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A B S T R A C T

Early fire detection is crucial for enabling rapid response and minimizing potentially catastrophic consequences. 
While artificial intelligence-based approaches have been developed for this task, they often demand substantial 
computational resources. Moreover, detecting smoke is inherently challenging due to its irregular, heterogeneous 
texture—especially under adverse weather conditions such as fog or cloud shadows. This paper introduces and 
validates an efficient smoke detection method grounded in fractal dimension analysis. The proposed approach 
involves dividing images into tiles, computing the fractal dimension for each block, and analysing the resulting 
fractal dimension distribution patterns to identify smoke presence. To evaluate its performance, we employed 
publicly available surveillance images from the High Performance Wireless Research and Education Network 
(HPWREN). Experimental results across five different scenarios demonstrate that the method achieves an ac-
curacy of 96.87 %, successfully distinguishing between smoke and smoke-free regions—even under visually 
challenging conditions. By relying on an efficient fractal dimension algorithm, the proposed method is compu-
tationally efficient, and manages to capture the intrinsic texture characteristics of smoke, remaining unaffected 
by environmental noise such as fog and cloud cover.

1. Introduction

Early fire detection is crucial for minimizing damage and safe-
guarding the environment, industrial infrastructure, human settlements, 
and lives. However, detecting fires at an early stage can be particularly 
challenging, as they often ignite in remote or obscured locations beyond 
direct human observation. Since fires typically generate smoke and 
flames, detecting smoke in aerial imagery constitutes a promising 
strategy for early intervention. These images can be acquired through 
remote sensing technologies, including IoT edge devices equipped with 
high-resolution cameras, as well as Unmanned Aerial Vehicles (UAV) 
and satellites. The effectiveness of this approach heavily depends on 
image quality—high-resolution imagery is essential to extract accurate, 
actionable insights for timely response.

This paper proposes and validates an efficient method for detecting 
fire-prone areas by accurately distinguishing between smoke and non- 
smoke regions. The proposed approach is based on image tiling and 
the calculation of fractal dimensions across the resulting patches. Spe-
cifically, we employ the computational technique proposed by the au-
thors in [1], which enables the direct estimation of fractal dimensions 
from digital image files. By computing the fractal dimensions of each 
image block, a clear threshold allowing reliable separation of 
smoke-affected areas from smoke-free zones is obtained. The method 
was validated using publicly available imagery from the High Perfor-
mance Wireless Research and Education Network (HPWREN) [2]. The 
proposed technique stands out for its simplicity and low computational 
cost when compared to resource-intensive Artificial Intelligence 
(AI)-based methods. Additionally, it does not rely on specialized input 
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data, such as geoinformation metadata, making it highly adaptable to a 
variety of image sources.

Considering the above, the main contributions of the paper are as 
follows: 

• Proposes an effective method for early fire detection by discrimi-
nating between smoke and non-smoke areas in surveillance images.

• Successfully uses image tiling and fractal dimension calculation to 
analyse and detect smoke texture patterns.

• Applies a computational method to estimate the fractal dimension 
directly from digital image files, based on previous work [1].

• Validates the proposed method through an experimental study using 
freely available HPWREN imagery, including colour and near- 
infrared data from mountaintop cameras.

• Demonstrates that the proposed approach is simple, computationally 
efficient, and suitable for use with high-resolution imagery captured 
by Internet of Things (IoT) edge devices, UAVs, and satellites.

• Provides an alternative to AI-based methods by eliminating the need 
for geoinformation metadata and complex model training.

The remaining of the paper is as follows: Section 2 describes recent 
related work. Section 3 describes the proposed method including 1) 
image acquisition and preprocessing; 2) image tiling; 3) fractal dimen-
sion calculation of the resulting image blocks; and 4) analysis of the 
evolution of the fractal dimension for smoke detection. Section 4 pre-
sents the experimental results obtained in different smoke detection case 
studies developed using images from the HPWREN website [2]. Finally, 
the main conclusions are presented in Section 5.

2. Related work

Detecting smoke in images presents a set of persistent challenges, 
primarily due to the amorphous and dynamic nature of smoke itself. 
Unlike well-defined objects, smoke lacks consistent shape or contour, 
often mimicking the textures and visual patterns of elements such as 
water, clouds, open skies, or forestry. This visual ambiguity undermines 
the effectiveness of conventional techniques like background subtrac-
tion or basic pattern matching, which rely heavily on structural regu-
larities. As a result, researchers have turned to more flexible and robust 
methods to improve detection accuracy—especially in cases where 
smoke appears in small or partially obscured regions. On top of that, 
processing images for this kind of task can be computationally heavy, 
adding to the overall complexity and making real-time detection even 
more challenging.

A wide range of Deep Learning (DL) methods have been applied to 
the detection of fire and smoke in images, with Convolutional Neural 
Networks (CNNs) emerging as a particularly effective tool in this domain 
[3]. These networks, inspired by the visual processing of the human eye, 
consist of multiple layers that automatically extract meaningful features 
from raw pixels. Convolutional layers are especially well-suited for ob-
ject detection and are central to models like You Only Look Once 
(YOLO). For example, [4] employed a pretrained YOLOv5s model to 
improve smoke detection accuracy even with limited training data. 
Lightweight CNNs such as MobileNetV3 [5] have also gained popularity 
for their efficiency, making them suitable for real-time applications. 
Beyond object detection, some approaches rely on U-Net-based archi-
tectures for pixel-level classification in semantic segmentation tasks [6]. 
More recent models, such as YOLOv8, combine object detection and 
segmentation capabilities, and have been used both independently and 
in conjunction with techniques like Slicing-Aided Hyper Inference 
(SAHI) to enhance performance on high-resolution images [7–9]. Other 
efforts have leveraged Object-Based Detection Systems (OBDS) built on 
YOLOv5 for structured detection [10]. Additionally, semantic segmen-
tation networks like DeepLabv3+ have been adopted for precise delin-
eation of smoke regions, further underscoring the expanding role of 
Artificial Intelligence (AI)-driven techniques in this field [11]. 

Nonetheless, a key limitation of these models is their reliance on su-
pervised learning, which requires explicit labelling of smoke regions in 
the training data—often involving labour-intensive manual annotation.

Table 1 presents a comparative overview of previous studies on fire 
and smoke detection in imagery alongside the proposed approach. The 
comparison considers key aspects such as the detection method, dataset 
used, dataset size, preprocessing techniques, and the main advantages 
and limitations of each method. Across the reviewed works, several 
recurring limitations exist. Many are sensitive to adverse environmental 
conditions, which can significantly affect detection performance [4,6–9,
11]. Several approaches also involve high technological complexity, 
making their implementation and deployment more demanding [4–11]. 
The reliance on large, manually labelled datasets is another common 
issue [4–11]. Some methods report low precision or depend on multi-
modal data, further complicating the detection pipeline [5]. Others 
show a strong reliance on data augmentation to reach acceptable per-
formance levels [10], and in certain cases, detection accuracy is highly 
sensitive to image quality [4]. In contrast, the proposed method ad-
dresses several of these challenges by offering key advantages: it remains 
robust under challenging conditions, achieves high precision, and is 
computationally lightweight. Moreover, it performs effectively without 
requiring a large training dataset, making it well-suited for real-world 
scenarios where data and computational resources are limited.

Additionally, the application of AI techniques for object detection in 
images can pose several challenges, depending on the domain and the 
nature of the images or objects involved [12]. In fact, applying AI-based 
methods to the same task addressed by the proposed approach would 
typically require not only the image data but also supplementary met-
adata stored in accompanying files. A common example is the use of 
shapefiles—vector formats that encode the geographic location of ob-
jects along with their associated attributes. Preparing a dataset suitable 
for training and evaluating an Artificial Neural Network (ANN) there-
fore involves careful consideration of these requirements. Moreover, 
some objects are inherently difficult to detect using AI due to their 
variability and heterogeneity, which further complicates the detection 
process [13].

On the other hand, it is worth highlighting that smoke regions can 
also be extracted from images using fractal-based approaches, given that 
smoke exhibits self-similar properties—much like natural phenomena 
such as water. In a fractal structure, both the whole and its parts share 
the same statistical characteristics, often emerging from the repetition of 
simple processes across scales to produce complex, seemingly infinite 
patterns. Fractals are, by definition, intricate structures that retain their 
form across different levels of magnification, and this self-similarity has 
long attracted the attention of scientists and researchers [14–16]. One of 
the reasons for this widespread interest is the versatility of fractals, 
which have been applied in a broad range of applications [17–23]. In 
image processing, for instance, fractal image compression leverages the 
repetition of patterns within an image to reduce data size. This 
block-based technique identifies and encodes similarities across regions, 
demonstrating the practical value of fractal geometry. Similarly, by 
recognizing smoke as a self-similar fractal phenomenon, detection 
methods—such as the one proposed in this paper—can be developed to 
exploit these structural patterns for more effective image analysis.

3. Method for smoke detection using fractal dimension 
calculation

This section outlines the proposed method, which is divided into four 
main phases: (1) image acquisition and preprocessing, (2) image tiling, 
(3) fractal dimension calculation, and (4) analysis of the fractal 
dimension evolution. First, the region of interest in the original image is 
extracted and converted to greyscale, as the three-dimensional property 
of colour information makes the processing heavier [24]. Secondly, the 
image is divided into smaller tiles to enable localised analysis. Thirdly, 
the fractal dimension of each tile is calculated to obtain meaningful 
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information for smoke identification. Finally, the evolution of the fractal 
dimension is analysed to classify each tile as either smoke or smoke-free.

3.1. Image acquisition and preprocessing

There are three essential factors in the selection of the information 
source: 1) position of the camera, 2) temporal granularity of data 
acquisition and, 3) quality of the images. Firstly, the camera position 

Table 1 
Comparison of previous studies on fire and smoke detection in images using a range of DL-based methods with the present study.

Year Article Method Dataset Dataset 
Length

Preprocessing Advantages Disadvantages Reference

2023 Efficient Detection of Forest Fire 
Smoke in UAV Aerial Imagery Based 
on an Improved Yolov5 Model and 
Transfer Learning

Transfer Learning 
(YOLOv5s)

UAV- 
based 
imagery

2554 
images

K-means++ and 
Resize

Real-Time 
Detection 
High Precision

Affected by 
Adverse 
Environmental 
Conditions 
Affected by Image 
Quality 
Technological 
Complexity

[4]

2023 The Wildfire Dataset: Enhancing 
Deep Learning-Based Forest Fire 
Detection with a Diverse Evolving 
Open-Source Dataset Focused on 
Data Representativeness and a Novel 
Multi-Task Learning Approach

Convolutional 
Neural Network 
(MobileNetV3)

Wildfire 
imagery

2700 
images

Data Curation and 
Deduplication

Contemplates 
Adverse 
Conditions 
Innovative 
Approach

Low Precision 
Multimodal Data 
Needs 
Technological 
Complexity

[5]

2023 Burned Area Semantic Segmentation: 
A Novel Dataset and Evaluation using 
Convolutional Networks

Deep Learning (U- 
Net Base)

UAV- 
based 
imagery

22,500 
images

Image Segmentation Near Real-Time 
Detection 
High Precision

Affected by 
Adverse 
Environmental 
Conditions 
Need for Large 
Amounts of Data 
Technological 
Complexity

[6]

2024 Scrapping The Web for Early Wildfire 
Detection

Deep Learning 
(YOLOv8)

Wildfire 
imagery

10,000 
images

Filtering Strategy Cost-Effective 
Dataset 
Near Real-Time 
Detection

Affected by 
Adverse 
Environmental 
Conditions 
Manual labelling 
and Variability  
Technological 
Complexity

[7]

2025 YOLO-SIFD: YOLO with Sliced 
Inference and Fractal Dimension 
Analysis for Improved Fire and 
Smoke Detection

Deep Learning 
(YOLOv8) + SAHI

Fire 
dataset

11,515 
images

Fractal Dimension 
Analysis to Study the 
Spatial Arrangement of 
Fire and Smoke

Near Real-Time 
Detection 
High Precision

Affected by 
Adverse 
Environmental 
Conditions 
Need for Large 
Amounts of Data 
Technological 
Complexity

[9]

2023 Omni-Dimensional Dynamic 
Convolution Meets Bottleneck 
Transformer: A Novel Improved High 
Accuracy Forest Fire Smoke 
Detection Model

Deep Learning 
(OBDS based on 
YOLOv5)

Wildfire 
imagery

30,420 
images

Seasonal Style 
Transformation and 
Improved Mosaic Data 
Augmentation

Contemplates 
Adverse 
Conditions 
Computational 
Efficiency

Dependence on 
Data 
Augmentation 
Technological 
Complexity

[10]

2024 A Lightweight Fire Detection 
Algorithm based on Improved 
YOLOv8

Deep Learning 
(YOLOv8)

Fire 
dataset

8751 
images

Data Augmentation 
Techniques

Near Real-Time 
Detection 
High Precision

Affected by 
Adverse 
Environmental 
Conditions 
Need for Large 
Amounts of Data 
Technological 
Complexity

[8]

2024 Wildfire and Smoke Early Detection 
for Drone Applications: A Light- 
weight Deep Learning Approach

Semantic 
Segmentation 
(Deeplabv3+)

Fire 
dataset

9098 
images

Data Augmentation 
Techniques

Near Real-Time 
Detection 
High Precision 
Lightweight 
Design

Affected by 
Adverse 
Environmental 
Conditions 
Need for Large 
Amounts of Data 
Technological 
Complexity

[11]

2025 Present Study Fractal Dimension Wildfire 
imagery

316 
images

RGB to Greyscale and 
Image Tiling

Contemplates 
Adverse 
Conditions 
Low Complexity 
Small Dataset 
High Precision

Reference Image 
Needed 
Only Static 
Surveillance 
Validation 
performed for Still 
Images

​
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must be static, covering a fire-prone area, usually on high ground, and 
the lens must remain stationary, without zooming in or out. Also, the 
higher the quality of the image, the more accurate the fractal dimension 
calculation will be.

Although several repositories offer wildfire imagery, the above fac-
tors must be considered. For this reason, the source images used in this 
study were obtained from the High Performance Wireless Research and 
Education Network (HPWREN) [2]. HPWREN is a research initiative 
that operates a network of over 140 cameras (including colour and 
near-infrared) and environmental sensors installed on mountaintops 
across San Diego and South Carolina counties in the United States. The 
network provides publicly accessible data in near-real time, offering a 
valuable resource for wildfire monitoring and response. The images 
analysed in this study were captured at one-minute intervals, ensuring 
adequate temporal granularity for the proposed method. The only worth 
noting limitation of the dataset is the relatively low image resolution (96 
dpi), which could potentially impact the precision of the fractal 
dimension calculations. However, this limitation did not significantly 
affect the results obtained.

Once the data source had been selected, the images were pre-
processed to ensure accurate fractal dimension calculation. Initially, the 
raw images included elements—such as the sky and camera edges—that 
could introduce outliers into the analysis. However, because the camera 
position remains fixed, a cropping step using predefined coordinates was 
applied to consistently remove these irrelevant regions. Next, the 
cropped images were converted to greyscale, following findings in [1] 
that support improved accuracy in fractal dimension calculation when 
using greyscale images (instead of coloured) during the involved sub-
sampling process.

3.2. Image tiling

To enable fractal dimension calculation [25], images were divided 
into equally sized tiles. Methods such as Quadtree-based tiling or 
filter-based techniques like the Boxcar method used in [26] were not 
suitable, as they alter the structural consistency of the image blocks. 
Instead, a straightforward uniform splitting technique was employed, 
dividing each image into a 6 × 6 grid, resulting in 36 tiles with consis-
tent size and resolution for analysis.

3.3. Fractal dimension calculation

After completing the steps detailed in Sections 3.1 and 3.2, the fractal 

dimension of the resulting tiles is estimated using the previously pro-
posed compression fractal dimension algorithm [1].

The amount of information S required to represent a fractal object 
follows the asymptotic scaling 

S(s) ∼ 2H(s) ∼ sD, (1) 

where s is the scale level, H is the Shannon entropy, and D is the fractal 
dimension. The definition of the compression dimension follows as 

Dc = lim
s→∞

logS(s)
logs

. (2) 

To estimate Dc, a series of representations of the image at different 
scales is produced by resizing the initial tile by a percentage ranging 
from 10 % to 90 % with a 10 % increment. This operation is performed 
using the free ImageMagick library [27]. At each scale, S is estimated 
from the compressed file size obtained using GZIP (GNU Zip). The fractal 
dimension is then evaluated from the slope of the linear regression fit of 
the logarithm of the resizing scale against the logarithm of the com-
pressed sizes.

Whereas in an ideal fractal self-similarity is found at all scales, in any 
real fractal this range of scales is limited. In our case, such a physical 
limit is imposed by the limited resolution of the image, as illustrated in 
Fig. 1. The compression dimension algorithm will only provide a good 
estimate of the fractal dimension if the image file constitutes a reliable 
representation of the fractal object at all the scales analysed [1]. 
Although the rescaling ideally ranges from 10 % to 90 %, an exhaustive 
study shows that for the tiles used, there is a turning point where the 
linearity disappears indicating the violation of Eq. (2). For this reason, in 
this research work, the scaling varies between 50 % and 90 %, i.e., the 
reduced information content in the scaled versions with resizing per-
centages between 40 % and 10 % yields meaningless data.

Fig. 1 shows the described slope deviation for a sample image from 
the first scenario presented in Section 4. A noticeable deviation in the 
slope of the log₂(S) vs. log₂(s) plot, used to compute the fractal dimen-
sion, can be observed at the smallest values of s. This deviation is due to 
the limited resolution of the image and restricts the range of scales s that 
can be used to estimate the fractal dimension.

3.4. Analysis of the evolution of the fractal dimension

After computing the fractal dimension for each tile, an evolution 
analysis is carried out to detect smoke within sequences of images from 
the same scenario. The presence of smoke tends to blur textures and 

Fig. 1. Fractal dimension analysis along scaled versions.
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alters the fractal dimension of affected tiles. As smoke spreads through 
the scene, these changes become increasingly noticeable compared to 
the smoke-free baseline. Therefore, an algorithm was developed to 
automatically detect smoke based on the evolution of the fractal 
dimension. To perform this analysis reliably, each scenario must include 
a reference image without smoke and captured under stable weather 
conditions.

The fractal dimension analysis algorithm consists of two main steps: 
a computational step and a logical decision step. The first step, detailed 
in the pseudocode of Algorithm 1, involves calculating the absolute 
difference in fractal dimension for each corresponding tile between the 
reference image and the current image. The absolute value is used 
because the presence of smoke can either increase or decrease the fractal 
dimension, depending on the characteristics of the original image.

The second step, illustrated in Fig. 2, consists of a logical flow 
designed to determine whether the new image indicates the presence of 
fire, based on the output from Algorithm 1. Absolute differences are first 
compared with a threshold, which is set to the standard deviation of the 
fractal dimension across all tiles in the reference image σFD. Tiles with 
differences greater than the threshold are highlighted using a colour- 
coded representation (see Fig. 3) to visually represent (illuminate) the 
intensity of the deviations. σFD ranged between 0.04 and 0.06 across the 
five scenarios of our survey, and the threshold was heuristically set to 
the minimum value of 0.04, yielding satisfactory results. Determining an 
optimal threshold based on established academic standards will require 
broader datasets to obtain statistically significant results, which will be 
the focus of future analyses.

The flow considers three factors to determine whether a fire is 
occurring. The first decision block checks whether one or more tiles are 
illuminated in the incoming image; if none are illuminated, the flow 
concludes, confirming the absence of fire. The second decision block 
requires at least five consecutive images with illuminated tiles to indi-
cate a potential fire, reducing the likelihood of false positives caused by 
external factors. Finally, the third decision block specifies that, for a fire 
to be identified, no more than three illuminated tiles may appear in the 
same row and no more than two in the same column. This criterion 
reflects the typically localised nature of smoke produced by fire and 
distinguishes it from broader shadows cast by clouds.

4. Results

This section describes the experiments developed in different sce-
narios. The concept of scenario refers to a collection of images captured 
from the same position and location under consistent conditions, 
including pixel dimensions, resolution, dynamic range, bit depth, and 
other parameters. Additionally, three case studies have been analysed: 
1) fire detection under normal conditions; 2) the presence of fog and, 3) 
cloud shadows. The first case study includes three scenarios focused on 
fire detection in normal weather conditions. Fog, with its smoke-like 
texture, can make fire detection more difficult; thus, a specific 

scenario to investigate this phenomenon has been considered. Finally, 
the shadows cast by clouds can alter the image data, potentially affecting 
the fractal dimension. Therefore, a specific scenario has been designed 
to investigate this case as well.

Table 2 presents the experimental setup employed in this study. The 
hardware requirements are relatively low, showing that the method can 
be implemented on standard computing devices. Additionally, the 
software employed is both lightweight and open-source, ensuring 
accessibility and ease of deployment.

Table 3 summarizes the set of general parameters applied across all 
the scenarios analysed. It first specifies the resolution of the original 
images in the dataset. Next, it details the matrix dimensions used for the 
tiling process, including the number of rows and columns and the total 
number of resulting tiles. Finally, it outlines the parameters used in the 
fractal dimension calculation algorithm.

Finally, Table 4 presents a number of specific parameters for each 
scenario. First, the coordinates of the bounding box applied to all images 
as part of the preprocessing step are given. Additionally, the properties 
of the original images used in each scenario are detailed, as the dataset is 
publicly available and the image sizes vary depending on the camera 
used.

4.1. Results for scenario 1

Fig. 4 illustrates the preprocessing step in Scenario 1. This first sce-
nario consists of six different images (Fig. 4 (a-f)). The first image does 
not contain smoke; whereas the subsequent images do. The first step 
identifies the area of interest (Fig. 4 (g-l)). Next, the RGB images are 
converted to greyscale (Fig. 4 (m-r)). Finally, Fig. 4 (s–x) illustrates the 
tiling grid, which uses a matrix of 6 rows by 6 columns, yielding a total 
of 36 tiles.

Fig. 5 shows the evolution of the fractal dimensions before and after 
the start of the fire. Initially, there are no illuminated tiles in Fig. 5(a). 
However, as disturbances appear, tiles gradually become illuminated in 
Fig. 5 (b–f). As previously mentioned, the colour coding represents the 
intensity of fractal dimension variations. In this case, the algorithm 
identifies smoke when the conditions are met: a maximum of two illu-
minated tiles in the same row and two in the same column, some of 
which persist for more than five consecutive time instants.

4.2. Results for scenario 2

Scenario 2 also consists of six different images (Fig. 6 (a-f)). Here, the 
fire is further away than in the first scenario, but the amount of smoke is 
significantly greater. The same preprocessing steps are applied: focusing 
on the area of interest (Fig. 6 (g–l)), RGB to greyscale conversion (Fig. 6
(m–r)), and tiling (Fig. 6 (s–x)).

In this scenario, the abundant smoke gradually intensifies. Fig. 7
presents the evolution of the fractal dimension-based fire detection. The 
focal point of the fire appears in Fig. 7(b), but due to the wind, the smoke 

Algorithm 1 
Pseudo-code for the algorithm to determine smoke using the Fractal Dimension.
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expands and illuminates more tiles in Fig. 7 (c–e). In Fig. 7(f), the al-
gorithm detects fire as three tiles are illuminated in the same row and 
two in the same column. Additionally, the colour coding in red and 
orange highlights the intensity of the fire.

4.3. Results for scenario 3

The third scenario is the last one that examines the evolution of 
smoke under normal conditions (Fig. 8 (a-f)). However, this scenario 
features a distant fire with some haze. Again, preprocessing is performed 
(see Fig. 8 (g-x)), although the camera position limits the area of interest 

Fig. 2. Flowchart of the fractal dimension evolution analysis algorithm.
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compared to other scenarios.
Here, the amount and intensity of smoke are significantly less than in 

the previous case. Haze in the vicinity of the fire further complicates 
detection. Fig. 9(b) first shows a discrete fire outbreak that moves to the 
left due to wind (Fig. 9 (c–f)). The algorithm detects smoke as it meets 
the conditions: a maximum of three illuminated tiles in a row and two in 
a column. This scenario reflects a low-intensity fire, as indicated by the 
colour range of the tiles.

4.4. Results for scenario 4

The fourth scenario explores the effect of fog, a weather phenomenon 
that can complicate smoke detection. Fig. 10 (a–f) shows a series of six 
images showing the evolution of a distant fire mixed with fog. The 
preprocessing steps remain the same (Fig. 10(g–x), but the camera po-
sition again limits the area of interest.

As mentioned above, fog is a weather phenomenon that can make 
fire detection difficult. Fog initially dominates the scene, as shown in 
Fig. 11(a), with no illuminated tiles. As the fire starts, shown in 
Fig. 11b), it blends with the fog but increases the intensity of certain 
tiles. The wind spreads the fire as shown in Fig. 11 (c–f). The algorithm 
detects a fire by a maximum of three illuminated tiles in a row, one of 
which lasts for more than five consecutive time instants. Finally, the 
colours of the illuminated tiles represent the moderate intensity of this 
smoke.

4.5. Results for scenario 5

The fifth scenario shifts the focus from smoke detection to the impact 
of cloud shadows, a common natural phenomenon that can alter image 
data and affect fractal dimension analysis. Fig. 12 (a–f) shows the pro-
gression of a shadow cast by moving clouds across a landscape. The same 
preprocessing steps are followed as in the other scenarios (Fig. 12 (g–x)).

Under normal conditions, no tiles are illuminated in Fig. 13(a). 
However, Fig. 13 (b–c) shows shadows cast by clouds, which signifi-
cantly alter the fractal dimension and can mimic a false fire. As the 
clouds continue to move (Fig. 13 (d–f)), some tiles become illuminated 
before the shadow dissipates. When the number of illuminated tiles 
exceeds the algorithm’s thresholds, the counter resets, indicating no fire. 
This mechanism prevents false positives, as true fires are typically 
localised to a group of adjacent tiles and persist for more than five 
consecutive time instants.

4.6. Comparative validation and discussion

To validate the proposed method across the five scenarios, smoke 
detection accuracy has been calculated as 

Accuracy =
TP + TN

TP + TN + FP + FN
(3) 

where TP stands for True Positives (number of correctly detected images 
containing smoke), TN for True Negatives (number of smoke-free images 
identified as such), FP for False Positives (number of smoke-free images 
where smoke was detected) and FN, for False Negatives (number of 
images containing smoke that the method missed). In the end, an ac-
curacy of 96.87 % was achieved in the use cases described, thus fulfilling 
the purpose of the study. However, it should be noted that in the early 
stages of a fire, the amount of smoke may not be sufficient to cause 
significant variations in the fractal dimension. This effect leads to the 
presence of some false negatives that affect the calculation of the 
accuracy.

Table 5 shows a comparison of the results with other related works 
focusing on fire detection in images. Since we do not have access to all 
the datasets or models, it is not possible to directly assess the accuracy of 
the method proposed in these works. On the one hand, the table high-
lights the models used in other studies, with YOLO (You Only Look 
Once) being the most prominent. In some cases, additional techniques 
are incorporated to improve performance, such as SAHI (Slicing-Aided 
Hyper Inference). On the other hand, it is clear that Artificial Intelli-
gence (AI)-based fire detection models require a large number of images 
for effective training. Finally, when AI-based object detectors are 
involved, related metrics are employed to measure accuracy, including 

Fig. 3. Colour-coded range of values to illuminate the tiles.

Table 2 
Experimental settings.

Experimental Setup Details

Operating System Ubuntu 18.04.4 LTS
Image Preprocessing ImageMagick 6.9.7–4
Fractal Dimension Calculation Shell Scripting
Smoke Detection Algorithm Python 3.8.10
CPU AMD Ryzen 7 5800H
RAM 16,0 GB

Table 3 
Generic technical parameters.

Generic Technical Parameters Details

Original Image Resolution 96 ppp
Number of Rows in Tile Matrix 6
Number of Columns in Tile Matrix 6
Number of Tiles 36
Fractal Dimension Calculation Compression Fractal Dimension Algorithm
Fractal Dimension Scaling 50 % to 90 %

Table 4 
Specific parameters by scenario.

Parameters by Scenario

Scenarios Bounding Box Coordinates Image Properties

Number Type X Position Y Position Box Width Box Height Image Size Total Images

First Smoke 0 590 20,248 946 2048 × 296 81
Second Smoke 404 784 2400 1264 2400 × 1264 71
Third Smoke 302 1132 2512 916 2512 × 916 64
Fourth Fog Effect 304 1078 2498 970 2498 × 970 64
Fifth Cloud Shadows 0 719 2048 817 2048 × 817 81
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AP (Average Precision) and IoU (Intersection over Union), alongside the 
approach used in this work.

After analyzing the results of this study, several limitations can be 
identified. Firstly, the study is based on a public dataset with images of 
limited quality, which introduces noise into the calculation of the fractal 
dimension. In addition, this study has two essential requirements. First, 
a reference image of the monitored scene under normal conditions needs 
to be available and updated when the environment changes. Secondly, a 
static image acquisition system is required, without zooming in or out. 
Finally, as previously mentioned, during the early stages of a fire, the 
amount of smoke may be insufficient to cause significant variations in 
the fractal dimension, potentially delaying the activation of the 
algorithm.

5. Conclusion

This paper presents a smoke detection method based on fractal 
dimension calculation using images from the High Performance Wireless 
Research and Education Network surveillance network, which consists 
of cameras positioned on hillsides. The proposed approach is straight-
forward and involves dividing the images into tiles, calculating the 
fractal dimension for each tile, and then analysing the distribution of 
these values. As the images contain elements that could introduce out-
liers, such as the sky and camera edges, a predefined cropping step is 
applied to ensure consistency. The cropped images are then converted to 
greyscale, as this increases the accuracy of the fractal dimension 
calculation by exploiting the wide range of intermediate grey values 
available in each pixel. The size of the tiling matrix is a crucial param-
eter that is adjusted according to the resolution and dimensions of the 
processed image. The method, which is based on the computational 

Fig. 4. First scenario preprocessing. 
(a) Initial RGB Image (image 1). (b) Initial RGB Image (image 2). (c) Initial RGB Image (image 3). (d) Initial RGB Image (image 4). (e) Initial RGB Image (image 5). (f) 
Initial RGB Image (image 6). (g) Initial RGB Image cropped (image 1). (h) Initial RGB Image cropped (image 2). (i) Initial RGB Image cropped (image 3). (j) Initial 
RGB Image cropped (image 4). (k) Initial RGB Image cropped (image 5). (l) Initial RGB Image cropped (image 6). (m) Cropped Greyscale (image 1). (n) Cropped 
Greyscale (image 2). (o) Cropped Greyscale (image 3). (p) Cropped Greyscale (image 4). (q) Cropped Greyscale (image 5). (r) Cropped Greyscale (image 6). (s) 
Cropped Greyscale Tiled (image 1). (t) Cropped Greyscale Tiled (image 2). (u) Cropped Greyscale Tiled (image 3). (v) Cropped Greyscale Tiled (image 4). (w) 
Cropped Greyscale Tiled (image 5). (x) Cropped Greyscale Tiled (image 6).

Fig. 5. Evolution of fractal dimension in Scenario 1. 
(a) Initial RGB Image Cropped (image 1). (b) Initial RGB Image Cropped (image 2). (c) Initial RGB Image Cropped (image 3). (d) Initial RGB Image Cropped (image 
4). (e) Initial RGB Image Cropped (image 5). (f) Initial RGB Image Cropped (image 6).
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scheme described in [1] for estimating fractal dimensions from digital 
image files, is highly efficient. Once the fractal dimension of each tile has 
been calculated, an evolutionary analysis is performed to detect smoke 
within images of the same scenario. Since smoke reduces texture 
contrast and changes the fractal dimension, its presence causes notice-
able differences in certain tiles compared to smoke-free conditions. 
Based on this observation, an algorithm has been developed to auto-
matically detect smoke by tracking the evolution of the fractal dimen-
sion values, with an accuracy of 96.87 %. The main contribution of this 
research is that, unlike other related work, it presents an efficient and 
accurate method capable of using the texture of smoke in images to 
detect forest fires, regardless of weather conditions such as cloud 
shadows or fog.

In light of the above, the main theoretical and practical implications 

of the present work are as follows:
Fractal dimension and image analysis: This research highlights the 

potential of fractal dimension as a powerful tool for texture analysis in 
images. By extending the theoretical framework of fractals to the image 
compression domain, our study demonstrates that the presence of smoke 
alters image texture in a measurable way—captured effectively through 
fractal dimension metrics. This finding is significant, as it illustrates how 
a concept traditionally used to describe self-similarity and complexity in 
mathematical and physical systems can be successfully applied to real- 
world image data, particularly in the context of environmental 
monitoring.

Understanding texture variations caused by smoke presence: This 
study offers new insights into how smoke affects image texture, posi-
tioning texture as a valuable feature for developing fire detection 

Fig. 6. Second scenario preprocessing. 
(a) Initial RGB Image (image 1). (b) Initial RGB Image (image 2). (c) Initial RGB Image (image 3). (d) Initial RGB Image (image 4). (e) Initial RGB Image (image 5). (f) 
Initial RGB Image (image 6). (g) Initial RGB Image cropped (image 1). (h) Initial RGB Image cropped (image 2). (i) Initial RGB Image cropped (image 3). (j) Initial 
RGB Image cropped (image 4). (k) Initial RGB Image cropped (image 5). (l) Initial RGB Image cropped (image 6). (m) Cropped Greyscale (image 1). (n) Cropped 
Greyscale (image 2). (o) Cropped Greyscale (image 3). (p) Cropped Greyscale (image 4). (q) Cropped Greyscale (image 5). (r) Cropped Greyscale (image 6). (s) 
Cropped Greyscale Tiled (image 1). (t) Cropped Greyscale Tiled (image 2). (u) Cropped Greyscale Tiled (image 3). (v) Cropped Greyscale Tiled (image 4). (w) 
Cropped Greyscale Tiled (image 5). (x) Cropped Greyscale Tiled (image 6).

Fig. 7. Evolution of fractal dimension in Scenario 2. 
(a) Initial RGB Image Cropped (image 1). (b) Initial RGB Image Cropped (image 2). (c) Initial RGB Image Cropped (image 3). (d) Initial RGB Image Cropped (image 
4). (e) Initial RGB Image Cropped (image 5). (f) Initial RGB Image Cropped (image 6).
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algorithms. It establishes a theoretical link between smoke and fractal 
dimension, demonstrating that the presence of smoke reduces texture 
contrast, which in turn leads to measurable changes in the fractal 
dimension of the affected image regions.

Evolution analysis of fractal dimension: This allows for tracking of 
smoke evolution over time and could be easily extended to various other 
applications in environmental monitoring, where changes over time are 
crucial.

Efficient smoke detection: This research presents a practical and 
computationally efficient method for detecting smoke in images using 
fractal dimension analysis. By focusing on texture changes in greyscale 
images, the approach offers a simple yet effective means of identifying 
smoke, making it well-suited for integration into fire monitoring systems 
with minimal computational load.

Real-world applicability: The ability of the proposed method to 
function under different environmental conditions (such as cloud 
shadows or fog) enhances its practical applicability. This is a significant 
advantage as many existing fire detection systems are often hindered by 
weather-related challenges [4,6–9,11]. The weather robustness of the 
algorithm could make it more reliable in different environments, which 
is essential for global deployment in forest fire management and disaster 
response.

Evolution analysis for continuous monitoring: By focusing on the 
evolution of fractal dimension values, the method can continuously 
monitor and update smoke detection status over time, making it ideal for 
automated monitoring networks such as HPWREN. This means that fire 
detection could be achieved in near real time, allowing faster responses 
to emerging fire threats.

In conclusion, this research bridges theoretical concepts (fractal 
dimension) and practical applications (fire detection) in environmental 
monitoring. It proposes an efficient and scalable method for smoke 
detection in images, with great potential for improving real-time fire 
detection systems.

When analysing the advantages of this work, complexity is a main 
factor to be considered, especially when compared to methods based in 
Artificial Intelligence, which involve much more resource-intensive 
tasks. In addition, the method presented in this paper requires only 
the source image, without any specific data source requirements, such as 
geoinformation metadata, which is highly advantageous. Finally, the 
experimental results obtained from images of five different scenarios 
show that the proposed method effectively discriminates areas with 
smoke and smoke-free, not only under normal conditions but also in the 
presence of fog and cloud shadows.

It is important to acknowledge the limitations of the proposed 

Fig. 8. Third scenario preprocessing. 
(a) Initial RGB Image (image 1). (b) Initial RGB Image (image 2). (c) Initial RGB Image (image 3). (d) Initial RGB Image (image 4). (e) Initial RGB Image (image 5). (f) 
Initial RGB Image (image 6). (g) Initial RGB Image cropped (image 1). (h) Initial RGB Image cropped (image 2). (i) Initial RGB Image cropped (image 3). (j) Initial 
RGB Image cropped (image 4). (k) Initial RGB Image cropped (image 5). (l) Initial RGB Image cropped (image 6). (m) Cropped Greyscale (image 1). (n) Cropped 
Greyscale (image 2). (o) Cropped Greyscale (image 3). (p) Cropped Greyscale (image 4). (q) Cropped Greyscale (image 5). (r) Cropped Greyscale (image 6). (s) 
Cropped Greyscale Tiled (image 1). (t) Cropped Greyscale Tiled (image 2). (u) Cropped Greyscale Tiled (image 3). (v) Cropped Greyscale Tiled (image 4). (w) 
Cropped Greyscale Tiled (image 5). (x) Cropped Greyscale Tiled (image 6).

Fig. 9. Evolution of fractal dimension in Scenario 3. 
(a) Initial RGB Image Cropped (image 1). (b) Initial RGB Image Cropped (image 2). (c) Initial RGB Image Cropped (image 3). (d) Initial RGB Image Cropped (image 
4). (e) Initial RGB Image Cropped (image 5). (f) Initial RGB Image Cropped (image 6).
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method. In the early stages of a fire, the amount of smoke present may be 
insufficient to induce significant changes in fractal dimension, poten-
tially reducing the sensitivity of the detection method. Moreover, the 
current approach relies on static images and assumes the availability of 
an updated reference image captured under normal conditions for each 
scenario.

As a future research direction, we aim at exploring the capability of 
the system to operate with dynamic, non-static images, by including an 
initial pre-processing step involving registration of acquired images. In 
addition, we aim to test the method on different platforms (e.g., drones, 
satellites, fixed surveillance) to assess its generalisability and perfor-
mance under different resolutions and perspectives. Along this line, 
another possibility is to explore the implementation of the method on 
edge computing devices for decentralised and low-latency smoke 
detection, which could open up practical applications in wildfire 
monitoring systems. Future research could also investigate the use of 
adaptive tile sizes based on image content to improve sensitivity in re-
gions where smoke features are more prominent or subtle. Another 
possibility is to explore the combination of the fractal dimension with 
additional texture or edge-based features to improve robustness in 
complex environments and to further distinguish smoke from similar- 

looking artefacts such as fog or dust. Finally, another possibility is to 
investigate the potential of combining fractal dimension features with 
lightweight Machine Learning classifiers (e.g., Support Vector Machines, 
decision trees) to improve smoke detection while keeping computa-
tional costs low compared to Deep Learning approaches.
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Fig. 10. Fourth scenario preprocessing. 
(a) Initial RGB Image (image 1). (b) Initial RGB Image (image 2). (c) Initial RGB Image (image 3). (d) Initial RGB Image (image 4). (e) Initial RGB Image (image 5). (f) 
Initial RGB Image (image 6). (g) Initial RGB Image cropped (image 1). (h) Initial RGB Image cropped (image 2). (i) Initial RGB Image cropped (image 3). (j) Initial 
RGB Image cropped (image 4). (k) Initial RGB Image cropped (image 5). (l) Initial RGB Image cropped (image 6). (m) Cropped Greyscale (image 1). (n) Cropped 
Greyscale (image 2). (o) Cropped Greyscale (image 3). (p) Cropped Greyscale (image 4). (q) Cropped Greyscale (image 5). (r) Cropped Greyscale (image 6). (s) 
Cropped Greyscale Tiled (image 1). (t) Cropped Greyscale Tiled (image 2). (u) Cropped Greyscale Tiled (image 3). (v) Cropped Greyscale Tiled (image 4). (w) 
Cropped Greyscale Tiled (image 5). (x) Cropped Greyscale Tiled (image 6).

Fig. 11. Evolution of fractal dimension in Scenario 4. 
(a) Initial RGB Image Cropped (image 1). (b) Initial RGB Image Cropped (image 2). (c) Initial RGB Image Cropped (image 3). (d) Initial RGB Image Cropped (image 
4). (e) Initial RGB Image Cropped (image 5). (f) Initial RGB Image Cropped (image 6).
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