1 depicts an illustrative example of the load 
distribution scheme. There is a set of Base Stations (BSs), 
some of which are equipped with a MEC-DC and the others 
are connected to the nearest MEC-DC through an optical fiber 
link (blue connections). All BSs with MEC-DCs are connected 
with each other in a ring topology according to [7] (red 
connections). A single node faces an overload (green cross), 
and some other MEC-DCs (green circles) assist in processing 
part of this overload, while some other nodes (red circles) do 
not assist. 

 
Fig. 1. Load distribution simplified scheme 

For the simulation of our proposal, we work over a MEC 
network topology designed by the method proposed in [7] 
when it is configured for a peak capacity of 3% of 
simultaneously connected population. For our tests, we assume 
that 50% of the full capacity of servers is occupied, therefore 

when an overload occurs in one of the MEC DCs, there is 
available computing capacity in other nodes. We generate 
network traffic following a mixed traffic distribution of 70% 
of video traffic, 15% of car traffic, 10% of smart factory and 
5% of augmented/virtual reality, and we used the latency and 
processing requirements of each task type according to [11]. In 
our simulation we consider the propagation latency constraint 
as a maximum distance in kilometers, this value is defined for 
each task type and corresponds to 𝐷𝐷𝑢𝑢  in the formulation 
(Section III). Taking the required computing power of each 
type of task, and assuming that each MEC server can process 
75 simultaneous users under the mentioned mixed traffic 
profile, we obtain the fraction of a server that each task needs, 
which corresponds to the value of 𝑐𝑐𝑢𝑢  in the formulation. A 
summary of the described values can be seen in Table 2. 

TABLE 3.          TASK REQUIREMENTS 

Service 
Requirements 

𝑫𝑫𝒖𝒖  (Maximum 
distance in km) 

𝒄𝒄𝒖𝒖  (Required 
server fraction) 

Vehicle collisions warning 1000 0.00019761 
Video streaming 1000 0.00459559 
Smart Factories 100 0.00889706 
AR/VR 1000 0.18382353 

To implement and test the model, we used the Python-
based Pyomo optimization tool, with the IBM CPLEX 
optimizer. We ran simulations for different values of δ in the 
objective function (1). As explained in Section III, the greater 
the value of δ, the greater is the importance of the delay that 
the system considers. A graphic representation of load 
distribution after applying the formulation with δ=0 is 
presented in Fig. 2. In this test, an overload of 3200 users is 
generated in one MEC-DC (green cross), and this extra load is 
distributed among other MEC-DCs (green circles). In this 
representation the size of green circles is proportional to the 
external load that the respective MEC-DC is processing. In this 
case, all MEC-DCs are collaborating to handle the tasks of the 
overloaded node. A reference of 10 km is shown in the lower 
right corner of the figure to give an idea of the distances 
considered. 

 
Fig. 2. Load distribution for δ=0 



Another graphic result can be appreciated in Fig. 3. This 
time we ran the simulation for δ=5, meaning that the relative 
delay is considered for the optimization. By looking at the size 
of green circles it can be appreciated that the load is more 
concentrated in the MEC-DCs that are near the overloaded 
one, there are even some nodes that are not assisting with the 
overload at all (red points). This is due to the effect of δ, which 
in this case, different from previous one, makes the system to 
prioritize the offloading with shorter distances. 

 
Fig.  3.    Load distribution for δ=5 

Different test results are illustrated in Fig.  4. In the vertical 
axis, the tasks success rate is shown, and the horizontal axis 
includes different values of additional users in logarithmic 
scale. We ran simulations with different numbers of 
additional users (overload) for four techniques: the blue plot 
corresponds to a scheme without collaboration between 
MEC-DCs to handle the overload, in such a way that all BSs 
are only able to offload their tasks to their nearest MEC-DC. 
The network topology we used for our tests has 32 MEC-DCs, 
and we ran a simulation placing the overload in each one of 
them after which we computed the average and the 95% 
confidence intervals, depicted with horizontal bars in figures 
4 and 5. As can be expected, the success rate decreases rapidly 
with the overload increment.  

Results are noticeably different for the other three 
approaches in the figure. Red, green and yellow lines 
represent respectively the results of the ILP formulation for 
δ=0, δ=2, and δ=5. The most remarkable aspect is the 
improvement in success ratio when the formulation for 
collaborative offloading is applied. By the point where the 
additional users are 12800, the success rate of the “Nearest 
MEC” approach, has dropped to nearly zero, while for the 
three cases of the formulation, the success rate has only started 
to decrease. It is also worth mentioning that, as δ increases, 
the success ratio for large amounts of users slightly decreases, 
because the system gives importance to the relative delay, 
sometimes at the expense of successful tasks. 

 

 
Fig.  4.     Success rates vs additional users 

The obtained releative delay after running the simulations 
were measured for each user, and the average of these values 
were calculated. In Fig.  5, the average relative delays for the 
different approaches is shown. The “nearest MEC” approach 
has zero delay because all tasks are processed in the local 
node, but at the expense of considerably less successful tasks 
as we saw in Fig. 4. The different options of the formulation 
present lower delay values as δ increases. Remind that these 
values are relative delays, i.e., the ratio between the obtained 
distance and the maximum allowed, and from constraint (3), 
we know beforehand that all successful tasks fullfill the 
latency requirement, that is why all values in Fig.  4 are 
smaller than one. 

 
Fig.  5.    Average relative delay vs additional users 

 
ILP models solving time increases with the size of the 

problem. In this case, when the number of additional users 
grow, the required time to solve the model is also increased as 
Fig.  6 shows for the different values of δ. Even though all 
options take more time for higher number of users, the model 
with δ=0 presents a notable increment in time against the 
others (note the logarithmic scale in both axis). This result 
suggests that including the delay factor in the objective 



function (making δ>0) is convenient because, at the expense 
of a relatively small decrement in successful rate (Fig.  4), it 
reduces the relative delay (Fig.  5), as well as the solving time 
when the number of additional users is high. 

 
Fig.  6.    Solving time vs additional users 

V. CONCLUSION 
MEC networks are designed to work under determined 

conditions. Regarding computing power (number and capacity 
of servers) there are limitations that essentially depend on the 
estimation of the workload that each MEC-DC will face during 
its operation. However, under some circumstances, the 
estimated workload is exceeded in determined zones of the 
network, e.g., social events or other crowds. These 
circumstances are easier to arise when it comes to sparsely 
populated areas where the networks are envisaged for handling 
a relatively low number of tasks. In this work we designed and 
validated a model in which the MEC-DCs of a previously 
designed network can collaboratively share the excess 
workload in such cases. Results show that the proposed 
approach considerably increases the success rate of tasks when 
an overload occurs in a node of the network, while maintaining 
the latency requirements of MEC applications. Moreover, by 
adjusting one parameter of the system, it is possible to tune the 
importance of the successful tasks against the relative delay. 
The proposal of this paper is developed under the assumption 
that there is a central entity that knows the state of all MEC-
DCs and the requirements of all users, in such a way that this 
entity can solve the ILP model and forward the tasks to the 
more convenient MEC-DC for their processing. ILP gives the 
optimal solution to the problem assuming that the model is 
accurate, however, ILP solving is a time-consuming process, 
hence it is important to pay attention to the delay induced by 
this process for the task completion, especially regarding 
applications requiring a fast response, such as vehicle 
collisions warnings and smart factories. Two aspects are 
proposed for improving the study in future works: First, to 
implement a heuristic technique that guarantees a solution in 
reasonable time, and second, to consider a more realistic delay 
model to consider aspects such as processing and scheduling 
time, rather than only propagation time.  
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