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ABSTRACT
Long‐term consequences of SARS‐CoV‐2 infection are unknown since recovered individuals can experience symptoms and

latent viral reactivation for months. Indeed, acute post‐infection sequelae have also been observed in other respiratory viral

infections, including influenza. To characterize post‐COVID‐19 and post‐influenza induced alterations to the cellular im-

munome, peripheral blood mononuclear cells (PBMCs) were obtained from patients 3 months after recovery from COVID‐19
(n= 93) or influenza (n= 25), and from pre‐pandemic healthy controls (n= 25). PBMCs were characterized using a 40‐plex
mass cytometry panel. Principal component analysis (PCA), classification models, and K‐means clustering were subsequently

applied. PCA identified distinct immune profiles between cohorts, with both post‐COVID and post‐flu patients displaying an

altered chemokine receptor expression compared to pre‐pandemic healthy controls. These alterations were more prominent in

post‐COVID patients since they exhibited highly increased expression of chemokine receptors CXCR3 and CCR6 by various

lymphoid populations, while post‐influenza patients mainly showed a decrease in CCR4 expression by naïve T cells, monocytes,

and conventional dendritic cells. Classification models using immunophenotyping data confirm the three groups, while
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K‐means clustering revealed two subgroups among post‐COVID patients, with younger patients showing more pronounced

immune alterations in the chemokine receptor profile, independently of long COVID symptoms. In conclusion, post‐COVID
and post‐influenza patients exhibit distinct and unique persistent immune alterations. Understanding these altered immune

profiles can guide targeted therapies for post‐COVID syndrome and highlight differences in immune recovery from various

respiratory infections.

1 | Introduction

In the last 4 years, the acute phase of COVID‐19 has been ex-
tensively studied and described [1]. Briefly, the initial viral load
and the efficacy of the innate immune response, particularly
mediated by Type I interferons, appear to be critical for both the
subsequent adaptive response and the clinical outcome [2].
Many patients with acute SARS‐CoV‐2 infection have profound
lymphocytopenia, which is associated with a poor clinical out-
come [3]. Accordingly, peripheral lymphopenia and altered
frequencies of innate and adaptative cell subsets such as CD4+

and CD8+ T cells, as well as NK cells, were associated with
acute SARS‐CoV‐2 infection [4].

Independent of the severity of the acute COVID‐19 or flu
infection, recovered individuals can present virus reactivation
mainly by EBV, HHV‐1, and CMV [5, 6]. Post‐viral syndrome is
a complex condition characterized by persistent pain, fatigue,
and neurocognitive difficulties, and can last for weeks, months,
or even years after acute infection with SARS‐CoV‐2, influenza,
or Dengue, among others, hence constituting a significant
challenge for public health [7, 8]. Long COVID (LC) is therefore
defined by the World Health Organization (WHO) as the con-
tinuation or development of new symptoms 3 months after the
initial SARS‐CoV‐2 infection, with these symptoms lasting for at
least 2 months with no other explanation. Several studies
indicate that around 10% of people recovering from COVID‐19
are affected by LC [9]. On the other hand, post‐influenza follow‐
up studies have revealed the prevalence of chronic pulmonary,
cardiovascular, and neurological sequelae following the reso-
lution of acute illness in certain patient groups [10–15] as well
as post‐flu bacterial secondary infection and super‐infection
[16]. Comparisons between post‐COVID and post‐flu sequelae
were addressed in a cohort of elderly patients, finding similar
prevalence, but notable differences in symptomatology [17].
Interestingly, another study described that post‐COVID patients
developed neuropsychiatric manifestations more quickly, were
older, and had more extreme laboratory values than flu pa-
tients, underscoring the likely neurotropism of SARS‐CoV‐2
infection, resulting in new significant neurological and neuro-
psychiatric sequelae among survivors regardless of COVID‐19
disease severity [18].

However, the physiopathology of these diseases is still
unknown, although a participation of the immune system is
suspected [7]. As a result, scientific and clinical evidence is
evolving on the post‐acute and long‐term effects of COVID‐19,
which can affect multiple organ systems [19]. Several reports
show that LC/post‐COVID patients had systemic inflammation
and immune dysregulation, as well as significant changes in
classical subsets among total CD4+ T cells, specifically a sig-
nificantly higher proportion of CD4+ Tcm, Tfh, and Treg cells

[20]. Furthermore, differences in other immune cell popula-
tions, such as CD56++ NK cells, granulocytes, low‐density
granulocytes, and tissue‐homing CXCR3+ monocytes, were
found to be significantly increased in convalescents 3 months
after infection [8, 21, 22]. In the context of post‐influenza
infection, studies on alterations in immune cell frequencies and
phenotypes are scarce. However, research in mice has detected
transcriptionally active influenza A RNA in sites of previous
infection. Notably, the persistence and progression of lung
damage were found to be partly dependent on IL‐13, suggesting
sustained Type II immune signaling [23].

Nevertheless, it is still unknown whether these persistent
immune alterations are a general mechanism following differ-
ent viral infections, or whether they are related to disease
severity and/or subsequent post‐syndrome development or viral
reactivation susceptibility. Moreover, it is also unknown
whether these post‐infection immune alterations are disease‐
specific or are also induced by other respiratory infections. To
date, and to the best of our knowledge, no studies have spe-
cifically compared the immune landscape 3 months after pri-
mary infection in post‐COVID and post‐flu patients. Hence, we
aimed to characterize the circulating cellular immunome of
both post‐COVID‐19 and post‐influenza patients using a deep
immunophenotyping of PBMC by mass cytometry (CyTOF)
3 months after diagnose, compared to a cohort of prepandemic
healthy controls. Our study addresses a critical knowledge gap
by examining immunophenotyping in the context of recovery
from SARS‐CoV‐2 and influenza infections. Our findings reveal
specific immunological patterns in post‐COVID‐19 patients,
shedding light on distinctive immune mechanisms that come
into play following these infections, providing potential novel
therapeutic opportunities.

2 | Methods

2.1 | Ethics Statement

Participants for the three study cohorts were selected from
different clinical studies. One cohort consisted of adult post‐
COVID‐19 patients discharged after hospitalization as standard
of care from Hospital Clínico Universitario and Hospital Uni-
versitario Río Hortega, both in Valladolid, Spain. Study proce-
dures were medically and ethically approved by the Local Ethics
Committee from Valladolid Este, Spain (PI 21‐2098). Another
cohort consisted of post‐influenza patients selected from the
influenza arm of the controlled longitudinal, parallel group
study Immfact (NL46795.094.13), conducted by the National
Institute for Public Health and the Environment (RIVM), Bil-
thoven, the Netherlands. The Immfact study was approved by
the accredited independent Medical Ethics Review Board
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METC UMC Utrecht. A cohort of prepandemic healthy donors
was selected from the Spanish Network of Biobanks. All parti-
cipants provided written informed consent before the study
procedures. All studies were conducted in compliance with the
principles of the Declaration of Helsinki.

2.2 | Study Participants and Sample Collection

Venous blood samples were collected from 93 unvaccinated
patients who were hospitalized between March and April
2020 at Hospital Clínico Universitario and Hospital Uni-
versitario Río Hortega, both in Valladolid (Spain), due to
SARS‐CoV‐2 infection (confirmed by positive RT‐PCR),
3 months after hospital discharge (post‐COVID). According
to Rambaut et al. [24], the SARS‐CoV‐2 variant circulating
during that period belonged to lineage “A”, which was present
between February 26 to April 27, 2020. Additionally, venous
blood samples were collected from a second cohort of 25 post‐
influenza patients, who were infected with H1N1 or H3N2
influenza virus variants, and were recruited between Febru-
ary 2016 and May 2017, 3 months after laboratory‐confirmed
(positive RT‐PCR) influenza infection (post‐flu). Further-
more, blood samples were collected from 25 pre‐pandemic
healthy donors (HD) from the Spanish Network of Biobanks.
Importantly, neither of these two latter cohorts had never
been exposed to SARS‐CoV‐2.

From post‐COVID‐19 patients and HD, 10mL of peripheral
blood was collected in LH Lithium Heparin Separator tubes.
Samples were immediately centrifugedon Ficoll‐Paque PLUS
(Cytiva) gradient to obtain peripheral blood mononuclear cells
(PBMC), which were cryopreserved in duplicates in freezing
medium (90% FBS + 10% DMSO) until use. From post‐influenza
patients, peripheral blood samples were collected in vacutainer
cell preparation (CPT) tubes (BD Biosciences, San Jose, CA,
USA), and PBMC were isolated according to the manufacturer's
instructions and cryopreserved in freezing medium (30%
FBS + 10% DMSO) at −135° until testing.

Demographic and clinical information of COVID‐19 patients
3 months after hospital discharge were collected, including
persistent symptoms related to COVID‐19 infection (mainly
dyspnea, asthenia and headache, but also heart palpitation,
muscle weakness, hair loss, coughs), as well as their clinical
data during acute infection, such as oxygen requirement, hos-
pitalization time and treatment received. In addition, clinical
and demographic data were also obtained from the post‐flu and
prepandemic controls. Demographic and clinical information is
summarized in Table 1.

2.3 | Antibody Cocktail Preparation

The antibody cocktail was designed to complement Maxpar
Direct Immune Profiling Assay tubes (MDIPA, Standard Bio-
tools) containing a lyophilized antibody cocktail (Supporting
Information S1: Table S1). This panel was supplemented with
10 additional markers (Supporting Information S1: Table S2).
Most of the latter antibodies were obtained in a purified form

and conjugated to metals using Maxpar Metal‐labeling kits
following the manufacturer's instructions (Standard Biotools).
Antibodies were titrated in all cases to determine optimal
concentration under the same conditions as the tested samples.
To minimize experimental variation and promote data con-
sistency, a concentrated antibody cocktail pool was prepared,
aliquoted, and stored at −80°C until the day of the staining, as
previously described [25].

2.4 | Cell Staining and CyTOF Acquisition

Cryopreserved PBMC were thawed at 37°C and transferred to
3 mL of RPMI (Gibco) supplemented with 25 U/mL benzonase
(ThermoFisher). RPMI‐benzonase was added for a total of
10 mL. Cells were centrifuged at 400g for 5 min and re-
suspended in 1 mL of Cell Staining Buffer (CSB, Standard
Biotools) supplemented with 2 mM EDTA (Invitrogen). Via-
bility and cell count were determined, and 2 × 106 cells were
washed with 1 mL of CSB + EDTA in 5 mL polystyrene round‐
bottom tubes. Pellets were resuspended in 25 µL of 20 µg/mL
of FcR‐blocking solution (BD Biosciences) diluted in CSB +
EDTA and incubated for 10 min at room temperature (RT).
Then, samples were stained by adding 25 µL of the previously
described 10‐plex antibody cocktail and incubated for 30 min
at RT. MDIPA tubes were resuspended in 105 µL of CSB +
EDTA. 50 µL of resuspended MDIPA was added to samples
stained with the antibody cocktail and further incubated for
30 min at RT. After washing with 1 mL of CSB + EDTA at 400g
for 5 min, cell pellets were resuspended in 1 mL of 1.6% PFA
(Thermo Scientific) in Maxpar PBS (Standard Biotools), and
samples were fixed for 10 min at RT. Finally, samples were
centrifuged at 800g for 10 min, and the cell pellets were stained
overnight with 500 μL of 5 μM Cell‐ID intercalator Ir (Standard
Biotools) in Fix and Perm Buffer (Standard Biotools). The
next day, samples were stored at −80°C until the day of
acquisition.

For CyTOF acquisition, samples were thawed and washed at
800 g for 5 min with 2mL of CSB. Then, pellets were washed
twice with 2mL of Maxpar Cell Acquisition Solution (CAS,
Standard Biotools) at 800 g for 5 min. Cell pellets were re-
suspended at 8 × 105–1 × 106 cells/mL in CAS together with 0.1x
EQ Four Element Calibration Beads (Standard Biotools), and
acquired in a CyTOF2/Helios device (Standard Biotools) using a
wide‐bore sample injector and CyTOF Software version
6.7.1016. The flow rate was set below 400 events/s, and the
whole tube was acquired.

2.5 | Mass Cytometry Data Normalization and
Analysis

After acquisition, fcs files were normalized using the calibration
beads and Matlab Normalizer v0.3 [26]. Normalized.fcs files
were cleaned up using Maxpar Pathsetter software (Standard
Biotools). The default clean‐up probability state modeling
(PSM) model was used for the identification of intact live singlet
cells. Cleaned.fcs files were then uploaded to FlowJo 10.7.2 for
further analysis.
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2.6 | Statistical Analysis

Mass cytometry data of every individual were integrated into a
single database. To use the most relevant features, we selected
those with a variation coefficient (CV) higher than 0.5 among
all the individuals of the study, and MSI with values > 10 in at
least 5% of individuals (Supporting Information S1: Tables S3
and S4). The selected features were log2‐transformed and then
scaled and centered using the R scale function. Principal
Component Analysis (PCA) of scaled features was performed
using factoMineR and factoextra R packages. The top‐50 fea-
tures that showed the highest contribution to components 1
and 2 of the PCA were selected for clustering and classification
models (Supporting Information S1: Figure S1). Before clus-
tering analysis, the elbow method was performed to determine
the optimal number of clusters (Supporting Information S1:
Figure S2). K‐means clustering of patients was performed
using the scaled features and the stats R package, with 4
centers and 100 iterations. Heatmap representations were
performed using the Complex Heatmap R package, and bar
and scatter plots were done using ggplot2 R package. Random
forest and logistic regression classification models were eval-
uated using Orange Data Mining software [27]. For the con-
struction of the diagnosis prediction model, our cohort of
individuals was split into a training set (75% of individuals,

n= 108) and a testing set (25% of individuals, n= 35) accord-
ing to their diagnose. A 10‐fold cross‐validation was run on the
training set. For logistic regression, we used Lasso regular-
ization type with C= 1, while for random forest, 10 trees and 3
as the smallest subset were set. A receiver operating charac-
teristic (ROC) curve was performed to evaluate the model's
predictive ability, and the area under the curve (AUC) was
used as an evaluation index. Afterwards, the model was
applied to the testing set to predict the diagnosis of the in-
dividuals. Statistical analyses were performed using R. Com-
parisons of continuous values were assessed using Mann–
Whitney t‐test. Comparisons of categorical values were cal-
culated using Fisher's Exact Test. A p‐value of < 0.05 was
considered statistically significant.

3 | Results

3.1 | Altered Migratory Profile of Post‐COVID
and Post‐Flu Patients

To identify whether COVID‐19 patients display unique
immune alterations following SARS‐CoV‐2 infection, or
whether, on the contrary, these are also induced by other

TABLE 1 | Patient description. Demographic and clinical data of post‐COVID, post‐flu individuals, and pre‐pandemic healthy donors.

Study participants

Post‐COVID
(n= 93)

Post‐flu
(n= 25)

Pre‐pandemic controls
(HD) (n= 25)

Gender

Male 55 (59%) 11 (44%) 13 (52%)

Female 38 (41%) 14 (56%) 12 (48%)

Age 67 (23–95) 62 (27–85) 60 (39–65)
Time from acute infection (days) 80.5 (17–130) 79 (49–134) —
Hospitalization (days) 12 (1–55) 0 (0–5) —
Time from hospital discharge (days) 70 (10–115) — —
O2 requirementa

No 43 (46%) — —
Yes 49 (54%) — —

Treatment

No 2 (2%) — —
Antiviralsb 77 (83%) — —
Antibioticsc 77 (83%)

Corticosteroids 58 (62%) — —
Immunomodulatorsd 82 (88%) — —

Long COVID — —
No 66 (71%) — —
Yes 23 (29%) — —

Note: Data are listed as median (range) or numbers (%).
aFor oxygen requirement, “no” is defined as no need for oxygen, while “yes” is defined as the need for masks, non‐invasive mechanical ventilation, or invasive mechanical
ventilation to supply oxygen.
bAntivirals administered were lopinavir in combination with ritonavir.
cAntibiotic used was azithromycin.
dImmunomodoluators considered were hydroxychloroquine, betaferon, cyclosporine, colchicine, and tocilizumab.
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respiratory infections, we assessed the circulating cellular
immunome of COVID‐19 patients 3 months after hospital
discharge, and compared them with a cohort of post‐flu pa-
tients (matched for sex, age and time since first infection) as
well as a cohort of healthy pre‐pandemic controls. Figure 1
shows the gating strategy used to identify, in each individual, a
total of 43 different immune cell subsets. In addition, the
median signal intensities (MSI) of 16 different functional
markers (CCR2, CCR4, CCR5, CCR6, CCR7, CCR9, CXCR1,
CXCR3, CXCR5, CD25, CD38, CD57, CD147, CD161, CD62L,
and HLA‐DR) were determined within each immune subset.
Cell frequencies, referred to as total live cells, and MSI within
each subset, were extracted and exported to csv files for further
analyses.

Having obtained all the CyTOF features in all the in-
dividuals, we first performed a PCA analysis, which
revealed a differential immune fingerprint among the three
studied cohorts (Figure 2A). Indeed, post‐COVID patients
were clustered apart from the other cohorts based on com-
ponent 1 (19.8%), while both post‐flu and prepandemic
controls were more alike as they mainly differed on com-
ponent 2 (9.4%). Next, we aimed to identify the most
important features contributing to such variability. Our
results revealed that within the 141 most variable features,
34 of them reflected alterations in the proportion of circu-
lating cell subsets (Supporting Information S1: Table S3),
while 107 were related to the MSI levels of the studied
functional markers within a given immune subset
(Supporting Information S1: Table S4). Once they were or-
dered, the 10 features with the highest impact of the PCA
(Figure 2B) were the expression of CCR4, CCR6, and CCR9

by transitional monocytes, together with the expression of
the chemokine receptor CXCR3 by CD56hi NK cells, type 1
conventional dendritic cells (cDC1), CD8+ naïve, CD8+

effector memory and CD8+ effector memory CD45RA+ T
cells, plasmacytoid dendritic cells (pDC), and transitional
monocytes.

We next identified the 10 most important features specifi-
cally contributing to both components 1 and 2 of the PCA.
Figure 2C represents the expression levels of both CXCR3
and CCR6 by the different subsets contributing (from more
to less) to component 1 of the PCA, revealing how post‐
COVID patients display an increased expression of these
chemokine receptors involved in lymphoid migration com-
pared to both pre‐pandemic controls and post‐influenza
patients. Besides, some of these alterations were also found
in the latter when compared to the controls, although at
much lower extent. Component 2 (Figure 2D) was mainly
influenced by the expression of several chemokine receptors
(CXCR3, CCR4, CCR6, and CCR9), showing them from
more to less contribution. However, their expression was
mainly related to myeloid cells, which had a reduced ex-
pression in post‐flu patients and, to a lesser extent, in post‐
COVID patients compared to healthy controls.

Of note, and although there were some differences among
the three studied cohorts on the circulating levels of dif-
ferent immune cell subsets (data not shown), their contri-
bution was, however, much lower than that elicited by the
differential migratory profile of the immune subsets
(Figure 2C,D) since the most prominent one (circulating
levels of CD8+ TEMRA T‐cells) was not found until the sixth

FIGURE 1 | Identification of immune cell subsets by mass cytometry. Representative mass‐cytometry plots showing the hierarchical gating

strategy used for the identification of immune cell populations and their subsets.
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FIGURE 2 | Post‐COVID and post‐flu immune fingerprint. (A) Principal component analysis (PCA) of post‐COVID (orange), post‐flu (green),

and healthy donors (HD, blue) based on mass cytometry data. (B) Biplot of the top 10 features that contributed the most to PCA. The colors in the

plot represent the contribution (in percentage) for each feature, varying from blue (lower contribution) to red (higher contribution). Box plots of the

10 features contributing to both component 1 of PCA (C) and component 2 (D) are shown. Mann–Whitney test was applied. p‐values < 0.05 were

considered as statistically significant (*p< 0.05, **p< 0.01, ***p< 0.001, ****p< 0.0001).
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feature contributing to the third component of the PCA
(Supporting Information S1: Figure S3).

3.2 | Identification of Specific Post‐Respiratory
Infection Signatures

Since both post‐COVID and post‐flu displayed a differential
expression of migratory markers compared to pre‐pandemic
controls, we next aimed to develop a model to predict patient
classification. To that end, we used the top 50 features with the
highest contribution to both components 1 and 2 of the PCA
(Supporting Information S1: Figure S1). Results from both
random forest and logistic regression models are shown in
Table 2, revealing that the AUCs were over 0.95 in both the
training (Figure 3A) and the testing set (Figure 3B). Further-
more, both models exhibited outstanding scores to classify new
individuals, as both showed a classification accuracy (CA) over
0.90. Hence, these results confirm the presence of a persistent
and differential immune disturbance on the migratory profile of
circulating mononuclear cells up to 3 months following post‐
COVID and post‐influenza infection.

3.3 | Unsupervised Clustering Reveals Two
Immunological Groups of Post‐COVID Patients

We also performed an unsupervised classification of all the
individuals based on their mass cytometry immunological fea-
tures, regardless of their diagnosis, using the K‐means cluster-
ing algorithm. As before, the top 50 features contributing to
components 1 and 2 of the PCA were used (Supporting Infor-
mation S1: Figure S1). The elbow method determined, from the
total of individuals, an optimal number of 4 clusters to classify
all the observed biological variability (Supporting Information
S1: Figure S2 and Figure 4). Cluster 1 was mainly composed of
healthy donors (n= 15), together with 6 post‐COVID patients.
Cluster 3 was enriched in post‐flu patients (n= 24), although it
also included 4 healthy donors and 4 post‐COVID. On the other
hand, clusters 2 and 4 consisted of almost exclusively post‐
COVID patients (n= 37 and n= 46, respectively). In cluster 2,
one healthy donor was found, while cluster 4 included one post‐
flu and five healthy donors (Figure 4).

In addition, 4 modules of features were observed according to
the hierarchical clustering indicating grouped regulation of
immune parameters in the patients. Module 1 consisted mostly
of the expression of chemokine receptors CXCR3 and CCR6 by
lymphoid cells, together with the expression of CCR2 by DC.
Likewise, module 2 was made of lymphoid cells expressing
CD62L or CXCR2, together with the expression of CXCR5 by
naïve B cells. Module 3 was, however, more heterogeneous
regarding the expression of several chemokine receptors
(CCR6, CCR4, CCR9, and CXCR3) by myeloid cells as well as
the expression of CCR9 by CD4+ type 1 helper T cells. Last,
module 4 consisted of several immune subsets expressing
CCR4, together with CCR6+ plasmablasts and CD4+ central
memory T cells.

Notably, patients from cluster 2 (mainly made of post‐COVID
patients) displayed an increased expression of both modules 1
and 2 as compared to the other clusters, including cluster 4,
which was the other post‐COVID‐bearing cluster. Likewise,
modules 1 and 2 were quite similar between clusters 1 (mainly
prepandemic controls) and 3 (mainly post‐flu patients). Of
note, cluster 4 (mainly post‐COVID patients) had a transi-
tional state, in both modules 1 and 2, referred to clusters 1
(mainly controls) and 3 (mainly post‐flu) (Supporting Infor-
mation S1: Figures S4 and S5). As for cluster 1 (mainly pre-
pandemic controls), its main difference with the other clusters
relied on module 3, which was increased (Supporting Infor-
mation S1: Figure S6). Similarly, cluster 3 (mainly post‐flu
patients) showed a decrease in expression in module 4 com-
pared to cluster 4 (mainly post‐COVID patients) (Supporting
Information S1: Figure S7).

As our data indicate a level of diversity within the group of
post‐COVID patients in contrast to pre‐pandemic healthy
controls and post‐flu patients (Figure 4), we next aimed to
identify the factors underlying such diversity including gen-
der and age at diagnose, as well as disease severity (considered
as both days in hospital or oxygen requirement), treatment
during infection, or subsequent development of long‐COVID
(Figure 5). Of note, and although the proportion of patients
who have subsequently developed long COVID was slightly
enriched in cluster 2, that was, however, not statistically
significant (Figure 5F). Thus, separation of the post‐COVID
patients into two immune clusters could only be explained by

TABLE 2 | Logistic regression and Random Forest.

Training Set: Scores
Model TP TN FP FN AUC CA F1 Precision Recall Specificity

Logistic regression 103 211 5 5 0.99 0.95 0.95 0.96 0.95 0.97

Random forest 99 207 9 9 0.97 0.92 0.91 0.92 0.92 0.91

Testing Set: Scores
Model TP TN FP FN AUC CA F1 Precision Recall Specificity

Logistic regression 34 69 1 1 0.99 0.97 0.97 0.98 0.97 0.99

Random forest 33 68 2 2 0.98 0.94 0.94 0.95 0.94 0.94

Note: Performance metrics of logistic regression and random forest models for the prediction of diagnosis using the top‐50 features of PCA components 1 and 2 in the
training (above) and testing set (bottom). Scores of both models include classification accuracy (CA), F1 score, precision, recall, and specificity. TP: true positive, TN: true
negative, FP: false positive, FN: false negative.
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age (Figure 5A) and did not relate to subsequent long‐COVID
development (Figure 5F), gender (Figure 5C), disease severity
(Figure 5B,D), or treatment during hospitalization
(Figure 5E).

4 | Discussion

Over the past 4 years, extensive research has delved into how
the immune system interacts with SARS‐CoV‐2 and the nature
of immune responses following infection. However, there is
limited information regarding whether SARS‐CoV‐2 infection
can induce relatively prolonged perturbations of immune cell
subsets, and if these perturbations are specific for this disease.
To address this gap, we conducted a comprehensive analysis of
the cellular immunome in post‐COVID patients alongside
post‐flu patients, 3 months after infection. Our objective was to
determine whether the underlying immunological mecha-
nisms of both infections exhibit similarities or differences.
Understanding these immune signatures post‐infection could
offer insights into the pathogenesis of COVID‐19 and inform
strategies for patient management. Additionally, exploring the
similarities and differences between post‐COVID and post‐
influenza immune cell subsets may unveil common

mechanisms of viral clearance and immune modulation,
facilitating the development of broad‐spectrum antiviral
therapies or immunomodulatory interventions. Building from
that, we hereby have shown, for the first time to our knowl-
edge, that respiratory infections (both post‐COVID and post‐
flu) induce specific alterations of immune cell subsets, which
are maintained over time. However, those alterations are
much more prominent in the case of post‐COVID patients,
especially in younger patients.

Severe acute COVID‐19 is marked by the release of different
inflammatory mediators at infection sites, such as interleukins
and chemokines, by recruited inflammatory immune cells
through chemokine receptors, which can mediate the cytokine
storm syndrome in severe patients [28]. Several studies have
shown that chemokine receptors are key players in the
immune response to COVID‐19. Hence, CXCR3 migration
through CXCL10 binding has important roles in the recruit-
ment of selective cells to inflamed sites [29], so this axis may
be one of the key mediators causing dysregulation of immune
responses in COVID‐19 [30, 31]. Indeed, CXCR3 over-
expression, which has been associated with pulmonary con-
ditions such as pulmonary fibrosis [32], is upregulated on T
cells and NK cells in COVID‐19 patients, allowing its
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migration to the lungs where the virus primarily replicates
[30, 33]. In a similar manner, Saris et al. [34] found a higher
expression of CCR4 on circulating T cells from COVID pa-
tients in intensive care units (ICU) compared to non‐ICU pa-
tients. Additionally, there is an enrichment of CCR6+ cytotoxic
T‐cells in the bronchoalveolar aspirate of mechanically venti-
lated COVID‐19 patients. SARS‐CoV‐2 has also been found to
increase the expression of CCR2 and CCR5 in the human
thoracic dorsal root ganglion, suggesting the influence of
inflammatory mediators in activating sensory neurons asso-
ciated with the lungs [35]. Furthermore, there is a significant
positive correlation between the frequency of CCR5 Δ32 and
COVID‐19 infection and mortality rate [36]. Besides, the ex-
pression of chemokine receptors CCR6 and CXCR3 has been
associated with lung‐resident lymphocytes [37], indicating a
persistent respiratory tropism in post‐COVID patients even

3 months after the resolution of the symptomatic infection.
Moreover, CXCR3 results in exacerbated lung inflammation
and impaired immune responses against viruses, including
influenza [30, 33]. In addition, NK cells can facilitate inflam-
mation during viral infections [38]. Thus, increased expression
of lung‐homing chemokines and chemokine receptors on NK
cells, effector T CD4+, together with CD8+, and memory B
cells, among others, may facilitate cell migration and exacer-
bate lung inflammation in COVID‐19. All in all, these results
and the observations in our present study suggest that post‐
COVID patients have persistent alterations in the chemotactic
profile of the lymphoid compartment and a moderate effect in
the myeloid cells, still 3 months after hospital discharge.

Having said that, only a fraction of these alterations were
COVID‐specific, since changes in the migratory profile were

FIGURE 4 | Unsupervised clustering reveals two immunological groups of post‐COVID patients. The heatmap is a representation of selected

features across all individuals. The colors in the heatmap represent the Z‐score for each feature, varying from blue (lower expression) to red (higher

expression). The features used for the analysis are shown in rows and split into modules according to the dendrogram on the left, which represents

the hierarchical similarity between features (euclidean distance, complete method). In columns, each individual is shown together with it diagnose

(healthy donors in blue, post‐COVID in orange and post‐flu in green) and split according to cluster data (cluster 1 in red, cluster 2 in navy blue,

cluster 3 in purple and cluster 4 in cyan) above the heatmap (euclidean distance, complete method).
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also found in post‐flu patients. CXCR3 and CCR6 axis upre-
gulation in lymphoid cells was specifically associated with
post‐COVID patients, while downregulation of CCR4 and
CCR9 was found in both post‐COVID and post‐flu patients,
while more intense in the latter. The finding that this altered
leukocyte trafficking profile is maintained over time,
even months after infection, seems to reflect the natural course
of infection, which would then diverge between SARS‐CoV‐2
and influenza virus infection. Indeed, it has now become clear
that SARS‐CoV‐2 infection, as opposed to either respiratory
virus like influenza, is multisystemic, affecting many tissues
(e.g., brain, kidney, gut etc.) aside of the lungs [39]. Hence, the
increased chemokine receptor levels found in post‐COVID
patients might be explained by these multisystemic effects,
which also translate into a much higher degree of variability in
these patients, as referred to post‐influenza ones. Besides,
neither subsequent LC development, gender, nor disease
severity during infection was the cause of such variability,
which was driven by a differential age at first diagnose. Our
findings indicate that younger post‐COVID patients exhibit a
stronger migratory activation profile on mainly lymphoid cells
compared to older individuals, suggesting that immune
recovery trajectories may differ across age groups [40]. Hence,
immune differences among both post‐COVID groups could be
related to the mechanisms of immune senescence.

It is worth noting that in the present study, we have performed
a descriptive analysis and only the immune profile of these
patients was assessed, but other factors could contribute to the
heterogeneity of post‐COVID patients and the association with
LC symptoms, such as genetics or co‐infections. For example,
differences in HLA alleles have been associated with viral
clearance capacity, suggesting that individuals with low‐
affinity HLA for SARS‐CoV‐2 antigens may experience pro-
longed viral persistence and increased susceptibility to LC
[41]. Additionally, genetic polymorphisms in VEGFR‐2 have
been identified as modulators of COVID‐19 severity in an age‐
and sex‐dependent manner [40], and genetic predisposition to
mitochondrial dysfunction and altered cellular energy capacity
have also been postulated as potential contributors to LC [42].
On the other hand, bacteria and virus co‐infections have also
been reported to significantly worsen COVID‐19 severity and
increase LC risk [43–46]. Nevertheless, our findings reinforce
the idea that post‐COVID immune responses are heteroge-
neous, and therefore, the integration of genetic and functional
studies in future research could help to elucidate the mecha-
nisms underlying such heterogeneity of post‐COVID
individuals.

In summary, we have described that following a viral res-
piratory infection, changes in the chemokine receptor profile

FIGURE 5 | Clinical parameters within the two immunological groups of COVID‐19 patients. Post‐COVID patients within clusters 2 and 4 of

K‐means were compared based on their (A) age at COVID‐19 diagnose and (B) subsequent hospitalization days, (C) gender, (D) oxygen need during

hospitalization, (E) treatment, or (F) subsequent development of Long‐COVID. Mann–Whitney test was applied, and p< 0.05 was considered

statistically significant (**p< 0.01).
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can be found still 3 months after disease recovery. Besides,
we have also proved that such immune features are different
in post‐influenza and post‐COVID patients after disease
recovery, being more prominent in the latter and more
pronounced in younger individuals. Understanding the fac-
tors driving these changes may, therefore, highlight differ-
ences in immune recovery from various respiratory
infections.
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