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 A B S T R A C T

The aim of this research is to help health care professionals to automatically detect lower urinary tract disorders 
using sounds of voiding recorded at home. In total 93 patients were diagnosed as obstructed or non-obstructed 
in a hospital using traditional flow-metering technique. After they went to their houses to collect several 
micturition recordings (5–13 records per patient) by themselves using their Oppo smart watch. Our proposed 
method is based on the use of the wavelet scalogram to represent the collected sounds as images, which 
contains both time and frequency information. A deep learning model, the inception v3 convolutional neural 
network, is used to classify these recordings of the voiding into the categories of obstructed and non-obstructed. 
We compared the performance of our approach with classical techniques such as Support Vector Machine 
(SVM) and Multilayer Perceptron (MLP) using the envelope of the superposed sounds per patient as inputs. 
These recordings were obtained in home environments. The ground truth was built by physicians’ labeling 
these sound recording. They used the gold standard uroflowmetry test, which gave them all the information 
to classify the patients as either obstructed or non-obstructed. The performance of the model in terms of the 
𝐹1 score, accuracy, and area under the curve were 0.897, 0.891 and 0.901, respectively.
1. Introduction

Urethral obstructions are blockages in the urinary tract, which 
includes the kidneys, the bladder, the ureters, which carry urine from 
the kidneys to the bladder, and the urethra, which connects the blad-
der to the outside of the body [1]. Blockages may occur for many 
reasons, including gastrointestinal problems [2]. Such obstructions are 
more common in men, especially as they age and the prostate in-
creases in size. Uroflowmetry is the most frequent and noninvasive 
physiological method to evaluate the obstruction of the lower urinary 
tract. Currently, this test is carried out at health care centers and 
involves the person urinating into a urinary flow meter. This process 
is unnatural and requires on-demand voiding, leading to significant 
test-to-test variability, as the situational stress of the patient affects the 
flowrate, giving unrepresentative results. Therefore, it is recommended 
to perform the uroflowmetry test more than once, which requires 
repeated, time-consuming, and expensive visits to the clinic. For this 
reason, we undertook the challenge to build an intelligent system able 
to automatically detect, at home, lower urinary tract obstructions, 
without the need to assist patients at a health center [3]. Therefore, 
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the main objective of our proposed method is to classify patients with 
obstructed and non-obstructed lower urinary tracts [4]. To do this we 
decided to build an intelligent system based on computer vision [5]. 
The idea behind the use of computer vision is the trend to obtain 
more powerful models based on pretrained models published for fine 
tuning [6], trying to imitate human vision [7]. We concentrated our 
efforts on comparing our computer vision proposal with techniques that 
extract the information from the shape of the envelope of the recorded 
audios. This idea is based on the results of other authors, where they 
comment that the energy of the information is concentrated in the area 
under the curve of the amplitude of the recordings [8]. To perform a 
fair comparison, we selected the most appropriate models based on the 
literature. We will compare three different machine learning models 
performing the same task: Multilayer Perceptron [9], Support Vector 
Machine [10] and Inception v3 [11]. In addition, we used different 
techniques for the feature extraction to compare the performance of the 
models. We propose the use of decimated Hilbert Envelope [12], with 
different sizes of the feature space, and Scalograms [13], depending on 
https://doi.org/10.1016/j.compbiomed.2025.110337
Received 21 November 2024; Received in revised form 18 February 2025; Accepte
vailable online 23 May 2025 
010-4825/© 2025 The Authors. Published by Elsevier Ltd. This is an open access ar
d 3 May 2025

ticle under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ). 

https://www.elsevier.com/locate/compbiomed
https://www.elsevier.com/locate/compbiomed
https://orcid.org/0000-0002-6578-071X
https://orcid.org/0000-0003-3370-3338
https://orcid.org/0000-0001-8729-3085
https://orcid.org/0009-0004-7174-387X
mailto:mariofernando.jojoa@uva.es
https://doi.org/10.1016/j.compbiomed.2025.110337
https://doi.org/10.1016/j.compbiomed.2025.110337
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compbiomed.2025.110337&domain=pdf
http://creativecommons.org/licenses/by/4.0/


M. Jojoa-Acosta et al. Computers in Biology and Medicine 193 (2025) 110337 
the specific algorithm to be used. Finally, it is important to observe 
the behavior of the models in unbalance data situations [14]. So, 
we wanted to observe the performance of the models using different 
coefficients of balancing data sets. US-49 is an unbalanced dataset 
with prevalent number of non-healthy sounds. At the opposite, US-
93 has a prevalent number of healthy sounds. This idea helped us to 
the interpretation of the obtained metrics regarding the gap between 
amount of obstructed and non-obstructed collected sounds.

We use two datasets: the first is an unbalanced dataset called US-49 
and the second is a balanced dataset called US-93. Both were collected 
for this research and are available on request.

The main opportunity for our contribution is the use of different 
overlapped audio recordings to obtain information about the phe-
nomenon at different moments of the day, with the aim of improving 
the performance of the system and reducing the bias associated to the 
test-to-test variability, that could hide the real state of the urinary tract 
of the patient.

2. Related work

As the main objective of the present work is to classify the audio 
recordings into two categories, obstructed and non-obstructed patient, 
we present the most representative related work in this area.

In [15] the authors describe a comprehensive study of the sounds 
obtained from micturition to reproduce the traditional flow metric 
chart. They found that it is possible to use machine learning to predict 
voiding bladder volume values using acoustic signals. In addition, they 
demonstrate the use of smartwatches to perform diagnostics support in 
home environments. In our proposal, we obtained a model to directly 
classify the sounds in obstructed or non-obstructed depending on the 
phenomenon which produce them.

In [16] the authors evaluated the accuracy of an AI-based sys-
tem in distinguishing between normal and abnormal urinary flows 
using voiding sound recordings. The study involved 233 male par-
ticipants, including healthy individuals and those with lower urinary 
tract symptoms (LUTS). Machine learning algorithms, specifically a 
Gaussian Mixture Model – Universal Background (GMM-UBM) and 
a Long Short-Term Memory (LSTM) model, were trained on paired 
uroflowmetry and audio data. The results showed high classification 
accuracy, with the GMM-UBM model achieving 89.2% and the LSTM 
model achieving 91.1%. These findings suggest that AI-assisted audio-
uroflowmetry could serve as a non-invasive screening tool for urinary 
flow abnormalities, particularly in settings lacking access to specialized 
urology services. The main difference with our work is that we used 
5-folds cross-validation to increase the generalization capacity of the 
obtained model.

In [17], the authors trained a machine learning system to perform 
regression analysis of the uroflow chart, utilizing a multilayer neural 
network model with Mel Frequency Cepstral Coefficients (MFCC) for 
feature extraction. While we applied similar feature extraction tech-
niques, our objective was distinct: we aimed to classify patients rather 
than replicate flow rates. In [8], researchers proposed using clinical 
urination sounds to reconstruct the uroflowmetric chart, leveraging 
time-frame calculations and energy concentration within those frames. 
This approach accommodates variable recording durations without 
losing critical information. However, their method’s dependence on 
gold standard volume measurements for accurate reconstruction limits 
its diagnostic applicability.

In contrast, [18] employed microscopy images of bladder cells for 
deep learning-based urinary tract infection detection, underlining the 
importance of remote sensing for early diagnosis. Similarly, [19] com-
bined patient demographic data with six machine learning algorithms 
to predict lower urinary tract infections, demonstrating the potential 
of these methods in assisting early and precise diagnoses. A broader 
perspective was provided in [20], where the authors reviewed machine 
learning applications in healthcare, emphasizing that blending diverse 
2 
data sources can significantly enhance system performance in analyzing 
urodynamics and detecting urinary symptoms.

The work of [21] used acoustic signals to classify voiding pat-
terns through a long short-term memory (LSTM) model, achieving 
high accuracy in categorizing patients using a one-versus-all strategy. 
This approach aligns with our goal of classifying patients into distinct 
groups, such as normal, lower urinary tract symptoms (LUTS), or 
obstruction. However, their study lacked rigorous validation methods, 
such as cross-validation, to assess the model’s generalizability. Simi-
larly, [22] used deep learning algorithms to classify urination flow as 
normal or abnormal, achieving promising results. Our proposed model 
demonstrates superior classification performance, as evidenced by a 
higher area under the curve (AUC) in distinguishing obstructed vs. non-
obstructed patients. However, direct comparison was hindered by the 
unavailability of their dataset.

While previous studies have demonstrated the potential of machine 
learning and deep learning techniques in healthcare, particularly for 
analyzing uroflowmetry charts, acoustic signals, and demographic data, 
they present several limitations. Many approaches, such as [21,22], 
focus on patient classification but often lack robust validation strate-
gies to ensure generalizability. Others, like [8], rely on external gold 
standards, limiting their practical applicability in real-world scenarios. 
Furthermore, approaches such as [17,19] leverage alternative data 
types (e.g., microscopy images and demographic data) but do not 
utilize sound recordings as a primary diagnostic tool, leaving a gap in 
leveraging this non-invasive, cost-effective modality.

Our work addresses these gaps by introducing a novel framework 
for classifying lower urinary tract obstruction using recorded voiding 
sounds. Unlike prior studies, our approach emphasizes the use of 
rigorous validation techniques, such as cross-validation, to ensure the 
model’s reliability and generalization across diverse datasets. Addition-
ally, by comparing the performance of three classifiers, we offer a 
comprehensive analysis of their effectiveness for this task, setting a new 
benchmark for classification accuracy. Our focus on classifying patients 
as obstructed versus non-obstructed, position our work to contribute 
not only as a practical diagnostic tool but also as a validated step 
forward in the integration of acoustic signal processing and computer 
vision for medical applications.

3. Materials and method

We recruited 106 male volunteers between the ages of 18 and 85 
(44 without urological comorbidities aged around 20, and 62 with 
urological comorbidities aged around 70), who agreed to participate in 
the study. All the sound recording both obstructed and non-obstructed 
were collected at home. The diagnosis (obstructed or non-obstructed) 
of all the volunteers was done at the hospital based on the result of 
the standard uroflowmetry collected there. All the data were collected 
following the same procedure approved by the Valladolid East Health 
Area Medicine Research Ethics Committee on 27 July 2023 with refer-
ence PI-GR-23-3275. The dataset US-49 was collected first and involved 
most of the volunteers with urological comorbidities. The data added 
was collected in a second round and involved most of the volunteers 
without urological comorbidities. Normally the audio data collection 
is considered as a stochastic process. However, the duration of the 
micturition is distributed following these parameters: 87 s in average 
and 37 s of standard deviation. The proposed solution has two stages: 
the first is to record and store the sounds of the urination at home 
of adult men using an Oppo smartwatch. With those sounds coming 
from patients previously classified as obstructed or non-obstructed, we 
trained an artificial intelligence model to detect abnormalities in the 
visual representation of these recordings. The second is to perform 
an automatic classification of new sounds using the trained model. 
Our approach is based on the idea that the obstruction phenomena 
is not completely deterministic, and it is affected by external sources. 
One patient could have more than one sound; sometimes with normal 
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Table 1
Characteristics of the dataset of audio recordings.
 US-49 Data added US-93  
 Patients 62 44 106  
 Labeled patients 49 44 93  
 Obstructed patients 37 0 37  
 Non-obstructed patients 12 44 56  
 Undetermined Patients 13 0 13  
 Total audio files 869 227 1096  
 Sample frequency 16000 16000 16000 

characteristics and other ones with urinary track obstruction features. 
This situation is common in this kind of disease, where one obstructed 
sound is needed to conduce to an obstructed diagnostic. In addition, 
paruresis disorder could generate hospital examination procedures to 
obtain wrong diagnosis, since the patient cannot miction normally, 
simulating an obstruction. To mitigate this situation, we decided to 
use sounds obtained in comfortable and known environments for the 
patient, who collects between five to thirteen sounds in an observation 
window of three days. To preserve a holistic approach of the phenom-
ena, we need to superpose all the sounds to conserve all information as 
possible before to be analyzed by the machine learning model.

An Oppo smartwatch was used to collect voiding sounds at home. 
It was configured to capture audio data at a sample rate of 16,000 
samples per second. A smartwatch, worn by each participant on his 
wrist, provided a hands-free and minimally intrusive way to gather 
audio samples in real time. The smartwatch was programmed to au-
tomatically record the sounds of voiding, and the data were stored 
securely for later analysis. This approach allowed for consistent capture 
of high-quality sound with minimal interference, aiding in the accurate 
evaluation of the acoustic patterns associated with urination.

3.1. Data collection

The collection of the dataset was led and performed by the Hospital 
Puerto Real (Spain). All the volunteers signed an informed consent 
describing the procedure, which is not invasive, and in compliance 
with the European Fundamental Rights of citizens, and fully respecting 
ethical aspects. The data were processed fairly for the specified pur-
poses and based on the consent of the person concerned. The volunteers 
include patients between 18–85 years of age with lower urinary tract 
symptoms who had been prescribed flowmetry from health care pro-
fessionals and diagnosed as obstructed. Afterwards, we balanced the 
dataset with volunteers between 18–85 years of age without urological 
comorbidities (non-obstructed), who volunteered to have a flowmetry 
performed on them at the hospital. The dataset consists of a set of 
sound-based voidings per volunteer taken at home. All volunteers 
were asked to urinate against the water of the toilet bowl for three 
consecutive days after a uroflowmetry performed at the hospital. On 
average, 10 recordings per volunteer were collected. The final number 
depends on each case, as some voids were removed for different reasons 
such as high background noise, or voids performed out of the home in 
wall mounted toilets. The voiding events were recorded using an Oppo 
smartwatch and the UroSound platform as motivated and described 
in [23]. Table  1 shows the main characteristics of the datasets used 
for our research work. After the whole of this process, we obtained 
two datasets: US-49, with unbalanced data, which was collected at the 
beginning of our research, US-93, which was balanced by adding more 
audio recordings from volunteers without urological comorbidities. 
Their main characteristics are shown in Table  1.

3.2. Methods

This section describes the method employed to obtain the results 
and conclusions of the study. The block diagram in Fig.  1 shows the 
sequence of steps followed.
3 
3.2.1. Pre-processing
This stage is necessary to eliminate possible biases associated with 

the acquisition of the signals under study. We normalized the amplitude 
and performed a zero padding. In addition, the audios were filtered 
using a low pass 30 order FIR filter with a rejection band in 8 kHz. 
The use of this filter is to prevent aliasing. The designed filter uses 
a Hamming windowing method to guarantee a linear phase for our 
application. In order to eliminate possible bias associated with the 
amplitude, we normalized the signal. Eq. (1) shows the normalization 
of the amplitude of the audio signal. 

𝑥(𝑡) =
𝑥(𝑡) −𝑋𝑚𝑖𝑛
𝑋𝑚𝑎𝑥 −𝑋𝑚𝑖𝑛

(1)

3.2.2. Curation of the sounds
As the volunteers in this study have more than one audio to char-

acterize their potential voiding dysfunction, we organized the audios 
with the aim of obtaining one audio array per volunteer. To do this, we 
organized all the audios one by one in an 𝑚 × 𝑛 matrix, where 𝑚 is the 
number of audios associated to each volunteer and 𝑛 is the maximum 
length of the associated audios. Since audios have different lengths, we 
used zero padding to get an equal number of samples per row.

3.3. Overlapping sounds

The matrix described in Eq. (2) contains for each register (row 
vector) the normalized audio record obtained in a different urination 
process. 

𝑋(𝑡) →
⎡

⎢

⎢

⎣

𝑥11(𝑡) ⋯ ⋯ 𝑥1𝑛(𝑡)
⋮ ⋱ ⋱ ⋮

𝑥𝑚1(𝑡) ⋯ ⋯ 𝑥𝑚𝑛(𝑡)

⎤

⎥

⎥

⎦

(2)

Next, as we want to conserve all the possible information contained 
implicitly in all voiding events, our perspective is based on the idea 
that urination is a stochastic process, and each voiding is a realization 
of that stochastic process. Based on this principle, we can evaluate the 
stationary properties of the sound process, finding that the process is 
highly non-stationary. Eq. (3) shows the condition used to affirm this 
premise. 
𝑅𝑋𝑋 (𝑡1, 𝑡2) ≠ 𝑅𝑋𝑋 (𝑡1 − 𝑡2, 0) (3)

To conserve all the information associated to the studied phenom-
ena, we decided to overlap all the rows of the sound matrix to obtain 
a register that better represents the characteristics of the patient’s 
urination with the arithmetic sum of each other one. This overlapping 
is conducive to conserving all the information related to the frequency 
and shape components of each sound. Eq. (4) shows the method of 
overlapping the sounds. 
⎡

⎢

⎢

⎣

𝑥11(𝑡) ⋯ 𝑥1𝑛(𝑡)
⋮ ⋱ ⋮

𝑥𝑚1(𝑡) ⋯ 𝑥𝑚𝑛(𝑡)

⎤

⎥

⎥

⎦

→ 𝑋𝑠(𝑡) =
𝑚
∑

𝑖=1
�⃗�𝑖 (4)

It is important to highlight that this overlapped final signal was 
normalized again to mitigate the effects related to the amplitude of the 
signals and the number of signals available per volunteer.

3.4. Feature extraction

In the design of a classification system, different algorithms can be 
chosen. Nowadays, the use of deep learning has spread significantly, 
because there is no need to explicitly build a feature extraction stage of 
the studied signals. These features are the key values or elements to be 
considered when determining whether a sample belongs to one of the 
given classes. However, in this work, we present explicit feature extrac-
tion techniques that were combined with automatic classification and 
deep learning algorithms [24]. We applied three different techniques 
to extract the features from the audio signals: time-domain envelope, 
and scalogram.
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Fig. 1. Block diagram of the method.
3.4.1. Features extraction based on envelope
Intuitively, we can see that the shape of the amplitude of the audio 

signal contains the information with which to determine whether or 
not there is an obstruction in the lower urinary tract. When we say 
shape, we are talking about the shape of the envelope of the overlapped 
register. It is important to remember that 𝑋𝑠(𝑡) is the arithmetic sum 
of all sounds recorded by one volunteer. Consequently, this signal has 
information of the whole urination process of a single volunteer over 
three consecutive days. To calculate the envelope of the overlapped 
audios, we used the Hilbert transform [25]. This mathematical tool 
uses the analytical signal in the domain of the complex numbers as the 
basis for the calculation of the envelope, since its norm corresponds to 
each of the points of the envelope of the input signal. Eq.  (5) shows the 
analytical signal formed by the Hilbert transform. 

𝐻𝑠(𝑡) = 𝐻𝑡{𝑋𝑠(𝑡)}

𝑆(𝑡) = 𝑋𝑠(𝑡) +𝐻𝑠(𝑡)

𝑒𝑛𝑣𝑒𝑙𝑜𝑝𝑒{𝑋𝑠(𝑡)} = |𝑆(𝑡)|

(5)

where 𝑆(𝑡) is the analytic signal and 𝐻𝑡 is the Hilbert transformation.
This envelope should have the same length, in terms of the number 

of samples, for all input signals (audio recordings). The requirement 
to use the same number of inputs for the proposed classification al-
gorithms is mandatory. To achieve this, we proposed to decimate 
dynamically the input signal. In this way, we achieved an equal number 
of samples in the feature space. Fig.  2 shows an example of the 
envelopes calculated for an obstructed volunteer and a non-obstructed 
volunteer. For our research work, we selected two values to fix the 
dimensionality of the space. We used the values 100 and 1000 as the 
two possible dimensions of the feature spaces. With this constraint, 
we executed experiments to search for differences using these different 
numbers of features. The values selected correspond to the second and 
third powers of ten.

3.4.2. Feature extraction based on the scalogram with the continuous 
wavelet transform

The inception v3 model was selected because it is a well-known 
model. In addition, this model is widely used in industry environments, 
since it is available for free. This condition will lead us to perform in 
the future, one explainability study, needed in all areas, but mainly 
in healthcare applications. In addition, this algorithm blended with 
scalograms representing the sounds as inputs, has a high performance 
in sound classification task. We built graphical representations of the 
configured overlapped signal to feed a fine-tuned computer vision 
algorithm, the inception v3. We used scalograms based on the wavelet 
transform to get a 2D scale – time representation of the audio sig-
nal [26]. This graph contains the behavior of the spectral components 
of all the superposed audios versus time. The representation is the fea-
ture map extracted from each patient with the whole of the information 
of the phenomena of urination over three consecutive days. This time-
scale representation offers some advantages, since it allows us to see 
the changes in the frequency over time. To carry out this process, we 
calculated the continuous wavelet transform with the Morse standard 
wavelet [27]. Fig.  3 shows an example of one scalogram obtained for 
an obstructed volunteer and another for a non-obstructed volunteer. As 
we can observe, the energy is distributed in different ways depending 
on the category of the sound. In an obstructed volunteer, the image 
has more lobes than for the non-obstructed one. This led us to infer 
that the information is contained in the distribution of the energy in its 
frequency-time dependence.
4 
3.4.3. Class separability analysis
In classification or class detection applications, it is necessary to 

evaluate how separable the datasets are with respect to their labels. 
This is very common in medical applications, where the objective is to 
determine if a sample input to the system belongs to an obstructed or 
non-obstructed volunteer. For the present case, two labels were used: 
obstructed and non-obstructed. For this research work, the Calinski–
Harabaz index (CHI) [28], a clustering index, is used. It returns a 
measure of the distances between the possible clusters existing within 
the dataset. A greater distance between centroids indicates a greater 
ability of the datasets to be separated with a supervised or unsupervised 
algorithm. Eq. (6) shows the mathematic formula for the CHI. 

𝐵 =
∑

𝑞∈𝑘
𝑛𝑞(𝑐𝑞 − 𝑐𝐸 )(𝑐𝑞 − 𝑐𝐸 )𝑇

𝑊 =
∑

𝑞∈𝑘

∑

𝑥∈𝑞𝑔𝑟𝑜𝑢𝑝
(𝑥 − 𝑐𝑞)(𝑥 − 𝑐𝑞)𝑇

𝐶𝐻𝐼 = 𝐵
𝑊

𝑛𝐸 − 𝑘
𝑘 − 1

(6)

where 𝑘 is the number of groups, 𝑛𝑞 is the number of points in the 
group 𝑘, 𝑐𝑞 is the center of group 𝑞, 𝑛𝐸 is the number of data points, 
and 𝑐𝐸 is the center of all the points. We calculated this score only 
for time envelope features. Based on our observations, we concluded 
that the CHI does not directly show the separability property in a high 
dimensional feature space, since it is highly dependent on the number 
of proposed clusters.

3.5. Classifier

Different metrics, such as the 𝐹1 score, accuracy, and the AUC, 
were used to measure the performance of the classifiers, blended with 
5-fold cross-validation. We split the total dataset in k (5) sets randomly 
conformed, and in the followings steps we used one for validation and 
the rest to train the model. Only in the first step, the dataset was 
randomized. Finally, we calculated the mean and the standard devi-
ation of the calculated metric. Multilayer Perceptron (MLP), Support 
Vector Machine (SVM), and Inception V3 are widely used machine 
learning models with distinct architectures and applications. Multi-
layer Perceptron (MLP) is a feedforward neural network that learns 
complex patterns using multiple layers and backpropagation. Support 
Vector Machine (SVM) is a powerful algorithm that finds an optimal 
hyperplane for classification and regression, especially effective for 
high-dimensional data. Inception V3 is a deep convolutional neural 
network (CNN) designed for image recognition, utilizing inception 
modules to capture multi-scale features efficiently

3.5.1. Multilayer Perceptron (MLP)
One of the key strengths of MLPs is their ability to learn and rep-

resent complex non-linear relationships in the data through activation 
functions applied at each node. Common activation functions include 
rectified linear unit (ReLU), introducing non-linearity to the model, 
enabling it to capture intricate patterns. Despite their powerful abilities, 
MLPs require careful tuning of hyperparameters, such as the number 
of hidden layers, number of neurons per layer, and the learning rate, 
as well as regularization techniques, to prevent overfitting and ensure 
good generalization to new data.



M. Jojoa-Acosta et al. Computers in Biology and Medicine 193 (2025) 110337 
Fig. 2. (a) Envelope of a non-obstructed volunteer decimated and truncated to 100 samples. (b) Envelope of an obstructed volunteer decimated and truncated to 100 samples. 
(c) Envelope of an obstructed volunteer decimated and truncated to 1000 samples. (d) Envelope of a non-obstructed volunteer decimated and truncated to 1000 samples. (e) 
Original signal of a non-obstructed volunteer more than 1.4 million samples. (f) Original signal of a obstructed volunteer more than 1.4 million samples. For more information, 
see https://github.com/mario42004/urosound.
3.5.2. Support Vector Machine (SVM)
The versatility of SVM lies in its ability to handle both linear and 

non-linear classification problems using kernel tricks. The choice of the 
kernel function significantly impacts the classifier’s performance and 
adaptability to different types of data distributions. Additionally, SVM 
includes regularization parameters (𝐶) to balance the trade-off between 
achieving a low training error and maintaining a large margin. This 
helps in controlling overfitting and ensuring better generalization on 
unseen data. SVMs are particularly effective in scenarios with a clear 
margin of separation.
5 
3.5.3. Inception v3 convolution network
Inception v3, a deep convolutional neural network, is an enhance-

ment of the original inception architecture (GoogLeNet) designed to 
improve efficiency and accuracy in image classification tasks [11]. The 
model incorporates several innovative techniques, including factorized 
convolutions, which decompose larger convolutions into smaller, more 
manageable pieces, and asymmetric convolutions, which split a single 
convolution into two operations. These strategies significantly reduce 
the computational complexity and the number of parameters, leading 
to faster training times and less overfitting. Additionally, inception v3 
introduces the use of ‘‘label smoothing’’, which prevents the network 

https://github.com/mario42004/urosound
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Fig. 3. (a) Wavelet scalogram for non-obstructed overlapped signal. (b) Wavelet scalogram for obstructed overlapped signal.
from becoming overly confident in its predictions, thereby improving 
its ability to generalize. The architecture of inception v3 comprises 
multiple inception modules, each containing parallel convolutional 
layers with filters of varying sizes. These modules allow the network 
to capture multi-scale features and learn spatial hierarchies effectively. 
The network also integrates auxiliary classifiers at intermediate lay-
ers to promote gradient flow and prevent vanishing gradients during 
backpropagation. Another key component is the use of batch nor-
malization, which standardizes the inputs to each layer, accelerating 
the convergence and improving the performance. Overall, inception 
v3’s carefully designed architecture balances depth and computational 
efficiency, making it a powerful model for image recognition tasks. 
Transfer learning is a widely-used technique to save computational cost 
in terms of training models with a huge number of parameters. It is 
important to highlight that we fine-tuned the inception v3 ImageNet 
pretrained model for our specific application. To do this, we adjusted 
the combination of hyperparameters to find which one led to the best 
performance on classification tasks.

3.5.4. Adjusting the hyperparameters
In all cases, we applied the grid search method to find the best 

combination of hyperparameters for each model. Table  2 shows the op-
timal configuration for each one of them. Hyperparameters are crucial 
in defining the behavior of a classifier, as they control aspects of the 
learning process and the model’s ability. They have a significant impact 
on the classifier’s performance and generalization ability. Tuning these 
hyperparameters can improve the model’s accuracy, robustness, and 
efficiency, making hyperparameter optimization a critical step in devel-
oping an effective classifier. Through grid search, we predefined a set 
of values of the hyperparameter and they were systematically explored 
to determine the optimal settings for the model. This approach ensured 
that we considered a wide range of possible combinations, providing a 
comprehensive view of the hyperparameter landscape. By fine-tuning 
these values, we aimed to balance the model’s complexity with its 
ability to generalize to new data, avoiding problems like overfitting 
or underfitting. Additionally, the optimization process was guided by 
cross-validation, which further enhanced the model’s reliability by 
evaluating its performance across multiple data splits.

In neural networks, particularly fully connected architectures such 
as MLP, the number of hidden layers and neurons in each layer are 
critical hyperparameters. These parameters define the model’s ability 
to learn complex patterns. However, increasing these numbers can 
also lead to overfitting if not carefully controlled. Other important 
hyperparameters include the activation function, which determines the 
output per each layer to back-propagate the error in each iteration.
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For the SVM, key hyperparameters included the penalty parameter 
𝐶 and the type of kernel. The parameter 𝐶 controls the trade-off 
between achieving a low error on the training data and a low margin, 
impacting the model’s tolerance to misclassified samples. The choice 
of kernel (e.g. linear, polynomial, RBF) is also essential, as it deter-
mines how the data is transformed in higher dimensions, which can 
significantly impact the accuracy of the classification.

For the inception v3 model, a deep convolutional neural network 
architecture, fine-tuning often involves adjusting layer-specific learning 
rates and batch sizes to optimize the efficiency and accuracy of the 
training. Additionally, modifying the number of epochs is crucial, as 
it controls the number of times the entire dataset is passed through the 
network. Because of the complexity of inception v3, parameters such 
as weight decay and batch normalization momentum can also play a 
role in stabilizing the training and achieving faster convergence.

4. Results

The following tables present our results. Table  3 presents the sepa-
rability index, for the classes of obstructed and non-obstructed, of the 
feature space conformed by the envelope.

As we can observe, the CHI improves if we reduce the number of 
samples of the envelope from 1000 to 100. This is particularly true in 
our study. The calculation of the index is based on the selection of the 
ideal number of clusters in a group of data. So, the number of clusters 
is dependent on the properties of the feature space: in our case, the 
size of this space. We also observe an improvement of the performance 
of the classical machine learning classification algorithms if the CHI is 
greater.

Secondly, we formed another feature space using the scalogram 
with the wavelet transform. Since the amount of data was limited, a 
5-fold cross-validation was carried out. Table  4 shows the values of the 
metrics obtained in this way for each model for the two datasets used.

In bold, we show the best results obtained for the proposed task. 
Inception v3 model with the scalogram feature extraction technique 
performed better than the other classical machine learning models with 
their own feature extraction methods. This led us to conclude that it is 
possible to use computer vision algorithms to classify patients using 
audio recordings converted to images, achieving high performance. 
This could open the door to future work, where the challenge is the 
construction of a general-purpose artificial intelligence model to be 
applied to health care tasks, simplifying the architecture of the system 
with multiple classes and nature of inputs. In addition, we contribute 
to the state of the art with a model which has reached an 𝐹1 score, 
accuracy, and area under the curve with values 0.897, 0.891 and 0.901, 
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Table 2
Hyperparameters used for each model. Values in [] are the grid search ranges.

Multilayer Perceptron
 Dataset features Number of layers Activation function Neurons per layer Output Neurons Optimizer 
 US-49 – Decimated to 100 3 [1–10] ReLU - ReLU - ReLU 100,50,20 1 tansig SGD  
 US-49 – Decimated to 1000 3 [1–10] ReLU - ReLU - ReLU 1000,500,200 1 tansig SGD  
 US-93 – Decimated to 100 3 [1–10] ReLU - ReLU - ReLU 100,40,20 1 tansig SGD  
 US-93 – Decimated to 1000 3 [1–10] ReLU - ReLU - ReLU 1000,300,200 1 tansig SGD  

Support Vector Machine
 Dataset features Normalized Gamma Kernel C  
 US-49 – Decimated to 100 0.8 [0.01–1] RBF 1 [1-10]  
 US-49 – Decimated to 1000 0.8 [0.01–1] RBF 1 [1-10]  
 US-93 – Decimated to 100 0.9 [0.01–1] RBF 1.2 [1-10] 
 US-93 – Decimated to 1000 0.9 [0.01–1] RBF 1.2 [1-10] 

Inception v3
 Dataset features Batch Size Epochs Learning rate step decay Optimizer 
 US-49 – Scalogram 4 [2–16] Early detection - 8 0.1 [0.1,0.01,0.001] AdaGrad  
 US-93 – Scalogram 8 [2–16] Early detection - 5 0.1 [0.1,0.01,0.001] SGD  
Table 3
Calinski–Harabaz Index (CHI) for 100 and 1000 samples decimated 
envelopes.
 Number of samples US-49 CHI US-93 CHI 
 100 0.437 0.769  
 1000 0.414 0.678  

respectively, for the obstructed vs non-obstructed classification task, 
using only a reduced amount of audio recordings of voiding from 93 
male participants.

5. Discussion

The use of voiding sound recordings, analyzed using advanced 
signal processing techniques and deep learning, has proven to be an 
effective and non-invasive tool for the early detection of lower urinary 
tract obstructions [29]. This can reduce the need for invasive tests and 
frequent clinical visits, improving the patient experience and optimiz-
ing the use of healthcare resources. The ability of the scalogram-based 
model to accurately classify voiding patterns as obstructed or non-
obstructed suggests that this technique could be integrated into clinical 
practice to personalize patient treatment. This allows continuous home-
based monitoring, enabling adjustments of treatment based on the 
patient’s real-time progress without the need for frequent in-person 
consultations.

The traditional technology of urinary flow meters offers a highly 
reliable method of detecting obstruction of the lower urinary tract [30]. 
However, this method has some disadvantages since it is necessary 
to employ it in a hospital environment and with the assistance of 
a medical doctor. Our proposed method mitigates this disadvantage, 
since we process audio recordings obtained from patients in home 
environments without any professional supervision.

The frequency resolution of the recording device could be a key 
issue, since in our method all the information related to the disease 
phenomenon needs to be captured. In [15] the authors mentioned 
that the spectrum of recording audio is lower than 20,000 Hertz, so 
achieving this technical feature is mandatory to apply our approach.

The use of images that represent the data helped us extract features 
in domains that have not yet been explored [31]. For instance, the 
spectrum of the recordings of the voiding contains information about 
the phenomena in their scale-time-dependent components. This scalo-
gram contains all the features of audio composition that can describe all 
the urination process itself. The computer vision techniques offered us 
high accuracy in terms of performance, since the pretrained structures 
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used were built with a high density of trainable parameters, such as 
the inception v3 network. All complex structures used in our work are 
available to be used with general transfer learning applications. This 
idea is conducive to generalizing computer vision structures for general 
tasks such as health care audio classifications.

6. Conclusion

The use of a feature extraction technique based on the spectrogram 
is better compared to the technique based on the decimated Hilbert 
envelope. These results suggest that the shape of the audio wave con-
tains noisy information probably related to another phenomenon such 
as voice or external noise. Since the phenomenon is non-stationary, it 
is necessary to use the time information blended with the frequency 
information as well. The changes in frequency at the time domain gives 
a fingerprint of the sound, since the scalogram contains the whole of 
the information of the studied signals. This feature space, based on the 
scalogram, improved the separability just by itself.

The use of sounds to detect urinary tract disorders in home envi-
ronments is a milestone because we are opening the door to future 
applications using the same approach as with other sound sources 
in human beings. This breakthrough could pave the way for non-
invasive, cost-effective diagnostic tools, making it easier for individuals 
to monitor their health from the comfort of their own homes. By 
analyzing specific sounds generated during bodily functions, such tech-
nologies can potentially identify early signs of health issues that might 
otherwise go unnoticed until symptoms become severe. Furthermore, 
as the technology improves, it could be adapted to detect a wide range 
of conditions, offering personalized healthcare solutions and reducing 
the burden on traditional medical facilities.

The main contribution of our work is the use of a set of micturition 
sounds recordings got in home environments using a commercial smart 
watch to detect obstruction and non-obstruction in low urinary track 
system. This approach helps healthcare professionals and healthcare 
providers to carry out an early detection of this disorder without the 
need to attend to the patient directly in hospital or health centers.

The main limitation of our work is the number of sounds used in 
our study. It is true that we are getting a precedent in the obstruction 
detection applying machine learning, however, to build more reliable 
detection model is mandatory to use a greater number of recordings per 
patient, and in the same way, a higher number of participants should 
be involved in our study.

Finally, it could be a good idea to explore new computer algorithms 
such as vision transformers. It is necessary to use this technique to 
detect specific diseases in the patient and not only to assign the patient 
to the class of obstructed or non-obstructed. This objective would be 
reached when more labeled data becomes available for this purpose.
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Table 4
5-fold mean and standard deviation performance of the algorithms with different techniques of feature extraction.
 Dataset Feature extraction technique Classification model 𝐹1-Score Accuracy AUC  
 US-49 Decimated to 100 MLP (0.655, 0.092) (0.655, 0.092) (0.554, 0.086)  
 US-49 Decimated to 1000 MLP (0.531, 0.104) (0.531, 0.017) (0.491, 0.095)  
 US-49 Decimated to 100 SVM (0.765, 0.036) (0.755, 0.035) (0.659, 0.049)  
 US-49 Decimated to 1000 SVM (0.755, 0.029) (0.756, 0.034) (0.408, 0.036)  
 US-49 Scalogram Inception v3 (0.856, 0.106) (0.759, 0.134) (0.743, 0.112) 
 US-93 Decimated to 100 MLP (0.791, 0.045) (0.801, 0.048) (0.682, 0.052)  
 US-93 Decimated to 1000 MLP (0.765, 0.034) (0.764, 0.022) (0.772, 0.011)  
 US-93 Decimated to 100 SVM (0.823, 0.002) (0.817, 0.012) (0.831, 0.009)  
 US-93 Decimated to 1000 SVM (0.773, 0.008) (0.778, 0.012) (0.802, 0.016)  
 US-93 Scalogram Inception v3 (0.897, 0.011) (0.891, 0.024) (0.901, 0.009) 
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