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The increasing number of microalgae-based applications demands the development of model-based information
and decision support systems that can deal with their complex behavior, particularly the interactions in mixed
algal-bacterial wastewater treatment systems. This work aimed to estimate the parameters for modeling and
simulating an anoxic-aerobic algal-bacterial photobioreactor with biomass recycling for treating high-strength
wastewater. Estimating the model parameters was critical in applying the model to anoxic-aerobic algal-bacte-

rial systems. Process model and simulation were developed using the dynamic simulation software PROOSIS®.
The model was set up and then calibrated with data from a lab-scale plant treating different dilutions of
digestate. Simulations and model performance metrics validated the capability of the calibrated mathematical
model to predict the experimental results.

1. Introduction

The use of microalgae has become a promising technology for
wastewater treatment as it helps to reduce the high energy costs asso-
ciated with mechanical aeration in conventional wastewater treatment
[1]. Domestic and industrial wastewaters and anaerobic digestion ef-
fluents are characterized by high carbon, nitrogen, and phosphorus
loads that must be treated before discharge into natural water bodies to
avoid oxygen depletion, toxicity issues, and eutrophication. In this
context, the capacity of microalgae to simultaneously remove carbon,
nitrogen, and phosphorus via mixotrophic assimilation represents an
essential advantage in comparison with aerobic activated sludge or
anaerobic digestion technologies in terms of enhanced nutrient recov-
ery. Therefore, the further use of the harvested microalgae biomass to
produce biofertilizers, biofuels, and other bioproducts makes this tech-
nology an attractive alternative for cost-effectively combining waste-
water treatment and nutrient management [2,3].

Microalgae are photosynthetic microorganisms that grow using
inorganic carbon as a carbon source and light as an energy source.
Despite of their many advantages, these technologies may present

certain limitations related to their industrial exploitation, such as the
selection of the optimum strains and cultivation parameters, including
temperature (which vary between 20 and 40 °C, depending on the
strains [4,5]), pH, light intensity, reactor type, and nutrient concentra-
tion in wastewater. Indeed, numerous experimental studies have been
conducted to determine the influence of these cultivation parameters on
nutrient removal efficiency and biomass productivity for different
microalgae strains and operational conditions [6-12]. Similarly, several
research works have focused on maximizing nutrient removal in high-
rate algal ponds (HRAPs) and other photobioreactor configurations
[13-15]. Besides the experimental approach, recent developments and
improvements in mathematical modeling, simulation, instrumentation,
and process control can contribute to selecting the optimal conditions
for microalgae cultivation, whether for high-value product production
or nutrient removal.

Mathematical modeling, a key tool for designing, analyzing, and
operating chemical processes, has been successfully applied in the field
of microalgae research. Despite the challenges of bioprocesses modeling,
there are successful precedents, such as the application of mathematical
models like the Activated Sludge Models (ASM) [16] in wastewater
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treatment. The River Water Quality Model 1 (RWQM1) [17], developed
by the International Water Association (IWA) Task Group on River
Water Quality Modeling represented a milestone in the modeling of
microalgae and bacteria interactions. Since the formulation of RWQM1,
other mechanistic models have been proposed to simulate microalgae-
based wastewater treatment plants. These models have been rigor-
ously tested and successfully validated in various photobioreactor con-
figurations operating under different operational conditions [18-22],
reassuring the research's reliability in this field.

Nowadays, research is also focused on the design and improvement
of facilities for optimizing microalgae biomass yield and improving
nutrient removal from wastewater. In this regard, anoxic-aerobic
microalgal-bacterial systems have emerged as a highly efficient alter-
native for removing nutrients from wastewater with low carbon to
nutrient radio [23-26]. Among these systems, a novel anoxic-aerobic
configuration has shown promising results in the treatment of diges-
tates [27]. This kind of configuration is still in the research stage before
being implemented on a larger scale. As part of the test stage, this novel
photobioreactor configuration demands several experiments to evaluate
their performance and nutrient removal efficiencies under various
operational conditions and to treat different types of wastewater. This
evaluation is of utmost importance, as it provides crucial insights into
the effectiveness of the anoxic-aerobic photobioreactor configuration.
However, these experiments are highly time-consuming and resource-
consuming. Mathematical modeling applied to this novelty system is a
helpful tool for predicting and understanding the processes occurring in
each plant element, allowing the simulation of a broad range of exper-
imental and operational conditions in a few minutes. Unfortunately, the
mathematical modeling of this promising anoxic-aerobic algal-bacterial
configuration has not been conducted to date.

This work aims at modeling and simulating dynamically an anoxic-
aerobic algal-bacterial photobioreactor configuration treating syn-
thetic food waste digestate at different dilutions [27]. The process
consisted of a two-stage anoxic-aerobic system engineered with biomass
settling and recirculation without external CO5 supplementation. Be-
sides the open photobioreactor, the model was also applied to the
enclosed anoxic reactor and the secondary settler, achieving a complete
simulation of the continuous operation of the integrated system. A
sensitivity analysis was applied to select the most relevant parameters of
the model to estimate. Parameter estimation, which aims at fitting a
given mathematical model to observed data, was conducted in the
present work using a robust estimator to deal with the uncertainties
imposed by some unreliable measurements. Parameter estimation in the
settler was carried out to estimate the main parameters related to set-
tleability properties, which are not well-established in microalgae-
bacteria processes. The simulation results closely match the experi-
mental data, further validating the accuracy of our model and its po-
tential for further application in the system operation, control, and
monitoring. The calibrated model could be used to evaluate the per-
formance of the anoxic-aerobic configuration under different scenarios
for municipal wastewater treatment, digestate treatment, or industrial
wastewater treatment. Similarly, the model's reliability instills confi-
dence in designing and applying model-based control strategies, such as
Model Predictive Control (MPC), which can successfully handle the
complex dynamics, interactions, and process constraints inherent to this
system.

2. Materials and methods
2.1. Experimental plant description

Experimental data published in [27] from an anoxic-aerobic micro-
algal-bacterial photobioreactor configuration with biomass recycling
treating synthetic food waste digestate (SFWD) was used to calibrate the
model. The authors operated the anoxic-aerobic system at the Institute
of Sustainable Processes of the University of Valladolid (Spain) from
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July to December 2019 [27]. The system (Fig. 1) comprised an open
photobioreactor with a working volume of 9.15 L and was illuminated
for 12 h daily by LED lamps (1314 + 12 pE/m?s). The anoxic reactor
consisted of a gas-tight tank with a total working volume of 2.85 L
maintained in the dark. The SFWD was fed to the anoxic tank at 1.2 L/d,
continuously overflowing by gravity into the aerobic photobioreactor.
The algal-bacterial broth was recycled at 2.4 L/d from the photo-
bioreactor to the anoxic tank. An Imhoff cone with a volume of 1 L and
interconnected to the outlet of the photobioreactor was used as a settler.
The algal-bacterial biomass settled was recycled from the bottom of the
settler into the anoxic tank at 0.6 L/d. Biomass was wasted from the
bottom of the secondary settler to maintain the solids retention time
(SRT) at 18 d. The system was operated continuously at a Hydraulic
Retention Time (HRT) of 10 days and a temperature of 27 + 2 °C. The
experimental set-up was operated for 138 days under step changes in
SFWD load: during the first stage (Stage I), the anoxic-aerobic system
was fed with 25 % diluted SFWD, then SFWD load was increased to 50 %
(Stage II), and finally increased to 100 % during the last stage of oper-
ation (Stage III). Further details of SFWD composition, experimental set-
up, operational conditions, and results are provided in [27].

2.2. Experimental data

The model was calibrated and validated with data from 138 days of
operation of the experimental plant [27]. The variables included in the
model calibration were the results obtained for influent SFWD, anoxic
tank, photobioreactor, settled biomass, and effluent in terms of con-
centration of dissolved oxygen (DO) concentration, pH, dissolved
organic carbon (TOC), inorganic carbon (IC), dissolved N species (total
nitrogen (TN), N — NHj;, N — NO;, N — NO;3), dissolved phosphate (P —
PO3"), and biomass concentration, expressed as the total suspended
solids (TSS) concentration. DO and pH were measured daily, whereas
other variables were characterized twice a week.

To comprehensively capture in the model the dynamics of the
anoxic-aerobic photobioreactor configuration treating different di-
lutions of digestate, data from various operational conditions were
divided into two datasets, one devoted to parameter estimation in the
reactors and the settler and the second one for model validation. Spe-
cifically, data from stage II and 25 days of stage III (50 % and 100 %
digestate, respectively) were used for parameter estimation. Validation
was then conducted using data from the first stage (25 % digestate — 40
days of operation) and days 116 to 138 from stage III (undiluted
digestate — 22 days of operation).

2.3. Modeling

Similar to previous research in anoxic-aerobic systems [26,27], the
model was built over the assumption that significant removals of N —
NH}, IC, and P — PO?{, were mainly attributed to the contribution of
the photobioreactor. In this work, eight key output variables were
considered: TSS and TOC concentration in the photobioreactor and
anoxic reactor; and dissolved oxygen, IC, N — NH; and P — PO;" in the
photobioreactor. In the settler, TSS concentration in the effluent and the
biomass wastage stream were considered output variables to adjust in
the optimization problem.

As previously referred, biomass concentration in both reactors and
settler was measured twice a week using standard procedures to deter-
mine the concentration of TSS and Volatile Suspended Solids (VSS). In
the model used in this study, the concentrations of particulate compo-
nents are expressed in terms of the Chemical Oxygen Demand (COD).
Results from COD tests developed in [27] were used here to obtain the
ratio VSS/COD used in the model. In the simulation, the average value of
the experimental ratio gTSS/gCOD used was 1.28.

The microalgae-bacteria model was implemented in the dynamic
simulation environment PROOSIS®.
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Fig. 1. Schematic of the anoxic-aerobic algal-bacterial photobioreactor configuration.

2.3.1. Photobioreactor and anoxic unit modeling

In the present work, the model BIO_ALGAE2 [20] (with some minor
modifications) was used to represent the biochemical reactions and
processes in both anoxic and aerobic reactors operating under the con-
ditions described in [27]. The model BIO_ALGAE2 uses the standard
nomenclature of the IWA models and considers 19 components —6
particulate and 13 dissolved- implicated as variables in the physical,
chemical, and biokinetic processes. These components are described in
[18], as well as their main role in the processes and their interactions
with other components. The process rates of the model (Table S1.1),
factors equations (Table S1.2), the matrix of stoichiometric parameters
(Table S1.3), the values of parameters (Table S1.4), and fractions of
carbon, hydrogen, oxygen, nitrogen in microalgae and bacteria biomass
(Table S1.5), and a summary of the mathematical expressions of the
stoichiometric coefficients (Table S1.6) are described in the Supple-
mentary Material S1. Model modifications considered in the present
work (Table S1.1) were related to the radiation factor (used in equations
describing the microalgae growth (p; and p,)) and the addition of one
factor in the equation representing the aerobic growth of heterotrophic
bacteria on dissolved nitrate (py) to indicate that when ammonium (or
ammonia) and nitrate are both present, ammonium is generally
preferred. Differences in a few stoichiometric parameters were also
considered (Table S1.3).

Since this work aims to simulate the anoxic-aerobic configuration
(and use that) to predict nutrient removal, it is helpful to emphasize the
main reactions in each reactor. Table 1 summarizes the main reactions
concerning microorganisms' activity in each reactor. Reactions related
to chemical equilibrium were assumed to occur in the photobioreactor
and anoxic reactor, while the transfer of gases was considered to occur
only in the photobioreactor since the anoxic reactor corresponded to an
enclosed unit. Evaporation was also considered in the mass balance
expression in the photobioreactor.

2.3.2. Settler modeling

The settler was described using the mass-balance expressions of the
model from Takdcs et al. [28]. The model is a multi-layer dynamic model
for the clarification and thickening processes based on the solids flux
concept and mass balance around each layer of a one-dimensional
settler. This model can simulate the solids profile throughout the
settling column, including the underflow and effluent suspended solids
concentrations under steady-state and dynamic conditions. The model
uses a particular settling velocity equation to simulate the settling ve-
locity of dilute and more concentrated suspensions (Eq. S2.10 in Sup-
plementary Material S2). The fundamental aspects and equations of the
model (by Takacs et al. [28]) are summarized in Supplementary

>
Table 1
Processes describing anoxic/aerobic reactions.
Process Anoxic Aerobic
Reactor Reactor
Microalgae Growth on Syus Not Considered
processes Considered
Growth on Syo3 Not Considered
Considered
Endogenous respiration Considered Considered
Decay Considered Considered
Heterotrophic Aerobic growth on Sypa Not Considered
bacteria processes Considered
Aerobic growth on Syos Not Considered
Considered
Anoxic growth on Syoz Considered Considered
(denitrification on Syo2)
Anoxic growth on Syos Considered Considered
(denitrification on Syo3)
Aerobic endogenous Not Considered
respiration Considered
Anoxic endogenous Considered Considered
respiration
Decay Considered Considered
Autotrophic bacteria Growth of Xaop Not Considered
processes Considered
Growth of Xyop Not Considered
Considered
Endogenous respiration of ~ Considered Considered
XaoB
Endogenous respiration of ~ Considered Considered
XNoB
Decay of Xaos Considered Considered
Decay of Xnos Considered Considered
Hydrolysis Hydrolysis Considered Considered
Chemical Chemical equilibrium Considered Considered
equilibrium CO, < HCO;y
Chemical equilibrium Considered Considered
HCO3 < CO%™
Chemical equilibrium Considered Considered
NH < NH;
Chemical equilibrium Considered Considered
H" - OH"
Transfer of gases So2 transfer to the Not Considered
atmosphere Considered
Scoz transfer to the Not Considered
atmosphere Considered
Snus transfer to the Not Considered
atmosphere Considered
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Material S2.

This work considers a 10-layer settler of equal volume and assumes
that no biological reactions occur in the settler. The model only con-
siders biomass dynamics to predict the biomass concentration in each
layer of the settler. Thus, in order to estimate the concentration of the
components in the settler (and in the external recirculation and
effluent), this assumption implies: (1) the concentration of dissolved
components in the settler is assumed to be the same as in the photo-
bioreactor, and (2) the percentage of each component of the biomass in
the settler is assumed exactly equal that in the photobioreactor.

2.4. Sensitivity analysis

Previous to parameter estimation, a sensitivity analysis is needed to
identify the parameters with the most significant impact on the model.
The expression (1) describes the sensitivity functions from the i-output
of the model concerning the j-parameter:

dyi

Sivj:f

1
ap; W

In order to compare the values of the sensitivities, scale factors (Eq.
(2)) should be used to normalize them:

5y =2 %ﬁ @
Then, the norm of column j of the output sensitivity matrix (3)
S11 S12 ©r S1d
S21 S22 S2d 3)
Smi Smi  Smd

provides a measure of the importance of parameter p; in the value of the
model outputs.
Given the dynamic model (4),

x(t) = f(x(t) ,u(t) ,p) y(t) = gx(t) ,u(t) ,p) C))

The sensitivities can be obtained integrating in parallel the so-called
extended model:

dox of ox of

oy _dgox o
%_0x6p+6p (6)

2.5. Parameter estimation

2.5.1. Sequential optimization

The numerical resolution approach used in the present work to solve
the parameter estimation problem was the sequential approach (using
simulation). The approach to solving a parameter estimation problem in
terms of optimization considers that for each value of the vector of pa-
rameters @ (decision variables), the model predicts the system's response
¥(t,0) in each experiment over time t. For this purpose, a set of data
samples from the inputs u(t) and outputs y(t) of the process were
selected as indicated above (Section 2.2). The exact sequence of process
inputs u(t) applied to the process is also used in the model, and both
outputs y(t) from the process and y(t,#) from the simulation are
compared at every sampling time t. For each t, the prediction error
¥(t,0) — y(t) indicates model goodness, and the parameterization pro-
cedure looks for the set of model parameters # that minimizes the cost
function of the prediction errors. The parameter estimation problem can
be formulated as a dynamic optimization problem, which can be solved
through nonlinear programming (NLP) software using a control vector
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Fig. 2. Estimator in sequential optimization.

parameterization technique and a proper procedure for computing the
cost function, following the architecture of Fig. 2. This work uses the
SNOPT algorithm, a well-known sequential quadratic programming
(SQP) code for nonlinear optimization within the PROOSIS® dynamic
simulation environment. The selected integration method was IDAS.

2.5.2. Robust estimation

Although there are several methods for obtaining the statistically
coherent value of variables and estimating the parameters of the
mathematical model based on available data, the weighted least squares
(WLS) method is used most frequently. The estimator (Eq. (7)) consists
of the squared difference between the measurement y and the model
prediction y. The differences are scaled with their respective standard
deviation ¢ to account for varying dimensions of the model. This method
assumes that measurement errors follow the Normal distribution model.
The assumption of Normal distribution can be severely violated if one or
more gross errors, which are not easy to detect, are present in the
measured data set, even though most of the data conforms to a Normal
distribution, resulting in poor or deviated estimates [29].

Jis =3 [(@ /0 ] )

Thus, robust estimation can be understood as “insensitivity to large
deviations from idealized hypotheses” for which the estimator is opti-
mized [30]. To define the concept of robust estimation, let us consider a
set of observations {y;,--,¥» } drawn from some distribution h(x); this

set will be used to estimate some parameters @ let 9, to be the estimate.

The sampling distribution of this estimate is noted as ¢(8,,h) and de-
pends upon h(x). However, h(x) is not typically known, and only have a

more or less valid model, say f(x). Roughly speaking 0, is robust if it
scarcely depends upon the difference between h(x) and f(x). i.e. we

expect ¢(8,, h) and ¢(0,,f) to be close together.

More precisely, 8, is said to be robust with respect to distribution f
(and to h) if

d(h.f) < n==>dlg(6n,h) ,¢(0n.f)] < € ®

For small positive ¢ and 1, and d(h, f) defines the distance between
the distributions h and f, associated with the measures of the plant and
the outputs on the simulation model [31].

Robust statistics provides methods that emulate conventional sta-
tistical ones but are limited affected by spurious values or other de-
viations from the reference statistical distribution model. Among the
robust estimators, M-estimators (the generalization of the Maximum
Likelihood Estimator) have been successfully applied to several prob-
lems in the chemical process industry. The review presented in [29],
which analyses 50 estimators (48 robust estimators), shows that the
Contaminated Normal (quasi-robust), Welsch, Hampel, Fair, Lorentzian,
Correntropy, and Cauchy M-estimators were the most used for regres-
sion analysis in chemical engineering problems.

The Fair function is a convex estimator with continuous first and
second order derivatives. It is defined in (9), where ¢ € R+ is a user-
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defined fitting parameter to tune the slope for large residues.

&

| 2]
JFF:CZ %—lﬂ 1+

o

T (€)]

M-estimators are robust because of their intrinsic mathematical
structure, which renders the estimation less sensitive to spurious de-
viations [30-32]. These estimators, which use cost functions different
from least squares (LS) or WLS, tend to value most of the data around the
mean and ignore the influence of spurious values (usually located far
from the mean) simultaneously. This performance is represented in
Fig. 3, which compare the fair estimator (9) and the LS estimator (7),
evidencing the influence of scaled error over the estimator function.
Thus, an accurate regression can be performed using robust estimators
even if nothing is known a priori about outliers or the structure of gross
errors.

In the present work, the Fair function estimator was used as a robust
objective function J for parameter estimation. The final dynamic opti-
mization problem then reads:

n?u@ﬂ):Ezﬂfﬂgﬁ—m(1+¥?>} (10)

Subject to constraints imposed by the model (11) and upper and
lower limits on the values of the parameters (12), states (13), and out-
puts (14),

Q%Q: (x(£) , u(t) ,0,¢) an
¥(t) = glx(t) ,u(t) ,0,t)

0<6<0 (12
x<x<X a3
Y<y<y a4

where & = (¥(t;,0) — ¥(t;) ) /om is the error between available process

measurements y(t;) and their estimated values ¥(t;, ) limited between
user-defined minimum and maximum values (Egs. (12)-(14)). Besides
robust properties, the simplicity of tuning (just one tuning parameter) is
another remarkable advantage of the Fair estimator. In the present
work, all simulations were carried out using a value of ¢ = 2.9 in the
tuning parameter of the cost function (Eq. (10)).

Fair function L 16

—e— Least-square L 14

Estimator (-)

T
S N s O o

T Tt T epeNy———T

S5 4 3 2 -1 0 1 2 3 4

Scaled error (‘A ;‘) )

-

wn

Fig. 3. Comparison of Least squares and Fair function (c = 3) estimators.

Algal Research 86 (2025) 103917

2.5.3. Considerations for robust parameter estimation in the anoxic-aerobic
configuration

The initial concentration of the components in the reactors and the
settler used to conduct the model simulation are shown in Tables S3.1
and S3.2, respectively, in Supplementary Material S3.

Table S4.1 (Supplementary Material S4) shows the limits for decision
variables (Eq. (12)) and the initial values of parameters needed for
parameter estimation via optimization in the anoxic and aerobic re-
actors; these values were established from a comprehensive review of
similar studies reported in the literature [18,20,21,33]. For parameter
estimation in the settler, the limits in the parameter related to the
maximum settling velocity were selected according to values reported in
the literature for microalgae systems or microalgae-bacteria consortia
systems [34-36]. The ranges of the other parameters in the settling
velocity equation were selected similar to those reported for activated
sludge processes [28]. These values are shown in Table S4.2 in Sup-
plementary Material S4. Then, the parameter estimation problem was
solved for both reactors and the settler using the cost function (Eq. (10))
and SNOPT, a SQP optimization method for NLP problems connected to
the model simulation.

In this study case, a robust objective function was relevant since
gross errors may result from different sources:

e Many analytical procedures used to obtain the data are based on the
use of external standards for calibration or data comparison. These
solutions are subject to human errors during preparation

e Human errors in sample preparation and analysis can play a signif-
icant role in the accuracy of the experimental data obtained through
analytical methods. For instance, errors in sample dilution prepara-
tion, non-homogeneous mixing, or sample degradation can lead to
inaccurate results.

e The incorrect use of calibration curves: methods used to determine

the concentration of dissolved NHJ, NO,, NO;, and PO}~ use cali-

bration curves. The accuracy of the measurement largely depends on
the expertise of the person analyzing the sample.

The methods used to determine biomass concentration (TSS and VSS)

can be significantly influenced by human errors in sample collection,

such as non-homogeneous mixing of the sample and the presence of
flocculated biomass. Additionally, procedure errors like filter
obstruction, irregular oven and muffle temperatures, and violations
of recommended drying times can also affect these measurements.

Incorrect preservation of the samples (that can result in sample

degradation and changes in the properties due to light and high-

temperature exposition).

e The use of non-updated calibration curves in equipment.

Several decisions were made to improve the solution of parameter
estimation, taking into account the specific experimental conditions:

1- Experimental data were obtained under illumination cycles of 12 h
ON/12 h OFF [27] (considered in daily fraction with illumination
between 2 am (0.083 d) and 2 pm (0.583 d)). Because of this, the
time step used for the simulations was 0.1 d. Using superior time
steps could result in an accuracy loss for the simulation of day/night
cycles (and their influence over the model state variables).
The values of some variables vary significantly between day and
night in the photobioreactor. Because samples were always drawn
during illuminated periods, output data interpolation may result in
non-representative data values of the internal dynamics in the pho-
tobioreactor. Therefore, only the recorded data at the exact time
were considered in the cost function.

3- Since the values of experimental data broadly differ from stage I to
stage III, different limits on state and output variables (Egs. (13)-
(14)) were considered in the optimization problem for each simu-
lation stage.

N
)
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2.6. Metrics for evaluate model performance

Two performance indexes were used to quantify the quality of the
model adjustment to the experimental data: the mean absolute error
(MAE) (Eq. (15)) and the mean absolute relative error (MARE) (Eq.
(16)). Both criteria quantify the difference between model predictions
and experimental data, and the MARE criteria normalize the error ac-
cording to the magnitude of the measured variable. For both criteria, the
closer the value to zero, the better the model performance. These values
were computed for the complete experimental period (including the
data set used for parameter estimation and model validation). The factor
¢ in the denominator of (16) is included to avoid division by zero in the
case of experimental datay; = 0.

n

1 ~
MAE:;'ZD&‘—}'I‘\ (15)
i=1

1 &Kyi—Yi
MARE — L.y~ Di=Yil (16)
nIg Yite

3. Results and discussion
3.1. Sensitivity analysis results

Sensitivity analyses were conducted for reactors and the settler using
the software PROOSIS® with IDAS to compute the sensitivities in Eq.
(2). Some model parameters are well-established in the literature, but
others are strongly related to the operational conditions and microor-
ganism strains used in the study. Thus, the sensitivity analysis was
carried out considering a subset of all the model parameters to deter-
mine those significantly influencing the model outputs for this specific
study case, providing crucial insights into the system's behavior.

The results of sensitivity analysis in both reactors indicated that
model outputs are especially sensitive to the maximum specific growth
rate of microalgae (parg) and heterotrophic bacteria (py), the decay rate
of microalgae (kgeam,arc) and heterotrophic bacteria (kgeqh ), and the
mass transfer coefficients for oxygen (Kjq 02), carbon dioxide (Kiq, co2),

A
= 13
5 ] —_— |
eI e e = .
! [ 2
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-Z :
2 2]
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and ammonia (Kjq, nu3). Graphical sensitivity analysis results for the
previously referred parameters are presented in Figs. 4 and 5.

Fig. 4 A showcases the scaled sensitivity (Eq. (2)) for the dissolved
ammonium (Syg,) in the photobioreactor. The graphical results high-
light the significant sensitivity of the dissolved ammonium to the
microalgae's maximum specific growth rate and the mass transfer co-
efficient for ammonia. These results show the high inverse effect of the
maximum specific growth rate of microalgae over the dissolved
ammonium: an increase in parc implies a decrease in Syg, in the pho-
tobioreactor due to the fact that microalgae are the primary consumers
of dissolved ammonium. On the contrary, an increase in the microalgae
decay rate mediates an increase in Syg, . In this facility, the mass transfer
coefficient for ammonia significantly affects Syg, in the photobioreactor
since ammonium is in equilibria with ammonia. Dissolved ammonium is
also affected (to a lower extent) by the parameters relative to the activity
of heterotrophic bacteria since they consume ammonium during aerobic
growth.

Fig. 4 B shows the scaled sensitivity for the dissolved phosphate
concentration (Spo,) in the photobioreactor. The results indicate that in
this photobioreactor, the dissolved phosphate concentration is mainly
affected by microalgae's maximum specific growth rate: an increase in
taLG promotes a significant reduction in the dissolved phosphate con-
centration. Because heterotrophic bacteria assimilate phosphate during
growth, Spo, is also sensitive to the decay rate of these microorganisms.
In less measure, dissolved phosphate concentration is affected by the
microalgae decay rate and heterotrophic bacteria growth rate.

Fig. 4 C shows the results of the graphical sensitivity analysis over
the IC in the photobioreactor. These results indicate that inorganic
carbon is especially sensitive to the parameters concerning microalgae
activity, especially to the maximum specific growth rate. Microalgae
growth consumes inorganic carbon (in the forms of CO, and HCOs3),
promoting a decrease in IC concentration, and microalgae death con-
tributes to an increase in the dissolved IC in the photobioreactor. In
addition, inorganic carbon is significantly affected by heterotrophic
bacteria decay rate: an increase in Kgeqn i promotes a decrease in the
CO; release to the culture media product of heterotrophic bacteria
respiration.
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Fig. 4. Scaled sensitivities for the dissolved ammonium concentration (A), dissolved phosphate concentration (B), dissolved inorganic carbon concentration (C) and

dissolved total organic carbon concentration (D) in the photobioreactor.
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Fig. 5. Scaled sensitivity for the dissolved oxygen concentration (A) and for the total suspended solids concentration (B) in the photobioreactor. Unscaled sensitivity
of microalgae biomass (C) and heterotrophic bacteria biomass concentration (D) in the photobioreactor.

Fig. 4 D represents the sensitivity results for the concentration of
dissolved total organic carbon. The parameters related to heterotrophic
bacteria growth and decay rates are the most influential over the TOC:
an increase in the maximum specific growth rate of heterotrophic bac-
teria promotes a decrease in the dissolved TOC as result of significant
assimilation of TOC into the heterotrophic biomass; on the contrary, an
increase in the decay rate of heterotrophic bacteria implies a decrease in
the assimilation of TOC by heterotrophic microorganisms (and, conse-
quently, an increase in dissolved TOC in the photobioreactor).

With microalgae dominating the microbial population (50 % of the
inoculum corresponded to microalgae biomass [27]), the maximum
specific growth rate of microalgae was the parameter with the most
substantial influence over the concentrations of NH;, PO?{, and IC in
the photobioreactor, as confirmed in Fig. 4 A, B and C. Similarly, the
maximum specific growth rate of heterotrophic bacteria was the most
influential parameter over the dissolved TOC, as evidenced in Fig. 4 D.
The differences in the values of graphical sensitivities observed during
the period shown in Fig. 4 are the result of the stabilization of microbial
populations in the photobioreactor.

The scaled sensitivity over the dissolved oxygen concentration (So,)
is represented in Fig. 5. It can be noted that the parameter with the most
significant impact is the maximum specific growth rate of microalgae
(because of photosynthesis, microalgae produce oxygen). The decay rate
of microalgae is also influential in dissolved oxygen concentration.
Heterotrophic bacteria consume oxygen for organic matter assimilation,
explaining that parameters concerning heterotrophic bacteria activity
are also influential over Sp,. The mass transfer coefficient for oxygen is
another parameter that impacts the dissolved oxygen concentration.

Fig. 5 B represents the scaled sensitivity of the total suspended solids
concentration in the photobioreactor. Sensitivities of the parameters
(without scaled, Eq. (1)) over microalgae concentration (Xa1g) and
heterotrophic bacteria concentration (Xy) are presented in Fig. 5 C and
D, respectively. Biomass concentration was considered equivalent to the
sum of all particulate components in the model (microalgae biomass,
bacteria biomass, inert particulate organic matter, and slowly biode-
gradable particulate organic matter). Biomass concentration is affected

mainly by the maximum specific growth rate of microalgae. In addition,
the inactivation growth rates of microalgae and heterotrophic bacteria
influence the biomass concentration (due to the decrease in these pop-
ulations and the formation of particulate organic matter from micro-
algae and bacteria decay). The effect of parameters represented over
microalgae and heterotrophic bacteria biomass represented in Fig. 5 C
and D evidences the critical role of normalization in sensitivity analysis
for a correct interpretation of the results.

The model parameters of the settling velocity equation (Eq. $2.10 in
Supplementary Material S2) in the model of Takéacs et al. [28] are usu-
ally obtained using nonlinear dynamic optimization. Fig. 6 represents
the sensitivity analysis for these parameters over the TSS concentration
in the effluent and wastage flow of the settler. Fig. 6 A confirms the
influence over the biomass concentration in the effluent flow of the
parameter related to the minimum attainable suspended solids con-
centration in the effluent (Xp,,), the parameter associated with the low
concentration of solids (), and the maximum theoretical settling ve-
locity (Vp). Fig. 6 B represents the scaled sensitivity of TSS concentration
in the wastage flow. This variable is affected by the maximum theoret-
ical settling velocity and the settling parameters associated with the low
solids concentration zone () and the hindered zone (r4). Fig. 6 C and D
represent the unscaled sensitivity for the biomass concentration in the
effluent and wastage flow in the settler, respectively. Considerable scale
differences between both analyzed output variables confirm the critical
role of graphical and analytical sensitivity analysis (with and without
normalization) as a previous stage in the calibration or parameter esti-
mation process. This process ensures the precision and reliability of the
results, enhancing the confidence in them.

The sensitivity analysis results in Figs. 4-6 provide valuable insights
into the magnitude in which each selected parameter promotes a change
in model outputs. These results underscore the importance of sensitivity
analysis for each photobioreactor configuration, inoculum characteris-
tics, and operational values.
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3.2. Parameter estimation in the anoxic-aerobic algal bacterial system

Table 2 shows the values of the decision variables (parameters) for
both reactors estimated in this study via optimization (Eq. (10)). All
parameter values obtained are within the ranges reported in the litera-
ture for similar systems [18,20,21,33]. Parameter estimation was an
essential aspect of this study since it provided the maximum specific
growth and decay rates of the biomass, as well as information about
parameters that strongly depended on photobioreactor size, shape, and
stirring (like the mass transfer coefficients). The adequate calibration of
these parameters provides insights into the system model that will be
helpful in using the model for prediction and control purposes.

On the other hand, the settling properties of microalgae biomass (and
consequently, the models to predict them) are nowadays an open-
research field. Settling parameters in microalgae processes are widely
dependent on the settler size, shape, and microorganism strains in the
biomass. Therefore, those parameters should be determined for each
specific configuration.

During the treatment of undiluted digestate, an increase in the TSS
concentration in the effluent and a decrease in the average TSS con-
centration in the wastage stream were reported [27] as a consequence of
a reduction of the settling efficiency (promoted by the decline in the
biomass entering the settler from the photobioreactor). The research
conducted in [27], when analyzing the microalgae populations, reported
the dominance of C. vulgaris, Tetradesmus obliquus, and Cryptomonas sp.
during stages I and II, while the dominant strains during stage III where
Chlorella vulgaris and Pseudanabaena sp. Similarly, considerable differ-
ences in total microalgae densities per liter and per gram of VSS, as well

Table 2
Values of estimated parameters in anoxic and aer-
obic reactor.

Parameter Value [units]
HALG 0.70d7"

™ 2.50d7!
Kdeath,ALG 0.05d™"
Kqeath, 0.80d"

Kia, 02 05d™"

Kia, co2 2174d7!

Kia, nH3 05d7!

as in the total microalgae biovolume during stage III, were reported
[27]. Therefore, the high differences noted for the TSS concentration in
the effluent and wastage flow during stage III were attributed to the
reduction of the settling efficiency, differences in microalgae densities,
and the different populations of microorganisms reported for this stage
(consequently, these substantial changes in biomass characteristics
imply different settling velocities and different values in the parameters
related to biomass concentration). The previous assumption underscores
the importance of estimating parameters in such a way that may be able
to describe stages with remarkable differences in biomass composition.
For this purpose, a sigmoid function (Fig. 7) was used to represent the
variation of parameter values during the experiment. According to sig-
moid function, each parameter 9; = Vj, 1 varying between two values

(8;,, and K; + 6;,, ). Then, instead of estimating the parameter values of
settling velocity equation (Vy,r4,7p), the optimization problem estimates
the parameter values of the sigmoid function in Egs. (17) (19), where t
represents the current simulation time, and t, is the time instant where a
significant change in biomass properties was considered. The parameter
estimation was conducted, considering that a biomass composition
change during the treatment of undiluted digestate (stage III). Data from
stage II were used to determine the model parameters during the

~

i Ki + eimin

& |
folh K
O T ' A
% ) E N A S eimin
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Time (d)

Fig. 7. Sigmoid function used to adjust the parameters of the settling veloc-
ity equation.
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treatment of diluted digestate, while data from stage I were used for
model validation using these parameter values. Data from stage III were
used for parameter estimation (the first half of the data) and validation
(the rest) during undiluted digestate treatment. The results of parameter
estimation in the settler obtained via optimization in this study are
shown in Table 3.

1
Vo KVO.WJF Vomin a7)
1
=Ky, m =+ Thmin (18)
n =K, 1+ ett + Tomin (CR)

3.3. Model validation

Fig. 8 A, B, and C show simulation results and experimental mea-
surements for Syg,, Spo,, and dissolved inorganic carbon in the photo-
bioreactor, respectively. Ammonium and phosphate assimilation was
mainly attributed to the biological processes occurring in the photo-
bioreactor [27], which mediated high removal efficiencies of both nu-
trients during the treatment of diluted digestate, as confirmed during
model validation. The model also reproduced the trend of increasing
ammonium concentration and phosphate concentration observed in the
photobioreactor during the treatment of undiluted digestate. The MARE
values (Table 4 computed for ammonium concentration in the photo-
bioreactor (below 0.72 for stages II and III), confirm the model's pre-
diction capability. The model performance for phosphate, which was
also quantified with the previously referred metrics, exhibits low MARE
values for stages II and III (below 0.16 for both cases). High values of
MARE during the first stage for ammonium and phosphate are caused by
the normalization of this metric due to zero-close values reported
experimentally for this stage. This error could be acceptable, taking into
account that low values of MAE were obtained during this stage (and
due to possible inaccuracies of the experimental methods for low con-
centrations of dissolved nutrients).

As reported in [27], high values of IC in the influent enhanced the
activity of both microalgae and nitrifying bacteria. This intensive
autotrophic activity demanded a high consumption of inorganic carbon
in the photobioreactor, mainly during the first two operational stages
(treating 25 % and 50 % diluted digestate, respectively). Thus, the
model accurately reproduced the dynamic behavior of inorganic carbon
concentration in the photobioreactor during the experiment. This was
confirmed with the low values of MARE (Table 4 reported for all the
period (below 0.23).

Results for parameter estimation and validation for the

Table 3
Values of estimated parameters in the settler.

Parameter Description Value [units]
Xomin Minimum attainable suspended solids 50 mg/L
concentration in the effluent
Vo Maximum theoretical settling velocity Ky, = 5.040 dm/
(Eq. (17)) d
Vomin = 2.097
dm/d
T Settling parameter associated with the hindered K, =4.33 -
settling component of settling velocity equation 107% L/mg
(Eq. (18)) Thmin = 7.893 -
107'° L/mg
T Settling parameter associated with the low K;, =2.933 -
concentration and slowly settling component of 10794 L/mg
the suspension (Eq. (19)) Tomin = 8713 -
107% L/mg
t The time when a significant change in the biomass  88.9 d

properties occurred (Egs. (17)-(19))
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concentration of TOC in the anoxic reactor and the photobioreactor are
presented in Fig. 9. The model reproduced the high removal efficiencies
of TOC in both reactors, as reported in [27] for diluted digestate. The
model also reproduced the decrease in TOC removal efficiency during
the treatment of undiluted digestate. The MARE values (Table 4) during
the three operational stages (values below 0.5 for both reactors)
confirmed the model's capability to reproduce the total organic carbon
concentration trend for both reactors.

The results in Figs. 8 and 9 showed that the model can predict ni-
trogen, phosphorous, and carbon removal efficiencies. In this study, the
photobioreactor was operated under the specific operational conditions
described in Section 2.1 and detailed in [27], corresponding with a
constant HRT in the anoxic and aerobic reactor, and a constant SRT in
the settler. Validation results (performed with data corresponding to
dilutions of digestate different from those used in parameter estimation)
confirm the model's prediction capability under different operational
conditions. These validation results indicate that the calibrated model,
with its broad applicability, could be used to simulate a wide range of
operational conditions with minimum resources and time consumption.
However, the real added value of the proper model calibration lies in
applying the optimization approach to predict the optimal operation
values (HRT, SRT, temperature, digestate dilutions...) that maximize the
nutrient removal efficiency of this novel photobioreactor configuration.

Predicting dissolved oxygen is critical in fitting any biological model.
In the photobioreactor, the dissolved oxygen concentration indicates the
photosynthetic activity of microalgae and bacteria's heterotrophic and
nitrifying activity. Fig. 10A presents the simulation results for the dis-
solved oxygen concentration in the photobioreactor and the recorded
experimental data. Although dissolved oxygen was recorded once a day
during the experiment; in the model simulation, daily variations in the
dissolved oxygen concentration due to the effect of incident radiation
are visible in Fig. 10B, which contain part of the data set used for model
validation. As previously referred, the intense autotrophic activity
during the treatment of 25 % diluted digestate supported high daily
values of dissolved oxygen concentration during the illuminated periods
in the first 40 days of experimentation. In addition, the high hetero-
trophic activity in the photobioreactor during the entire experiment
mediated a decrease in dissolved oxygen values during dark periods for
the three operational stages. During stages II and III, significant re-
ductions in the maximum dissolved oxygen values during the illumi-
nated periods were reported experimentally in [27] (and confirmed
through the model simulation).

In this research, the model simulation results are paramount because
of the lack of online measurements for fast-dynamic variables like dis-
solved oxygen. Model simulation provides invaluable insights into pro-
cess behavior, enabling a comprehensive analysis of the dynamic
behavior of various variables throughout the day, not just at the time of
sample collection. As observed in the trend of simulated variables, the
daily variations in dissolved oxygen concentration due to light/dark
periods have practical implications for the daily trends of other variables
in the photobioreactor. These changes during the day in the assimilation
of ammonium, phosphates, inorganic carbon, and total organic carbon,
as depicted in Figs. 8 and 9, respectively, provide valuable insights for
the practical model application to operate and monitor the anoxic-
aerobic configuration.

Concerning the dissolved oxygen results, during the first stage, low
values of MARE were obtained (below 0.5), confirming the model's
prediction capability. Instead, high values of MARE were reported for
stages II and III, mainly due to high standard deviations reported for
experimental data during stage II and to zero-close experimental values
during stage III. Instead, low values of the MAE were reported during the
complete period (Table 4). The quantitative analysis of this variable may
be confusing because both the metrics used were calculated considering
the average of all the data for the period. In this case, experimental data
may vary significantly depending on the hour of the day, affecting the
average value.
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Fig. 8. Time course of the concentrations of dissolved ammonium (A), dissolved phosphate (B), and dissolved inorganic carbon (C) in the photobioreactor. White
areas indicate the data sets used for parameter estimation, and blue shadow areas contain the data set used for model validation. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 11 represents the biomass concentration in both reactors and the
settler. Fig. 11 A and B show simulation results and experimental mea-
surements for the concentration of TSS in the anoxic reactor and in the
photobioreactor, respectively. The model reproduced the trend of the
decrease in TSS concentration reported during stage III in both reactors
[27]. Overall, the model proved effective in reproducing the dynamic
behavior of biomass concentration. Small changes in the TSS concen-
tration in the photobioreactor due to the daily variations in the light
irradiation were observed, fundamentally due to the microalgae activity
as the dominant group of the consortia. Thus, microalgae growth during
the day increased the TSS concentration, and microalgae death at night
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decreased the TSS concentration. Low values of the MARE (below 0.35)
were reported for both reactors during the experimental time (Table 4),
which confirms the model prediction capability to reproduce the
biomass dynamics.

Fig. 11 C represents the total suspended solids concentration in the
effluent and biomass wastage stream, respectively. An increase in the
TSS concentration in the effluent was reported during the treatment of
undiluted digestate, likely due to the decrease in the settling efficiency,
different dominant populations of microalgae, and differences in
microalgae densities (as referred to by the authors of [27]), which
presumably affects the sedimentation capability of the biomass. The
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Table 4 model reproduces the trend of increasing TSS concentration in the
Model evaluation for the three stages of experimentation. effluent during stage III. The low MARE values reported for the effluent
Stage I Stage II Stage III biomass concentration confirm the match between experimental and

simulated data (Table 4).

M bsol
ean absolute error In the wastage flow, low values of the MARE (below 0.22) were re-

S_NH, - Photobioreactor 1.3877 1.5671 44.3109

S_PO, - Photobioreactor 2.7609 1.1039 5.3482 ported during the treatment of undiluted digestate (Table 4), which

IC - Photobioreactor 26.6770 42.2906 23.1514 confirms the model prediction capability. The high standard deviation

TOC - Anoxic Reactor 8.7098 21.6805 76.3308 reported for the experimental data during stage III in the wastage flow

FSF%CZ l;:ztzzz:zzz: 2:221@ IZ:?ZZZ 33:;332 (4742 £+ 2529) suggests the presence of flocculated biomass, which

TSS - Anoxic Reactor 383.2931 348.3835 181.2617 could be a source of gross error during the analytical procedure to

TSS - Photobioreactor 167.9968 393.1145 196.3628 quantify the biomass concentration. High experimental data dispersion

TSS - Effluent 20.9246 58.0595 108.3349 in the TSS concentration in the waste flow makes it difficult for the

TSS - Wastage 1153.0377 1779.9657 2370.5445 model to fit during the treatment of undiluted digestate.

The model validation results (Figs. 8-11) have allowed the evalua-
Mean absolute relative error tion of the model's qualitative responses to input changes and the

S-NH, - Phomb.i oreactor 1.2013 0.7172 0.5138 confirmation of its validity over long periods under changing conditions.

S_PO, - Photobioreactor 14.5448 0.1055 0.1560

IC - Photobioreactor 0.2270 0.2274 0.0514 Table 4 summarizes the computed criteria for the measured variables

TOC - Anoxic Reactor 0.2641 0.4943 0.3594 in each operational stage. Results for the MARE criteria (close to zero in

TOC - Photobioreactor 0.3459 0.4781 0.3524 most cases) confirm the model's capability to reproduce the experi-

5.0, - Photobioreactor 0.4867 0.9884 2.1065 mental data. The MARE criteria generally constitute a reliable indicator

TSS - Anoxic Reactor 0.3145 0.3454 0.1598 .

TSS - Photobioreactor 0.1304 0.2625 0.0847 of the model's goodness. However, the MARE value increases for small

TSS - Effluent 0.2798 0.5922 0.4039 values of measured variables.

TSS - Wastage 0.1943 0.2138 1.2124 Simulation results revealed the model's versatility in photo-
bioreactors with one or two stages, including sedimentation and biomass
recirculation. The model's proficiency in replicating both rapid and slow
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dynamics further reinforces its potential application to various biolog-
ical processes, such as biogas upgrading processes with microalgae and
the simultaneous treatment of digestates.

Aside from determining optimal operational conditions, the cali-
brated model is a valuable tool for systematically monitoring and con-
trolling this process. Future implementation in the anoxic-aerobic
configuration of state feedback control laws or model-based control
techniques, such as MPC (successfully applied in other microalgae pro-
cesses), can significantly enhance plant depuration efficiency and
biomass yield. These control strategies' successful design and operation
require information on all the system's states. However, many process
variables cannot be directly measured online in this process. To face this
drawback, the calibrated model, coupled with low investment in con-
ventional sensors, would facilitate the design of a state estimator. This
state estimator could provide corrected values online for all measured
and unmeasured variables involved in the process, significantly
reducing the time, human resources, and reagents needed in the
analytical process monitoring, thereby enhancing cost-effectiveness and
efficiency.

4. Conclusions

This paper presented the modeling and dynamic simulation of an
anoxic-aerobic algal-bacterial photobioreactor for digestate treatment
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for the first time. Simulation results for the output variables considered
in the anoxic-aerobic algal-bacteria photobioreactor configuration
showed the model's capability to reproduce many system dynamic
behavior features. However, some discrepancies were observed during
the simulation of biomass concentration in the effluent and wastage flow
in the settler. The model capability for prediction can be used to simu-
late the system's global behavior operating under several operational
conditions while treating domestic or high-strength wastewaters.
However, further research on modeling processes occurring under
anoxic conditions should be conducted to improve the model's accuracy.
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Fig. 11. Time course of the total suspended solids concentration in anoxic reactor (A) and in the photobioreactor (B). TSS concentration in the effluent (C) and
wastage flow (D) of the settler. White areas indicate the data sets used for parameter estimation, and blue shadow areas contain the data set used for model vali-
dation. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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