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Abstract

Robust speed estimation in induction motors (IM) is essential for control systems (espe-
cially in sensorless drive applications) and condition monitoring. Traditional model-based
techniques for inverter-fed IM provide a high accuracy but rely heavily on precise motor
parameter identification, requiring multiple sensors to monitor the necessary variables.
In contrast, model-independent methods that use rotor slot harmonics (RSH) in the sta-
tor current spectrum offer a better adaptability to various motor types and conditions.
However, many of these techniques are dependent on full-band processing, which reduces
noise immunity and increases computational cost. This paper introduces a novel subband
signal processing approach for rotor speed estimation focused on RSH tracking under
both steady and non-steady states. By limiting spectral analysis to relevant content, the
method significantly reduces computational demand. The technique employs an advanced
time-frequency analysis for high-resolution frequency identification, even in noisy settings.
Simulations and experiments show that the proposed approach outperforms conventional
RSH-based estimators, offering a robust and cost-effective solution for integrated speed
monitoring in practical applications.

Keywords: digital signal processing; induction motor; rotor slot harmonics; spectral
analysis; spectral estimation; speed estimation; subband decomposition; time-frequency
domain

1. Introduction
Induction motors (IM) operate smoothly and efficiently in many industrial applica-

tions, turning electrical energy into mechanical energy [1]. These machines are widely used
in sectors such as railway, automotive transportation, manufacturing, air conditioning,
and power energy, where their reliable and robust operation is essential [2]. Given their
widespread use, ensuring fault-free operation and optimizing the performance of induction
motors have become a critical area of research [3]. To achieve these objectives, IM must
be properly controlled and continuously monitored to maintain an optimal performance
and prevent the development of electrical and mechanical faults, such as broken rotor
bars, rotor misalignment, and bearing failures [4]. One of the key aspects in achieving

Energies 2025, 18, 4538 https://doi.org/10.3390/en18174538

https://doi.org/10.3390/en18174538
https://doi.org/10.3390/en18174538
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/energies
https://www.mdpi.com
https://orcid.org/0000-0001-8191-7600
https://orcid.org/0000-0003-2994-2520
https://orcid.org/0000-0001-6153-9438
https://doi.org/10.3390/en18174538
https://www.mdpi.com/article/10.3390/en18174538?type=check_update&version=1


Energies 2025, 18, 4538 2 of 18

effective control and fault-free operation is the accurate information of the instantaneous
motor speed, which not only enables the implementation of control strategies to enhance
efficiency but also allows for fault detection, thereby minimizing downtime and reducing
maintenance costs [5]. Speed estimation in IM is particularly significant, as physical sensors
are replaced by advanced algorithms that infer the rotor speed from electrical signals,
specifically from stator voltage and current measurements [6]. This estimation approach
enhances systems reliability by eliminating vulnerable electronic signal paths and reducing
instrumentation costs.

Among the approaches developed to estimate motor speed without relying on physical
speed sensors, model-based techniques have received considerable attention due to their
capacity to exploit the physical principles governing motor behavior [7]. These sensorless
estimation methods utilize mathematical models to infer speed and other internal states
from measurable electrical quantities, thus reducing system costs while maintaining the
monitoring and control performance [8]. Within this category, methods include observer-
based structures such as the Extended State Observers [9], Luenberger Observers [10], and
Sliding Mode Observers [11,12], which are widely recognized for their ability to enhance
convergence speed and estimation accuracy across different induction motor sizes. While
these observers show a reliable performance under nominal or steady-state conditions,
their sensitivity to external disturbances and time-varying operating regimes often limits
their robustness in practical applications. To address these challenges, stochastic esti-
mation techniques have been introduced, incorporating process and measurement noise
covariance matrices to improve accuracy under uncertainty. For example, a comparative
analysis in [13] of the Extended Kalman Filter (EKF) and Unscented Kalman Filter high-
lights the EKF as a suitable compromise between computational efficiency and estimation
performance in scenarios with incomplete dynamic information. However, tuning the noise
covariance matrices remains a critical challenge, frequently requiring expert knowledge and
adjustment [14]. To enhance adaptability, a hybrid adaptive EKF utilizing a sliding window
strategy has been proposed in [15], which enables the adjustment of covariance matrices and
improves the resilience to time-variant conditions. Similarly, combined estimation schemes,
such as the integration of a Luenberger Observer with a Model Reference Adaptive System,
have been explored to account for speed variations, achieving a reduced computational
burden through inertia estimation [16]. Nevertheless, these methods continue to exhibit
sensitivity to transient load variations, which can compromise the quality of estimation
during dynamic behavior. Recent advancements have focused on refining model structures
and integrating multiple estimation strategies. For instance, a discrete-time Kalman filter
approach with automated noise covariance tuning has been implemented in [17] to support
rotor speed estimation with improved robustness. Despite the high accuracy and precision
achieved by these developments, the effectiveness of all model-based techniques remains
highly dependent on the accuracy of the motor model itself. Moreover, the implementation
of such techniques implies a considerable computational cost, as they require monitoring
multiple signals and solving several simultaneous differential equations.

As an alternative to model-based approaches, several techniques have been proposed
for estimating the speed of induction motors without requiring the computation of a math-
ematical motor model. Instead, these methods rely on tracking the spectral signature of
rotor slot harmonics, which are present in the stator current due to the geometric character-
istics of the rotor, as explained in Section 2.1. This motor model independence significantly
enhances the adaptability of RSH-based methods across a wide range of motor types and op-
erating conditions [18]. For example, in [19], enhancements to the Chirp-Z Transform have
demonstrated an improved frequency resolution for identifying slot harmonic frequencies
without increasing the computational complexity typically associated with full-spectrum
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Fast Fourier Transform (FFT)-based methods. Another FFT-based estimator in [20] can
follow the time evolution of spectral components, enabling speed tracking. Other proposals,
such as the adaptive sinusoidal mode decomposition in [21] and harmonic enhancement
via synthesized vibration signals in [22], address non-stationary behaviors but involve
complex processing steps or require supplementary sensors. Additional methods have
been proposed, ranging from signal demodulation with Hall effect sensors in [23] to the
zero-crossing detection of high-order RSHs [24] and from injected carrier signals [25] to har-
monic separation using phase-locked loop (PLL) structures in [26]. These techniques have
the objective of increasing estimation accuracy and tracking performance. Sparse spectral
analysis methods have also been proposed to enhance robustness in noisy environments.
In [27], the use of a sparsity-driven algorithm combined with a singular value decomposi-
tion has shown promising results in extracting RSH under variable speed conditions. This
technique enables RSH tracking under high-level speed changes. Similarly, an approach
that integrates digital adaptive filters and PLL architectures within the current and speed
control loops has demonstrated low latency in [7]. Another strategy, ref. [28], relies on
monitoring multiple harmonic components simultaneously using the Short-Time Fourier
Transform, providing an estimation during transient operations while avoiding dependence
on motor-specific parameters. Time-domain approaches have also emerged, such as the
use of histograms of oriented gradients for rotor speed estimation from single-phase stator
current measurements [29], enabling a high response. Table 1 shows a comparative analysis
of these methods from which the following conclusions can be drawn: (i) Most existing
methods rely on full-band signal processing, which inherently reduces noise immunity and
increases computational requirements; (ii) methods with a high accuracy typically come
with increased computational complexity; (iii) dynamic condition suitability often requires
either complex processing algorithms or additional sensors; and (iv) the trade-off between
computational efficiency and performance under varying conditions remains a significant
challenge. In summary, despite the diversity and sophistication of these methods, all rely
on a full-band signal, require high-dimensional feature extraction, and are reliable only
under steady-state conditions, which complicates practical implementation and reduces
noise immunity under industrial constraints.

To overcome these challenges, this study introduces a new subband signal processing
method aimed at estimating motor speed under changing operating conditions within the
manufacturer’s specified limits. The central idea is to narrow the analysis bandwidth to a
specific spectral region where the RSH is located, thereby eliminating the need to process
irrelevant frequencies. This approach significantly reduces the length of the signal to be
analyzed, thereby minimizing the computational burden and making the technique highly
suitable for real-time applications. By avoiding a full-bandwidth analysis, the method also
enhances noise resilience, as only the frequency region containing the useful harmonic
content is processed. To further improve harmonic detection, the method incorporates a
statistical spectral estimator based on an eigenvalue analysis of the autocorrelation matrix
of the signal. This estimator enables high-frequency resolution using short-length data
and robust identification of the speed-related harmonic, even when the stator current is
heavily contaminated by noise. The proposed methodology has been validated through
simulations and experimental tests on induction motors working under variable load
profiles within the manufacturer’s specified operational limits. The results demonstrate
a superior performance in estimation accuracy, computational efficiency, and robustness
when compared to techniques that rely on FFT analysis.
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Table 1. Comparative analysis of RSH-based speed estimation methods.

Method/Reference Computational
Complexity Robustness to Noise Estimation Accuracy Dynamic Conditions

Suitability Key Advantages Main Limitations

Enhanced Chirp-Z
Transform [16] Low-Medium Moderate High Limited

• Improved frequency resolution
• Lower complexity than

full-spectrum FFT

• Full-band processing
• Limited to steady-state

FFT-based with Time
Evolution Tracking [17] Medium Low-Moderate Moderate Moderate

• Tracks spectral
component evolution

• Simple implementation

• Full-band processing
• Reduced noise immunity

Adaptive Sinusoidal Mode
Decomposition [18] High Moderate High Good

• Handles non-
stationary behaviors

• Adaptive to signal changes

• Complex processing steps
• High computational burden

Harmonic Enhancement
with Vibration Signals [19] High Moderate High Good

• Addresses non-
stationary conditions

• Enhanced harmonic detection

• Requires supplementary sensors
• Increased system complexity

Signal Demodulation with
Hall Sensors [20] Low-Medium Good Moderate Limited • Direct measurement approach

• Simple implementation
• Requires additional Hall sensors
• Hardware dependent

Zero-Crossing Detection of
RSHs [21] Low Low Moderate Poor • Very low computational cost

• Real-time capable
• Sensitive to noise
• Limited to steady-state

Injected Carrier Signals [22] Medium Good High Moderate • Controlled signal injection
• Good noise rejection

• Requires signal
injection hardware

• May interfere with
motor operation

PLL-based Harmonic
Separation [23] Medium Good High Moderate • Good tracking performance

• Established technology
• PLL tuning required
• Convergence time issues

Sparse Spectral Analysis
with SVD [24] High Excellent High Excellent

• Superior noise robustness
• Handles high-level

speed changes

• High computational complexity
• Processing latency

Digital Adaptive Filters +
PLL [25] Medium-High Good High Good • Low latency

• Integrated with control loops
• Complex architecture
• Parameter tuning required

Multi-Harmonic STFT
Monitoring [26] Medium-High Good High Good • Motor parameter independent

• Transient operation capable

• Full-band processing
• Multiple harmonic

tracking overhead

Histograms of Oriented
Gradients [27] Medium Moderate Good Good

• Time-domain approach
• High response speed
• Single-phase measurement

• High-dimensional
feature extraction

• Training phase required
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The remainder of this paper is organized as follows: Section 2 reviews the theoretical
foundations of the study. Section 3 details the proposed methodology, including the signal
processing stages. Section 4 presents the numerical results obtained through simulation,
providing initial validation of the method. Section 5 outlines the experimental setup
used for real-world testing. Section 6 presents and discusses the experimental results.
Finally, Section 7 concludes the paper with a summary of key findings and suggestions for
future work.

2. Theoretical Foundations
2.1. Rotor Slot Harmonics

In an ideal induction machine, the harmonic content of the magnetic flux and the
electrical current consumed by the motor are the same. This is explained because the
length of the air gap is considered constant and, therefore, its reluctance is also constant.
The relationship between the magnetic flux and stator electric current is illustrated by the
magnetomotive force (MMF):

MMF = R·Φ(t) = N·ia(t), (1)

where R is the reluctance of the air gap, N is the number of turns of the stator coils, ia(t)
is their current, and ϕ(t) is the magnetic flux. The reluctance and the number of turns are
constant, and, therefore, the flux and the current are proportional quantities. That is, both
variables will have the same harmonic content in an ideal induction machine.

In a real machine, the air gap is not uniform because the periphery of the rotor has
slots to accommodate the bars of its squirrel cage. Then, the length of the air gap oscillates
between a minimum value in the teeth and a maximum value in the slots. Therefore, the
reluctance is no longer constant. When the rotor rotates following the rotating magnetic
field created by the stator, the reluctance will show a ripple [30] whose frequency, fr, is
determined by the following equation:

fr = (1 − s)
z
p

fe, (2)

where z is the number of rotor slots (which coincides with the number of bars in the squirrel
cage), p is the number of pairs of magnetic poles of the machine, s is the slip, and fe is the
fundamental frequency of the supply voltage. Observing the MMF equation (Equation (1)),
it can be seen that the variable reluctance modulates the magnetic flux. As a result, these
MMF harmonic components will appear in the spectrum of the stator currents. Their
position depends on the rotor speed. Therefore, when they are identified in the current
spectrum, they can be used to estimate the motor speed. These frequency components in
the stator current spectrum, fsh, are known as rotor slot harmonics. They are given by the
following equation:

fsh =

(
(1 − s)· z

p
± 1

)
fe, (3)

2.2. Subband Signal Processing
2.2.1. Down-Sampling Process

Let us suppose the signal ia with spectrum Ia(ω) is being down-sampled by an integer
factor D. In the frequency interval 0 ≤ |ω| ≤ π, equally, |F| < Fx/2, the spectrum Ia(ω)
is supposedly non-zero. If the sampling rate is basically reduced by choosing each Dth
value of ia, the generated signal is going to be an aliased version of ia, with an unfold-
ing frequency of Fx/2D. Firstly, the bandwidth of ia up to Fmax = Fx/2D or, equally, to
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ωmax = π/D, should be reduced to prevent aliasing. Lastly, it can be down-sampled by D,
consequently, preventing aliasing.

Figure 1 illustrates the block diagram of the process that performs down-sampling,
commonly referred to as a sample rate compressor. The N-samples input sequence ia
is passed through a low-pass filter, marked by the impulse response h and a frequency
response H(ω), which perfectly fulfills the condition:

H(ω) =

{
1, |ω| ≤ π/D
0, otherwise

. (4)

Figure 1. Block diagram of sample rate compressor.

Thereby, the filter removes the spectrum of Ia(ω) in the range π/D < ω < π. This
implies that only the frequency components of ia in the range |ω| ≤ π/D are desirable
for further processing of the signal. The yield of the filter is a sequence ν(n), as shown in
Equation (5):

ν(n) = ∑∞
k=0 h(k)x(n − k), (5)

then, it is down-sampled by the factor D to generate isb [31]:

isb(m) = ν(mD) = ∑∞
k=0 h(k)x(mD − k). (6)

In this manner, a low-frequency subband decomposition is obtained. The original sig-
nal is decomposed, and its low-frequency content within the range [0, Fx/2D) is contained
in the subband denoted as isb. The down-sampling operation enables the construction
of a processing scheme that allows the original signal to be split into two subbands: the
low-frequency and high-frequency components.

2.2.2. Subband Signal Decomposition

In a subband decomposition, the input signal ia is passed through a pair of quadrature
filters: a low-pass filter HL(z) and a high-pass filter HH(z). These filters are designed
to satisfy the half-band property. The low-pass filter has a transition band centered at
π/2, and approximately half of the impulse response (h(n)) coefficients are zero. This
results in computational efficiency. Then, each filtered output is down-sampled by a
factor of D = 2. This process results in two subband signals that occupy distinct spectral
regions. The process is depicted in Figure 2, which illustrates the block diagram of the
subband decomposition structure. The diagram shows the original signal ia entering the
system and being split into two branches. The upper path represents the high-pass branch
HH(z), followed by down-sampling. The lower path illustrates the low-pass branch HL(z),
also followed by down-sampling. The outputs of these branches correspond to the high-
frequency and low-frequency components of the signal, respectively. This decomposition
ensures that each resulting subband has a reduced number of samples and sampling rate,
satisfying the Nyquist criterion. Furthermore, it allows for subsequent processing, such as
spectral estimation, to operate at a lower rate while preserving essential signal features.
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Figure 2. Block diagram of subband decomposition.

2.3. Spectral Estimation via Short-Time Minimum Norm

High-resolution spectral estimation methods based on an eigen decomposition are
widely used for analyzing non-stationary signals through short-time analysis. One tech-
nique in this family is the Short-Time Minimum Norm (STMN) algorithm. It is known for
its ability to provide high-resolution estimates that surpass the limitations of conventional
Fourier-based methods. The STMN algorithm relies on decomposing the data covariance
matrix. Using the spectral properties of this matrix improves the conditioning of the
solution. In addition, it helps reduce the impact of noise in the signal space. Let x(n),
n = 1, 2, . . ., N, be the discrete-time stator current signal consisting of a set of real harmonics
and embedded in additive white Gaussian noise. The data covariance matrix is defined
as follows:

Rxx = E
[
X X⊤

]
∈ Rm×m (7)

The eigen-decomposition of Rxx is given by

Rxx = UΛUH (8)

with U = [u1, . . . , um] being the orthonormal eigenvectors and Λ = diag(λ1, . . . , λm)

the corresponding eigenvalues arranged in decreasing order. The dominant eigenvec-
tors span the signal space, while the remaining are related to the white Gaussian noise.
This decomposition is used to isolate the harmonic components of the lead field matrix
G ∈ Rm×m. Projecting G onto the subspace defined by the dominant eigenvectors can re-
duce sensitivity to noise and improve numerical stability. The regularized inverse solution
is then written as follows:

Î = W Y, with W = G⊤
(

GG⊤ + λRn

)−1
, (9)

where λ is a regularization parameter, and Rn represents an estimate of the noise covariance,
often constructed from the eigenvectors corresponding to the smallest eigenvalues of Ry.
Eigen-decomposition methods allow a detailed examination of the signal and noise char-
acteristics in multi-frequency component signals. The minimum norm algorithm exploits
the orthogonality between the signal and noise subspaces. Specifically, the estimation
frequency vector a(f ), defined as a( f ) =

[
0, e−j2π f , · · · , e−j2π f (M−1)

]
, is orthogonal to all

vectors in the noise subspace. Thus, the pseudospectrum is constructed as follows [32]:

Sxx( f ) =
1

aH( f )UnUH
n a( f )

, (10)

where the denominator represents the projection of the estimation frequency vector onto
the noise subspace. Singularities in the spectrum function correspond to the harmonic and
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interharmonic components in the stator current signal. Compared to classical techniques,
the minimum norm provides superior spectral resolution with fewer samples. This makes
it particularly suitable for the spectral analysis of signals in short-time analyses.

3. Proposed Method
In this section, the proposed method is presented, which employs time-domain signal

processing to improve the resolution of speed estimation, addressing the limitations of
conventional methods that rely on various sensor measurements and require high compu-
tational costs. The input stator current signal ia(t) is composed of a sequence of samples,
comprising past, present (actual), and future values, as demonstrated in Figure 3. The out-
put is referred to as sb(t), which contains a frequency subband of ia, in which components
are independent for further analysis. At the end, samples of the stator current signal ia(t),
which contain the RSH, are chosen for the subband signal processing.

Figure 3. Subband decomposition processed in the time domain. Samples marked with red squares
illustrate the 8-to-1 sample reduction for a subband decomposition.

The detailed signal processing method is depicted in Figure 4. The input to the
method is the stator current signal, while the output is a time-resolved map of the rotor
speed waveform.

Figure 4. Speed estimator structure based on subband signal analysis.

The first stage consists of frequency subband division, where the broadband stator
current signal is decomposed into multiple narrowband components. The block diagram in
Figure 4 represents a general multi-stage subband decomposition structure comprising M
stages. This configuration divides the original bandwidth [0, fs/2) into k uniform subbands,
each with an identical frequency bandwidth of [0, fs/2)/k Hz. The implementation employs
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k/2 subband decompositions, as detailed in Section 2.2.2. This multi-stage division enables
the selective isolation of spectral regions associated with the rotor speed component, while
allowing a reduction in the number of samples to minimize subsequent computation. The
selection of the spectral bandwidth for the analysis subband is based on the expected
frequency variation in the principal rotor slot harmonic, fsh, across the nominal operating
range of the motor. The upper frequency bound of the subband corresponds to the fsh

frequency when the motor is operating under no-load conditions, which represents the
maximum rotational speed. This value is determined using Equation (3), with s = 0 and
the positive harmonic sign. Conversely, the lower limit reflects the fsh frequency when the
motor is operating under the maximum rated load, calculated using Equation (3), using the
maximum slip provided by the motor manufacturer. This defines the subband where the
motor will operate according to industrial reliability standards, ensuring the motor is sized
to prevent overload conditions. The difference between these two frequency limits defines
the minimum required spectral bandwidth, denoted as sbf, that allows for the accurate
tracking of motor speed under all nominal conditions. To ensure that the selected subband
encompasses the full operating range, the condition fs/2k > sbf must be satisfied. However,
to optimize computational efficiency, the value of fs/2k is chosen to be as close as possible
to sbf, minimizing the frequency range.

After subband decomposition, the signal containing the relevant rotor-related spectral
components is analyzed using the high-resolution time-frequency technique. The STMN
transform is applied to achieve precise spectral estimation. This stage begins with the
computation of the autocorrelation matrix Rxx for the subband signal over a short-time
window. Singular value decomposition is then performed on Rxx to separate the signal
subspace from the noise subspace, effectively discarding the eigenvalues corresponding
to noise. Once the signal subspace is identified, the spectral content is constructed for
each short-time segment, resulting in a spectral representation of the subband signal.
This representation is subsequently transformed into a time-speed distribution (t, nr),
which provides a detailed depiction of the dynamic rotor speed behavior over time. This
methodology enables fast processing, as the analysis is performed in a short time, and due
to the subband decomposition, the matrix decomposition required by the spectral estimator
is of a reduced order.

4. Numerical Results
To evaluate the dynamic behavior of the induction motor under load disturbances,

time-domain simulations were conducted using MATLAB 2024a software. The system
model consists of a 2-pole pair induction motor with 26 rotor slots [12], energized by
a 50 Hz voltage source, and mechanically coupled to a second-order load system. The
simulations were carried out with a sampling period of 20 µs over a total duration of
10 s. Figure 5 presents the time evolution of the applied load torque, which was simulated
in a piecewise manner to introduce abrupt changes and observe their impact on motor
dynamics. This disturbance scenario was designed to reflect realistic operational conditions
such as the sudden mechanical load increases or decreases that a motor encounters in
industrial environments. As shown in Figure 5b, the instantaneous speed reflects imposed
disturbances. Each variation in the load torque results in a transient deviation in speed,
followed by a gradual return to the steady-state regime. The speed drops and overshoots
are consistent with the inertia and damping characteristics of the system.

The simulated stator current signal is analyzed to extract rotor speed information.
Figure 6a presents the outcome of a conventional FFT-based analysis. As observed, the
spectrum reveals five frequency peaks corresponding to the rotor slot harmonic as described
in Equation (3). This multiplicity of peaks introduces ambiguity in estimating both time
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and speed. A straightforward strategy to mitigate this temporal uncertainty involves
reducing the analysis window. However, such a reduction degrades the FFT spectral
resolution, obscuring the detection of harmonic peaks. In contrast, Figure 6b illustrates the
performance of the proposed method, which addresses these limitations more effectively.
This result illustrates the proposed subband t-f analysis method applied to the same stator
current signal. The subband analysis enables the identification of non-stationary features
induced by torque variations. It is worth noting that the stator current exhibits speed
variations due to torque disturbances. The proposed decomposition effectively captures
transient spectral densities in the interested frequency range, revealing the instantaneous
speed behavior. This analysis demonstrates that the stator current is a viable signal for
detecting and characterizing load disturbances.

(a) 

(b) 

Figure 5. Numerical results for an induction motor under time-varying conditions: (a) load torque;
(b) rotor speed.

(a) 

 
(b) 

Figure 6. Numerical results for an induction motor under time-varying conditions: (a) FFT-based
analysis of the stator current; (b) subband time-frequency analysis of the stator current.
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5. Experimental Test Bench
The test bench described below and shown in Figure 7 was assembled for this study.

This laboratory setup comprises a three-phase induction motor, a controllable magnetic
powder brake, a current clamp, an encoder, anti-aliasing filters, a data acquisition board,
and a laptop PC. Table 2 summarizes the specifications of the tested induction motor.

 

Figure 7. Laboratory test bench: (1) brake, (2) induction motor, (3) current clamp, (4) encoder, (5)
anti-aliasing filters, (6) data acquisition system, and (7) laptop PC.

Table 2. Specifications of the induction motor tested in the laboratory.

Characteristic

Manufacturer Siemens
Motor Model 1LA7083-4AA10
Motor Type Three-phase induction motor

Stator Winding Connection Star
Rated Power 750 W
Rated Voltage 400 V

Rated Frequency 50 Hz
Number of Poler Pairs 2

Rotor Type Squirrel cage
Number of Rotor Bars 26

The motor is loaded with a Lucas-Nülle magnetic powder brake, model SE 2662-5R.
The braking power is 1 kW and allows the load torque to be set manually or via a voltage
control signal. The following motor signals are captured during the tests: stator current and
rotational speed. The stator current is measured with a YHDC current clamp, model SCT013.
Its nominal peak current is 5 A, providing a proportional voltage signal in the range of
± 1 V. The D-70054 model from Kübler is the encoder used to record the speed. The encoder
is a push–pull type, with an output of 24 V, and offers 1024 PPR. The current signal is passed
through an LTC 1564 filter from Linear Technology Corporation (Milpitas, CA, USA). The
cutoff frequency was set at 10 kHz. The signals are captured using a National Instruments
system (Austin, TX, USA) consisting of the cDAQ-9174 chassis equipped with two modules.
One allows the capture of the current (module NI-9215) and the other (module NI-9361)
the output of the encoder. This system is connected via a USB port to a laptop PC equipped
with Windows 10 OS. Acquisition is performed at a sampling frequency of 20 kHz over a
10 s period. The encoder speed is captured with a specific function provided by Mathworks
(Natick, MA, USA). Several trials were performed when the motor, fed from the mains,
was running in a stationary state and subjected to load changes that produced variations in
its speed.
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6. Experimental Results
To validate the proposed methodology, experimental tests were conducted under both

stationary and non-stationary operating conditions of the induction motor. The testing
scenarios are three representative cases: constant load, instantaneous step load changes,
and soft torque step variations. These torque disturbances were selected due to their
prevalence in mechanical systems driven by induction motors, where speed variations are
primarily induced by variations in the load torque. Time-frequency decompositions were
performed using the same short-time parameters to ensure consistency across test cases.
The stator current analysis employed the minimum norm algorithm (Section 2.3) with a
short-time processing scheme, using 100 samples per window, a 2-sample hop size, and an
analysis order of eight. This uniform setup enables a reliable comparative evaluation of
the method’s performance across diverse dynamic conditions, reflecting real-world appli-
cations. The subband decomposition stage is implemented using nine successive binary
divisions (M = 9) of the original signal bandwidth. Starting with a sampling frequency
of 100 kHz, this process yields 512 subbands, each with a bandwidth of 97.65 Hz. This
frequency range is sufficient to track the complete spectral evolution of the fsh across the
full nominal speed range of the motor. The use of binary decomposition (D = 2) not only fa-
cilitates isolation but also enables an efficient digital implementation of the down-sampling
stages, utilizing the symmetry of the digital structures and minimizing computational
processing. The subband selection, while static and motor construction dependent (z and p
in Equation (3)), can be recalculated for motors with different rotor slots (z) or pole pair
numbers (p) by adjusting the expected frequency limits via Equation (3).

6.1. Motor Speed Estimation Under Constant Load Conditions

Figure 8a,b illustrates the rotor speed estimation obtained using the proposed method
when the induction motor operates under constant load conditions. Figure 8a displays
the estimated speed in the case where the motor operates without a mechanical load,
consuming a line current of 1.94 A. Under these conditions, the instantaneous speed
remains relatively stable over time. The method accurately estimates an average speed
of 1491 r.p.m. throughout the duration of the experiment, from 0 to 10 s. Furthermore,
the method captures minor speed variations with instantaneous values ranging between
1488 and 1495 r.p.m., thereby highlighting its capability to track small variations under
steady-state conditions. Figure 8b presents the speed estimation results when the motor
is subjected to a rated load torque, corresponding to a rated line current of 2.2 A. Under
this scenario, the motor experiences a high slip level, and the results correctly reflect
a reduction in rotor speed due to the increased load. The average speed decreases to
1394 r.p.m., representing a drop of approximately 100 r.p.m. compared to the no-load
condition. Despite this reduction, the instantaneous speed remains consistently stable, with
small fluctuations of less than 10 r.p.m. throughout the analyzed time (0 to 10 s). Unlike
traditional methods, which typically estimate the average motor speed by identifying a
peak in the stator current spectrum, the proposed approach can estimate the instantaneous
motor speed.

The absence of a load corresponds to the motor’s maximum speed (Figure 8a), while
full-load conditions define its minimum operating speed (Figure 8b). This range delineates
the nominal operating range of the motor. Introducing a disturbance exceeding this scenario
would lead to an overload condition, pushing the machine beyond its rated operational
limits as an induction motor. The proposed technique is designed for induction motor
operation within the nominal range, as defined by the manufacturer, from no-load to
full-load conditions, and is capable of tracking transients that occur within the motor
operational band. Additionally, it relies solely on the spectral properties of a single stator
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line current. These spectral characteristics are not affected by the direction of rotation.
Therefore, the functionality is preserved regardless of whether the motor operates in the
forward or backward direction.

 

(a) (b) 

Figure 8. Rotor speed estimation for (a) induction motor under no-load conditions; (b) induction
motor under full-load conditions.

6.2. Induction Motor Under Load Transients

For the purposes of motor control and health condition monitoring, it is critical to
evaluate not only the steady-state behavior but also the dynamic performance of instan-
taneous speed. To this end, experimental tests involving abrupt speed changes were
conducted. These changes were induced by sudden variations in the load torque applied
through the powder magnetic brake. The corresponding results are depicted in Figure 9.
Figure 9a illustrates the rotor speed response to a positive torque step. The motor maintains
an average constant speed of approximately 1490 r.p.m. from the start of the test until
second 4.8. At this point, a rapid speed drop is observed, reaching 1430 r.p.m. by second
5.2. The proposed method enables an accurate estimation of this speed transition, allowing
for the evaluation of a decay time of 0.59 s. The speed quickly settles at a mean value of
1440 r.p.m., approximately 1.25 s after the torque change is applied. Conversely, Figure 9b
presents the response to a negative load step, where the torque load is abruptly removed.
The proposed methodology estimates a constant speed of 1441 r.p.m. during the first 5.5 s
of operation. Following the load removal, a sudden increase in speed is observed. In
this case, no overshoot is present in the speed response, and the speed stabilizes within
200 milliseconds, which is faster than in the previous scenario.

As illustrated in Figure 9, the proposed short-time subband analysis of the stator
current successfully captures abrupt changes in the speed. Figure 10 presents the exper-
imental results obtained when the induction motor is subjected to multiple speed and
acceleration profiles. In the first part of the experiment, the motor is exposed to load
increases that induce a gradual deceleration from 1450 to 1400 rpm. In the second phase,
stepwise reductions in load are applied, resulting in a progressive increase in motor speed.
The experimental results clearly demonstrate the method’s ability to estimate the actual
motor speed, accurately capturing both deceleration and acceleration phases. The observed
variations in slope reflect the dynamic response of the motor due to its inherent inertia.
Furthermore, at second 6.2, a brief load disturbance is introduced to assess the method’s
responsiveness. The method successfully detects this event, capturing the corresponding
short-duration variation in motor speed.
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(a) (b)

Figure 9. Rotor speed estimation for (a) induction motor under positive load step; (b) induction
motor under negative load step.

Figure 10. Rotor speed estimation for the induction motor under speed different acceleration profiles.

Finally, the motor is subjected to multiple smooth torque variations within a single test,
each with a different amplitude level. This test aims to evaluate the system’s response across
a wide range of speeds. Figure 11a presents the result obtained using the proposed method,
while Figure 11b shows the reference speed signal for comparison. The time-speed analysis,
depicted in Figure 11a, clearly identifies seven smooth speed transitions corresponding to
the applied torque changes, starting with a 10 r.p.m. speed reduction (torque increment) at
second 2 and concluding with a 30 r.p.m. step down at second 11. In contrast, Figure 11b
(solid blue line) illustrates the speed signal captured by the optical encoder. This signal
exhibits significant high-frequency content, resulting from the wide bandwidth sensitivity
provided by the optical sensor (1024 pulses per revolution). However, when the encoder
signal is processed using a moving average filter (yellow line), it becomes evident that
the proposed method (fsh) closely follows the behavior of the filtered encoder signal. This
filtering process is commonly implemented in motor control systems to attenuate noise in
feedback signals, thereby highlighting the practical applicability of the proposed approach.

The proposed methodology successfully tracks the rotor speed dynamics under var-
ious step changes in both amplitude and duration. The experimental results validate
the effectiveness of the method in estimating instantaneous motor speed using only a
single-phase current measurement. The tests confirm its reliability under both steady-state
and dynamic operating conditions, including scenarios involving rapid and large speed
transitions. This method offers the advantage that RSH tracking enables speed estimation
without necessitating specific knowledge of motor parameters, such as rotor resistance,
leakage inductance, or system inertia.
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(a) 

(b) 

Figure 11. Experimental results. Load step responses: (a) proposed methodology; (b) 1024 p.p.r. encoder.

Table 3 shows a comparison of signal processing using two known techniques and the
technique proposed in this paper. The first technique is the Short-Time Fourier Transform
(STFT), the standard signal processing technique in the time-frequency domain [33]. The
second technique is the Short-Time Multiple Signal Classification (MUSIC) [34], a high-
resolution spectral estimator. The third technique compared is the one proposed in this
work. All three tools have processed the same signal sampled at a frequency of 100 kHz.
Two different analysis times, 5 and 10 s, have also been compared. The test was performed
on a PC with Windows 11 Pro, an Intel Core i7-12700K processor, and 64 GB of RAM. The
scripts were run on a single core in MATLAB version 2024b. The CPU execution time and
maximum RAM were compared.

Table 3. Comparison of computational burden.

Methodology Analysis Time (s) CPU Time (s) Memory Peak (GB)

Short-Time Fourier Transform
5 0.10532 0.0284

10 0.11094 0.0284

Short-Time MUSIC *
5 9873.8465 2.5085

10 17,668.5019 5.4944

Proposed Methodology
Subband-STMN

5 0.1876 0.0037
10 0.2007 0.0075

* MUSIC order: 800.

It can be seen that the signal processing time with STMUSIC is much longer than
with STFT and the proposed methodology (approximately four orders of magnitude).
The execution time of the proposed method is 1.8 times more than that obtained with
STFT. However, the memory used is 7.7 times less for the 5 s signal and 3.8 times less
for the 10 s signal. The memory usage of STMUSIC, which required an order of 800
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to observe the harmonics in the band of interest, is 700 times greater than that of the
proposed methodology.

The subband processing captures only the frequency range containing the oscillation of
the principal slot harmonic. This frequency bandwidth segmentation enables the frequency
estimator (minimum norm) to operate at a reduced order, specifically using the minimum
order λm = 2. As a result, the subspace decomposition achieves a maximum performance
by enhancing the projection of orthogonal spaces, while also reducing computational costs
through a minimum order. Both the predefined frequency band and the parameters for
the short-time analysis are static, thus avoiding the use of adaptive algorithms, which are
sensitive to estimator instability and require higher computational effort. It is important
to emphasize that the subband preprocessing stage introduces a delay of approximately
60 µs in the generation of an instantaneous speed estimation value. This duration has been
minimized through the design of the digital processing architecture and is significantly
shorter than the typical dynamic response times of mechanical systems driven by induction
motors. Although the proposed preprocessing approach is employed in this work to
enhance the performance of a statistical estimator, the underlying signal decomposition
remains fully compatible with a broad range of spectral analysis techniques and is well-
suited for real-time implementation in industrial motor control systems.

7. Conclusions
This paper presents a subband signal processing methodology for estimating the

rotor speed in induction motors functioning within the operational limits defined by the
motor manufacturer. By focusing on the spectral region containing the principal rotor
slot harmonic and using a high-resolution estimator, the approach enables an accurate,
noise-resilient, and instantaneous speed estimation with low computational demand. Un-
like FFT-based techniques, it is better suited for dynamic operating situations, capturing
instantaneous speed variations instead of average values. The proposed method outper-
formed STFT and STMUSIC in processing time and memory usage while maintaining
a high resolution. Its model-independent nature and low resource requirements make
it a promising solution for embedded speed monitoring in industrial applications. The
proposed technique is fully scalable, as the motor’s power rating does not affect the spectral
content of the line current. The experimental results illustrate a wide range of operational
scenarios for the motor under nominal conditions, including the minimum and maxi-
mum load, instantaneous load changes, smooth load variations, increasing load steps, and
descending load steps. Validation through simulations and experiments confirmed its
capability to accurately estimate the rotor speed under those different conditions, demon-
strating robustness and practical applicability. Additionally, the technique requires only
a single current sensor, simplifying integration and reducing costs. Although the current
implementation runs on a personal computer, future work aims to deploy the algorithm
onto embedded hardware for real-time processing and to integrate it into motor control
devices, such as frequency converters. This will involve testing the algorithm at various
setpoint frequencies, including low operating speeds.
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