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A B S T R A C T

Pressure record processing is a powerful tool for research and diagnosis of internal combustion 
engines. From the pressure record, using the energy conservation equation, it is possible to 
calculate the rate of heat release (RoHR) and thus quantify the evolution of the combustion 
process. In order to obtain accurate RoHR results, it is necessary to remove as much noise as 
possible from the pressure signal, without removing relevant information from the studied phe-
nomenon. In reciprocating internal combustion engines, pressure data are recorded discretely and 
synchronized with the crankshaft angle. Both pressure signal and its derivative are used in RoHR 
calculation. For the integration of differential equations using data as a boundary condition, it is 
necessary to have no discontinuities in the function and its derivative.

This work presents a novel methodology for filtering discrete data adaptively and converting it 
into a continuous and derivable function. For this, polynomial fits are used in each interval be-
tween two experimental data. The polynomial order and the number of points used to make the fit 
are chosen depending on the value taken by a convolution of the signal. With the adaptive filter it 
is possible to reduce noise significantly in parts of the cycle where signal-to-noise ratio is low 
without affecting the parts where signal-to-noise ratio is high. The novelty and main advantage of 
this filtering methodology is that it is configured with only one parameter independent of the 
operating conditions of the engine while preserving the information of cycle-to-cycle variations.

1. Introduction

The evolution of the pressure on the piston in a cycle of an Internal Combustion Engine (ICE) determines the operation of the 
engine. Knowing the value of the pressure in the combustion chamber during the time interval that the cycle lasts (one cycle of the 
engine 40 ms at 3000 rpm) allows to calculate the work transmitted to the piston, a large part of which is transmitted to the engine 
crankshaft. It is also possible to process the pressure records to obtain the speed at which heat has been released (rate of heat release 
RoHR) when the piston is near the top dead center. This heat release is a consequence of the thermochemical processes that take place 
during the combustion process. The phenomenology of these processes is the subject of numerous studies due to their implications for 
the performance and emissions of the engine.

The variables characterizing the state of the thermodynamic system evolving in the combustion chamber of an ICE are pressure, 
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temperature, volume and mass. The fuel and air masses evolving in the cycle are measured. The crank angle is also used to both 
calculate the volume (by means of a kinematic angle-volume relationship) and synchronize the recording of pressure data [1,2].

For pressure measurement, piezoelectric sensors are used [3,4] since they have good frequency response characteristics and low 
sensitivity to temperature variations that take place during the combustion process [5]. However, temperature measurement is 
difficult due to the low frequency response of temperature sensors, therefore it is usually calculated from pressure, volume and mass 
using the equation of state of the system [6].

Nomenclature

Variables
a coeficients used to calculate weighted average
Atten attenuation (bar)
c convolution
i pressure data index
Im imaginary part.
j complex unit
k harmonic number multiple of fundamental frequency
m number of regression points on each side of the polynomial
n polynomial order
N number of data points
Ncycles cycles number
p pressure (bar)
Re real part
V dimensionless frequency
x angular data position (◦)
X duration of engine cycle
z interval index

Acronyms
APF Adaptative Polynomial Filter
CA Crank Angle (◦)
CCV Cycle to Cycle Variations
DFT Discrete Fourier Transform
FF Frequency decomposition Filter
H2 Hydrogen
ICE Internal Combustion Engine
MCD Mean Cycle Difference (bar)
NG Natural Gas
RMSE Root Mean Square Error
RoHR Rate of Heat Release (J/◦)
SGF Savitzky-Golay Filter
TF Transfer Function

Greek letters
α crank angle (◦)
ω angular frequency (rad/s)
ωF fundamental angular frequency (rad/s)
ωN data sampling angular frequency (rad/s)

Subscripts
c cutoff
exp experimental
filt filtered
fin final
i position of a value
ini initial
k relative to a multiple of fundamental frequency
l index around position i
s stop
0 relative to central point
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The pressure signal is used to determine relevant parameters in the engine performance analysis. For example, the maximum 
pressure, which is a mechanical restriction [7], the mean indicated pressure [8], the indicated torque [9,10], mechanical losses, etc. 
Further pressure signal analysis allows to study knock [11,12] or correct the reference of the crankshaft sensor position [13]. RoHR 
obtained from pressure records is useful to study quantitatively the combustion process. It is complemented with visualization 
techniques that are more expensive and restricted to undemanding operating conditions from a mechanical or thermal point of view.

The RoHR is calculated using diagnostic thermodynamic models based on the integration of a system of differential equations in 
which the combustion chamber pressure and its derivative are boundary conditions [1,14]. The Runge-Kutta method is usually used for 
the numerical integration of equations. The assumptions of this integration method require the functions being integrated to be 
continuous and derivable and can be evaluated at any point chosen by the method. Therefore, the RoHR calculation needs high quality 
pressure records regarding continuity and derivability. Pressure records consist of a series of data equispaced angularly according to 
the angular resolution of the sampling. In order to evaluate the pressure at any point indicated by the numerical method, it is usual to 
interpolate linearly between the data of two consecutive points, which implies that at the points the functions are not derivable.

Pressure records are also used in the study of cycle-to-cycle variations (CCV) [2,3]. CCV consists of the fact that, under stationary 
engine operating conditions (engine speed, torque, consumption…), in each cycle, for the same crankshaft rotation angle, the pressure 
takes different values. These pressure fluctuations are due to the random nature of the fluid movement due to turbulence, which causes 
the combustion process to evolve differently every cycle. As a consequence, heat release (RoHR) occurs differently in each cycle. CCV 
has negative consequences both on performance (power and efficiency) and on pollutant emissions.

1.1. Filtering techniques for in-cylinder pressure in ICE

In the literature it is possible to find different techniques for in-cylinder pressure records filtering such as cycle averaging, frequency 
decomposition filtering and weighted-average based filters.

A way to filter ICE pressure records is cycle averaging the signals recorded from different cycles while the engine is stabilized at 
certain operating conditions. Thus, a mean cycle is obtained which is representative of the average combustion process [15,16]. If CCV 
in ICE combustion process is analyzed, cycle averaging is not a valid processing technique since it eliminates the unique information of 
each cycle [15–18].

Another common technique is pressure records filtering based on their decomposition into harmonic series. Each harmonic is a 
complex number corresponding to one frequency and characterized by their amplitude and phase. The last step of the filtering process 
consists of reconstructing the signal from the harmonics, once certain harmonics have been removed or modified [15–18]. This type of 
filters will be called frequency filters (FF) in this work.

The filtering assumes that the phenomenon to be analyzed is manifested in the pressure record in certain harmonics. These har-
monics will be called characteristic harmonics of the process in this work. The noise is present in all the harmonics of the signal. The 
harmonics where the phenomenon is not present (not characteristic harmonic of the process) can be eliminated without any modi-
fication of the information of the phenomenon, since, in this case, the harmonic is composed only of noise.

However, in the characteristic harmonics of the process it is not possible to eliminate the noise; we can only hope that the 
component of the phenomenon in these harmonics is much higher than the noise one, and then the noise contribution is not significant. 
To attenuate or completely eliminate unwanted harmonics, the harmonics of the original signal are multiplied by a series of harmonics 
that correspond to those of the transfer function of the filter. The transfer function is usually zero for harmonics that are considered not 
to be characteristic of the process and one for those that are.

Identifying the characteristic harmonics of the phenomenon is the basis for successful filtering using this technique. In general, it is 
assumed that all the characteristic harmonic frequencies are below a certain frequency (cutoff frequency), therefore a unit transfer 
function is used for all harmonics below this frequency. From this frequency, the harmonics of the transfer function are gradually 
attenuated until it becomes equal to zero from another frequency (stop frequency) [15–17,19]. The spacing between these two fre-
quencies determines the filter order and affects the final results [16].

In the thermodynamic cycle that takes place in an ICE, the characteristic harmonics of the process vary depending on the crank 
angle (cycle instant), since the phenomenons are different during the compression, combustion and expansion processes. During 
compression and expansion, the frequencies of the characteristic harmonics are lower than during combustion. In addition, in all cases 
the frequencies depend on the engine speed, and, in the case of combustion, the frequencies also depend on the properties of the 
mixture that reacts. These properties greatly influence the speed at which combustion occurs.

Another technique used for signal filtering is the weighted-average based filters [20]. One of their advantages is the high appli-
cation speed. They consist of assigning to a given point the weighted average of a signal points series around the point where the filter 
is applied. The filtering characteristics depend on the weighting values (filter coefficients) and the number of used data (window 
length).

The Savitzky-Golay filters (SGF) belong to this type of filter. These filters are based on using minimum square interpolation 
polynomials of a certain order and a certain number of points around the point where the filter is applied [21]. The particularity of this 
filter is that the value of the polynomial at the central point of the interpolated data is obtained using weighted-average of the 
interpolated data. Therefore, they are not based on frequency decomposition. SGF have already been used to process pressure signals in 
ICE. In [22] four SGF with order 3 and with fixed numbers of points (21, 51, 101 and 151) are studied, afterwards the RoHR of raw and 
filtered data are analyzed with the aim of choosing an optimal filter configuration.

Other works, not related to ICE, propose the possibility of modifying the SGF configuration by signal zones (adaptive filtering). In 
[23,24] procedures are proposed to adaptively select the order of the polynomial at each instant maintaining a fixed window length. 
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Results obtained are compared with those obtained with SGF with fixed numbers of points and fixed orders. Algorithms for window 
size selection of SGF with fixed polynomial orders are proposed in [25,26]. This work proposes the modification of the order and 
number of points based on the frequency analysis by successive intervals.

In [27], SGF transfer function is analyzed. The polynomial order, n, and the number of points to perform the interpolation, 2m + 1, 
determine the filtering transfer function. The higher the polynomial order and the lower the number of points taken, the higher the 
transfer function cutoff frequency. In this work a methodology for calculating the transfer function has been performed.

To analyze the filtering performance, it is common to take a noise-free signal (usually simulated), add noise and apply different 
filters [23–26]. Since the original signal is available, it is possible to quantify the removed noise, and the information lost.

1.2. Motivation of this work

The motivation of this work is the need of a continuous and derivable function from the filtering of discrete data records. The 
function will be used as a boundary condition in complex diagnostic models based on integration of differential equations.

In order to obtain a continuous and derivable function in the interval between two data, a polynomial fit with order n can be 
performed by means of minimum square interpolation using m data on each side of the interval [13]. This filtering method has similar 
properties to an SGF with the same order and number of points, but with a higher computational cost, and on the other hand, a 
continuous function in the whole interval is obtained.

The filtering method developed in this work, from now on adaptive polynomial filter (APF), consists of using interpolation 
polynomials between two consecutive data point. The interpolation polynomials are chosen based on the cut-off frequency calculated 
by a previous analysis of the signal. After filtering, the polynomials are modified to obtain a continuous and derivable function in the 
entire data point domain. For this purpose, the following novel works have been developed: 

• Methodology to determine the cut-off frequency at which the data must be filtered in each interval between two measurement 
points. The criterion for choosing the cutoff frequency is based on the convolution integral value of the signal and a reference 
function. This transformation quantifies the importance of each frequency for each interval between two data points.

• Methodology for choosing the order and number of points of the interpolation polynomials to be used for filtering the signal.
• Calculation of the transfer function of each interpolation polynomial using the DFT of the SGF coefficients.
• Once the interpolation polynomials have been calculated for each interval between two data, new polynomials are calculated. The 

new polynomials ensure continuity and derivability at the interval limits, and also the same value of the original polynomial and its 
derivative at the midpoint of the interval.

• Development of a method for evaluating the quality of filtering for cyclic signals. This method is based on the calculation, for each 
cycle point, of the cycle averaged value of the difference between the original and filtered data.

The novelty of this work lies in the combination of both frequency analysis for signal filtering and polynomial interpolation to 
obtain a continuous and derivable filtered function in the whole domain. This is a novel contribution in the case of in-cylinder pressure 
records in ICE. It is interesting that the methodology only uses in-cylinder pressure records as input having the same configuration 
parameters for extreme test conditions with a moderate computational cost. This methodology can be especially useful when studying 
cycle-to-cycle variations.

2. Methodology: APF description

Polynomial minimum square interpolation of data is a tool to remove part of the signal noise. The filtering level applied is 
controlled by the polynomial order (n) and the number of points used to calculate the polynomial.

Once n is selected, there is a lower limit to the number of points to make the fitting. If the number of points is n + 1, the polynomial 

Fig. 1. Representation of the result of different filtering of a signal with different filtering orders.
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will pass through all points becoming a spline, with a minimum filtering level. The higher the number of points used and the lower the 
order of the polynomial, the lower is the frequency from which the harmonics are attenuated [27].

Savitzky-Golay filters [23] are used to calculate the value of the interpolation polynomial at the central point of the 2m + 1 
interpolated data. They allow this value to be calculated as the weighted average of the data with coefficients tabulated based on the 
order of the polynomial n and the odd number of points used 2m + 1, as shown in Fig. 1.

The filtered value at the central point hi corresponds to Eq. (1). 

hi =
∑l=m

l=− m
al fi+l (1) 

Where fi+l are experimental values at the points around the position i to be calculated, and al are the coefficients of the filter used to 
calculate the weighted average, the sum of all al is one and their values depend on the number of points used and the polynomial order. 
The coefficients values al can be found in [21]. The coefficients for two symmetrical points respect the center point are equal. Odd- 
order polynomials have the same coefficients as the previous even-order polynomials [21,27]. From now on only results for odd- 
order polynomials will be presented, since the results are exactly the same as those of lower even order.

2.1. Savitzky-Golay polynomials transfer function

The filter transfer function (TF), or gain, allows to analyze what range of frequencies are removed or attenuated when applying the 
filter to data. It is calculated as the ratio between the frequency decomposition H(ω) of the filtered function h(x) and the frequency 
decomposition F(ω) of the original function f(x). This section shows how to calculate the transfer function of a weighted-average based 
filter from the filter coefficients.

If a transformation based on the calculation of the weighted average is applied to a function f(x), the new function h(x) would be 
expressed as Eq. (2), where Δx is the distance between two consecutive points used for the transformation. 

h(x) =
∑l=m

l=− m
al f(x + l Δx) (2) 

The transfer function of the applied filter is the Fourier transform of the function h(x) divided by the Fourier transform of the 
function f(x), Eq. (3). 

H(ω) = F [h(x) ] =
∑l=m

l=− m
al F [f(x + l Δx) ] =

∑l=m

l=− m
al F [f(x) ]ejω l Δx

H(ω) =
∑l=m

l=− m
al F(ω) ejω l Δx

(3) 

In Eq. (3) time-translation property of the Fourier transform [28] has been applied. The Fourier transform of f(x) can be extracted 
out of the summation being the transfer function as Eq. (4). 

TF(ω) = H(ω)
F(ω) =

∑l=m

l=− m
al ejω l Δx (4) 

Turning to discrete variable, the filter is applied to a N data series sampled every Δx. Assuming that these data correspond to a 
periodic function of period NΔx, if the frequencies for which the transfer function is wanted to be known are multiples of the 
fundamental frequency of the periodic function, ωF = 2π/NΔx, the values of the transfer function for any multiple frequency ωk =

kωF, hereafter harmonic k, are given by Eq. (5). 

TF(ωk) =
∑l=m

l=− m
al ej 2πk

NΔx l Δx
=

∑l=m

l=− m
al ej 2πk

N l (5) 

The obtained TF corresponds to the discrete Fourier transform (DFT) of a series of N points, of which, 2m+1 coincide with the filter 
coefficients and the rest are zero.

Values of k higher than N/2 do not make sense according to the Shannon theorem [30]. In order to make the transfer function 
independent of the sampling frequency, the dimensionless frequency, V = ωk/ωN is defined, being ωN = NωF the angular data sam-
pling frequency. Thus V = k/N, and TF being Eq. (6). 

TF(V) =
∑l=m

l=− m

al ej 2πV l (6) 

Where the acceptable V values range from 0 to 0.5.
In case the filter coefficients are symmetric with respect to the central point, as is the case of SGF coefficients, Eq.(1), the imaginary 

part of the coefficients of the summation of the corresponding values with positive l are equal and opposite in sign to those with 
negative l. Therefore, the transfer function has no imaginary part and can be expressed as Eq. (7). 
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TF(V) = a0 +
∑l=m

l=1
2 alcos(2πVl) (7) 

Eq. (7) applied to a SGF for an order 5 polynomial with different values of m is shown in Fig. 2. As can be seen, there is a value of V 
below which the gain is close to 1 and above which the gain decreases. In this work, the cutoff frequency, Vc, is the value of V at which 
the gain takes a value below 0.95. The stop frequency, Vs, is the lowest value of V at which the transfer function takes value 0.

One characteristic of the filter that is important in the obtained results is the slope (dTF/dV) at which frequencies are attenuated 
from the cutoff frequency. In this work, the value Vs − Vc is used to characterize the filter attenuation slope. This parameter is inversely 
related with the commonly called filter order, i.e. how fast the transfer function value decreases from the value 0.95 to 0.

The SGF has a transfer function similar to a low-pass filter with the particularity that above Vs the signal is not completely 
attenuated, and thereafter the gain changes sign as it attenuates.

2.2. Selection of n and m from Vc and Vs

As Vc and Vs have been defined, each SGF (n, m) has unique determined values of Vc and Vs, which can be calculated using Eq.(7). 
For any value (n,m) there are values of Vc and Vs, however, due to (n,m) are integer values, not all values of Vc and Vs, have the 
corresponding values (n,m).

As will be seen later, the methodology proposed in this work requires choosing an SGF, a pair of values (n, m), from selected values 
of Vc and Vs − Vc. In this section we discuss how this choice is made.

The first step is to choose a range of polynomial orders. In this work the lower limit is taken with n = 3 and the upper limit is taken 
with n = 11. Fig. 9 shows the results of the methodology applied to data . It can be seen that values n > 7 are not necessary.

Fig. 3a shows the value of Vc as a function of the number of points m used on each side of the point where the filtered signal is 
calculated and using the order of the polynomial n as a parameter.

Fig. 3b shows the value of the cutoff frequency Vc as a function of Vs − Vc. The figure has been obtained using as parameter n and 
varying m. It can be observed a linear trend between Vs − Vc and Vc when m is modified for a fixed n value. The slope increases as n 
increases.

If a range of Vs − Vc is selected, Fig. 3b shows the definition of Vc2 as the cut-off frequency above which the Vs − Vc of the higher 
order polynomial is greater than the selected range. Similarly, Vc1 is the frequency below which the Vs − Vc of the lower order poly-
nomial is less than the proposed range.

In Fig. 3b it can be observed that, if a value of Vc is selected, there are only polynomials whose Vs − Vc value is within the selected 
Vs − Vc range if Vc2>Vc>Vc1.

Fig. 3b illustrates the criterion for choosing the pair (n,m) from Vc and the delimited Vs − Vc range. Three situations, points A, B and 
C in Fig. 3b, can occur depending on the value of Vc: 

• Point A: When Vc < Vc1 and all polynomials have a value of Vs − Vc below the lower limit of the interval. In this case the polynomial 
of lower order is chosen because it is the one with the highest value of Vs − Vc below Vc1. The number of points will be the one that 
has the cutoff frequency nearest to the selected Vc.

Fig. 2. TF plot of SGF with order n = 5 and different number of points m. It shows Vc calculated when TF = 0.95 and Vs is calculated at the first pass 
through 0 of TF.
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• Point B: When Vc1 < Vc < Vc2, there are polynomials with a value of Vs − Vc within the desired limits. In this case, the order and 
number of points chosen are closest to the selected Vc.

• Point C: When Vc > Vc2 and all polynomials have a value of Vs − Vc above the higher limit of the interval. In this case the polynomial 
of higher order is chosen because it is the one with the lowest value of Vs − Vc above Vc2. The number of points will be the one that 
has the cutoff frequency nearest to the selected Vc.

In short, for a given Vc and a given Vs − Vc the (n,m) pair of the SGF to apply is obtained. Closing the problem requires defining a 
criterion for Vc and Vs − Vc selection at each point.

2.3. Vc calculation from the convolution of the signal.

This section shows how to determine the value of Vc at each point of a discrete signal.
Any filtering system based on low-pass filters aims to remove frequencies above a certain value and thus eliminate high-frequency 

noise. To perform this type of filtering it is usual to consider that the signal is periodic, to apply the DFT to obtain the signal harmonic 
decomposition and to multiply this transformation by a TF with low or zero gain from Vc value onwards [16]. A selection criterion for 
selecting Vc is taking the one in which the amplitude of the harmonics of the signal DFT (normalized to the unit of the original data) is 
negligible compared to the original signal levels [17].

In processes in which their characteristic harmonics vary significantly over time, it is convenient to filter with different Vc adapted 
to the characteristic harmonics of the process in each zone. This eliminates as much noise as possible in the zones where the phe-
nomenon does not have characteristic harmonics of high frequency, without eliminating these characteristic harmonics in the zones 
where they are representative of the phenomenon. In these last zones, the noise in those characteristic harmonics is not eliminated. The 
signal to noise ratio is expected to be high in this area.

The problem of this filtering methodology is to identify the characteristic harmonics in each zone. To do this, it is necessary to 
analyze the signal by intervals in the frequency domain. In each interval, Vc is selected looking for the signal harmonic which 
amplitude is lower than a certain value.

Fig. 3. Vc of SGF as a function of different parameters. (a) Vc, as a function of the number of points m used on each side of the filtered signal 
calculation point. (b) Value of the cutoff frequency Vc as a function of the filter order Vs − Vc. (c) Selection approach used in this work to determine 
the polynomial pair (n,m) from Vc and the range Vs − Vc selected.
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Convolution allows to quantify the similarity between a function f(x) and the pattern function g(x), obtaining a value represen-
tative of the similarity in all the f(x) domain, Eq. (8). Generally, far of the origin, g(x) = 0. 

c(x0) =

∫ ∞

− ∞
f(x) g(x − x0) dx (8) 

The non-integrated variable x0, shifts the origin of the function g(x) to the position x0. The value of c(x0) gives a comparison value 
to f(x) and g(x − x0). Only the values of f(x) in the region where g(x − x0) is not zero, i.e. around x0, are important for this comparison.

The comparison is done in terms of zero crossing, so that if the two functions have the same sign in the same areas around x0, the 
value c(x0) is high. On the other hand, if the functions take values of opposite signs in the same areas, c(x0) takes very negative values.

If the integral of g(x) in all integration domain is zero (its mean value is zero), then the value of c(x0) is independent of the mean 
value of the function f(x) in the region where g(x − x0) is non-zero. In that case, the comparison is made not on the basis of the zero 
crossing of f(x) but on the basis of f(x) crossing its mean value in the region where g(x − x0) is non-zero.

The units of convolution are not the same as those of f(x).
Functions g(x) with several zero crossing are often used, for example the Morlet wavelet gM(t). 

gM(t) = Cσ π−
1
4 e−

1
2t2 ( ejσt − Kσ

)
Kσ = e−

1
2σ2

Cσ =

⎛

⎝1 + e− σ2
− 2e−

3
4σ2

⎞

⎠

−
1
2

(9) 

This function takes significant values in the interval t ∈ [ − π, π], outside of it the values are very close to zero. In this interval the 
function has 2σ zero crossing. Kσ is a coefficient so that the mean value of the real part of gM(t) equals zero in the interval. It is usually 
taken σ > 5, in that case the term Kσ becomes negligible and Cσ ≅ 1. In repetitive functions such as pressure records in ICE, the variable 
t is replaced by kx/X. Where X corresponds to the duration of the engine cycle, two revolutions in four strokes ICE. k is an integer and 
determines the frequency multiple of the frequency of the first characteristic harmonic, to be analyzed with gM(kx/X).

In the case of pressure recordings in ICE, the resolution of the angular encoders is usually greater than 0.1◦. The combustion process 
occurs in a few degrees and therefore there are important pressure variations in small angular intervals, this being more significant 
when the engine speed is low (in the same angular interval the time interval is greater when the speed is lower) and the combustion 
process is fast. All this makes the frequencies of the characteristic harmonics of the process approach half the sampling frequency.

In order to obtain information at the highest possible frequencies compared to the sampling frequency, the comparison function 
g(x) must have a low number of zero crossings in the interval considered. In this work the comparison function g(x) has been chosen 
with only 2 zero crossings, i.e. what for the Morlet wavelet function would mean σ = 1. Under these conditions σ < 5, the amplitude of 
the Morlet wavelet functions, Cσπ− 1/4, varies substantially with σ.

The unit circle function, Eq. (9), has a single zero crossing and its modulus always equals 1 regardless of the k value, so the value of 
the convolution will have the same units as the function f(x) if the result of the integral is divided by the integration interval. For this 
reason, the unit circle function has been chosen instead of the Morlet wavelet function. Now k directly denotes the multiple of the 
frequency of the first characteristic harmonic being analyzed. 

g(x, k) =
{

ejkx/X = cos(kx/X) + jsin(kx/X) − π ≤ kx/X ≤ π
0 another case

(10) 

Fig. 4. Complex plane representation of g(x,ω) Eq. (9) and Eq. (10).
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The real part of the comparison function is not continuous at kx
X = − π and kx

X = π. In this work, it is proposed to use Eq. (11) in the 
interval. In short, it is proposed to use a cos(kx/2X) window to fix the continuity problem, and to correct the cosine function with an 
offset of 1/3 (similar to the Kσ parameter of the Morlet function) to make zero the mean value of the real part. Additionally, it is 
necessary to multiply by 

̅̅̅̅̅̅̅̅̅̅̅
18/7

√
(similar to the Cσ parameter of the Morlet function) to equal the area of the new comparison function 

to that of the complex unit circle. With this function, the area of the function in independent of k. Both functions have been plotted in 
the complex plane in Fig. 4. 

g(x, k) =
̅̅̅̅̅̅
18
7

√

cos(kx/2X)
[

cos(kx/X) −
1
3
+ j sin(kx/X)

]

− π ≤ kx/X ≤ π (11) 

In this work pressure records in the combustion chamber of an ICE sampled at constant crank angle intervals Δα = 0.6◦ are used. 
Each work cycle, which corresponds to two engine revolutions, can be considered a periodic function. In each cycle the number of 
sampled data is N = 720◦

/Δα. Eq. (12) is used to apply the convolution in a discrete form to a pressure data series p(i), where i denotes 
the pressure data index. 

Fig. 5. (a) Experimental pressure signal and its derivative calculated using finite differences. (b) Convolution of an experimental pressure signal.
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c(i, k) =
k
N

̅̅̅̅̅̅
18
7

√
∑l≤N

2k
l≥−

N
2k

p(i + l) [Re(k, l) + j Im(k, l) ]

Re(k, l) = cos
(

πk
N

l
)[

cos
(

2πk
N

l
)

−
1
3

]

Im(k, l) = cos
(

πk
N

l
)[

sin
(

2πk
N

l
)]

(12) 

k takes values from 1 to N/2. So that c(i, k) has units of pressure, the summation must be divided by the integration interval N/k.
A high value of |c(i, k) | indicates that k harmonic is present at x = iΔα position, either in the form of sine or cosine. Thus, for a given 

crank angle (a fixed i value), if |c(i, k) | takes values below a certain level, the value of k/2N will be used to calculate the value of Vc in 
that point.

When k values are close to N/2 the number of summands of Eq. (12) decreases to 3 and it is not possible to guarantee that the mean 
value of the comparison function is zero. In this case, the continuous component of the function f(x) would have influence on the value 
of c(i, k).

The cosine values in the real part of g(x, k), for the same absolute values of l, have the same value and sign, therefore, the mean 
value of the function does not have to be zero. In the case of the imaginary part, the values of the sine, symmetric with respect to the 
origin, are inverse so the mean value of the function is always zero.

To ensure that in the real part the mean of all coefficients is zero, all real values of the comparison function are subtracted by their 
mean value Re (Eq. (13)). 

Re(k) =
1

N/k + 1
∑l≤N/2k

l≥− N/2k

Re(k, l) (13) 

In Fig. 5 (a) an experimental pressure signal and its derivative have been plotted. Fig. 5 (b) shows the result of the convolution c(x,
V) applied to one cycle of the experimental data. The variable x = iΔα is the crank angle CA, and V = k/N.

If the convolution is to be calculated at an intermediate point between two experimental data, which is how it has been used in this 
work, the expression to be applied in each interval z between two experimental points,p(z− ) and p(z+), corresponds to that indicated in 
Eq. (13). 

c(z, k) =
k
N

̅̅̅̅̅̅
18
7

√
∑l≤N

2k+
1
2

l=0
[p(z+ + l) + p(z− − l) ]Re’(k, l) + j[p(z+ + l) − p(z− − l) ] Im’

⎛

⎜
⎜
⎜
⎜
⎝

k, l

⎞

⎟
⎟
⎟
⎟
⎠

Re’(k, l) = cos
[

πk
N

(

l +
1
2

)]{

cos
[
2πk
N

(

l +
1
2

)]

−
1
3

}

− Re(k)

Im’
(

k, l
)

= cos
[

πk
N

(

l +
1
2

)]

sin
[
2πk
N

(

l +
1
2

)]

(14) 

The summation has been reduced to half terms considering the symmetry of the sine and cosine functions.
Considering that when the convolution takes values below a selected level (filter level) there is no information of the pressure signal 

and only noise is present. This transformation can be used as a tool to determine the cutoff frequency to be applied at each crank angle 
using a SGF.

Under the assumption that the convolution decreases with frequency, which is only false when the convolution values are near 
zero, once the filtering level has been chosen, it is not necessary to calculate all the values of c(i, k) at each crank angle to determine the 
corresponding cutoff frequency Vc. It is enough to find the two values of the module of c(i, k) above and below the level and interpolate 

Fig. 6. Scheme of the procedure followed in this work to obtain a continuous and derivable function in the whole domain from discrete data.
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to calculate Vc. At the next angular position, the Vc search is started at the value of the previous data point. This procedure decreases 
the number of c(i, k) calculations to be made.

With this Vc calculation strategy, the application of this adaptive method for the choice of the SGF at each point would involve the 
realization of a number of weighted averages, Nwa, before applying the weighted average of the SGF. Therefore, with respect to a fixed 
SGF, the computational cost is multiplied by Nwa + 1.

2.4. Using APF and obtention of a continuous and derivable signal in the whole domain

The final result of the application of the methodology described in this article is an interpolation polynomial between every two 
experimental data obtained from the filtering of the experimental data. The set of all the polynomials (each one used in its interval) is a 
continuous and derivable function in the entire domain. Fig. 6 schematizes this methodology, which is described below.

For this purpose, in each interval z between two experimental points, z− and z+, as described in section 2.3, the cut-off frequency Vc 
is calculated as the frequency from which the value of the convolution c(z, k), in this case c(CA,V), (in the same units of the original 
signal) is less than a certain chosen level.

The criterion used to select this level with the data used in this work is presented in section 3.1, and it is illustrated in Fig. 12, where 
also the selection of Vs − Vc range value is illustrated. From the Vc and Vs − Vc selected values for each interval, according to the 
methodology explained in section 2.2, the order and number of points are chosen.

This choice of n and m will implies the same filtering level of filtering of the signal in the interval, as if an SGF were used. Note that a 
SG filtering with an average weighted by the SG coefficients is not applied, but rather it is necessary to calculate the coefficients of the 
interpolation polynomial.

As a different polynomial is chosen for each interval, on the intervals ends, i.e. at the experimental data points, the polynomial (n, 
m) changes so continuity and derivability are not ensured.

With each polynomial it is possible to calculate six data, three values and three derivatives, at the two interval ends and at the 
center of the interval. At each experimental point two polynomials take values, to avoid a possible discontinuity, the mean value of 
these two values is assigned. In each interval, these 6 conditions suppose 6 linear equations that allow to determine the 6 coefficients of 
a polynomial of order 5. These polynomials defined for each interval have the property that the polynomials of two consecutive in-
tervals have the same value and the same derivative at the point of union of the two intervals, which guarantees the continuity and 
derivability in the whole domain. A graphical representation of what this new polynomial supposes is presented in Fig. 7.

3. Results and discussion

3.1. APFanalysis using simulation-generated data

Using a predictive model developed in AVL BOOST 2021, two SIE simulations have been carried out. One of them corresponds with 
low combustion speed and high engine speed, this means that the characteristic harmonics of the phenomenon are at low frequencies. 
The other one with high combustion speed and low engine speed, consequently with higher frequency characteristic harmonics. This 
results in two pressure diagrams with different gradients in the combustion zone. In the slow frequency combustion process (slow 
cycle) natural gas is used as fuel with 42.9 % excess air at 2500 rpm, this corresponds to a combustion duration of 110◦ (NG_0.7_2500). 
In the fast frequency combustion process (fast cycle), the combustion of hydrogen (a fuel with a much higher combustion speed) has 
been simulated with 100 % excess air at 1000 rpm, resulting in a combustion duration of 55◦ (H2_0.5_1000). The simulation results are 
obtained with the same angular resolution as the experimental pressure records (Δα = 0.6◦ ). These two configurations are common in 
natural gas (NG) and hydrogen (H2) engines [29] in order to limit NOx emissions and to have stable operation.

A random noise of ± 25 mbar has been added to the simulated pressure signals. This noise is of the order of the noise found in the 
experimental tests of [2,30]. To analyze APF efficiency, different filters have been applied to the noisy pressure signals and then 
processed with an inverse predictive model to calculate the rates of heat released (RoHR) during combustion Eq. (15). The RoHR 
obtained after filtering have been compared with the original RoHR without noise that was used to obtain the pressure diagrams.

Fig. 8 shows the original pressure plots of the two cycles with and without noise and their derivatives.

Fig. 7. Graphical representation of the continuous and derivative polynomial construction. The extreme definitive data points are the mean of 
extreme polynomial data point. The same for derivative values.
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These two simulations with added noise have been filtered with the methodology of this work. Fig. 9a show the dimensionless 
harmonic Vc from which the function c(CA,V) takes values lower than 5 mbar (this value selection will be explained onwards with 
Fig. 12). Also shows the order n and the number of points m selected to have a transfer function with a cutoff frequency value as close as 
possible to Vc for a range of Vs − Vc = [0.06,0.08], for a fast combustion H2_0.5_1000, and for a slow combustion NG_0.7_2500.

It can be observed that the maximum Vc is obtained around 0◦, where the highest-pressure gradients exist. This zone is where 
combustion occurs. Away from this zone the Vc values are much lower, indicating that there are no process characteristic harmonics of 
high frequency. In the results corresponding to fast combustion, the Vc values are higher during the combustion process, which results 
in higher n and lower m values.

Fig. 9b shows the maximum of Vc calculated for each of the 500 cycles. It can be seen how each cycle has a different maximum Vc 
due to the cycle by cycle variation. CCV makes each cycle under the same engine operating conditions to have a different combustion 
speed.

Eq. (15) presents the relationship between the two variables in the differential equation used in the two models, each variable being 
cleared in its case. It can be seen how the RoHR depends linearly on both the pressure and its derivative. 

RoHR =
γ p dV

dt + V dp
dt

γ − 1
− Q̇w (15) 

In order to evaluate the efficiency of the filtering methodology, this section follows the process schematized in Fig. 10. Firstly, 
pressure signals are simulated from RoHR. Latter noise is added to the simulated signals. The methodology is applied to the noisy 
signals obtaining a filtered pressure signal. Finally, the combustion diagnostics is performed to obtain RoHR that can be compared with 
the original simulated RoHR.

Fig. 11 shows the RoHR obtained using the original pressure signal, the original pressure signal with noise, the filtered signal with a 
SGF of n = 5 and m = 10 (SGF-5–10), the filtered signal with a FF with normalized cutoff frequency Vc = 0.1 and normalized filter 
order Vs − Vc = 0.11 (FF-0.1–0.1). The signal filtered with APF using a filter level of 5 mbar and a Vs − Vc = [0.1, 0.12] is also presented. 
Fig. 11a shows the comparison of the RoHR of slow cycle and Fig. 11b of fast cycle.

In Fig. 11, three zones can be distinguished. In the first one there is no combustion and it is divided in two parts: before combustion 
during the compression process and after combustion during the expansion process. The second zone is the beginning and end of 
combustion, where the RoHR takes low values and consequently the pressure gradients are not very high. Finally, the third zone is 
located where the highest-pressure gradients exist and therefore the highest RoHR values. In the third zone about 90 % of the fuel is 
burned.

In order to compare the results of the different filtering techniques, it must be kept in mind that the only adaptive filter is the APF 
and the other two have a fixed transfer function for all points of the cycle. An FF filter with parameters Vc = 0.061 and Vs − Vc = 0.07 
has a transfer function practically equal to that of the SG-5–10 filter. These values can be calculated from n and m in Fig. 3.

Fig. 11 must be understood as the comparison of an APF filter and two FF filters, one FF with a higher Vc, Vc = 0.1, and Vc = 0.1 
(legend FF − 0.1 − 0.1), and another with a lower Vc (legend SGF-5–10). In zone 1, where pressure gradients are low, the APF removes 
lower frequencies than the other filters, so the result is closer to the original RoHR signal.

Something similar happens in zone 2, however, as the high frequency harmonics of the signal increase their value, the APF in-
creases Vc, thus the three filters behave in a similar way. At the end of the combustion, as the pressure gradients decrease, the APF 
performance improves with respect to the other two filters.

In the third zone, in the case of fast combustion speed (Fig. 11b), the FF and the APF have a similar behavior. However, in the slow 
combustion (Fig. 11a), possibly the cutoff frequency of the FF would be too high so it has a worse performance than the APF.

In order to compare the APF and the FF in a quantitative way, the root mean square error (RMSE) between the RoHR of the filtered 

Fig. 8. Pressure signals and their derivatives of the simulated and randomly noisy, slow and fast cycles.
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signal and the original signal without noise was calculated. The lowest RMSE value means the best filtering. Fig. 12 shows the results 
obtained, on the one hand, the RMSE values of the APF versus its filtering level (upper horizontal axis), and on the other hand, the 
RMSE of the FF versus its cutoff frequency Vc (lower horizontal axis). When the filtering level in the APF decreases, the value of Vc 
increases, so the direction of growth of the horizontal axes is different. With both filters, the more to the right, the less the signal is 
filtered.

Different values of Vs − Vc have been used for both filters. Fig. 12a shows the results obtained in the slow cycle and Fig. 12b the 

Fig. 9. a) Vc, m and n obtained with the proposed procedure for a value of c(z, k) = 5 mbar as a function of the crank angle, applied to an 
experimental signal of slow combustion, NG_0.7_2500, and fast combustion, H2_0.5_1000, (section 3.2). b) Maximum Vc for each cycle for slow and 
fast combustion. c) Minimum number of points m and maximum polynomial order n, for each cycle, for slow and fast combustion.
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results obtained in the fast cycle. It has also been indicated in the two figures where the SG-5–10 filter would be with the corresponding 
values of Vc = 0.06 and Vs − Vc = 0.07.

Fig. 12 shows that the errors are lower in the slow cycle than in the fast cycle. The filter order Vs − Vc affects the FF results, even 
changing its trend. However, it has much less influence on the APF.

The optimal cutoff frequency in the case of the FF depends on how the signal is. It is different for the fast cycle (Fig. 12b) than for the 
slow cycle (Fig. 12a). However, in APF, the optimal filtering level is independent whether the process is fast or slow and is situated for 
the data used at around 5 mbar. This is a great advantage and novelty of the filter used in this work, since it is possible to have a single 
criterion for all signals in contrast to [31,32] that propose cutoff and stop frequencies dependent on the engine speed and load.

For APF applied to signals with high pressure gradients (Fig. 12b), low Vs − Vc values lead to inconsistent results when varying the 
filtering level. It is not advisable to use low Vs − Vc values.

In accordance with the results obtained, a value of 5 mbar as the filter level and a Vs − Vc = [0.1,0.12] have been chosen.

Fig. 10. Schematic of the process followed to quantify and evaluate the different filters on the simulated pressure signals with noise.

Fig. 11. RoHR as a function of crank angle, original, with noise and obtained with the filters: SGF-5–10, FF-0.1–0.1 and APF with a filter level of 5 
mbar and Vs − Vc = [0.1,0.12]. (a) Slow combustion process. (b) Fast combustion process.
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3.2. APFanalysis using experimental data.

In this section, the results of different filters applied to experimental data are compared. When experimental data are filtered, the 
noise-free signal is not known, so evaluating the quality of the filtering is very difficult. In the first section, a novel methodology, only 
valid for cyclic processes, is presented, based on the use of two parameters to compare the filters. In the second section, a qualitative 
comparison is made of the information obtained once the experimental data has been processed for the particular case of this work, 
pressure records used to calculate the RoHR.

3.2.1. Quantitative comparison of filters
The difference between the experimental and filtered signals is the sum of the noise (noise) plus the error in the filtering process 

(error). This difference is defined as L(α): 

L(α) = pexp(α) − pfilt(α) = pexp(α) − preal(α)+ preal(α) − pfilt(α) = noise+ error 

The attenuation is defined as the mean value of the absolute value of this difference, Eq. (16). 

Atten =
1

Nfin − Nini

∑αfin

αini

|L(α) | (16) 

Fig. 12. Comparisons between the RMSE of the APF versus its filtering level and of the FF versus its Vc, for different values of Vs − Vc. (a) Slow 
combustion process. (b) Fast combustion process. Filled markers correspond to the series of APF results. The empty markers correspond to the FF 
results series.
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Where Nfin − Nini corresponds to the points number used to calculate the attenuation. The attenuation quantifies the severity of the 
applied filter, but not the quality because it includes filtering error and noise.

The higher the attenuation, the more noise is removed, but it is possible that information about the process being measured is also 
removed. The problem is to determine the lost process information da (error). If the mean value of L(α) is calculated over the entire 
domain, it will be equal to the mean value of the error, because the mean value of the noise is zero L(α) = noise + error = 0 + error.

Probably error = 0, however, if a cyclic signal is being excessively filtered and removing relevant information from the process, it is 
very likely that at one point in the cycle a non-zero error is being committed in mean value, that is, at that point, the real signal will be 
in most cycles, either above or below the poorly filtered signal.

If in that case, an average is made by differentiating each instant of the cycle, the mean cyclic difference MCD(α), Eq. (17), the mean 
error will not be zero at that point. 

MCD(α) = 1
Ncycles

∑i=Ncycles

i=1
L(α, i) (17) 

MCD(α) quantifies the average error that is being systematically committed at a point in the cycle. The lower the MCD(α), the better 
the quality of the filtering, while the attenuation quantifies the amount that has been filtered, the higher the attenuation, the more 
severe the filtering. Note that if nothing is filtered, MCD(α) = 0 and Atten = 0.

Table 1 shows the attenuation value of three SGF for 100 cycles in the crank angle range from − 120◦ to 120◦. It is found that the 
more severe the filter, the greater the attenuation.

In order to determine Ncycles to be used in Eq. (17), Fig. 13 presents the maximum absolute value of MCD(α) within crank angle 
interval from − 120◦ to 120◦ as a function of the number of cycles analyzed for NG_0.7_2500 and H2_0.5_1000. This zone is the one of 
greatest interest since it involves the compression, combustion and expansion processes, see Fig. 15. It can be observed how after 100 
cycles the value remains practically constant, in the order of 24 mbar in H2_0.5_1000 and 12 mbar in NG_0.7_2500. Therefore, a value 
of Ncycles = 100 has been chosen for the calculation of MCD(α).

To compare two filters on the same signal, one criterion for selecting filter settings is that they have the same attenuation and then 
compare the MCD(α) value.

Fig. 14a shows the attenuation value of APF as a function of the filtering level with Vs − Vc = [0.1, 0.12] and the attenuation value of 
FF as a function of Vc for Vs − Vc = 0.11 in the crank angle range from − 120◦ to 120◦. Fig. 14b shows for the same configuration on both 
filters the maximum absolute value of MCD(α).

The attenuation of FF with Vc = 0.05 is similar to that of APF with a filtering level of 5 mbar (Fig. 14). On the other hand, a 
SGF-5–10 (Table 1) presents attenuation values similar to those of APF with a filtering level of 5 mbar. MCD(α) of these three filters are 
comparable each other since they attenuate the signal at similar levels.

Fig. 15 shows the value of MCD(α) for the filters APF, FF and SGF with a similar attenuation. In NG_0.7_2500 there are no 
remarkable differences between the filters, all of them have absolute values of MCD(α) below 10 mbar. In this case no filter has 
systematic errors. In H2_0.5_1000, the same can be said in the compression and expansion zones. However, in the combustion zone, all 
filters have the same tendencies in the systematic errors that exist, but the amplitude of the APF oscillations are smaller.

3.2.2. RoHRcomparison using different filters.
Fig. 16 shows a comparison of RoHR results obtained after applying the diagnostic model, Eq. (15), from filtered pressure signal. 

Results are presented for the experimental signal without filtering and with different filters: SGF-5–10 that would correspond with a 
Vc = 0.058 and Vs − Vc = 0.061 (Fig. 3); APF with a filtering level of 5 mbar and Vs − Vc = [0.1, 0.12]; and FF with Vc = 0.05 and 
Vs − Vc = 0.11. The three filters have similar attenuation levels.

Results of a FF obtained by applying the procedure proposed by Payri et al. [17] to the selection of Vc are also presented. In this 
case, the cutoff frequency results in Vc = 0.16 in H2_0.5_1000 and Vc = 0.04 in NG_0.7_2500. The same Vs − Vc = 0.11 has been used.

In the compression and expansion zone, zone 1 in Fig. 11, the real value of RoHR is known that is zero because there is no com-
bustion. APF has the lowest fluctuations around the real value in this zone. This is due that APF selects lower cutoff frequencies for 
these zones than any other filter. The behavior of the rest of the filters is dependent on the cutoff frequency they use.

In the combustion zone, zone 3 in Fig. 11, the real value of RoHR is not known and it is not possible to decide which filter is better. 
The analysis made in the previous section indicates that the APF, in the case of fast combustion, has a better performance than the rest 
of the cycles in this zone.

In the start and end of combustion zone, zone 2 in Fig. 11, it is known that combustion processes are slow and therefore the RoHR 

Table 1 
Attenuation values (mbar) for 100 cycles from − 120◦ to 120◦ obtained with different SGF: 
SGF with n = 6 and m = 4 (SGF-6–4), SGF with n = 5 and m = 10 (SGF-5–10) and SGF 
with n = 3 and m = 20 (SGF-3–20). For tests NG_0.7_2500 and H2_0.5_1000.

Filter NG_0.7_2500 H2_0.5_1000

SGF-6–4 5.57 4.9
SGF-5–10 8.41 9.08
SGF-3–20 22.67 70.22
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Fig. 13. Maximum value of |MCD(α)| in the crank angle interval between − 120◦ and 120◦ versus the number of cycles used for the calculation of 
MCD(α). Data filtered with the APF with a filtering level of 5 mbar and Vs − Vc = [0.1,0.12] have been used in GN_0.7_2500 and H2_0.5_1000 tests.

Fig. 14. Filter attenuation (a) and maximum value of |MCD(α)| (b) in the crank angle interval − 120◦ to 120◦ for NG_0.7_2500 and H2_0.5_1000. 
APF vs filtering level with Vs − Vc = [0.1, 0.12]. FF vs Vc with Vs − Vc = 0.11.
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does not have fluctuations. The filter that behaves best in this area is also the APF since it is the one in which the signal has the least 
fluctuations.

4. Conclusions

The main objective of this work is to obtain a continuous and derivable function that can be used to perform data diagnosis. A novel 
methodology has been developed to not only obtain a continuous and derivable function but also to filter the noise present in the 
signal. For this, the work carried out in this paper can be summarized in the following points: 

- Firstly, the filtering properties of polynomial fits have been studied in the frequency domain. The information obtained is used in 
the methodology to select interpolation polynomials by controlling the cutoff frequency.

- To select the cutoff frequency applied at each time instant a novel convolution transformation is proposed.
- Finally, in order to obtain a continuous and derivable function in the whole domain, a transformation of the polynomials is per-

formed. The last transformation consist in fitting in each interval between two experimental data points a 5-order polynomial 
fulfilling 6 conditions (no degrees of freedom) guarantying continuity and derivability in the interval extremes and in the central 
point.

This methodology is intended to be used to filter pressure signals recorded in the combustion chamber of an internal combustion 
engine ICE. Two types of results have been obtained, results from simulated data and results from experimental data. 

Fig. 15. MCD(α)as a function of crank angle for the filters: APF with a filtering level of 5 mbar and Vs − Vc = [0.1, 0.12], FF with Vc = 0.05 and 
Vs − Vc = 0.11 and SGF with n = 5 y m = 10. (a) NG_0.7_2500. (b) H2_0.5_1000.
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- Two signals have been generated through process simulation in order to validate the method developed in this work. One signal 
corresponds to a slow combustion process and the other corresponds to a fast combustion process. Noise of a level similar to the 
experimental observed was artificially added to the simulated signals. The noisy signal has been filtered with: the filter proposed in 
this work APF, filters based on frequency decomposition FF and Savitzky-Golay filters SGF. The results obtained after the filtered 
signals diagnosis have been evaluated and compared with the original simulated signal results (without noise).

- The filter proposed in this work has also been used on the experimental pressure signals of [2,30]. In order to evaluate the result fit 
of the different filters to the experimental data, the use of two quantifiers has been proposed. The first quantifier proposed, mean 
cyclic dispersion (MCD(α)), serves to analyze the cycle averaging of the noise removed from the original signal with each filter. The 
second quantifier proposed, attenuation Aten, serves to analyze the information removed. The MCD of different filters (APF, FF and 
SGF) with the same attenuation, has been analyzed. The best results are obtained using APF.

The conclusions obtained by the analysis of the results are: 

- The relation between the pairs [cutoff frequency, filter order] and [polynomial order, number of interpolation points] is deter-
mined by performing the discrete Fourier transform (DFT) of the SGF coefficients.

- The use of a preferred filter order for the selection of polynomial order and number of interpolation points, prevents abrupt changes 
in the order and number of points of the polynomial for consecutive data. In case of only attending to the polynomial with the 
closest cutoff frequency, abrupt changes could occur (Fig. 3).

- The convolution applied to experimental data allows to perform a frequency decomposition at each angular interval between two 
data. The convolution result, obtained at each interval, is used to select the cutoff frequency of the filter to apply. The convolution 
units are the same as the original data if the comparison pattern function g(x) is properly selected. Thus, the convolution value used 
to choose the cutoff frequency has a quantitative physical meaning.

- The computational cost of performing the convolution for all frequencies is high. But it is not necessary to calculate it at all fre-
quencies for each point. The filter computation time can be drastically reduced by starting the search for the cutoff frequency for 

Fig. 16. RoHR versus crank angle, experimental and obtained with filters: SGF-5–10, FF-0.05–0.11, FF-Payri et al. and APF with a filtering level of 5 
mbar and Vs − Vc = [0.1,0.12]. (a) NG_0.7_2500. (b) H2_0.5_1000.

P. Gabana et al.                                                                                                                                                                                                        Mechanical Systems and Signal Processing 235 (2025) 112871 

19 



each interval from the cutoff frequency of the previous interval. The APF, compared to a fixed SGF, would multiply the compu-
tational cost by the number of times the convolution was performed at each point plus 1, but would have the great advantage of 
being adaptive. In addition, if a continuous and derivable function is desired, this implies an additional computational cost of a 
multilinear regression and the resolution of a system of six linear equations.

- Applying APF on simulated signals gives better results than using FF or SGF. In addition, the optimal APF cutoff level is practically 
independent of the chosen filter order Vs − Vc and the signal characteristics (fast or slow combustion process). This is not true for FF 
since the optimal cutoff frequency depends on the signal characteristics to be filtered and the filter order.

- MCD(α) is only applicable to cyclic signals sampled at the same instant of the cycle, as is the case for chamber pressure data from an 
ICE.

- When filtering experimental data, the interesting point is MCD(α) taking values close to zero while the attenuation takes high 
values. MCD(α) decreases as fewer cycle characteristic frequencies are removed, i.e. the higher is the cutoff frequency. On the other 
hand, the attenuation increases as more noise is removed, i.e. the lower the cutoff frequency. The improvement of both quantizers 
implies opposite trends in the cutoff frequency, so a compromise solution concerning the filtering level must be found.

- All filters based on polynomials let some of high frequencies pass through. APF is the filter that filters out the high frequencies most 
uniformly. FF eliminates them completely.

- Unlike the other analyzed filters, APF treats each cycle zone differently, therefore, it is able to remove more noise in the zones of the 
cycle where the signal-to-noise ratio is lower, while it does not remove characteristic harmonics of the process when the signal-to- 
noise ratio is higher.

To sum up, the result of the methodology proposed in this work is a continuous and derivable function that allows detailed analysis 
of specific areas. For instance, when using the data as a boundary condition for differential equations systems integration with variable 
step numerical methods. Moreover, the methodology only uses data from the pressure signal without considering other operating 
conditions. In addition, the same methodology configuration is optimum for extreme test conditions. The proposed method offers a 
moderate computational cost solution for filtering periodic signals with cycle-to-cycle variations. For all these reasons, it can be a 
useful tool for pressure data treatment in ICE.

Future works could deal with the use of this filtering methodology under different engine operating conditions and operating with 
different fuels. Since the methodology uses the signal recorded, if the pressure variations of new tests are in the range of the pressure 
variations considered in this work this methodology should work without needing any change. If the pressure variations of new tests 
are outside the range of the pressure variations considered in this work it would be necessary to study the results of this methodology. 
Also, the simulation of the pressure data acquisition system is interesting in order to study the effect of pressure signal distortions in the 
methodology proposed.
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