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Abstract

The use of AI-generated content in education is significantly increasing, but its reliability for
teaching natural sciences and, more specifically, biodiversity-related contents still remains
understudied. The need to address this question is substantial, considering the relevance
that biodiversity conservation has on human sustainability, and the recurrent presence of
these topics in the educational curriculum, at least in Spain. The present article tests the
existence of biases in some of the most widely used AI tools (ChatGPT-4.5, DeepSeek-V3,
Gemini) when asked a relevant and objective research question related to biodiversity. The
results revealed both taxonomic and geographic biases in all the lists of endangered species
provided by these tools when compared to IUCN Red List data. These imbalances may
contribute to the perpetuation of plant blindness, zoocentrism, and Western centrism in
classrooms, especially at levels where educators lack specialized training. In summary, the
present study highlights the potential harmful impact that AI’s cultural and social biases
may have on biodiversity education and Sustainable Development Goals-aligned learning
and appeals to an urgent need for model refinement (using scientific datasets) and teacher
AI literacy to mitigate misinformation.

Keywords: AI bias; biodiversity education; endangered species; sustainable development
goals (SDGs); taxonomic bias; geographic bias

1. Introduction
1.1. Artificial Intelligence and Education

The genesis of artificial intelligence (AI) can be traced back to the mid-20th century,
when pioneering figures such as Alan Turing introduced the concept of machines capable
of performing cognitive tasks [1]. The term “artificial intelligence” was officially coined
in 1956, marking the establishment of AI as a distinct field of study [2]. In recent decades,
significant advancements in machine learning algorithms, deep learning techniques, and
access to extensive datasets have contributed to the rapid progress of the field [3]. The
sophistication of AI has reached unprecedented levels, as evidenced by applications such
as ChatGPT, Gemini and, more recently, DeepSeek ([4]; among many others). These
systems exhibit advanced capabilities in human-like interaction, complex reasoning, and
content creation. They are enabled by sophisticated language models that have been
trained on extensive datasets, thereby facilitating a wide range of capabilities, including
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text processing, multimedia generation, and the resolution of complex challenges such as
medical diagnostics, autonomous vehicle navigation, and personalized services [5,6].

In the field of education, the integration of AI has led to significant advancements in
the realm of learning solutions. These solutions are characterized by their personalized
approach and accessibility, spanning diverse academic domains [7,8]. These tools can
function as virtual tutors, delivering tailored explanations based on individual student
needs [9,10]. Ref. [11] posit that AI-powered education facilitates personalized learning,
thereby enhancing knowledge retention and student engagement. AI applications also
support educators by automating administrative tasks such as grading assessments and
generating instructional materials, thereby allowing teachers to allocate more time to direct
student interaction [12]. Furthermore, these tools have the potential to democratize access
to high-quality education, particularly in regions facing resource constraints. In this regard,
ref. [13] have asserted that AI has the capacity to bridge educational gaps by providing
real-time tutoring through chatbots, thereby mitigating geographic and economic barriers.

Nevertheless, the integration of AI into education is not without challenges [14,15].
A significant concern pertains to the potential overreliance on technology, which may
impede the cultivation of critical cognitive abilities such as independent thinking and
problem-solving [16,17]. Ethical concerns also arise, particularly regarding data privacy,
bias in algorithmic decision-making, and the risk of diminishing the role of educators in
the learning process [18–21]. Consequently, as Ref. [16] contends, the key to effective AI
integration in education is its role as a complementary instrument, not a substitute for
teachers and human interaction.

1.2. AI in Natural Sciences Education and Research

In the domain of the natural sciences, which encompasses disciplines such as biology,
physics, chemistry, and earth sciences, the application of AI is facilitating the emergence of
novel pedagogical and research opportunities. These tools have the capacity to enhance the
learning experience by providing innovative resources, including customized explanations,
interactive simulations, and conceptual diagrams to elucidate complex scientific phenom-
ena. Furthermore, AI facilitates the creation of thematic questions and exercises, thereby
enhancing classroom engagement [22,23]. In addition, AI can also serve as an instrumental
tool in incorporating research methodologies into educational settings [24].

Additionally, and in line with the abovementioned limitations of AI, its indiscriminate
use in scientific education also brings significant concerns. A primary risk is that students
may employ AI primarily as a problem-solving or text-generation tool rather than as a
means of fostering deeper analytical engagement with scientific concepts. This reliance
may pose a challenge to the development of critical thinking and scientific literacy [25,26].
Furthermore, it is imperative to assess whether the information generated by AI aligns
with current scientific knowledge [27,28]. A crucial question remains: Do widely used AI
applications provide scientifically accurate and unbiased information, or do they introduce
distortions that could mislead both educators and students?

1.3. Biodiversity Education and Sustainable Development

Biodiversity is a critical subject in education and plays a fundamental role in advancing
the Sustainable Development Goals (SDGs) outlined in the United Nations’ 2030 Agenda.
The significance of biodiversity stems from its function as the foundation of life on Earth
and its interconnectedness with social, economic, and environmental sustainability [29,30].
Integrating biodiversity education into curricula has been demonstrated to foster environ-
mental awareness from an early age. Students are able to gain insights into the interdepen-
dence of ecosystems and the consequences of human actions on the environment [31,32].
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According to [33], environmental education is essential for cultivating responsible global
citizens committed to sustainability. Moreover, biodiversity loss is recognized as one of the
most pressing environmental challenges of the 21st century [34]. Education in this domain
provides students with the knowledge and skills necessary to address critical issues such
as climate change, deforestation, and species extinction [35].

Biodiversity is closely linked to several SDGs, as it is vital for human well-being
and ecological balance. Specifically, it aligns with SDG 13 (Climate Action), given that
biodiverse ecosystems—such as forests and oceans—serve as carbon sinks, thereby mit-
igating climate change. The importance of education in promoting the conservation of
these ecosystems to reduce greenhouse gas emissions is also emphasized [36]. Furthermore,
biodiversity is intricately linked to both SDG 14 (Life Below Water) and SDG 15 (Life
on Land), underscoring the necessity for biodiversity conservation and the mitigation
of desertification [37]. Moreover, within the educational context, biodiversity is integral
to SDG 4 (Quality Education) as it constitutes a cross-disciplinary theme that interlinks
biology, geography, and social sciences [33]. The integration of biodiversity education
within curricula is a key strategy that fosters a holistic educational approach, one which is
aligned with the principles of sustainability [33].

In Spain, the treatment of environmental education in general and biodiversity in
particular is recurrent throughout the educational curriculum, but with obvious differences
between the different educational stages. In Early Childhood Education (aimed at children
up to 6 years of age), the legislation establishes objectives related to the observation and
respect for the environment, without going into more detail due to the young age of the
learners [38]. As students progress through the educational system, the curriculum be-
comes more intricate. In Primary Education (ages 6–12), two key competences, STEM and
Citizenship, are introduced. These competences emphasize the importance of preserving
the environment and living beings, as well as adopting sustainable lifestyles to contribute
to biodiversity conservation. This term is first mentioned in educational legislation. In the
section of basic knowledge entitled “Life on our planet”, the study of living beings, their
classification, their relationships within ecosystems, and the importance of preserving their
diversity is proposed; and in other sections such as “Sustainable development and environ-
mental ethics”, the conservation of biodiversity is addressed as an eco-social problem to be
solved [39]. Secondary education is arguably the one in which the treatment of biodiversity
and its conservation is most intensified. This phenomenon is exemplified by the opera-
tional descriptor CC4 of the Citizenship Competence, which states that students should
“begin to adopt sustainable lifestyles, to contribute to the conservation of biodiversity” [40].
Furthermore, various sections of basic knowledge refer to this issue and its eco-social rele-
vance, particularly in the subjects of “Biology and Geology” and the first three courses [40].
Finally, in the Baccalaureate stage (16–18 years; non-compulsory), the subjects “Biology,
Geology and Environmental Sciences” and “General Sciences” also address aspects such as
sustainable development, the loss of biodiversity as a socio-environmental problem and
the causes and consequences of this phenomenon [41].

According to this background, the present study investigates the accuracy and reliabil-
ity of AI-generated information in the framework of biodiversity education, specifically
aiming to determine if AI applications provide scientifically valid data on endangered
species or exhibit biases that could misinform both educators and students.

2. Materials and Methods
To formulate an objective research question that would allow us to determine whether

AI-generated responses exhibit bias, it was essential to pose a straightforward query
while avoiding explanations that students or educators would be unlikely to request.
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Specifically, the initial question presented to AI applications was the following: “Generate
a list of 100 living species that are endangered”. In total, 100 species were requested since
higher numbers generate a volume of data that future teachers are unlikely to analyze for
educational purposes, and lower numbers limit, taking into account the high number of
species in real danger, the capacity to perform an efficient analysis; moreover, the question
aimed to assess whether the responses provided by AI systems align with scientific data
or whether they reflect societal biases, geographical biases, or preferential biases. For
this study, three of the most relevant AI-based text generation tools to date were selected:
ChatGPT-4.5 (based on GPT-4-turbo, OpenAI), DeepSeek-V3-chat (DeepSeek AI), and
Gemini 1.5 Flash (Google), all accessed in February 2025. As an initial approach, to avoid
influencing the chatbots’ responses, three runs were performed for each AI bot, and fresh
accounts were used.

The species obtained were categorized by two biodiversity experts into taxonomic
groups (predominantly at the class level but, in some cases, at the kingdom level, e.g.,
plants) and geographic region; in order to analyze the taxonomic bias (uneven phylum
coverage and over/underrepresentation of specific taxa) and geographic bias, respectively.
The findings were expressed as percentages to enable comparison with real-world extinction
risk percentages reported by the International Union for Conservation of Nature (IUCN)
and descriptive analyses, including mean and standard deviation, were conducted using R
statistical software (version 4.4.0). To minimize potential biases in the comparison, IUCN
values were adjusted based on the proportion of evaluated species relative to the total
estimated species count (the IUCN estimates that there may be approximately 8 million
species of which only 169,410 have been evaluated and of these 47,187 are in danger
of extinction), and this adjustment accounts for discrepancies in assessment coverage
across taxa (e.g., 84% of mammal species have been evaluated compared to only 1.2% of
insect species).

The data of the geographic distribution of the species was also obtained from the IUCN
(https://www.iucnredlist.org/es/statistics, accessed on 4 February 2025). The data of the
absolute number of endangered species is variable along time, but the percentages are quite
stable; to establish clear geographical entities, 8 areas were defined, with some of them
being created by combining several IUCN areas (“Caribbean Islands” and “Mesoamerica”
in Central America; “East Asia”, “North Asia”, “West and Central Asia” and “South
and Southeast Asia” in Asia; “North Africa” and “Sub-Saharan Africa” in Africa) while
others were obtained directly (“Europe”, “North America”, “South America”, “Oceania”
and “Antarctica”).

To assess the consistency and magnitude of systematic error in the results, two com-
plementary indicators were calculated using R statistical software (version 4.4.0): the
taxonomic and geographic Bias Ratio and the Magnitude Error Bias. The Bias Ratio was
computed as the mean of the signed differences between the values generated by the AI
chatbots and the reference values (IUCN dataset), divided by the standard deviation of
those differences; this ratio provides an indication of the directional consistency of the bias
(higher absolute values indicate stronger and/or systematic bias, while values close to
zero indicate either accuracy or random errors); when the standard deviation of the bias
was zero (same percentage values for the three runs) the Bias Ratio was undetermined
and noted as “na”; the Magnitude Error Bias is calculated as the mean of the absolute
bias values.

Furthermore, considering that the differences between the actual IUCN data and the
AI responses could be due to sampling error (this would be the case if the AI performed
random sampling among the IUCN databases), three random samplings were performed

https://www.iucnredlist.org/es/statistics
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on the IUCN database to calculate the mean and standard deviation values for both the
taxonomic groups and the geographical areas.

3. Results
In the case of ChatGPT, the responses included 43.3 mammals (SD = 1.5), 15 birds

(SD = 4.6), 6.7 plants (SD = 6.1), 10 reptiles (SD = 1.5), 6.3 amphibians (SD = 2.1), 6.7 fish
(SD = 1.2), and 5.7 insects (SD = 1.5), as well as 1.7 mollusks (SD = 0.6), 1.3 arachnids
(SD = 0.6), 1.3 cnidarians (SD = 1.2), one crustacean (SD = 1), and 0.7 fungus (SD = 1.2)
(Appendix A and Table 1). Within its response, the AI tool explicitly stated “Below is a
representative list of 100 species (including animals, plants, and other living organisms)
that are classified as threatened or endangered according to various assessments (e.g.,
IUCN). It is important to note that conservation status may vary by region and that some
species fall under categories such as Critically Endangered, Endangered, or Vulnerable.
This list is illustrative and not exhaustive.”

Table 1. Values of endangered species obtained by taxonomy for the three IA applications. The
data are segregated by the main taxonomic groups and are expressed in percentage and standard
deviation (between parenthesis). The random values were obtained from the current IUCN database.
The Endangered % data are extrapolated from the IUCN database giving the size of the taxonomic
group, the species evaluated, and the percentage of species evaluated endangered (see text).

GPT-4.5% (SD) DeepSeek-V3% (SD) Gemini % (SD) Random Selection
from IUCN; % (SD)

Endangered %
(Extrapolated from IUCN)

Insect 5.7 (1.5) 2.7 (2.5) 4.5 (0.6) 5.7 (1.2) 36.37

Plant 6.7 (6.1) 6.1 (1.9) 12.3 (2.5) 63.3 (3.1) 29.6

Fungus 0.7 (1.2) 0 4.7 (4.7) 0.3 (0.6) 11.9

Arachnid 1.3 (0.6) 1 (1) 1 (0) 2 (1.4) 6.26

Mollusk 1.7 (0.6) 1 (1) 2 (1) 5.3 (4.2) 4.26

Crustacean 1 (1) 0.7 (1.2) 2.7 (0.6) 1.3 (0.6) 3.84

Fish 6.7 (1.2) 2.7 (2.5) 10.7 (1.2) 7.7 (1.2) 0.95

Amphibian 6.3 (2.1) 5.7 (5.5) 7.3 (2.5) 0.7 (1.2) 0.57

Reptile 10.3 (1.5) 7.7 (6.8) 10.3 (0.6) 3.3 (0.6) 0.39

Cnidarian 1.3 (1.2) 4.1 (3.6) 0.7 (0.6) 0 0.37

Mammal 43.3 (1.5) 53.1 (26.2) 23.8 (5.5) 2.7 (1.2) 0.27

Bird 15 (4.6) 15.3 (13.3) 20 (0) 1.5 (0.7) 0.23

Other 0 0 0 0.7 (1.2) 15.87

Additionally, some of the responses did not refer to specific species (e.g., “orchids,”
“crayfish,” “ferns,” or “certain species of beetles”).

About the ChatGPT taxonomic Bias Ratio, it showed a wide range (Table 2), from a
minimum of −20.1 (insects) to a maximum of 28.2 (mammals). Notable underrepresen-
tations include insects (−20.1), fungi (−9.7), and arachnids (−8.5), while mammals are
strongly over-represented (28.2), followed by reptiles (6.5) and fish (5.0).

Regarding the geographical distribution of the mentioned species (Table 3), the region
with the highest number of species listed was Asia (30.5), followed by Africa and South
America (16.7 and 15.7%, respectively), Europe (10.2%), North America and Oceania
(10.1 and 9.5%, respectively), Central America (6.9%), and finally, Antarctica (1%). It is
important to note that some species were found in multiple regions, while others could not
be precisely located due to the general nature of the response (e.g., “orchids”).
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Table 2. Taxonomic and geographic Bias Ratio values. Positive values indicate over-representation;
negative values indicate underrepresentation.

Taxonomic Bias Ratio

GPT-4.5 Gemini DeepSeek-V3

Insect −20.1 −55.5 −13.4

Plant −3.8 −6.9 −12.3

Fungus −9.7 −1.5 na

Arachnid −8.5 na −5.3

Mollusk −4.5 −2.3 −3.3

Crustacean −2.8 −2.0 −2.7

Fish 5.0 8.4 0.7

Amphibian 2.8 2.7 0.9

Reptile 6.5 17.2 1.1

Cnidarian 0.8 0.5 1.0

Mammal 28.2 4.2 2.0

Bird 3.2 na 1.1

Geographic Bias Ratio

GPT-4.5 Gemini DeepSeek-V3

Asia 3.3 −1.4 0.0

Africa −2.6 −3.3 −3.0

South America −0.5 −0.7 −3.1

Central America −2.3 −6.0 −0.4

Oceania −0.4 0.9 −0.5

Europe 4.2 1.8 0.2

North America 2.3 13.3 0.8

Antarctica 0.9 0.4 0.9
“na” values represent undetermined Bias Ratio.

The geographic Bias Ratio showed the highest positive bias towards Europe (4.2) and
Asia (3.3), followed by North America (2.3) and Antarctica (0.9). Negative biases were
observed for Africa (−2.6) and Central America (−2.3), with smaller deviations for South
America (−0.5) and Oceania (−0.4).

In the case of DeepSeek, the first response included a total of 120 items (including
both species and subspecies, Appendix A and Table 1). Among them, 100 were mammals,
of which 46 were subspecies of the insular grey fox (Urocyon littoralis); of these 46, only
7 different subspecies were listed, 4 of them being listed multiple times. Additionally,
the tool listed 10 plant species and 10 coral species. The second and third run included
100 species each; considering the three runs together, the results included 53.1% of mammals
(SD = 26.2), 15.3% of birds (SD = 13.3), 7.7% of reptiles (SD = 6.8), 6.1% of plants (SD = 1.9),
5.7% of amphibians (SD = 5.5), 4.1% of cnidarians (SD = 3.6), 2.7% of insects and fish, both
with a SD = 2.5, 1% of arachnids and mollusks (SD = 1), and 0.7 crustaceans (SD = 1.2).
The application also provided the following statement: “Here is a list of endangered living
organisms. This list includes animals, plants, and other organisms facing serious threats to
their survival. Some of these species are critically endangered, while others are classified as
vulnerable or endangered according to the International Union for Conservation of Nature
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(IUCN) and other sources. This list is only a sample of the many species currently at risk of
extinction worldwide.”

Table 3. Values of endangered species obtained by regions for the three IA applications. The data are
segregated by geographic area and expressed in percentages. The random values were obtained from
the current IUCN database.

GPT-4.5% (SD) DeepSeek-V3% (SD) Gemini % (SD) Random Selection
from IUCN; % (SD)

Endangered %
(IUCN)

Asia 30.5 (1.3) 26.6 (9.5) 21.8 (3.2) 30.3 (4.9) 26.17

Africa 16.7 (2.6) 13.1 (3.4) 17.4 (1.8) 23.7 (2.1) 23.32

South America 15.7 (5.4) 9.5 (2.8) 16.1 (3.2) 18.7 (4) 18.39

Central America 6.9 (2) 9.2 (6.5) 4.6 (1.2) 10.7 (3.2) 11.56

Oceania 9.5 (1.3) 7.2 (5.4) 14.8 (5.6) 9 (1) 9.97

Europe 10.2 (0.9) 7.5 (5.4) 12.5 (3.5) 4.7 (2.3) 6.31

North America 10.1 (2.6) 26.0 (26.5) 12.5 (0.6) 2.7 (1.5) 4.17

Antarctica 1 (1) 1 (1) 0.4 (0.6) 0 0.11

The DeepSeek chatbot showed a comparatively narrower taxonomic Bias Ratio range,
with bias ratios ranging from −13.4 (insects) to 2.0 (mammals). It demonstrated underrep-
resentation in plants (−12.3), and mild over-representation in birds (1.1) and reptiles (1.1).

Regarding distribution, 26,6% of the mentioned species were from Asia and 26.0 were
from North America, 13.1% were from Africa, 9.5% from South America, 9.2% from Central
America, 7.5% from Europe, 7.2% from Oceania, and 1% from Antarctica (Table 3).

The geographic Bias Ratio presented the narrowest range of geographic bias, with
values spanning from −3.1 in South America to 0.9 in Antarctica. It showed near-neutral
bias for most regions (e.g., Asia: 0.0, Europe: 0.2, North America: 0.8), although some
underrepresentation appeared for Africa (−3.0) and South America (−3.1).

The Gemini chatbot mentioned 100 species in each query: 23.8 mammals (SD = 5.5) and
20 bird species (SD = 0), 12.3 species of plants (SD = 2.5), 10.7 species of fishes (SD = 1.2),
10.3 species of reptiles (SD = 0.6), 7.3 species of amphibians (SD = 2.5), 4.7 species of
fungus (SD = 4.7), and a few species of invertebrates (4.5 insects (0.6), 2 mollusks (SD = 1),
2.7 crustaceans (0.6), 1 arachnid (SD = 0), and 0.7 cnidarians (SD = 0.6)) (Appendix A and
Table 1). Gemini also provided the following statement: “It’s important to remember that
this list is just a sample, and there are many more species in danger of extinction around
the world. Biodiversity conservation is crucial to the balance of our planet.”

In this case, the taxonomic Bias Ratio showed the most extreme bias overall, with a min-
imum of −55.5 (insects) and a maximum of 17.2 (reptiles). Underrepresentation was also
observed in plants (−6.9), mollusks (−2.3), and amphibians (−2.7), while mammals (4.2)
and fish (8.4) were over-represented. Data for arachnids and birds were undetermined (na).

Geographically, these species are distributed as follows: 21.8% of the species were
native to Asia, 17.4% to Africa, 16.1% to South America, 14.8% to Oceania, 12,5% to North
America and Europe, and 4.6% to Central America.

Regarding the geographic Bias Ratio, Gemini exhibited the most extreme geographic
bias overall, ranging from −6.0 in Central America to 13.3 in North America. Other regions
showing positive bias include Europe (1.8), Oceania (0.9), and Antarctica (0.4), while
negative values were found for Africa (−3.3), Asia (−1.4), and South America (−0.7).

Regarding the data obtained from the International Union for Conservation of Nature
(IUCN), the estimated percentages of endangered species vary significantly by taxonomic
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group, ranging from 36.37% of the total for insects to 0.23% for birds (detailed values can
be found in Table 1).

Regarding geographical distribution, the total number of assessed species in each of the
regions considered was also obtained from the IUCN, and the corresponding percentage
of endangered species in each area was calculated (Table 3); the values ranged from
26.17% of endangered species found in Asia to 4.17% of the endangered species found in
North America.

The results for the taxonomic Magnitude Error Ratio ranged from 11.3 (Gemini) to
13.9 (DeepSeek), and an intermediate value for ChatGPT (13.0). Geographic Magnitude
Error Ratio: Given the Geographic Magnitude Error Ratio, DeepSeek also showed the
highest value, with 7.7, while Gemini had a moderate Geographic Magnitude Error Ratio
(5.0), and ChatGPT showed the lowest value (4.0).

The results of the random selection of species from the IUCN endangered species
database showed taxonomic values of 63.3% (SD = 3.1) for plants, 7.7% (SD = 1.2) for
fish, 7.3% (SD = 2.5) for amphibians, 5.7% (SD = 1.2) for insects, 5.3% (SD = 4.2) for
mollusks, 3.3% (SD = 0.6) for reptiles, 2.7% (SD = 1.2) for mammals, 2% (SD = 1.4) for
arachnids, 1.5% (SD = 0.7) for birds, 1.3% (SD = 0.6) for crustaceans, 0.7% (SD = 1.2) for the
Other category, and 0.3% (SD = 0.6) for fungi. The cnidarian group was not represented.
Regarding the geographical results, values of 30.3% (SD = 4.9) were obtained for Asia,
23.7% (SD = 2.1) for Africa, 18.7% (SD = 4) for South America, 10.7% (SD = 3.2) for Central
America, 9% (SD = 1) for Oceania, 4.7% (SD = 2.3) for Europe and 2.7% (SD = 1.5) for North
America, Antarctica did not obtain results. It is important to note that these results are
based on the IUCN Endangered Species Database, and these values do not take into account
the percentage of species assessed in each group.

4. Discussion
4.1. Bias in the Results of the AI

At present, AI applications are ubiquitous in both daily life and educational environ-
ments ([42], among many others); however, despite their numerous benefits and utilities,
the results of this study suggest that caution should be exercised when using them, since the
problems of their use are not limited to ethics, as is often highlighted. Both taxonomic and
geographic bias have the potential to generate significant issues with teaching effectiveness
and the self-taught capacity of students. In both instances, the absence of fundamental tech-
nical training can serve as a catalyst for the emergence of these biases (e.g., plant blindness)
and perpetuate the associated challenges. This phenomenon has been previously observed
in several domains [43].

4.1.1. Taxonomic Bias

With regard to the field of biology and the study of biodiversity, the human predilec-
tion for animals over other groups of living organisms, such as plants, fungi, and microor-
ganisms, is a well-documented phenomenon [44]. This tendency, termed “zoocentrism,”
signifies a cultural and psychological predisposition to assign greater value to animals
than other forms of life. This bias influences not only daily interactions but also scien-
tific research, environmental legislation (which tends to prioritize conservation efforts
disproportionately on animals—particularly on charismatic species such as mammals and
birds [45–47]), and education [27,48]. The findings of this study demonstrate that artificial
intelligence applications also exhibit this phenomenon, which, as would be expected, reflect
societal tendencies.

Furthermore, it is imperative to consider factors other than zoocentrism. As demon-
strated in the results, both AI applications manifest a marked bias, not only towards
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animals but specifically towards mammals [47]. This bias becomes even more apparent
when compared to objective data from the IUCN, which indicates that mammals represent
a relatively small taxonomic group, especially among species classified as endangered. This
phenomenon is also part of a well-documented cognitive bias known as Plant Blindness, or
more recently, Plant Awareness Disparity [49]. This term describes the human tendency to
overlook or undervalue the ecological significance of plants [50]. One contributing factor is
the perception of plants as static, silent, and less interactive than animals [51]. Intriguingly,
a juxtaposition of the IUCN data with the findings derived from AI applications reveals that
plants do not constitute the most underrepresented group. As other authors have stated in
similar studies, fungi, insects, and arachnids are even more significantly overlooked [52].
Despite the assertions of AI models that their lists encompass a broad taxonomic range, the
outcomes evidently do not align with scientific reality. The paucity of species mentioned in
the article makes the breakdown of the data impractical.

Regarding the exclusion of fungi, this is most likely a consequence of the ambiguity
surrounding their classification. Fungi do not conform easily to the conventional categories
of “animal” or “plant”. This has resulted in a lack of recognition concerning their ecological
importance, including their role in decomposition, as well as their significance in medicine
and food production [52]. Given that no fungal species were included in one of the three AI-
generated lists (and in GTP-4.5 the mean value is 0.7%) and considering that fungi are
rarely considered in discussions of endangered species, it is unsurprising that this bias
remains largely unchallenged.

As for insects, despite the similarities between the AI results (specifically with Chat-
GPT) and the random selection, their underrepresentation is particularly concerning. This
group exhibits the highest negative taxonomic Bias Ratio, which means a great underrepre-
sentation in comparison with the IUCN data. This is especially shocking considering that
they represent the most diverse group within the animal kingdom [53] and the fact that
invertebrates—and insects in particular—exhibit higher rates of extinction and threatened
species than more well-known taxa [54]. Furthermore, insects are recognized as being of
paramount importance to human survival, given their pivotal role in agriculture, human
health, and natural resources, among other aspects [55]. The observed underrepresentation
may be attributed to society’s negative perception of this group, evoking responses such
as fear or disgust more than other types of animals [56,57]. This is probably due to factors
such as their unpredictable movements, their non-human morphology, or their ability, in
some cases, of biting, stinging, and transmitting infection or disease [58,59].

4.1.2. Geographic Bias

In addition to the taxonomic classification of organisms, their geographical origin
was also taken into account in order to study the potential existence of bias. In the case
of ChatGPT, an underestimation (as a representation of taxa lower than their % of endan-
gered species compared to the world total data) of Africa and Central America has been
observed, while other continents such as Asia, North America and, especially, Europe
show a notable overestimation. This phenomenon can be attributed to the historical and
cultural influence of Western civilization [60], particularly in North America, which is
also the geographical origin of the company developing ChatGPT. Indeed, other studies
conducted with ChatGPT in various fields (e.g., education, culture) have demonstrated
similar biases [61,62]. A similar trend was observed for Gemini, also of North American
origin, with its list underestimating areas such as Asia, Africa, and Central America, and
significantly overestimating Europe, North America, and Oceania. The findings obtained
by these two tools also appear to suggest an influence of societal tendencies on the ge-
ographical variable. In the case of DeepSeek, a clear underrepresentation of Africa and
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South America can be mentioned. The variation in the different runs performed makes it
difficult to decide if the representation in the other areas is fair or not. Moreover, the results
are difficult to explain in terms of taxonomy and origin and are completely conditioned
by the presence of seven subspecies (repeated 46 times in the first run performed with
DeepSeek) of the same North American fox species (Urocyon littoralis). This finding appears
to lack practical relevance, as the prompts provided were unambiguous in requesting the
specified taxonomic category (species), and it is impractical to include subspecies within
an extensive list such as that of endangered living beings. The most plausible explanation
for this occurrence is the lack of internal mechanisms to ensure uniqueness unless explicitly
requested; models do not always have the memory to remove duplicates, especially with
long lists (>20 items) [63,64].

4.1.3. Biases and AI Applications

The statistical analyses conducted in this study have shown that the widest ranges for
both taxonomic and geographic Bias Ratio were observed in Gemini, with broad differences
between the most over- and underrepresented groups and areas, respectively. However,
globally (i.e., for the whole set of taxonomic groups and/or geographic areas) the greatest
bias, measured through the Magnitude Error Ratio, was observed for DeepSeek both from
a taxonomic and geographic perspective, making it “the most biased” AI application in
our study.

In any case, the results obtained, although simple, clearly show that the answers
generated by generative artificial intelligence systems can reflect and amplify pre-existing
biases (in this case both geographic and taxonomic) in the data they have been trained
on (e.g., [65,66]), this situation was already detected in searches on regular search engines
before the appearance of artificial intelligence chats [27]. The AI models rely on massive
databases harvested mostly from the internet, which includes both academic sources and a
large amount of unverified, popular, or socially biased content [67–69]. Since the majority
of the corpus comes from data available online until 2024, there is a real risk that the
models not only reproduce stereotypes, inequalities, and/or taxonomic/geographic bias,
but reinforce them through a cumulative effect each time the system generates similar
content based on previous interactions [70,71].

Added to this is the mechanism of user reinforcement, whereby popular or most
accepted answers tend to be prioritized by the system, further reinforcing dominant bi-
ases [72]. Although the user can explicitly influence content through the use of prompts,
these can also induce biased responses if they contain implicit assumptions or if the AI fails
to recognize taxonomic, geographic, or social ambiguities [73].

Furthermore, each AI system implements its own filters, alignment models, and
architectures, resulting in differences in the type and degree of bias across platforms. In this
regard, probably the best known AI chatbot is ChatGPT, whose training process consists of
four well-known steps [74]; it starts by training the model on large amounts of unlabeled
data from different internet databases, thus allowing the learning of general patterns and
data relations; after that, the pre-trained model is fine-tuned by using a small dataset,
linked to a specific task, thus becoming more efficient and appropriate for it. This step
is mainly performed by human AI trainers, who also assess the accuracy and quality of
responses in the following step by assigning scores to each pair of “prompt-response”, prior
to the final optimization process. The fact that the GPT model is pre-trained on presumably
non-cleaned/refined data, together with the human dependency for fine-tuning and model
training, increases the risk of obtaining wrong, biased, or inaccurate responses by this
tool [74]. In the case of Gemini, a comparative study with ChatGPT was conducted by [75],
who concluded that the model type of Gemini (Multimodal Language Model), together with
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its particular architecture (which, for example, includes Retrieval-Augmented Generation
(RAG)) and the use of datasets curated by Google allow the production of more precise
and informative responses. However, these features also seem to limit the creativity and
conversational flow of the outputs and are not capable of avoiding the biased responses
which derive from the human-conditioned training data mentioned for ChatGPT. Our
results reveal the same weakness for the case of DeepSeek-V3, even though it has been
found to be a high-performance tool that offers accurate responses at lower input costs than
other chatbots [76]. The same study also concluded that the efficiency of this and other AI
tools (including ChatGPT and Gemini) depends on the specific task requested by the user,
which strongly limits the conclusions we can draw in our particular work where, as we
mentioned before, DeepSeek offered the highest bias levels.

Taking into account the complexity of the models and the different architectures,
understanding how these models are trained, how they prioritize responses, and what
data they rely on is key to critically evaluating their use in educational, scientific, or
social contexts.

4.2. AI Implications for Biodiversity Education

The findings of this study hint the challenges associated with the utilization of AI
applications for self-directed learning and for non-specialist teachers. Educators who
rely on these tools for classroom instruction may also encounter difficulties due to their
inherent biases [44,77]. While AI applications offer significant benefits, they may also
reinforce existing biases, particularly the disproportionate emphasis on mammals, rather
than contributing to their correction. Consequently, these technologies still do not seem to
be an optimal way to meet the biodiversity-related challenges outlined in the previously
mentioned Sustainable Development Goals (SDGs), particularly regarding the conservation
of endangered species, where biases may be maintained, both geographical and taxonomic.
This is particularly salient in the context of Spain, where the recurrent presence of biodiver-
sity in the educational curriculum has been previously highlighted [38–41]. A particularly
problematic scenario emerges in the context of Primary Education, as educators at this
level are not equipped with specialized training in scientific disciplines. This may result in
a heightened inclination to rely on AI tools for the preparation of their lessons.

During Primary Education, complex content is already addressed, such as the identi-
fication and classification of living beings, the human relationship with ecosystems, the
relevance of biodiversity, eco-social responsibility, or climate change. This can pose a
challenge for those teachers less familiar with these topics. This problem is hypothesized
to be less acute in the Early Childhood Education stage, due to the greater simplicity of
its content, and in the Secondary and Baccalaureate stages, where teachers are expected
to have specific training to access their job position. However, studies have revealed an
increasing inclination towards AI among teachers at these levels [78], and the greater au-
tonomy afforded to students in completing their tasks may also influence their utilization
of AI. The findings of this study suggest that these trends could potentially contribute
to the perpetuation of social trends concerning biodiversity, particularly with regard to
species at risk of extinction, from both taxonomic and geographical perspectives. There is
a lack of studies applied to these groups in which the teachers themselves are the focus;
it is necessary to analyze the variations in the biases present to identify the depth of the
problem and propose possible solutions.

5. Conclusions and Limitations
To summarize, the findings of this study demonstrate that AI applications not only

replicate ethical biases, but also taxonomic and geographical biases, which have the poten-
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tial to impede educational effectiveness and self-directed learning. The dearth of rudimen-
tary technical training among pedagogues and pupils can intensify these biases, perpetu-
ating issues such as zoocentrism and plant blindness. The prevailing cultural inclination
towards the preference for animals, particularly mammals, at the expense of other organ-
isms such as plants, fungi, insects, and microorganisms, is a salient concern. This bias is
perpetuated by the predominance of artificial intelligence in various fields, despite the eco-
logical significance of these other organisms. This imbalance is incongruent with scientific
reality, as evidenced by IUCN data, and contributes to a distorted perspective of biodiver-
sity in education and conservation. Furthermore, the geographical bias is indicative of the
influence of sociocultural trends and the geographic origin of the developing companies,
thereby limiting a balanced global perspective.

The integration of AI in educational settings, particularly at primary school levels
where educators may not possess specialized scientific training, can perpetuate stereotypes
rather than rectifying them. This hinders the achievement of the Sustainable Development
Goals (SDGs) related to biodiversity and perpetuates a biased view of endangered species.
To mitigate these biases, it is crucial to enhance the training of AI models with rigorous
scientific data and to promote critical teacher training that encourages the responsible use
of these tools.

Further research is required to develop solutions that have a tangible impact on
teachers at these levels. It is also necessary to evaluate how learning models correct these
biases, in the event that such progress occurs, and how other (and new) models reflect them.
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Appendix A

Table A1. Example of the full list of the species provided by the IA chatbots (first run).

Nº GPT-4.5 DeepSeek-V3 Gemini (v.2025)

1 Harlequin Frog Sumatran tiger Polar Bear
2 Panama Golden Frog Mountain gorilla Xerocomellus porosporus
3 Central American Glass Frog Bornean orangutan Asian Elephant
4 Darwin’s Frog Sumatran Orangutan Western Chimpanzee
5 Woodland Salamander Javan rhinoceros Darwin’s Fox
6 European Woodland Salamander Black rhinoceros North Atlantic Right Whale
7 Tiger Salamander Sumatran Elephant Mexican Fishing Bat
8 Scorpion Endemic to Certain Islands Snow leopard Iberian Lynx
9 Antarctic Albatross Iberian lynx Brown-headed Spider Monkey

10 Laysan Albatross Polar bear Tibetan Bear
11 Black Stilt Giant panda Irrawaddy River Dolphin
12 Philippine Blue-winged Cockatoo Chinese pangolin Javan Rhinoceros
13 Moluccan Cockatoo Sunda Pangolin Omiltemi Rabbit
14 California Condor Vaquita Venezuelan Red Siskin
15 Cock-of-the-Rock North Atlantic Right Whale Kakapo
16 Spix’s Macaw Blue Whale California Condor
17 Northern Bald Ibis Leatherback Sea Turtle Northern Bald Ibis
18 Kakapo Hawksbill Sea Turtle Ivory-billed Albatross
19 Okarito Kiwi Green Sea Turtle Amsterdam Albatross
20 Storm Petrel California Condor Helmeted Hornbill
21 Darwin’s Finch Philippine Eagle Spix’s Macaw
22 Bannerman’s Turaco Hyacinth Macaw North Island Brown Kiwi
23 Crayfish Scarlet Macaw Amur Leopard
24 Franklin’s Bumblebee Tanimbar Cockatoo Galapagos Penguin
25 Stag Beetle Northern White Rhinoceros Bearded Vulture
26 Blue Butterfly Morpho Sumatran rhinoceros Red-cockaded Woodpecker
27 Karner butterfly Malayan tapir Balearic Shearwater
28 Monarch butterfly Mountain tapir Albert’s Lyrebird
29 Axolotl Baird’s tapir Capercaillie
30 Blue whale Amazonian tapir Nicobar Pigeon
31 North Atlantic right whale Jaguar Mauritius Parakeet
32 European bison Red panda bear Black-bellied Sandgrouse
33 Bonobo Spectacled bear Shoebill
34 Common chimpanzee Sun bear Mountain Gorilla
35 Amazon river dolphin Sloth bear Floreana Thrush
36 African forest elephant Red wolf Hawksbill Turtle
37 Asian elephant Mexican Grey wolf Malagasy Tortoise
38 Gharial Northern lynx Orinoco Crocodile
39 Mountain gorilla Canadian lynx Tuatara
40 Indri Eurasian lynx Round Island Python
41 Greater bamboo lemur African lion Vietnamese Box Turtle
42 Bamboo lemur Asiatic lion Tarzan’s Chameleon
43 Mantilla lemur Cheetah Anegada Iguana
44 Crowned skull lemur Asiatic cheetah San Francisco Garter Snake
45 Gray mouse lemur Striped hyena Sumatran Tiger
46 Ruffed lemur Brown hyena Howe Island Giant Gecko
47 Sand lemur Spotted hyena Axolotl
48 Asiatic lion Darwin’s Fox Golden Poison Frog
49 Amur leopard Sierra Nevada red Fox Carriqui Harlequin Toad
50 Snow leopard Arctic Fox Manduriacu glass frog
51 Iberian lynx Argentine Grey Fox Chinese giant salamander
52 Ethiopian wolf Patagonian Grey Fox El Tambor marsupial frog
53 Mexican wolf Pampas Grey Fox Betic midwife toad
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Table A1. Cont.

Nº GPT-4.5 DeepSeek-V3 Gemini (v.2025)

54 Barbary macaque Island Grey Fox Sagalla caecilians
55 Northeastern howler monkey Channel Islands Grey Fox Table Mountain ghost frog
56 Bornean orangutan San Miguel Islands Grey Fox Chinese pangolin
57 Sumatran orangutan Santa Rosa Islands Grey Fox Apennine fire-bellied toad
58 Giant panda Santa Cruz Islands Grey Fox Chinese sturgeon
59 Pangolin San Clemente Islands Grey Fox Freshwater sawfish
60 Palm Pangolin San Nicolas Islands Grey Fox Giant grouper
61 African Wild Dog San Miguel Islands Grey Fox Great white shark
62 Javan Rhinoceros Santa Catalina Islands Grey Fox Atlantic bluefin tuna
63 Sumatran Rhinoceros San Clemente Islands Grey Fox Australian lungfish
64 Black Rhinoceros San Nicolas Islands Grey Fox European eel
65 Saola San Miguel Islands Grey Fox Mekong giant catfish
66 Verreaux’s Sifaka Santa Catalina Islands Grey Fox Danube salmon
67 Malayan Tapir San Clemente Islands Grey Fox Blue-eyed black lemur
68 Bengal Tiger San Nicolas Islands Grey Fox Baxter Springs trout
69 Sumatran Tiger San Miguel Islands Grey Fox Lord Howe Island land snail
70 Red Uakari Santa Catalina Islands Grey Fox Swellendam crayfish
71 Vaquita San Clemente Islands Grey Fox Queen Alexandra birdwing butterfly
72 Chinook (Pacific Salmon) San Nicolas Islands Grey Fox Giant Wallace’s bee
73 Atlantic Sturgeon San Miguel Islands Grey Fox Stag beetle Kempsey
74 Giant Manta Ray Santa Catalina Islands Grey Fox Maratus elephans peacock spider
75 Asian Catfish San Clemente Islands Grey Fox Staghorn coral
76 Mekong Catfish San Nicolas Islands Grey Fox Gulf Coast freshwater mussel
77 Napoleon Wrasse San Miguel Islands Grey Fox Murray freshwater lobster
78 Fraser Fir Santa Catalina Islands Grey Fox Saola
79 Widdringtonia Cedar San Clemente Islands Grey Fox Lord Howe Island tree cricket
80 Cedar of Lebanon San Nicolas Islands Grey Fox Coast redwood
81 Cyanea micronesica San Miguel Islands Grey Fox Wollemia
82 Socotra Dragon Tree Santa Catalina Islands Grey Fox Lord Howe pine
83 Tree Fern of Certain Rainforests San Clemente Islands Grey Fox Jellyfish tree
84 European Elm San Nicolas Islands Grey Fox Victoria giant water lily
85 Wild Orchid San Miguel Islands Grey Fox Rafflesia arnoldii
86 Madagascar Palm Santa Catalina Islands Grey Fox Venus flytrap
87 PuyarRaimondii San Clemente Islands Grey Fox Jade tree
88 Rafflesia arnoldii San Nicolas Islands Grey Fox Ghost orchid
89 Wollemia Cuban alligator San Miguel Islands Grey Fox Tapanuli orangutan
90 Orinoco alligator Santa Catalina Islands Grey Fox Chilean pine
91 Philippine crocodile San Clemente Islands Grey Fox Amanita liquii
92 Komodo dragon San Nicolas Islands Grey Fox Boletus regineus
93 Ricord’s iguana San Miguel Islands Grey Fox Clavaria zollingeri
94 Caribbean iguana Santa Catalina Islands Grey Fox Geastrum britannicum
95 Hawksbill turtle San Clemente Islands Grey Fox Hygrophorus erubescens
96 Mekong river turtle San Nicolas Islands Grey Fox Mycena interrupta
97 Leatherback turtle San Miguel Islands Grey Fox Ramaria Botrytis
98 Oryctes Santa Catalina Islands Grey Fox Sarcosoma globosum
99 Northeastern howler monkey San Clemente Islands Grey Fox Tricholoma caligatum
100 Some Beetle species San Nicolas Islands Grey Fox Vaquita
101 Ghost orchid
102 Hawaiian passionflower
103 Copal resin tree
104 Wollemi Pine
105 Giant sequoia
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Table A1. Cont.

Nº GPT-4.5 DeepSeek-V3 Gemini (v.2025)

106 Redwood
107 Cinchona tree
108 Cinnamon tree
109 Tree Vanilla
110 Nutmeg tree
111 Elkhorn coral
112 Brain coral
113 Star coral
114 Fire coral
115 Mushroom coral
116 Finger coral
117 Table coral
118 Column coral
119 Pillar coral
120 Brain coral
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