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ABSTRACT

Investigation of cell wall composition is necessary to understand the interactions between fungi and the envi-
ronment as it is the external layer exposed to stimuli and detected by other organisms. Pochonia chlamydosporia
and Akanthomyces lecanii, two fungal species living in the soil and infecting nematodes and insects, exhibit
endophytic interactions with various plant species. Determination of cell wall composition is essential to un-
derstand the mechanisms underlying these interactions. Therefore, in this study, for the first time, we assessed
the relative amounts of chitin and chitosan in the cell walls of P. chlamydosporia (PC123) and A. lecanii (69NZ,
85SCT, 126KNY, and 447SAF) via Raman spectroscopy. The isolate with the highest chitosan percentage was
69NZ, followed by 85SCT, PC123, 447SAF, and 126KNY. Moreover, combination with conventional approaches
for chitin and chitosan quantification yielded quantitative results for all cell wall components. Overall, these
results highlight the mechanisms by which fungi exhibit chitosan resistance and avoid detection by the host plant
during root colonization.
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1. Introduction

Recently, Raman spectroscopy has attracted significant interest for
study of biomolecules. It exhibits high sensitivity for chemistry and
structure analyses and provides specific Raman signatures for different
cellular components, facilitating the identification of diverse com-
pounds in biological samples [1,2]. Moreover, Raman spectroscopy is
non-destructive, highly sensitive, and does not require prior sample
preparation [3-5].

Reliable and accurate determination of fungal cell wall composition
remains a challenge in fungal biology and ecology despite its crucial
impacts on cell shape, viability, and interactions with the environment.
Both common components and specialized molecules specific to each
species are important to define fungal ecology [6]. Fungal cell wall is the
key target of important antifungals, such as echinocandins [7].

Spectroscopic techniques are useful to assess the cell wall composi-
tion and biological structure. Raman spectroscopy in the microscopic
mode has been used to detect chitin in the skeleton of the marine sponge,
Aplysina fistularis [2]. This technique can differentiate a-chitin, p-chitin,
and y-chitin due to noticeable differences in their amide I vibration
bands [8]. Moreover, Raman spectroscopy is sensitive to substitutions in
the structure of glucans, degree of crystallinity of compounds, such as
cellulose, and various impurities [9,10]. It is an accurate technique to
determine the degree of N-acetylation in chitosan [11]. It has been used
to estimate the relative contents of starch and p-glucan in barley and oat
samples [12].

Recent studies have focused on chitin and chitosan components in
the fungal cell wall [13,14]. These aminopolysaccharides are among the
most abundant natural biopolymers that are widely distributed in the
biosphere. Owing to their unique physicochemical properties, they
exhibit remarkable biological activities and are beneficial for the
chemical, healthcare, food, and agricultural industries [13]. Chitosan
shows antimicrobial activities against plant pathogenic fungi and bac-
teria. It is also described as plant defense inducer, mainly inducing
jasmonic and salicylic acids (JA and SA) phytohormones. Chitosan also
is a compatible compound with biocontrol agents, mainly nem-
atophagous and entomopathogenic fungi. Chitin is converted into chi-
tosan by various chitin deacetylases [15], which are important for
various fungal pathogens and mutualists to avoid host immune re-
sponses [16]. For example, nematophagous fungi can convert their and
the host chitin into chitosan using chitin deacetylases to avoid plant
defenses during infection of nematodes eggs in plant tissues [17].

Raman spectroscopy is used to detect chitin and determine the de-
gree of N-acetylation in chitosan [2,11,14]. However, key parameters,
such as the chitosan:chitin ratio, have not been assessed using this
technique. Standard chemical techniques, such as acid hydrolysis, used
for the study of fungal cell wall composition only provide the total chitin
and chitosan contents owing to the detachment of acetyl groups on
chitin monomers, thereby increasing the difficulty of distinguishing
between the two molecules [18]. More complex extraction approaches
based on non-soluble materials at alkaline pH have been developed to
determine the chitosan concentration in the fungal cell wall [19-21],
which is commonly expressed as chitosan yield.

In this study, we aimed to develop a new methodology based on
Raman spectroscopy to determine the chitosan:chitin mass ratio in the
fungal cell wall. Additionally, we combined the developed approach
with conventional acid hydrolysis technique to determine the concen-
tration of each component in the fungal cell wall.

2. Materials and methods
2.1. Sample preparation
Strains of the nematophagous fungus, Pochonia chlamydosporia

(PC123), and entomopathogenic fungus, Akanthomyces lecanii (69NZ,
85SCT, 126KNY, and 447SAF), were obtained from the Plant Pathology
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Laboratory of University of Alicante (Spain). PC123 was isolated from
Heterodera avenae eggs in southwest Spain [22]. Strains 69NZ, 85SCT,
126KNY, and 447SAF from New Zealand, Scotland, Kenya, and South
Africa, respectively, were kindly provided by Professor Brian Kerry
(Rothamsted Research, Harpenden, UK).

P. chlamydosporia is a nematophagous fungus that lives in the soil
and colonizes plant roots. Its nematophagous behavior is mainly based
on its ability to parasitize the nematode egg shell, which is largely
composed of chitin [22]. Owing to its ability to colonize nematode eggs,
P. chlamydosporia is widely used as a biological control agent for the
management of nematode pests in agriculture [23]. A. lecanii is an
entomopathogenic fungus with various hosts that acts as an endophyte
in some economically relevant crops [24,25]. This fungus can also infect
nematode eggs [26]. These microbes must degrade chitin rich egg-shell/
cuticle of their hosts upon their infection. As fungal chitin induces plant
defense responses, it threatens the survival of both species in the
rhizosphere [27,28]. Chitin deacetylation generates chitosan and re-
duces changes of fungal detection by plants.

Notably, both fungi exhibit chitosan resistance, possibly due to their
cell wall composition. Aranda-Martinez et al. investigated the cell wall
composition of Neurospora Crassa, a species sensitive to chitosan and
that of the chitosan resistant fungus P. chlamydosporia [29]. Their study
indicate that an increase in p-1,3-glucan/chitin ratio favors fungal
resistance to chitosan [30].

Conidia of the selected fungi (final concentration: 10° conidia/mL)
were inoculated into a 250 mL flask with 50 mL of Czapek Doz medium,
as previously described [26]. The flasks were incubated at 25 °C with
shaking at 120 rpm. After seven days, the mycelia were recovered via
filtration through the Miracloth (Calbiochem. San Diego, CA, USA),
washed with sterile distilled water, and lyophilized. Fungal tissue were
frozen in liquid nitrogen and homogenized using a mortar and pestle.
Commercial samples of the key pure components of cell walls, namely
cellulose (Sigma-Aldrich, St. Louis, MO, USA), p-glucan (USP, Rockville,
MD, USA), chitosan (Marine Bioproducts GmbH, Bremerhaven, Ger-
many), and chitin (Sigma- Aldrich), were also lyophilized and milled
prior to use.

2.2. Chemical characterization

Chitin and chitosan contents of the mycelia were estimated by
determining the amounts of N-acetylglucosamine and glucosamine, as
previously described [29]. Briefly, the fungal samples (30 mg) were
hydrolyzed in 1 mL of 6 N HCl at 110 °C for 6 h. HCl was air dried in a
fume hood, and samples were resuspended in 1 mL of sterile distilled
water and centrifuged twice at 24,681 xg for 20 min each. Then, 0.5 mL
aliquot of the supernatant from each sample was mixed with 0.1 mL of
0.16 M sodium tetraborate (pH 9.1) and heated at 100 °C for 3 min. After
cooling, 3 mL of p-dimethylamine benzaldehyde solution (10 % dime-
thylamine benzaldehyde in glacial acetic acid containing 12.5 % HCI
[10 N] diluted with 9 vol of glacial acetic acid) was added. The mixture
was incubated for 20 min at 37 °C and absorbance at 595 nm was
measured using the Genios Multiwell Spectrophotometer (Tecan,
Mannedorf, canton of Ziirich, Switzerland). A standard curve was
plotted using 0-40 mg/mL N-acetyl-D-glucosamine (Sigma-Aldrich) also
hydrolyzed as described above. This procedure was repeated twice to
obtain 54 replicates for each isolate. This method facilitated the quan-
tification of the total amounts of chitin and chitosan in a given sample,
as previously described [18].

2.3. Raman spectroscopy

A portable BWTEK Raman spectrometer equipped with the BTWTEK
Exemplar Pro (CCD BTC675N) (B&W Tek, Plainsboro, NJ, USA) detector
was used in macroscopic mode (spot size: approximately 85 pm) to
ensure a measurement area representative of the fungal cell wall
composition. The A = 785 nm line from a diode laser was used as the
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exciting beam. The nominal laser power for the sample was approxi-
mately 186 mW, with an approximate irradiance of 820 W-cm?. The
acquisition time was 100-180 s with three accumulations. All spectra
were recorded in the range of 100-3200 cm ™, with a spectral resolution
of 4.5 cm™!. Prior to Raman measurements, most samples were photo-
bleached for about five hours using the same wavelength and irradiance
to reduce background fluorescence, particularly that observed due to
high chitin content in the fungal cell walls. The remaining fluorescence
was removed from the Raman spectra by subtracting the baseline values
using Spectragryph software 1.2.12. This software was also employed to
determine the maximum peak and center of gravity positions of the
broad convoluted Raman bands of the region of interest (i.e.,
1500-1750 cm ™!, as will be later discussed). Finally, Raman bands
within that range were deconvoluted according to the dynamic vibra-
tional Raman modes of chitosan and chitin (Table 1). The fitting process
was performed with Origin 2016 software (OriginLab Co., Northampton,
MA, USA) using Lorentzian peaks until reaching y? values <1075,

Lyophilized fungal samples, pure cell wall polymers, pure chitosan
and chitin, and chitosan and chitin mixtures (3:97, 10:90, 20:80, 25:75,
50:50, and 75:25 [wt%:wt%]) were prepared for Raman spectroscopy.
All materials were frozen in liquid nitrogen and milled with an agate
mortar to obtain fine powders of small particles and homogenous mix-
tures. Generally, chitin and chitosan contents in ascomycetes (Table 1),
similar to those analyzed in this study, are within the 0-25 wt% range.
Reference samples were employed to develop several calibration ap-
proaches in order to evaluate the relative chitosan content of actual
fungal samples. For the successful calibration approaches, the limit of
detection (LOD) was estimated as LOD = 3 SD(intercept)/S, where SD is
the standard deviation of the intercept and S is the slope.

3. Results and discussion

In this study, chitin and chitosan contents varied among the tested

Table 1
Chitin and chitosan contents in ascomycete fungi. Fungi closely related to those
analyzed in this study are indicated in bold.

Chitosan yield Fungi Chitosan/Chitosan + Ref
(%) chitin (%)
Ascomycetes
11.0 Aspergillus niger 61.11 [31]
3.6 Zygosaccharomyces rouxii 33.96
4.4 Candida albicans 38.60
4.75 Penicillium chrysogenum 40.43 [32]
0.3 Ashbya gossypii 4.11 [20]
0.9 Aspergillus clavatus 11.39
2.0 Aspergillus flavus 22.22
3.9 Aspergillus nidulans 35.78
0.8 Aspergillus niger 10.26
1.1 Aspergillus oryzae 13.58
0.5 Aspergillus terreus 6.67
3.4 Aspergillus terricola 32.69
1.3 Aspergillus usamii 15.66
1.9 Botrytis cinerea 21.35
2.4 Ceratocystis sp. 25.53
1.99 Cladosporium 22.14
cucumerinum
4.1 Cladosporium 36.94
cladosporioides
0.7 Epicoccum nigrum 9.09
1.6 Gliocladium catenulatum 18.60
1.0 Humicola grisea 12.50
1.3 Myrothecium verrucaria 15.66
0.4 Penicillium chrysogenum 5.41
2.9 Penicillium digitatum 29.29
0.9 Trichoderma viride 11.39
0.9 Trichoderma roseum 11.39
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fungal strains (Table 2). Strains 126KNY and 69NZ contained higher
chitin and chitosan contents than PC123, 85SCT, and 447SAF. Notably,
447SAF strain exhibited the lowest chitin and chitosan contents, with an
average of 0.3946 mg/mg of dry mycelium. Conversely, strain 69NZ
exhibited the highest chitin and chitosan contents, with an average of
0.5530 mg/mg of dry mycelium weight.

Colorimetric analysis of acid hydrolysates accurately reveals the
total chitin and chitosan amounts in fungal samples; however, it cannot
determine the relative amounts of each cell wall components [17].

To develop a better approach, we obtained and compared the Raman
spectra of a few selected pure components of the cell wall (cellulose,
B-glucan, chitosan, and chitin) to identify potential regions of interest
for the quantification of chitosan and chitin (Fig. 1a). Consistent with
their chemical structures, only chitosan and chitin showed notably
Raman bands in the region of interest (1500-1750 cm’l; Fig. 1b). These
Raman bands corresponded to the vibrational modes of amide and NHy
functional groups (Table 3), which are absent in both cellulose and
B-glucan. Moreover, chitosan and chitin exhibited characteristic features
in the region of interest (Fig. 1b; Table 3). These results indicated the
presence of NHy groups in chitosan as well as the dynamic relative in-
tensity of the vibrational modes corresponding to amide groups 6(NH)
and v(CO) present lower relative intensities (Table 3). Chitin spectra also
exhibited an almost negligible signal at 1555 cm ™!, possibly corre-
sponding to V(CN) [33].

These results indicate that analysis of Raman bands in the
1500-1750 cm ™! region can provide information on the relative levels
of chitosan and chitin in the fungal cell wall, with no influence of other
cell wall polymers, such as cellulose and f-glucan. Therefore, Raman
spectra of the experimental mixtures of pure compounds were assessed
(Fig. 2).

Clear progressive evolution of the Raman band is directly associated
with the relative abundance of chitosan (Fig. 2). To quantify this rela-
tionship, peak position and center of gravity of the bands in the
1540-1740 cm™! range were calculated. As shown in Fig. 3, specific
trends were observed for both the features and relative contents of
chitosan in pure chitosan and chitosan:chitin blends. In contrast, the
values corresponding to pure chitin did not follow any specific trend,
indicating the dominant Raman response of chitosan in chitosan:chitin
blends.

In the chitosan:chitin blends, the maximum value was approximately
1656 cm ™! (V(CO), indicating medium and weak intensities for chitin
and chitosan, respectively) until the relative content of chitosan reached
approximately 50 wt%, after which it shifted to the 1595-1600 em™?
range (8(NHy), indicating medium intensity for chitosan). Regarding the
evolution of the center of gravity, a linear trend was observed, facili-
tating the estimation of the relative chitosan content. However, the
range of measurement, approximately 20 cm™* for 3-100 % chitosan
content, was narrow considering the spectral resolution of the experi-
mental setup (about 4.5 cm™ ). Therefore, this method cannot accu-
rately distinguish small differences in the relative chitosan content using
the proposed experimental setup. Nevertheless, Raman spectrometers
with high spectral resolutions can aid in the determination of the rela-
tive chitosan content in fungal samples using the center of gravity.

Next, Raman spectra were deconvoluted to determine the

Table 2
Chitin and chitosan contents of the fungal strains analyzed in this study.

Fungal strain Chitosan + chitin (mg/mg DW)

69NZ 0.55 + 0.20
85SCT 0.49 + 0.28
PC123 0.43 £ 0.22
126KNY 0.55 + 0.19
447SAF 0.39 + 0.17

Values are represented as the mean (n = 3) with standard error. No sig-
nificant differences were observed among the groups (P < 0.05). Abbre-
viation: DW, mycelium dry weight.
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Fig. 1. Raman spectra of chitin, chitosan, cellulose, and B-glucan in the full
range (a) and after baseline correction in the region of interest (b).

Table 3

Raman shifts in the bands of chitin and chitosan Raman spectra in the range of
interest (1500-1750 cm ™) and their corresponding normal vibrations. Relative
Raman intensity of each band is indicated as m (medium) or w (weak), as pre-
viously described [11,33].

Chitin Chitosan

Raman shift Vibrational Raman shift Vibrational

(em™1) mode (em™1) mode

1555w Vv(CN) 1555w 8(NH,), v(CN)
1595m S8(NH,)

1620m 3(NH) 1620w 8(NH)

1656m v(CO) 1656w v(CO)

contribution of each vibrational mode. Based on previous results, only
the samples containing chitosan were analyzed. Raman bands of pure
chitosan and chitosan:chitin blends in the region of interest (1500-1750
cm 1) were deconvoluted by fitting them to the dynamic vibrational
Raman modes of chitosan and chitin. An example of the fitting result is
shown in Fig. 4.

From the obtained values, three ratios were used to estimate the
relative chitosan content. The first ratio (Ratio 1) related the integrated
areas corresponding to 8(NHj) vibrational modes at 1555 and 1595
cm~! with those of 8(NH) and v(CO). The second ratio (Ratio 2) related
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Fig. 3. Change in the maximum and center of gravity of pure chitin and chi-
tosan and chitosan:chitin blend bands in the 1540-1740 cm ! range. Dotted red
line indicates the linear trend shown by the center of gravity in the chitosan-
containing samples.

the same integrated areas corresponding to 8(NHy) vibrational modes at
1555 and 1595 cm™! with the total integrated area corresponding to all
vibrational modes. The last ratio (Ratio 3) related the integrated area
corresponding to 8(NHy) vibrational mode at 1595 cm ! with the inte-
grated areas corresponding to that and §(NH) and v(CO) vibrational
modes. Specifically, ratio 3 was used to evaluate the potential influences
of other compounds on the 1555 c¢m ! band (Fig. 1b).

Results are shown in Fig. 5. In all cases, the values provided by these
ratios for different samples were linearly fitted (Table 4), achieving
calibration equations relating the Raman spectra and relative chitosan
contents with R2 of ca. 0.96-0.97.

The results indicated that any ratio could be used to estimate the
relative contents of chitosan and chitin in the fungal cell wall. Moreover,
same trends were observed irrespective of the §(NHy) band at 1555
em™, indicating no significative influence of other compounds in the
selected spectral region (1500-1750 cm™!). Estimated LOD provided
quite low values, about 0.2-0.4 % of chitosan relative content. This
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Fig. 5. Relationships among the three different ratios obtained from the inte-
grated areas of the bands corresponding to the vibrational modes of chitosan
and chitin and relative chitosan content of the samples.

Table 4
Linear fitting parameters (Chitosan relative content (%) = a + beRatio) for the
calibration of the three tested ratios.

Ratio 1 Ratio 2 Ratio 3
a —20.38 —51.83 —53.60
b 123.10 296.78 307.43
R? 0.958 0.974 0.971
SD (a) 15.61 17.21 18.70
LOD (%) 0.42 0.19 0.20

result suggests that this approach could be sensible down to very low
chitosan relative contents. However, further improvement of the cali-
bration with reference samples with chitosan relative contents below 3
% would be advisable to study samples within that range.

The above-described measurement and estimation procedures were
performed on five fungal strain samples (Materials and Methods Section:
Sample Preparation). Analysis of fungal samples was difficult due to the
high background fluorescence of the fungal cell wall compounds other
than chitin and chitosan. This resulted in low-quality spectra. Never-
theless, as no other signals were detected in the selected region, Raman
spectral characteristic of chitin and chitosan were recorded (Fig. 4).

The obtained fungal spectra were deconvoluted, and the three ratios
of integrated areas were calculated (Table 5). Then, the ratios were
introduced into the calibration models to estimate the relative chitosan
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Table 5
Observed ratios and estimated chitosan contents relative to the total chitosan
and chitin content determined based on each ratio.

Fungal Ratio Chitosan Ratio Chitosan Ratio Chitosan
strain 1 estimation 2 estimation 3 estimation
(Wt%) (Wt%) (Wt%)

126KNY  0.322 19.3 0.243 20.3 0.238 19.6
85SCT 0.326 19.8 0.245 20.9 0.242 20.8
PC123 0.347 22.3 0.257 24.4 0.253 24.2
4477AF 0.348 22,5 0.258 24.7 0.253 24.2
69NZ 0.360 23.9 0.270 28.3 0.263 27.3

content in each strain (Table 5).

Relative chitosan content was 19-28 wt% in the tested fungi. Rela-
tive chitosan and chitin contents were similar to those previously re-
ported (Table 1). Notably, total amounts of chitin and chitosan (Table 2)
did not affect the relative chitosan content determined via Raman
spectroscopy (high amounts of chitin and chitosan did not indicate high
chitosan content; Table 5). Moreover, the three proposed ratios pre-
served the relative chitosan content among the samples. However, slight
differences were observed in the values indicated by each ratio, sug-
gesting the need for additional investigation, including the validation of
measured chitosan content of fungal samples with that determined by
other techniques, to optimize the calibration for more accurate results.
As a partial validation approach, an additional chitosan:chitin mixture
was prepared and studied following this approach. The relative amount
of chitosan for this mixture was fixed in 20 wt%, aiming to have a
reference sample within the chitosan content range determined for the
studied fungi. Table 6 shows the ratios and estimated chitosan content
obtained from three measurements of this reference sample. Ratios 1
and 2 seem to be more accurate than ratio 3, providing average chitosan
content estimations closer to the actual value (20 wt%). Moreover, the
three ratios present similar standard deviations, around 1 wt%.

In addition to the previous results, our data provided a narrow range
of chitosan content per mg DW by combining the acid hydrolysis and
Raman spectroscopy results (Table 7).

We also compared the amounts of chitin and chitosan determined in
this study with those reported in other species (Table 1). Lam and Diep
reported significant inhibition of Aspergillus nidulans in the presence of
chitosan in the medium [19]. Aspergillus nidulans exhibits 3.9 wt% chi-
tosan/dry cell wall weight [20]. Ben-Shalom et al. reported the sensi-
tivity of Botrytis cinerea to chitosan [21], which exhibits a relative
content of 1.9 wt% chitosan/dry cell wall weight [20]. A clear difference
in chitosan content relative to the dry mass of mycelia was observed
between this study, with values of approximately 9-11 wt% (Table 6),
and previous literature, except for A. niger that exhibits comparable
values of approximately 11.0 wt% [31]. These findings indicate that
chitosan-resistant fungi (see section 2.1), such as P. chlamydosporia,
exhibit higher amounts of chitosan relative to the total mass of the
sample than the chitosan-sensitive fungi, such as Aspergillus nidulans or
B. cinerea. Therefore, it can be expected that fungi can deacetylate chitin
in their cell wall to increase the chitosan ratio and protect their cell wall.
However, results of previous studies were obtained using an extraction
method with non-soluble materials at alkaline pH, which could be less
sensitive than the Raman technique used in this study. Moreover, these
reported approaches require complex multi-step procedures to

Table 6
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Table 7

Obtained chitosan content per mg DW.
Fungi Estimated chitosan content (mg/mg DW)
126KNY 0.105 - 0.111
85SCT 0.097 - 0.102
PC123 0.096 - 0.105
4477AF 0.089 - 0.098
69NZ 0.132 - 0.157

determine the chitosan content, including lyophilization, grounding,
mixing with NaOH solutions, homogenization, autoclaving, centrifuga-
tion, etc. [20]. On the contrary, the proposed approach using Raman
spectroscopy only requires of the lyophilization and grounding. Never-
theless, future studies should compare both techniques in the same fungi
to verify these findings.

This study successfully estimated the relative contents of chitosan
and chitin in the fungal cell wall using Raman spectroscopy. Our method
discriminated among different fungal samples based on their relative
chitosan content in combination with the standard technique, acid hy-
drolysis, that provided quantitative data on chitin and chitosan. Further
improvement of our approach and use of systems to decrease fluores-
cence, such as Fourier-transform-Raman, could yield more advanced
and precise techniques for the quantitative determination of the relative
chitosan and chitin contents in fungi.

4. Conclusions

In conclusion, this study established an approach based on Raman
spectroscopy to estimate the chitosan:chitin ratio in lyophilized fungal
samples. Appropriate selection of the spectral region of interest without
any interference of other components (1500-1750 cm’l), along with the
use of a reference dataset of chitosan:chitin blends, facilitated the study
of fungal cell wall components. Initially, a linear trend was observed for
the center of gravity of the bands in the 1540-1740 cm ™! range; how-
ever, it could not be explored further due to the resolution limitation of
our experimental setup. Then, the obtained bands of chitosan:chitin
blends in the 1540-1740 cm ™! range were deconvoluted by fitting them
according to the dynamic vibrational Raman modes of chitosan and
chitin, and three ratios were obtained from the integrated areas of the
vibrational modes corresponding to both molecules, which were directly
proportional to the relative chitosan contents. The developed method
was successfully used to estimate the relative chitosan and chitin con-
tents of five fungal strains, as well as of a reference sample with known
chitosan content, obtaining just slight differences in the absolute values
but consistent orders of magnitude and relative orders provided by each
ratio. Moreover, combination of our method with acid hydrolysis pro-
vided an efficient approach to determine not only the total chitin and
chitosan contents in the fungal cell wall, but also estimate the contents
of each one of them. Overall, this study provides an approach to accu-
rately determine the cell wall composition of fungi, providing key in-
sights into the interactions between fungi and the environment.
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