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In this paper, we study the optimal management of a target benefit pension plan. The fund manager adjusts the 
benefit to guarantee the plan stability. The fund can be invested in a riskless asset and several risky assets, where 
the uncertainty comes from Brownian and Poisson processes. The aim of the manager is to maximize the expected 
discounted utility of the benefit and the terminal fund wealth. A stochastic control problem is considered and 
solved by the programming dynamic approach. Optimal benefit and investment strategies are analytically found 
and analyzed, both in finite and infinite horizons. A numerical illustration shows the effect of some parameters 
on the optimal strategies and the fund wealth.
1. Introduction

Demographic changes have been observed in many developed coun-

tries, such as the increase in life expectancy and the reduction in the 
birth rate. This increases wealth awareness and concern after retirement. 
For this reason, it is of interest to find a type of pension system seek-

ing financial sustainability and sharing risk between the fund manager 
and the participants. On the other hand, due to unexpected news, the 
evolution of prices in the financial markets may be affected in the form 
of sudden changes. All this must be taken into account when designing 
the pension plan model to be analyzed. The objective of this paper is 
to study a dynamic model of a risk sharing pension plan that takes into 
account those demographic and financial changes.

There are two major types of pension plan, defined benefit (DB) and 
defined contribution (DC). In a DB plan, the benefits are fixed in advance 
and the contributions are designed to maintain the fund in balance, that 
is, to fund employees’ promised benefits. Usually, benefits are linked to 
salaries, and the contributions are shared by employer and employee. 
The fund manager bears the risk of funding the pension fund to assure 
future benefits, and the employee does not suffer possible investment 
losses. In contrast, in a DC plan, the individual builds his/her own pen-

sion fund, selecting a fixed contribution rate and an investment strategy 
across assets, such as equities and bonds. Benefits are not fixed any-
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more, but the inherent risk is entirely borne by the individual. The target 
benefit plan (TBP) is a new type of collective pension plan that blends 
elements of the DB and DC plans to provide benefits at retirement that 
are linked to how well the pension plan performs. The contributions 
are fixed in advance and the benefits must be selected. To do so, the 
fund manager can invest the fund in a financial market. This pension 
plan can provide better risk sharing for participants, adequate benefits, 
while also maintaining the stability of the plan.

The basic framework has already been explored by many authors 
with dynamic programming methods, such as Battocchio et al. (2007), 
Baltas et al. (2022), Berkelaar and Kouwenberg (2003), Cairns (2000), 
Chang (1999), Chang et al. (2003), Haberman and Sung (1994, 2005), 
Haberman et al. (2000), Josa-Fombellida and Rincón-Zapatero (2001, 
2004, 2008a, 2008b, 2010, 2012), Josa-Fombellida et al. (2018), Taylor 
(2002), Wang et al. (2018) or Zhang and Guo (2020).

Some hybrid pension plans that combine the features of DB and DC 
pension plans are proposed, such as the target benefit plan in Canada 
(see CIA (2015)) and the collective DC plans in the Netherlands (Ko-

rtleve (2013)). Wang et al. (2018) proposed a continuous investment 
and intergenerational risk sharing model for Canadian target bene-

fit pension plans. In their model setting, TBPs are collective pension 
schemes with fixed contributions, and the corresponding target benefit 
level is calculated according to a formula usually linked to the partici-
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pants’ annual salaries. At the same time, all the risks are shared among 
different generations of plan participants. Wang et al. (2019) investi-

gated the optimal investment and benefit payment problem of TBP for 
loss-averse participants with S-shape utility. Except TBPs, other invest-

ment problems for hybrid pension plans have been investigated recently. 
The hybrid pension plan whose contribution and benefit levels are ad-

justed simultaneously was considered in Wang and Lu (2019). Wang et 
al. (2021) considered a robust optimal problem for TBP with exponential 
function maximization of wealth and benefit excess or minimization of 
wealth and benefit gap. Roch (2022) considered a pay-as-you-go pension 
system where the aim of the fund manager is to minimize the deviations 
of benefit and fund with respect to its target levels in a financial market 
with a riskless asset and several risky assets. Previously, Haberman and 
Zimbidis (2002) considered a similar model, but minimizing the devi-

ation of contribution with respect to its target instead the deviation of 
fund with respect to its target.

Some pension plan models consider the utility maximization cri-

terion. Vigna (2014) analyzed the portfolio selection problem in the 
accumulation phase of a DC pension scheme according to the crite-

rion of maximizing the expected utility function of the terminal wealth. 
Josa-Fombellida and Rincón-Zapatero (2019), Guan et al. (2022) and 
Josa-Fombellida and López-Casado (2023) studied the optimal manage-

ment of an aggregated overfunded DB pension plan game, where the 
aim of the participants is to maximize a utility of the extra benefits. Zhao 
and Wang (2022) analyze the optimal investment and benefit problem 
where the manager maximizes a Coob-Douglas and Epstein-Zin recur-

sive utility, when the fund is invested in a financial market with one 
risk free bond and one stock.

In this paper, we are interested in aggregated pension plans of the 
TBP type, where the risky assets are stochastic and include both Brow-

nian motions and Poisson jumps. The inclusion of jumps in risky assets 
is motivated by the possible sudden rise or fall in their price. Other 
aim is to obtain a closed–form solution that allows us to isolate the ef-

fects of the jumps in both optimal investment and benefit strategies. 
This inclusion of Poisson uncertainty requires the use of a more general 
Hamilton–Jacobi–Bellman equation (HJB) and verification theorems, as 
in Fleming and Soner (2006). See, for instance, Guo and Xu (2004) or 
Hanson (2007), and Oksendal and Sulem (2005), for more general Lévy 
processes. The first paper considering Poisson jumps in dynamic asset 
allocation in continuous time was Merton (1971), considering the in-

vestment and consumption model with a riskless bond and several risky 
assets, whose uncertainty is modeled separately by a Brownian motion 
and a Poisson process. Wu (2003) considered and calibrated a model 
where the risky asset is a jump diffusion process in a dynamic asset allo-

cation problem. In the pension funding framework, Ngwira and Gerrard 
(2007) and Josa-Fombellida and Rincón-Zapatero (2012) considered the 
optimal management of a DB pension plan where jumps appear in the 
risky assets and in the benefits. Zhang and Guo (2020) considered the 
management of a defined contribution pension plan, where the salary 
and the risky asset are both jump diffusion processes. Josa-Fombellida 
and López-Casado (2023) considered a defined benefit pension plan 
game between the firm and the union of the participants, where jumps 
appear in the risky assets.

The main contributions with respect to other papers are described 
as follows. 1) The model includes Poisson jumps, whose effects on the 
optimal policies are analyzed. 2) Bounded and unbounded horizons 
are considered. 3) Closed-form expressions for the optimal benefit and 
numerical solution for the optimal investment are obtained. 4) The con-

tribution proportion can be increasing or decreasing. 5) Several risky 
assets are considered. 6) A weighting coefficient is added to the utility 
function of the terminal fund wealth.

Our findings indicate a linear relationship between the optimal in-

vestment and the optimal benefit. The presence of Poisson jumps sig-

nificantly influences both the optimal solutions and the trajectory of 
the fund over time. Notably, optimality can be achieved in the infinite 
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horizon scenario when the contribution remains constant. Numerical il-
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lustration shows how higher risk aversion leads to a more conservative 
investment approach, reducing the optimal proportion invested. The im-

pact of risk aversion is consistent across various jump intensities, with 
a more pronounced effect during negative jumps. The analytic solution 
reveals the effect of jumps on the growth of the fund, depending on the 
market regime. Overall, the findings emphasize the intricate interplay 
between risk, contribution, jump uncertainty, and market dynamics in 
pension fund management.

The paper is organized as follows. Section 2 defines the elements 
of the pension plan, describes the financial market and shows the fund 
wealth evolution. Section 3 analyzes the management of the TBP plan as 
a stochastic optimal control problem with the objective of maximizing 
the power instantaneous utility of the benefit and the power termi-

nal utility of the fund. The optimal benefit and the optimal investment 
strategy are provided, by means of dynamic programming techniques, 
together with the optimal fund and some properties. The model with-

out jumps and the infinite horizon case are also considered. Section 4

includes a numerical illustration of previous results. Finally, Section 5

establishes some conclusions. All proofs are relegated to Appendix A.

2. The pension model

Consider an aggregated target benefit pension plan where, at every 
instant of time, active participants coexist with retired participants.

We suppose that the contribution rate is proportional to the size of 
the fund. The benefit is a control variable for the fund manager that also 
adjusts the investment.

The main elements intervening in the TBP are the following:

𝑇 : Planning horizon or date of the end of the pension plan, with 0 <
𝑇 ≤∞;

𝐹 (𝑡): value of fund assets at time 𝑡;
𝑃 (𝑡): benefits promised to the participants at time 𝑡; they are related to 

the salary at the moment of retirement;

𝐶(𝑡): contribution proportion of the fund wealth made by the manager 
at time 𝑡 to the funding process; it is a deterministic function;

𝜌: positive constant rate of discount or time preference of the man-

ager;

𝑟: constant risk-free market interest rate.

An interesting case appears when the contribution proportion has 
an exponential form: 𝐶(𝑡) = 𝑐1𝑒

𝑐2𝑡, with 𝑐1 > 0. We consider three in-

teresting particular cases along the paper. When 𝑐2 = 0 the contribution 
is constantly indexed to the fund wealth: 𝐶(𝑡) = 𝑐1, with 𝑐1 > 0. When 
𝑐2 > 0, we assume a salary growth that is materialized in the contribu-

tion, see Roch (2022). When 𝑐2 < 0, the manager allows a reduction in 
the contribution proportion without fund increase, in order to make the 
pension plan more attractive to the participants, see Zhao and Wang 
(2022).

The main objective of the manager is to increase the benefits as much 
as possible in order to make the pension plan more attractive to the 
participants.

The fund surplus is invested in a financial market composed of one 
riskless asset and several risky assets. In order to include the sudden 
variations of the market, the uncertainty is modeled by Brownian mo-

tions and Poisson processes.

2.1. The financial market

Following Josa-Fombellida and Rincón-Zapatero (2012), we suppose 
that the risky assets are jump diffusion processes where the uncertainty 
is given by Brownian motions and Poisson processes. To model the 
pension game, we consider a probability space (Ω𝑤, F𝑤, ℙ𝑤), where 
ℙ𝑤 is a probability measure on Ω𝑤 and F𝑤 = {F𝑤

𝑡 }𝑡≥0 is a com-

plete and right continuous filtration generated by the 𝑙-dimensional 

standard Brownian motion 𝑤 = (𝑤1, … , 𝑤𝑙)⊤, that is to say, F𝑤

𝑡 =
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Fig. 1. Risky asset evolution for 𝑏 = 0.15, 𝜎 = 0.10, 𝑟 = 0.01, 𝜆 = 0.5, 𝜆 = 0.25, 𝜑 = 0.1, 𝜑 = −0.1 and 𝑆(0) = 1.
𝜎
{
(𝑤1(𝑠),… ,𝑤𝑙(𝑠)); 0 ≤ 𝑠 ≤ 𝑡

}
, 𝑡 ≥ 0. We also consider an 𝑚-dimen-

sional Poisson process 𝑁 = (𝑁1, … , 𝑁𝑚)⊤ with constant intensity 
𝜆 = (𝜆1, … , 𝜆𝑚)⊤, 𝜆1, … , 𝜆𝑚 ∈ ℝ+, defined on a complete probability 
space (Ω𝑁, F𝑁, ℙ𝑁 ), where F𝑁

𝑡 = 𝜎
{
(𝑁1(𝑠),… ,𝑁𝑚(𝑠)); 0 ≤ 𝑠 ≤ 𝑡

}
, 

𝑡 ≥ 0. Note that the process 𝐻𝑖(𝑡) = 𝑁𝑖(𝑡) − 𝜆𝑖𝑡, 𝑖 = 1, … , 𝑚, is an 
F𝑁 -martingale, which is called the compensated Poisson process; see 
Jeanblanc-Picqué and Pontier (1990) and García and Griego (1994). 
This fact facilitates the stochastic calculus and the use of the dynamic 
programming method. Let (Ω, F , ℙ) = (Ω𝑤 ×Ω𝑁, F𝑤⊗F𝑁, ℙ𝑤⊗ℙ𝑁 )
denote the product probabilistic space. We suppose 𝑤 and 𝑁 are inde-

pendent processes on this space.

The plan sponsor manages the fund in a bounded planning horizon 
by means of a portfolio formed by 𝑛 risky assets 𝑆1, … , 𝑆𝑛, which are 
extended geometric Brownian motions (GBM henceforth, stochastic pro-

cesses extending the deterministic exponential function), and a riskless 
asset or bond 𝑆0 (its price is an exponential function), as proposed Guo 
and Xu (2004), that is, whose evolutions are given by the equations:

𝑑𝑆0(𝑡) = 𝑟𝑆0(𝑡)𝑑𝑡, 𝑆0(0) = 1, (1)

𝑑𝑆𝑖(𝑡) = 𝑆𝑖(𝑡−)
(
𝑏𝑖𝑑𝑡+

𝑙∑
𝑗=1

𝜎𝑖𝑗𝑑𝑤𝑗 (𝑡) +
𝑚∑
𝑘=1

𝜑𝑖𝑘𝑑𝑁𝑘(𝑡)
)
,

𝑆𝑖(0) = 𝑠𝑖, 𝑖 = 1,… , 𝑛. (2)

Here, 𝑟 > 0 denotes the short risk-free rate of interest, 𝑏𝑖 > 0 the 
mean rate of return of the risky asset 𝑆𝑖 , and 𝜎𝑖𝑗 > 0 and 𝜑𝑖𝑘 > −1
the uncertainty parameters, for each 𝑖, 𝑗. It is usual to assume that 
𝑏𝑖 +

∑𝑚
𝑘=1 𝜆𝑘𝜑𝑖𝑘 > 𝑟, for each 𝑖 = 1, ..., 𝑛, so the manager has incentives 

to invest with risk. The matrix (𝜎𝑖𝑗 ) is denoted by 𝜎, the matrix (𝜑𝑖𝑘) is 
denoted by 𝜑, 𝑏 is the (column) vector (𝑏1, … , 𝑏𝑛)⊤, and 1 is the (col-

umn) vector of 1’s. We will suppose that the symmetric matrix Σ = 𝜎𝜎⊤

and the matrix (𝜎|𝜑)(𝜎|𝜑)⊤ are positive definite.

As an example, Fig. 1 shows the time evolution of a risky asset 𝑆(𝑡)
with two Poisson processes. We observe the effect of the parameters 𝜑1
an 𝜑2. The vertical segments represent the time and the magnitude of 
the jump on the same axis scale. The price of the risky asset shows a 
significant increase with the upward jumps, but only a slight increase 
with the downward jumps. We observe 4 positive jumps at the times 
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0.6, 2.6, 3.4 and 9.6 years, and 2 negative jumps at times 5.6 and 7.8.
1 2 1 2

2.2. The fund wealth

In order to provide the promised benefits at retirement, the fund 
manager adopts an amortization scheme and proceeds actively in the 
financial market to form suitable portfolios. In this risk sharing scheme, 
the contributions are fixed and the benefit is a control variable. The 
fund wealth 𝐹 > 0 is invested in the riskless asset 𝑆0 and the 𝑛 risky 
assets 𝑆1, … , 𝑆𝑛. Let Π = (𝜋1, … , 𝜋𝑛)⊤, where each 𝜋𝑖 is the proportion 
of the fund to be invested in 𝑆𝑖, for each 𝑖 = 1, ..., 𝑛, so that 1 −

∑𝑛
𝑖=1 𝜋𝑖 is 

invested in 𝑆0. Borrowing and shortselling are allowed. A negative value 
of 𝜋𝑖 means that the manager sells a part of her/his risky asset 𝑆𝑖 short 
while, if 𝜋𝑖 is larger than 1, he or she then gets into debt to purchase the 
corresponding stock, borrowing money at the riskless interest rate 𝑟.

Under the chosen investment/benefit policy, the dynamics of the 
fund 𝐹 is driven by

𝑑𝐹 (𝑡) =
𝑛∑
𝑖=1

𝜋𝑖(𝑡)𝐹 (𝑡)𝑑𝑆
𝑖(𝑡)

𝑆𝑖(𝑡)
+
(
1 −

𝑛∑
𝑖=1

𝜋𝑖(𝑡)
)
𝐹 (𝑡)𝑑𝑆

0(𝑡)
𝑆0(𝑡)

+ (𝐶(𝑡)𝐹 (𝑡) − 𝑃 (𝑡))𝑑𝑡, (3)

with 𝐹 (0) = 𝐹0 > 0. By substituting (1) and (2) in (3), the dynamic fund 
wealth evolution under the investment policy Π is

𝑑𝐹 (𝑡) =
(
𝑟𝐹 (𝑡) + Π⊤(𝑡)(𝑏− 𝑟1)𝐹 (𝑡) +𝐶(𝑡)𝐹 (𝑡) − 𝑃 (𝑡)

)
𝑑𝑡

+Π⊤(𝑡)𝐹 (𝑡)𝜎 𝑑𝑤(𝑡) + Π⊤(𝑡)𝐹 (𝑡)𝜑𝑑𝑁(𝑡), (4)

with the initial condition 𝐹 (0) = 𝐹0.

We assume admissible strategies, that is to say, strategies to fulfill 
some technical conditions. A strategic profile (𝑃 , Π) is called admissible 
if the extra benefits strategy {𝑃 (𝑡) ∶ 𝑡 ≥ 0} and the investment strategy 
{Π(𝑡) ∶ 𝑡 ≥ 0} are Markovian processes and stationary, 𝑃 = 𝑃 (𝑡, 𝐹 ) and 
Π = Π(𝑡, 𝐹 ), adapted to filtration {F𝑡}𝑡≥0, and 𝑃 (𝑡) and Π(𝑡) are F𝑡-

measurable, ∀𝑡 > 0, and such that they satisfy the integrability condition

𝔼
𝑇

∫
0

𝑃 (𝑡)𝑑𝑡+ 𝔼
𝑇

∫
0

Π⊤(𝑡)Π(𝑡)𝑑𝑡 <∞. (5)

Thus, the stochastic differential equation (SDE) (4) admits a unique so-

lution for every initial condition 𝐹 (0) = 𝐹0. We assume 𝑃 (𝑡) > 0. We 

denote by  the set of admissible strategy profiles.
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3. The optimal strategies when the isoelastic utility is maximized

In this section, we analyze how the manager selects the optimal bene-

fit and investment strategies. As explained in the Introduction, we model 
the manager’s preferences with a power instantaneous utility of the ben-

efit and a power final utility of the terminal fund to be maximized. In 
the optimization process, the manager faces one element of randomness 
due to the risky assets of the financial market.

The objective functional to be maximized over the class of admissible 
controls , is given by

𝐽 ((𝑡, 𝐹 ); (𝑃 ,𝜋)) = 𝔼𝑡,𝐹

{ 𝑇

∫
𝑡

𝑒−𝜌(𝑠−𝑡)𝑈 (𝑃 (𝑠))𝑑𝑠+ 𝑒−𝜌(𝑇−𝑡)𝛼𝑈 (𝐹 (𝑇 ))
}
,

where 𝑈 is a utility function of the benefit and the fund. Similarly to 
Josa-Fombellida et al. (2023) and He et al. (2020), 𝛼 > 0 is a weighting 
factor indicating the importance of maximizing the final utility of the 
fund versus the instantaneous utility of the benefit. The time preference 
of the manager is given by 𝜌 > 0. The aim is to maximize the expected 
utility of the benefit along the planning interval and of the fund wealth 
at the end of the plan. Note that we are considering 𝑃 and Π as con-

trol variables. Here,  denotes the set of Markovian processes (𝑃 ,Π), 
adapted to the filtration 

{
F𝑡

}
𝑡≥0 where (𝑃 , Π) satisfies (5), and where 

𝐹 satisfies (4). In the above, 𝔼𝑡,𝐹 denotes conditional expectation with 
respect to the initial condition (𝑡, 𝐹 ).

We consider a CRRA utility function:

𝑈 (𝑥) = 𝑥1−𝛾 − 1
1 − 𝛾

, 𝛾 > 0, 𝛾 ≠ 1.

We call 𝛾 the risk aversion parameter. This utility function is increasing 
and strictly concave. When 𝛾 = 1, the utility function considered is of 
logarithmic type: 𝑈 (𝑥) = ln𝑥.

The value function is defined as

𝑉 (𝑡, 𝐹 ) = max
(𝑃 ,Π)∈

{
𝐽 ((𝑡, 𝐹 ); (𝑃 ,Π)) ∶ s.t. (4) and 𝐹 (𝑡) = 𝐹

}
.

It is clear that the value function so defined is non-negative and strictly 
concave. The connection between value functions and optimal feedback 
controls in stochastic control theory under Poisson–diffusion setting is 
accomplished by the HJB; see Sennewald (2007).

In order to simplify the length of some equations along the paper, 
we denote

Ψ(Π, 𝜈) ∶= 𝑟+Π⊤(𝑏− 𝑟1)− 1
2
𝜈Π⊤ΣΠ+ 1

1 − 𝜈

𝑚∑
𝑘=1

𝜆𝑘
(
(1+Π⊤𝜑𝑘)1−𝜈 −1

)
,

where 𝜈 > 0, 𝜈 ≠ 1, and 𝜑𝑘 is the column 𝑘 of the matrix 𝜑, 𝑘 = 1, … , 𝑚. 
When 𝜈 = 1, applying the L’Hôpital rule, we have

Ψ(Π,1) = lim
𝜈→1

Ψ(Π, 𝜈) = 𝑟+Π⊤(𝑏− 𝑟1) − 1
2
Π⊤ΣΠ+

𝑚∑
𝑘=1

𝜆𝑘 ln(1 + Π⊤𝜑𝑘).

We assume the technical conditions: 1 +Π⊤𝜑𝑘 > 0, for all 𝑘.

The following result provides the optimal strategies and the evolu-

tion of the optimal fund wealth.

Theorem 3.1. The optimal benefit and the optimal investment proportions 
in the risky assets are given by

𝑃 ∗ = 𝑒− ∫ 𝑇
𝑡 𝑎(𝑠)𝑑𝑠

(
𝛼1∕𝛾 +

𝑇

∫
𝑡

𝑒− ∫ 𝑇
𝑠 𝑎(𝑢)𝑑𝑢𝑑𝑠

)−1
𝐹 ∗, (6)

where

𝑎(𝑡) = −𝜌

𝛾
+ 1 − 𝛾

𝛾

(
𝐶(𝑡) + Ψ(Π∗, 𝛾)

)
, (7)
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where Π∗ is a constant solution of the system of algebraic equations
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𝑏𝑖 − 𝑟− 𝛾

𝑙∑
𝑗=1

𝑎𝑖𝑗𝜋𝑗 +
𝑚∑
𝑘=1

𝜆𝑘

(
1 +Π⊤𝜑𝑘

)−𝛾
𝜑𝑖𝑘 = 0, 𝑖 = 1,… , 𝑛, (8)

where 𝑎𝑖𝑗 =
∑𝑙

𝑝=1 𝜎𝑖𝑝𝜎𝑗𝑝, that is to say, the element (𝑖, 𝑗) of the matrix Σ =
𝜎𝜎⊤, and the optimal fund wealth is given by

𝑑𝐹 ∗(𝑡) =
(
𝑟+Π∗⊤(𝑏− 𝑟1) +𝐶(𝑡)

− 𝑒− ∫ 𝑇
𝑡 𝑎(𝑠)𝑑𝑠

(
𝛼1∕𝛾 +

𝑇

∫
𝑡

𝑒− ∫ 𝑇
𝑠 𝑎(𝑢)𝑑𝑢𝑑𝑠

)−1)
𝐹 ∗(𝑡)𝑑𝑡

+Π∗⊤𝜎𝐹 ∗(𝑡)𝑑𝑤(𝑡) + Π∗⊤𝜑𝐹 ∗(𝑡)𝑑𝑁(𝑡), (9)

with 𝐹 ∗(0) = 𝐹0 > 0.

The optimal benefit 𝑃 ∗ is a linear function of the fund assets 𝐹 ∗ . The 
optimal investment proportions Π∗ are constants, but it can not be ex-

plicitly obtained from (8) when 𝜆𝑘 ≠ 0 for some 𝑘. We observe that this 
implies a linear relation between the optimal benefit and the optimal in-

vestment. Both optimal strategies and the optimal fund wealth depend 
on the parameters of the financial market (including the jumps), the risk 
aversion, and the contribution rate. The optimal benefit also depends on 
the weighting factor. Depending on the jump parameters, shortselling or 
borrowing could be necessary. The optimal benefit proportion 𝑃 ∗∕𝐹 ∗

is a positive deterministic function and, depending on the level of the 
contribution proportion, the risk aversion, the weighting factor and the 
financial market, it can be an increasing function over time. We also ob-

serve that 𝑃 ∗(𝑇 ) = 𝛼1∕𝛾𝐹 ∗(𝑇 ). Note that, when 𝛼 = 1, then the optimal 
terminal benefit matches the terminal fund, 𝑃 ∗(𝑇 ) = 𝐹 ∗(𝑇 ).

Note that, in the scalar case, where 𝑛 = 𝑙 = 𝑚 = 1, it is possible to 
check if a solution to (8) exists. A necessary condition for a solution 
to exist is 1 + 𝜋𝜑 > 0, that is, the uncertainty of the Poisson processes 
and the investment strategies are positively compensated. If we define 
𝑓 (𝜋) = 𝑏 − 𝑟 − 𝛾𝜎2𝜋 + 𝜆(1 + 𝜋𝜑)−𝛾𝜑, then we have lim𝜋→−∞ 𝑓 (𝜋) =∞
and lim𝜋→∞ 𝑓 (𝜋) = −∞, because 𝛾 > 0. Thus, applying Bolzano’s Theo-

rem, an investment strategy 𝜋 such that 𝑓 (𝜋) = 0 exists, that is, it is a so-

lution of (8). On the other hand, as 𝑓 ′(𝜋) = −𝛾(𝜎2 +𝜆𝜑2(1 +𝜋𝜑)−𝛾−1) <
0, then 𝑓 (𝜋) is strictly decreasing and this implies uniqueness. If we 
assume 𝑓 (0) = 𝑏 − 𝑟 + 𝜆𝜑 to be positive, then we have a unique posi-

tive investment strategy if the condition 1 + 𝜋𝜑 > 0 holds (for instance, 
when 𝜑 ≥ 0). Note that negative investments, that is, allowing short-

selling, can be found for negative diffusion jump parameters. Given a 
solution 𝜋 of (8), it is straightforward to obtain the optimal benefit 𝑃 ∗

and the evolution of the optimal fund 𝐹 ∗ from (9).

From (9), the expected optimal fund is given by

𝔼𝐹 ∗(𝑡) =𝐹0 exp
{(

𝑟+Π∗⊤(𝑏− 𝑟1) +
𝑚∑
𝑘=1

𝜆𝑘Π∗⊤𝜑𝑘

)
𝑡

+

𝑡

∫
0

(
𝐶(𝑣) − 𝑒− ∫ 𝑇

𝑣 𝑎(𝑠)𝑑𝑠
(
𝛼1∕𝛾 +

𝑇

∫
𝑣

𝑒− ∫ 𝑇
𝑠 𝑎(𝑢)𝑑𝑢𝑑𝑠

)−1)
𝑑𝑣

}
.

Remark 3.1 (Exponential contribution proportion). When 𝐶(𝑡) = 𝑐1𝑒
𝑐2𝑡, 

with 𝑐1 > 0, then 𝑎(𝑡) = − 𝜌

𝛾
+ 1−𝛾

𝛾

(
𝑐1𝑒

𝑐2𝑡 +Ψ(Π∗, 𝛾)
)

and (𝑃 ∗∕𝐹 ∗)(𝑡) =

𝑒− ∫ 𝑇
𝑡 𝑎(𝑠)𝑑𝑠

(
𝛼1∕𝛾 + ∫ 𝑇

𝑡
𝑒− ∫ 𝑇

𝑠 𝑎(𝑢)𝑑𝑢𝑑𝑠
)−1

. The optimal fund wealth evolu-

tion is given by

𝑑𝐹 ∗(𝑡) =
(
𝑟+Π∗⊤(𝑏− 𝑟1) + 𝑐1𝑒

𝑐2𝑡

− 𝑒− ∫ 𝑇
𝑡 𝑎(𝑠)𝑑𝑠

(
𝛼1∕𝛾 +

𝑇

∫
𝑡

𝑒− ∫ 𝑇
𝑠 𝑎(𝑢)𝑑𝑢𝑑𝑠

)−1)
𝐹 ∗(𝑡)𝑑𝑡
+Π∗⊤𝜎𝐹 ∗(𝑡)𝑑𝑤(𝑡) + Π∗⊤𝜑𝐹 ∗(𝑡)𝑑𝑁(𝑡),
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with 𝐹 ∗(0) = 𝐹0 > 0. When 𝐶 is constant the expressions are simplified 
a little more.

Remark 3.2 (Model without jumps). When 𝜑 = 0 and 𝜆 = 0, the optimal 
investment proportions can be explicitly obtained, Π∗ = 1

𝛾
Σ−1(𝑏 − 𝑟1), 

that is to say, the well known maximum portfolio growth rule. Thus, 
𝜋∗
𝑖
> 0, for all 𝑖, because 𝛾 > 0, that is to say, shortselling is not nec-

essary. However, 𝜋∗
𝑖
> 1 if and only if 𝛾 > 𝑒𝑖Σ−1(𝑏 − 𝑟1), where 𝑒𝑖 =

(0, ..., 1𝑖), 0, ...0), that is to say, for risk aversion high enough that the 
manager must borrow money at rate 𝑟 to invest in risky asset 𝑆𝑖. Now, 
𝑃 ∗ is given by (6), but with 𝑎(𝑡) = − 𝜌

𝛾
+ 1−𝛾

𝛾

(
𝑟 + 𝐶(𝑡) + 𝜃⊤𝜃

2𝛾

)
, where 

𝜃 = 𝜎−1(𝑏 − 𝑟1) is the market price of risk or Sharpe ratio of the portfo-

lio. The optimal fund wealth evolution is given by

𝑑𝐹 ∗(𝑡) =
(
𝑟+ 1

𝛾
𝜃⊤𝜃 +𝐶(𝑡) − 𝑒∫ 𝑇

𝑡 𝑎(𝑠)𝑑𝑠
(
𝛼1∕𝛾

+

𝑇

∫
𝑡

𝑒− ∫ 𝑇
𝑠 𝑎(𝑢)𝑑𝑢𝑑𝑠

)−1)
𝐹 ∗(𝑡)𝑑𝑡+ 1

𝛾
𝜃⊤𝜎𝐹 ∗(𝑡)𝑑𝑤(𝑡),

with 𝐹 ∗(0) = 𝐹0 > 0 and the expected optimal fund is given by

𝔼𝐹 ∗(𝑡) =𝐹0 exp
{(

𝑟+ 1
𝛾
𝜃⊤𝜃

)
𝑡

+

𝑡

∫
0

(
𝐶(𝑣) − 𝑒− ∫ 𝑇

𝑣 𝑎(𝑠)𝑑𝑠
(
𝛼1∕𝛾 +

𝑇

∫
𝑣

𝑒− ∫ 𝑇
𝑠 𝑎(𝑢)𝑑𝑢𝑑𝑠

)−1)
𝑑𝑣

}
.

In the extreme case where there is no contribution, 𝐶 = 0, and the 
utility functions have the same weight, 𝛼 = 1, we are considering the 
portfolio selection model of Merton (1971), where we are maximizing 
an instantaneous utility function of the consumption (now the benefit) 
and a utility function of the terminal wealth (now the fund).

When only one risky asset is considered, it is a special case of the 
Coob-Douglas utility maximization analyzed in Zhao and Wang (2022).

Remark 3.3 (Infinite horizon). When 𝑇 = ∞, we assume that the con-

tribution proportion 𝐶 is a constant. The objective functional to be 
maximized is given by

𝐽 (𝐹 ; (𝑃 ,Π)) = 𝔼𝐹

{ ∞

∫
𝑡

𝑒−𝜌𝑠 𝑈 (𝑃 (𝑠))𝑑𝑠
}
,

and the value function is time independent, 𝑉 = 𝑉 (𝐹 ). The optimal ben-

efit is given by

𝑃 ∗ = 𝜇−1∕𝛾𝐹 ∗,

where

𝜇 =
(𝜌
𝛾
− 1 − 𝛾

𝛾

(
𝐶 +Ψ(Π∗, 𝛾)

))−𝛾
, (10)

the vector of the optimal investment proportions in the risky assets Π∗

is a constant solution of the system of algebraic equations (8) and the 
optimal fund wealth is given by

𝑑𝐹 ∗(𝑡) =
(
𝑟+Π∗⊤(𝑏− 𝑟1) +𝐶 − 𝜇−1∕𝛾

)
𝐹 ∗(𝑡)𝑑𝑡

+Π∗⊤𝜎𝐹 ∗(𝑡)𝑑𝑤(𝑡) + Π∗⊤𝜑𝐹 ∗(𝑡)𝑑𝑁(𝑡), (11)

with 𝐹 ∗(0) = 𝐹0 > 0. We assume that the optimal benefit proportion 
𝜇−1∕𝛾 is positive in order to obtain positive optimal benefit 𝑃 ∗ . See proof 
in Appendix A.

Remark 3.4 (Logarithmic utility). When 𝑈 (𝑥) = ln𝑥 then 𝑎(𝑡) = −𝜌. The ( )−1
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optimal benefit is given by 𝑃 ∗ = 𝑒𝜌(𝑇−𝑡) 𝛼1∕𝛾 − 1
𝜌
(1 − 𝑒𝜌(𝑇−𝑡)) 𝐹 ∗, the 
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vector of the optimal investment proportions Π∗ is the solution of the 
system

𝑏𝑖 − 𝑟−
𝑙∑

𝑗=1
𝑎𝑖𝑗𝜋𝑗 +

𝑚∑
𝑘=1

𝜆𝑘

(
1 +Π⊤𝜑𝑘

)−1
𝜑𝑖𝑘 = 0, 𝑖 = 1,… , 𝑛,

and the optimal fund wealth evolution is given by

𝑑𝐹 ∗(𝑡) =
(
𝑟+Π∗⊤(𝑏− 𝑟1) +𝐶(𝑡)

− 𝑒𝜌(𝑇−𝑡)
(
𝛼1∕𝛾 − 1

𝜌
(1 − 𝑒𝜌(𝑇−𝑡))

)−1
)𝐹 ∗(𝑡)𝑑𝑡

+Π∗⊤𝜎𝐹 ∗(𝑡)𝑑𝑤(𝑡) + Π∗⊤𝜑𝐹 ∗(𝑡)𝑑𝑁(𝑡),

with 𝐹 ∗(0) = 𝐹0 > 0, that is to say, the expressions (6), (8) and (9) for 
𝛾 = 1.

4. A numerical illustration

In this section, a sensitivity analysis is provided of the optimal benefit 
and investment proportion strategies, as well as the optimal fund wealth 
with respect to the contribution, jump and risk aversion parameters, and 
the economic regime. In order to simplify the development, we consider 
the scalar case, 𝑙 =𝑚 = 𝑛 = 1. The equations are solved numerically with 
the standard R Stats package.

In the bull regime, the economy is booming, and in the bear regime, it 
is in recession. We select the data characterizing both regimes, following 
the recommendations in Zou and Cadenillas (2017). The risk premium 
is greater in boom periods than in recession periods, 𝑏1 − 𝑟1 > 𝑏2 − 𝑟2, 
the stock volatility is greater when the economy is in recession, 𝜎2 > 𝜎1, 
and we assume that the risk premium by unit of volatility is higher in 
the boom periods than under recession, 𝑏1−𝑟1

𝜎21
>

𝑏2−𝑟2
𝜎22

. We have denoted 

the bull regime with subscript 1 and the bear regime with 2.

We consider the following values for the parameters:

• The initial fund wealth 𝐹0 is set to be 0.67 billion, which is the same 
as that in Sanders (2016).

• The parameters of the financial market used to illustrate the sim-

ulations in a bull regime are 𝑏 = 0.2615, 𝜎 = 0.1301, with a final 
time 𝑇 = 10 years and initial asset price 𝑆0 = 1. They have been es-

timated, as in Josa-Fombellida and Rincón-Zapatero (2019), based 
on data of the S&P 500 index from June 2021 to June 2022. The 
value of the risk-free interest rate is 𝑟 = 0.01 which coincides with 
that considered in Zhao and Wang (2022). In a bear regime of the 
financial market, we consider data of the S&P 500 index from June 
2022 to May 2023, and then the estimated values of the parameters 
are 𝑏 = 0.0449, 𝜎 = 0.2076.

• We vary the values of the jump intensity 𝜆 = 0, 0.25, 0.5 along the 
graphical analysis. The case without jumps is covered for 𝜆 = 0. 
In order to cover two types of jump, upward and downward, the 
uncertainty Poisson process takes two values 𝜑 = −0.1, 0.1.

• For the aggregate contribution proportion to the fund wealth 𝐶(𝑡) =
𝑐1𝑒

𝑐2𝑡, we assume that 𝑐1 = 0.08 and 𝑐2 = −0.05, as in Zhao and 
Wang (2022). We also consider another alternative value 𝑐2 = 0.03, 
for an increasing contribution, as in Roch (2022), and the constant 
contribution case where 𝑐2 = 0.

• The discount rate or time preference 𝜌 is set to be 0.03 per year 
based on Kraft and Weiss (2019).

• Following Mehra and Prescott (1985), we consider moderate and 
high risk aversion values 𝛾 ∈ [1, 10]. Note that the moderate 𝛾 = 1
is the logarithmic case. An interesting value is 𝛾 = 3, which coin-

cides with the literature on life-cycle portfolio choice, as indicated 
in Zhao and Wang (2022).

• We consider several weights to the terminal utility of the fund, 
𝛼 = 0.01, 0.5, 1, 5, 100. When 𝛼 = 1, the same importance is given to 

maximizing the utility of the benefits as to the utility of the fund. A 
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Fig. 2. Optimal investment proportion by risk aversion, jump intensity and uncertainty Poisson parameter for 𝑐 = −0.05 and 𝛼 = 1 under a bear regime.
very high value 𝛼 indicates that only the maximization of the final 
utility of the fund is taken into account. An 𝛼 value close to zero 
indicates that the utility of the fund is hardly taken into account in 
the maximization process.

The technical conditions imposed in Theorem 3.1, 1 +Π⊤𝜑𝑘 > 0, for 
all 𝑘, are satisfied.

Fig. 2 shows the optimal investment proportion Π∗ by the risk aver-

sion 𝛾 , the jump intensity 𝜆, and uncertainty Poisson parameter 𝜑 under 
the bear market. We assume the same weight factor 𝛼 = 1 to the util-

ity functions. We consider the decreasing contribution function where 
𝑐2 = −0.05. We observe the optimal investment proportion approach to 0 
when the risk aversion goes to 10. The investment proportion decreases 
with the risk aversion, with upward and downward jumps, but with high 
jump intensity. For any intensity of the jump, higher levels of risk aver-

sion among fund managers result in a more conservative investment 
strategy. Specifically, for a low risk aversion (𝛾 < 4), negative jumps de-

rive in a lower investment policy. This reflects a cautious approach to 
risk, where decision-makers prioritize stability and are willing to sacri-

fice potential returns for reduced exposure to risk. A greater intensity 
jump increases the investment with upward jumps. For instance, when 
𝛾 = 3, Π∗ = 0.3, for 𝜆 = 0 or, when there are no jumps, Π∗ = 0.5, for 
𝜆 = 0.25, or when the intensity of the jumps is moderate, and Π∗ = 0.6, 
for 𝜆 = 0.5 or high intensity. In particular, in the case without jumps, 
less investment is needed. Borrowing is necessary with low or moderate 
risk aversion. With downward jumps, we observe the opposite behavior. 
The investment decreases with jump intensity and borrowing is not nec-

essary. Thus, the jumps impact the optimal investment strategy. Similar 
results can be obtained with a bull market.

The evolution of the optimal relative benefit 𝑃 ∗∕𝐹 ∗ by the jump in-

tensity 𝜆 is illustrated in Fig. 3. We consider a moderate risk aversion 
𝛾 = 3, an upward jump parameter 𝜑 = 0.1, a negative rate of contri-

bution 𝑐2 = −0.05, a same weight factor 𝛼 = 1 to the utilities and a bull 
regime. This figure shows the growing trend of optimal benefit over time 
and the match between the optimal terminal relative benefit and the ter-

minal fund, 𝑃 ∗(𝑇 ) = 𝐹 ∗(𝑇 ). There is a significant upsurge in the benefit 
for participants rewarded in the final two years of the plan. Note that the 
contribution proportion 𝐶 declines over time because 𝑐2 = −0.05, which 
reduces the inflow to the fund. However, the fund itself continues to 
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grow due to the investments made by the fund manager. The increasing 
2

benefit payments toward the end are a result of the fund manager’s strat-

egy to optimize the final utility of the participants. Higher fund levels 
achieved through optimal investment over time allow for more gener-

ous benefits towards the plan’s conclusion, ensuring that participants are 
rewarded for longer-term contributions and risk exposure. Additionally, 
as the planning horizon approaches its end, the optimization becomes 
more focused on benefit payments, leading to the observed final surge.

The Poisson jumps incorporated into the model simulate sudden 
changes in asset prices. For moderate jump intensities, these jumps play 
a pivotal role in shaping the fund’s trajectory, adding a layer of uncer-

tainty, but also creating opportunities for higher returns. In particular, 
upward jumps in a bull market can cause a significant rise in the fund, 
supporting a substantial increase in benefit payments near the end of 
the plan.

Fig. 4 shows the optimal relative benefit 𝑃 ∗∕𝐹 ∗ over time by the 
jump intensity 𝜆, and the rate of contribution 𝑐2 under the bull market. 
We consider a moderate risk aversion 𝛾 = 3, same weight factor 𝛼 = 1
to the utilities and upward jumps with 𝜑 = 0.1. The optimal relative 
benefit always exhibits a positive trend for any jump intensity. Notably, 
there is a significant upsurge in the benefit for participants rewarded in 
the final two years of the plan. When contribution 𝑐2 takes a negative 
value, the optimal benefit experiences a decline in the middle of the 
plan, followed by a recovery in the concluding years. Conversely, in 
the case of a positive contribution, the optimal benefit demonstrates a 
continual upward trajectory over time, avoiding any periods of decline. 
Additionally, the data indicates that larger jump intensities correlate 
with a lower proportion of the benefit. For instance, at the initial time 
𝑡 = 0 and for 𝑐2 = −0.05, 𝑃 ∗ = 0.81, for 𝜆 = 0 or, in the without jumps 
case, 𝑃 ∗ = 0.77 for 𝜆 = 0.25 and 𝑃 ∗ = 0.73, for 𝜆 = 0.5; thus the relative 
benefit decreases with the jump intensity. Then, the jumps also impact 
the optimal benefit strategy.

On the other hand, we illustrate the expected fund evolution 𝔼𝐹 ∗ to 
analyze the impact of jumps under two distinct economic regimes, bull 
and bear. Fig. 5 yields two primary insights. We consider a moderate 
risk aversion 𝛾 = 3, a high jump intensity 𝜆 = 0.5, a same weight factor 
𝛼 = 1 to the utilities and a negative rate of contribution 𝑐2 = −0.05. 
The expected fund evolution shows four distinct trends, depending on 
the economic regime (bull or bear market) and the direction of jumps 
(positive or negative). In the bull market, the fund grows rapidly due 

to higher returns from risky assets, which have a greater risk premium 
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Fig. 3. Optimal relative benefit over time by the jump intensity over time for 𝛾 = 3, 𝑐2 = −0.05, 𝛼 = 1 and 𝜑 = 0.1 under a bull regime.

Fig. 4. Optimal relative benefit over time by the rate of contribution and the jump intensity over time for 𝛾 = 3, 𝛼 = 1 and 𝜑 = 0.1 under a bull regime.
compared to the bear market. This is reflected in the steeper upward 
trend of the expected fund values over time. When positive jumps occur 
(𝜑 = 0.1), they accelerate this growth, particularly in the final years of 
the plan, where the fund can reach a value close to 𝔼𝐹 ∗(𝑇 ) = 3829.755, 
as seen by the significant divergence between the curves for positive 
and negative jumps. This large terminal fund highlights the impact of 
favorable market conditions and sudden positive asset price increases. 
On the other hand, negative jumps (𝜑 = −0.1) reduce the growth rate 
significantly, with the fund barely increasing over the plan’s duration, 
ending with 𝔼𝐹 ∗(𝑇 ) = 1.829. Despite a negative contribution rate (𝑐2 =
−0.05), the fund continues to grow, demonstrating the robustness of 
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the investment strategy, which efficiently offsets the contribution decay 
through capital market gains. This makes the pension plan attractive 
even when the contributions are diminishing.

Conversely, in the bear market, the growth of the fund is much more 
subdued. The negative jumps (𝜑 = −0.1) further reduce the growth po-

tential, with the expected fund value remaining low throughout the time 
horizon. It dwindles to values close to 0.067, with upward jumps, and 
0.045, with downward jumps.

The divergence in trends between positive and negative jumps under 
different market regimes highlights the effectiveness of the fund man-

ager’s risk management strategy. The model accounts for varying market 
dynamics, where positive jumps allow for higher returns, and negative 
jumps serve as a conservative scenario that tests the resilience of the 

fund.
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Fig. 5. Expected fund evolution by jump uncertainty parameter for 𝛾 = 3, 𝜆 = 0.5, 𝛼 = 1 and 𝑐2 = −0.05 under bear and bull regimes.

Fig. 6. Expected fund evolution by rate of contribution and jump intensity for 𝜑 = 0.1 and 𝛼 = 1 under bull regime.
In the following, we analyze the effect of the rate of contribution 𝑐2
on the expected fund evolution 𝔼𝐹 ∗ and on the terminal fund 𝔼𝐹 ∗(𝑇 ). 
First, little effect is observed in the bear case. However, in the bull 
regime, some notable effects are observed. Fig. 6 analyzes the expected 
fund evolution for upward jumps, with a same weight factor 𝛼 = 1 to the 
utilities, with 𝜑 = 0.1 by the jump intensity 𝜆 and the rate of contribu-

tion 𝑐2 under the bull market. The expected value of the fund increases 
with the time. The higher the intensity of the jump, the greater the 
expected fund. For instance, for 𝑐2 = −0.05 and at the terminal time 
𝑇 = 10, 𝔼𝐹 ∗ = 70, for 𝜆 = 0, 𝔼𝐹 ∗ = 400, for 𝜆 = 0.25 and 𝔼𝐹 ∗ = 2650, 
for 𝜆 = 0.5; thus the relative benefit decreases with the jump intensity. 
So, according to this checking, the intensity of the jumps also has an ef-
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fect on the optimal fund wealth. A positive contribution increases the 
expected value of the fund. However, a negative rate makes the fund 
improve, but to a lesser extent.

Finally, we study the effect of the weight factor 𝛼 on the optimal 
relative benefit strategy 𝑃 ∗∕𝐹 ∗ and the optimal expected fund wealth 
𝔼𝐹 ∗. First, note that the investment strategy Π∗ does not depend on 𝛼. 
Fig. 7 analyzes the optimal relative benefit for 𝛾 = 3, 𝜆 = 0.5, 𝑐2 = −0.05, 
with upward jumps and bull market by the weight factor 𝛼. We consider 
several cases, where 𝛼 = 0.01, 0.5, 1, 5, 100, including the case where the 
final utility of the fund it is not important, 𝛼 = 0.01, the case where 
this utility function has almost all the weight of the objective function, 
𝛼 = 100, and the case where both utilities have the same importance, 
𝛼 = 1. We see that 𝛼 does not influence the benefit in the first half of 

the time period. However, an effect of 𝛼 on the optimal relative ben-
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Fig. 7. Optimal relative benefit over time by the weight factor 𝛼 for 𝛾 = 3, 𝜆 = 0.5, 𝑐2 = −0.05 and 𝜑 = 0.1 under a bull market.

Fig. 8. Expected fund evolution over time by the weight factor 𝛼 for 𝛾 = 3, 𝜆 = 0.5, 𝑐2 = −0.05 and 𝜑 = 0.1 under a bull market.
efit is observed mainly from the middle of the planning period. When 
the importance given to the final utility of the fund compared to the 
instantaneous utility of the benefit increases, the optimal relative ben-

efit decreases to a greater extent. When the final utility of the fund is 
not important, that is 𝛼 is approaching 0, the final value of the optimal 
relative contribution multiplies its value by more than 4. When all the 
importance is given to the final utility of the fund, that is 𝛼 is very high, 
the final value of the optimal relative contribution is below 30%. Thus, 
it can be said that an increase in 𝛼 slows down a sharp increase in the 
benefit.

Fig. 8 analyzes the optimal fund wealth over time for 𝛾 = 3, 𝜆 = 0.5
and 𝑐2 = −0.05, with upward jumps and bull market by the weight factor 
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𝛼. An increase in the fund is observed over time. An effect of 𝛼 on the 
optimal relative benefit is observed only and mainly in the last years of 
the planning period. The increase of the fund is greater in later years, 
especially when 𝛼 is higher.

5. Conclusions

In this paper, we apply the programming dynamic approach to ana-

lyze the optimal management of a target benefit pension plan with the 
objective of maximizing the expected discounted utility of benefits and 
terminal utility of fund wealth. The analytical solutions obtained yield 
several conclusions:

Firstly, the presence of jumps in the financial market has an impact 

on the optimal investment and benefit strategies and on the optimal fund 
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wealth. With upward jumps and bull regime, the greater the intensity of 
jumps, the greater the fund wealth, but at the cost of reducing the ben-

efit and increasing the investment. Secondly, there is an impact of risk 
aversion on investment allocation. Higher levels of risk aversion among 
fund managers result in a more conservative investment approach, with 
a reduced proportion allocated to risky assets. This reflects a risk-averse 
behavior consistent with the desire to ensure the stability of the pension 
plan. On the other hand, the growing trend in optimal benefits over time 
suggests a positive outlook for participants, indicating potential for in-

creased financial security during their retirement years. The significant 
upsurge in benefits for participants rewarded in the final two years of the 
plan implies a strategic alignment of incentives to encourage long-term 
commitment.

The study also highlights the influence of contributions on the tra-

jectory of optimal benefits. A negative contribution growth rate leads 
to a temporary decline in benefits, followed by recovery; while positive 
contributions result in a continuous upward trajectory. This underscores 
the economic implications of contribution policies on the financial well-

being of plan participants.

The analysis of fund performance under different market regimes 
provides insights into the jump effect on the market dynamics. Positive 
jumps contribute significantly to the rapid growth of the fund in a bull 
market, while negative jumps can impede fund ascent. This sensitivity 
emphasizes the importance of considering and managing market uncer-

tainties in the optimal solution of a target benefit pension plan.

Finally, with a bull regime, the optimal fund wealth increases over 
time, even if the rate of contribution is negative, which makes the pen-

sion plan more attractive. A major weight in the utility function of the 
terminal fund increases the fund wealth more in the last years of the 
planning period. However, the optimal relative benefit can decrease 
over time well below 1 when the weight factor is high.

For the future, a CARA utility function can be considered. On the 
other hand, rather than considering a contribution proportion of the 
fund wealth as a deterministic function, it could be valuable to add more 
complexity, considering a stochastic function of the contribution. This 
approach not only enhances the model’s flexibility, but also brings it 
closer to the complexities of real-world scenarios. In order to provide 
the members with a better life after retirement, some restrictions on 
trading strategies that do not allow borrowing or short selling can be 
considered. A model where the aim of the fund manager is to minimize 
the deviations of the benefit and the fund wealth with respect to targets 
can also be considered.
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Appendix A

Proof of Theorem 3.1. For the problem of Section 3, the HJB equation 
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− 𝜌𝑉 +max
𝑃 ,Π

{
𝑉𝑡 +

𝑃 1−𝛾 − 1
1 − 𝛾

+
(
𝑟𝐹 +Π⊤(𝑏− 𝑟1)𝐹 +𝐶𝐹 − 𝑃

)
𝑉𝐹

+1
2
Π⊤ΣΠ𝐹 2𝑉𝐹𝐹 +

𝑚∑
𝑘=1

𝜆𝑘

(
𝑉
(
𝐹 +

𝑛∑
𝑗=1

𝜋𝑗𝐹𝜑𝑗𝑘

)
− 𝑉 (𝐹 )

)}
= 0, (12)

for all (𝑡, 𝐹 ), with the final condition 𝑉 (𝑇 , 𝐹 ) = 𝛼
𝐹 1−𝛾−1
1−𝛾 , for all 𝐹 .

If there is a smooth solution 𝑉 of the equation (12), strictly concave, 
then the maximizer values of the benefit and the investments are given 
by

𝑃−𝛾 − 𝑉𝐹 = 0⇒ 𝑃 = 𝑉
−1∕𝛾
𝐹

, (13)

(𝑏𝑖 − 𝑟)𝐹𝑉𝐹 (𝑥) +
𝑙∑

𝑗=1
𝑎𝑖𝑗𝜋𝑗𝐹

2𝑉𝐹𝐹 +
𝑚∑
𝑘=1

𝜆𝑘𝑉𝐹

(
𝐹 +

𝑛∑
𝑗=1

𝜋𝑗𝐹𝜑𝑗𝑘

)
𝜑𝑖𝑘𝐹

= 0, (14)

for all 𝑖 = 1, … , 𝑛. The structure of the HJB equation obtained, once we 
have substituted these values for 𝑃 and Π in (12), suggests a power 
function 𝑉 (𝑡, 𝐹 ) = 𝑔(𝑡) 𝐹

1−𝛾

1−𝛾 + 𝑢(𝑡)
1−𝛾 , with 𝑔 and 𝑢 suitable functions. From 

(13), we get that the benefit 𝑃 is explicitly found in terms of the fund 
𝐹 , 𝑃 = 𝑔−1∕𝛾𝐹 , where the function 𝑔 must be determined with the HJB 
equation. From (14), we get that the vector of investment proportions Π
is the constant proportion of fund that solves the algebraic equation (8). 
Plugging into the HJB equation (12), function 𝑢 satisfies 𝑢′(𝑡) = 𝜌𝑢(𝑡) +1, 
with 𝑢(𝑇 ) = −𝛼, that is to say, 𝑢(𝑡) = −1

𝜌
+ (−𝛼 + 1

𝜌
)𝑒−𝜌(𝑇−𝑡), and the 

following nonlinear differential equation for 𝑔 is obtained

𝑔𝑡 +
(
− 𝜌+ (1 − 𝛾)

(
𝐶 +Ψ(Π, 𝛾)

))
𝑔 − 𝛾𝑔1−1∕𝛾 = 0,

with 𝑔(𝑇 ) = 𝛼. In order to linearize it, we consider the transformation 
ℎ = 𝑔1∕𝛾 , and then ℎ is determined by the linear differential equation

ℎ′(𝑡) + 𝑎(𝑡)ℎ(𝑡) − 1 = 0,

with ℎ(𝑇 ) = 𝛼1∕𝛾 , where 𝑎(𝑡) is given by (7). The solution ℎ is given by

ℎ(𝑡) = 𝑒∫ 𝑇
𝑡 𝑎(𝑠)𝑑𝑠

(
𝛼1∕𝛾 +

𝑇

∫
𝑡

𝑒− ∫ 𝑇
𝑠 𝑎(𝑢)𝑑𝑢𝑑𝑠

)
,

and then, in terms of ℎ, the benefit is given by (13), 𝐹 = ℎ−1𝐹 .

Finally, by substituting in (4) we obtain (9). □

Proof of Remark 3.3. For the problem of Section 3, the HJB equation 
is

− 𝜌𝑉 +max
𝑃 ,Π

{
𝑃 1−𝛾 − 1
1 − 𝛾

+
(
𝑟𝐹 +Π⊤(𝑏− 𝑟1)𝐹 +𝐶𝐹 − 𝑃

)
𝑉𝐹

+1
2
Π⊤ΣΠ𝐹 2𝑉𝐹𝐹 +

𝑚∑
𝑘=1

𝜆𝑘

(
𝑉
(
𝐹 +

𝑛∑
𝑗=1

𝜋𝑗𝐹𝜑𝑖𝑘

)
− 𝑉 (𝐹 )

)}
= 0. (15)

If there is a smooth solution 𝑉 of the equation (12), strictly concave, 
then the maximizer values of the benefit and the investments are given 
by

𝑃−𝛾 − 𝑉𝐹 = 0⇒ 𝑃 = 𝑉
−1∕𝛾
𝐹

, (16)

(𝑏𝑖 − 𝑟)𝐹𝑉𝐹 (𝑥) +
𝑙∑

𝑗=1
𝑎𝑖𝑗𝜋𝑗𝐹

2𝑉𝐹𝐹

+
𝑚∑
𝑘=1

𝜆𝑘𝑉𝐹

(
𝐹 +

𝑛∑
𝑗=1

𝜋𝑗𝐹𝜑𝑗𝑘

)
𝜑𝑖𝑘𝐹 = 0, (17)

for all 𝑖 = 1, … , 𝑛. The structure of the HJB equation obtained, once we 
have substituted these values for 𝑃 and Π in (12), suggests a power 
function 𝑉 (𝐹 ) = 𝜇

𝐹 1−𝛾

1−𝛾 + 𝜂

1−𝛾 , with 𝜇 and 𝜂 suitable constants. From 

(16), we get that the benefit 𝑃 is explicitly found in terms of the fund 𝐹 , 
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𝑃 = 𝜇−1∕𝛾𝐹 , where the constants 𝜇 and 𝜂 must be determined with the 
HJB equation. From (17), we get that the vector of investments Π is the 
constant proportion of surplus that solves the algebraic equation (17). 
Plugging into the HJB equation (15), the following algebraic equation 
for 𝜇 is obtained

𝜌

1 − 𝛾
= 𝛾

1 − 𝛾
𝜇−1∕𝛾 + 𝑐 +Ψ(Π, 𝛾),

which allows us to obtain (10), and 𝜂 = −𝜌.

By substituting in (4), we obtain the evolution of the optimal fund 
wealth, (11), that is to say, 𝐹 ∗ is an extended GBM to Poisson jumps.

By Theorem 8.5 of Dockner et al. (2000), the proof of optimality 
concludes when the transversality condition in infinite

lim
𝑡→∞

𝑒−𝜌𝑡𝔼𝐹0
𝑉 (𝐹 ∗(𝑡)) = 1

1 − 𝛾

(
𝜇 lim
𝑡→∞

𝑒−𝜌𝑡𝔼𝐹0
𝐹 ∗(𝑡)1−𝛾 + 𝜂 lim

𝑡→∞
𝑒−𝜌𝑡

)
= 0

is checked. By Ito’s formula (see García and Griego (1994) or Hanson 
(2007)), we obtain

𝑑𝐹 ∗(𝑡)1−𝛾 =(1 − 𝛾)
(
𝐶 − 𝜇−1∕𝛾 +Ψ(Π∗, 𝛾)

)
𝐹 ∗(𝑡)1−𝛾𝑑𝑡

+ (1 − 𝛾)Π∗⊤𝜎𝐹 ∗(𝑡)1−𝛾 𝑑𝑤(𝑡)

+
𝑚∑
𝑘=1

((
1 +Π∗⊤𝜑𝑘

)1−𝛾 − 1
)
𝐹 ∗(𝑡)1−𝛾 𝑑𝐻𝑘(𝑡),

where 𝐻 is the compensated Poisson process and 𝐹 ∗(0) = 𝐹0 > 0. Then

𝔼𝐹0
𝐹 ∗(𝑡)1−𝛾 = 𝐹

1−𝛾
0 exp

{
(1 − 𝛾)

(
𝐶 − 𝜇−1∕𝛾 +Ψ(Π∗, 𝛾)

)
𝑡
}

and, by (10),

𝔼𝐹0
𝐹 ∗(𝑡)1−𝛾 = 𝐹

1−𝛾
0 exp

{
1 − 𝛾

𝛾

(
− 𝜌+𝐶 +Ψ(Π∗, 𝛾)

)
𝑡

}
.

It is immediate to check that the transversality condition is

𝜌 >
1 − 𝛾

𝛾

(
− 𝜌+𝐶 +Ψ(Π∗, 𝛾)

)
,

which is equivalent to 𝜇−1∕𝛾 > 0. □
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