
Part II

ANALYSIS OF VARIANCE AND

DESIGN OF EXPERIMENTS
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The analysis of variance (ANOVA) is an statistical procedure which allows us to �nd possible di-

¤erences in the expected value of a random dependent variable Y with normal distribution for di¤erent

groups of experimental units in the same population. These groups are de�ned by the possible levels

of one or more factors that can be considered as categorical independent variables (A, B, C,...). Each

combination of factor levels is known as a treatment in the ANOVA and the purpose is to detect any

signi�cant di¤erences between treatments and, if necessary, quantify the magnitude of the di¤erences.

Then an statistical experiment is a scienti�cally planned work to meet this goal.

The methodology of experimental design is based on experimentation and its associated variability,

because if we repeat an experiment under identical conditions, the obtained results are likely to show

some variability. Thus, the design of experiments studies how to vary experimental conditions in order

to increase the probability of detecting signi�cant changes in the dependent variable, also called response

variable.

The reasons for experimentation may be di¤erent. For example: to discover possible causes of variation

in the response variable; or �nd experimental conditions under which an optimum value for the response

variable is achieved; or compare responses at di¤erent levels of observation of controlled variables; or even

obtain a statistical-mathematical model to make predictions of future responses.

The results of any experiment are subjected to three types of variability which must be distinguished:

� Planned systematic variability. Caused by the di¤erent experimental conditions imposed on

the design. It is the type of variability that we try to identify with the design.

� Random variability. It is an unpredictable and unavoidable variability due to factors beyond our

control. If the experiment was well designed it can be measured and used to draw conclusions and

make predictions on the response variable.

� Unplanned systematic variability. It is due to unknown causes and unplanned. There are two

basic strategies to avoid the presence of this type of variability: randomization and blocking.

Next we present the four basic principles in the design of experiments:

1. Replication. It is the use of several experimental units for each of the treatments in the experiment.

This principle allows us to obtain an estimation of the random variability, which will be necessary

in the further analysis, and, moreover, estimate the e¤ect of each treatment more accurately.

2. Randomization. It is to assign levels of the factors to the experimental units at random and also

the random selection of the order in which measurements of the response variable are made. This

principle transforms the unplanned systematic variability in random variability, prevents the occur-

rence of systematic errors, avoids the dependence between observations ensuring the independence

of the errors in the model and, �nally, provides unbiased estimates for the random variability and

the e¤ects of the treatments.

3. Blocking. If there is a great heterogeneity in the experimental units, they should be divided into

groups called blocks so that the observations made in each block are under experimental conditions
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as similar as possible. Then all the treatments are used in each block. This principle let us to

transform the unplanned systematic variability in planned systematic variability.

4. Factorization. It is to cross all the levels of the factors in all possible combinations. This principle

let us to detect the existence of interactions between di¤erent factors and it is a more e¢ cient

strategy than the analysis of the in�uence of a factor with �xed levels for the other factors.

In general, the steps to be followed in the design and analysis of any statistical experiment are as

follows:

1. De�ne the objectives of the experiment and develop a comprehensive list of questions that must be

answered.

2. Identify all possible sources of variation: treatment factors to be taken into account and other

"nuisance" factors that are not directly relevant but are contemplated to reduce unplanned variab-

ility. The treatment factors may be qualitative or quantitative and the levels of the factors to be

used must also be set. If a factor is quantitative, it is desirable that the levels are equally spaced.

Sometimes a control treatment is necessary to be used as a reference for assessing the e¤ect of

all the other treatments.

3. De�ne the experimental units, that is, the experimental material (individuals, trees, plots, etc.)

that apply to the di¤erent levels of the factors and on which it will assess the response variable.

They should be a representative sample of the target population of the study. As we have said

before, if there is a great heterogeneity between them, it may be desirable to add a block factor

with homogeneous experimental units in each level.

4. Choose a mapping rule of the experimental units to the treatments. If you choose a standard design

(as you will learn in this course) this rule will be de�ned by the design.

5. Formulate the statistical model by a mathematical equation with the parameters to be estimated,

as we will do in each of the designs.

6. Specify the steps in the statistical analysis: the estimates to be calculated, the contrasts to be

performed, the con�dence intervals to be evaluated, the degree of �t of the model and the compliance

of the assumptions set out in the model.

7. Determine the sample size for each of the treatments, that is, the number of replicates for each

of them. To choose it beforehand, an estimator of the random variability is required, which is not

generally available. Therefore sometimes a pilot experiment with a small number of observations is

previously executed to obtain this estimator.

8. Run the experiment, randomizing, if it is possible, the order in which the treatments are used and

the order in which the measurements of the response variable are made.

9. Perform the statistical analysis of the obtained data with the proposed model, and answer the

questions previously raised in the experiment.

In the next chapters we will study some ANOVA models and the basic experimental designs that can

be analyzed with each of them.
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Chapter 1

ONE-WAY ANOVA

Let us suppose that yij with i = 1; :::; a and j = 1; :::; n are the observed values for a independent random

samples of the dependent variable Y . That is, we have a dependent variable Y and a factor A with a

levels. Moreover, we suppose that Yij  N (�i; �) and the purpose is to solve a hypothesis test with

Ho : �i = �i0 for all i; i
0 versus H1 : �i 6= �i0 at least for one pair i; i0.

The model can be formulated as E (Yij) = �i and, therefore, Yij = �i + "ij with "ij  N (0; �) and

"ij independent of "i0j0 for any values i; i0; j; j0. Taking into account that the null hypothesis Ho does

not specify a particular value for the expected values �i, we consider a new parameter � =
1
a

P
i

�i such

that, if Ho is true, then �i = � for all i. Then, �i = �i � � can be considered as the speci�c e¤ect for

the level i of the factor A on the overall expected value �, with
P
i

�i = 0. As a consequence, the model

can be alternatively formulated as E (Yij) = �+�i and, therefore, Yij = �+�i + "ij with
P
i

�i = 0 and

"ij  N (0; �). Now, the null hypothesis is Ho : �i = 0 for all i versus H1 : �i 6= 0 at least for one value

i, which is more suitable.

Using the notation Y �� = 1
an

P
i;j

Yij and Y i� = 1
n

P
j

Yij , it seems appropriate to estimate the parameters

of the model as �̂ = Y ��, �̂i = Y i� and �̂i = Y i� � Y ��. Then, the estimated residuals for the model are

"̂ij = eij = Yij � �̂i and it is clear that all these estimators are unbiased with normal distribution.

Moreover, it can be easily shown thatX
i;j

�
Yij � Y ��

�2
= n

X
i

�
Y i� � Y ��

�2
+
X
i;j

�
Yij � Y i�

�2
or, more brie�y, SST = SSA + SSE with SST =

P
i;j

�
Yij � Y ��

�2
, SSA = n

P
i

�
Y i� � Y ��

�2
and SSE =P

i;j

�
Yij � Y i�

�2
. Note that, alternatively, we can write SST =

P
i;j

(Yij � �̂)2, SSE =
P
i;j

(Yij � �̂i)
2 and

SSA = n
P
i

�̂2i .

Using the Fisher�s theorem for each of the a samples, is clear that

P
j
(Yij�Y i�)

2

�2  �2n�1 for all i, and

they are independent random variables. Then we can ensure that
SSE

�2
 �2a(n�1) and we can estimate
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the parameter �2 as c�2 = SSE

a(n� 1) . This ratio is called the mean square error of the model and it is

usually denoted by MSE = c�2.
In addition, if �i = 0 for all i, it is clear that Y i�  N

�
�; �p

n

�
with i = 1; :::; a and they are a simple

random sample of this distribution with Y �� = 1
n

P
i

Y i�. Then, using again the Fisher�s theorem, we have

P
i

�
Y i� � Y ��

�2
�2=n

=
SSA
�2
 �2a�1

Finally, taking into account that SSA is independent of SSE, we obtain that, if Ho : �i = 0 for all i

is true and MSA =
SSA
a� 1 , then

FA =
SSA=(a� 1)

SSE=(a(n� 1)) =
MSA
MSE

 Fa�1;a(n�1)

Therefore, this statistic let us to obtain an appropriate test for Ho vs H1 reasoning as usual in the

hypothesis test theory.

After solving this test, if Ho is rejected, it is interesting to compare each pair of means �i and �i0 ,

that is, to solve individual tests with Ho : �i = �i0 (or �i � �i0 = 0) for each pair i; i0. To do this, we

observe that �
Y i� � Y i0�

�
� (�i � �i0)

�
q

2
n

 N (0; 1)

and, if �i = �i0 , we have
Y i� � Y i0�q

2MSE
n

 ta(n�1)

Then, we can solve individual tests for each pair of means using this statistic. For a �xed level of

signi�cance �, the least signi�cant di¤erence (LSD) for each pair of observed means Y i�; Y i0� is

LSD = ta(n�1);�=2

r
2MSE

n

such that each test is signi�cative if
��Y i� � Y i0��� > LSD. This is the classical LSD Fisher�s test for the

means in the analysis of variance.

The standard error for the means is de�ned as SE =

r
MSE

n
and the con�dence intervals for the

expected values �i can be evaluated as

Y i� � ta(n�1);�=2

r
MSE

n

Moreover, for a new independent observation Yi0j0 , we can ensure that Yi0j0�Y i�  N
�
0; �
q
1 + 1

n

�
and a prediction interval for the observed value is given by

Y i� � ta(n�1);�=2
p
MSE

r
1 +

1

n
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Example 1: Completely randomized design. To compare the diameter growth in four pine

species living on a plantation 15 years old, ten pines of each specie were randomly selected from the

plantation and the following data for the diameter (cm) were obtained:

Specie 1 (y1j) 16:6 16:7 13:2 13:2 22:9 13:0 15:1 25:5 19:6 14:8
P
j

y1j = 170:6

Specie 2 (y2j) 14:9 20:5 20:6 21:1 13:6 21:1 21:1 16:9 20:9 19:1
P
j

y2j = 189:8

Specie 3 (y3j) 25:4 16:3 31:6 25:6 20:9 21:9 21:4 17:2 19:6 25:5
P
j

y3j = 225:4

Specie 4 (y4j) 27:9 22:0 16:4 19:9 22:7 23:3 19:1 26:1 18:7 24:2
P
j

y4j = 220:3

Denoting by �i the expected value for the diameter in the i-specie, we consider the one-way model

E(Yij) = �i = � + �i + "ij with
P
i

�i = 0 and "ij  N (0; �). Taking into account that
P
i;j

yij = 806:1

and
P
i;j

y2ij = 16988:56, the estimated parameters for the expected values are: �̂ = �y�� = 20:1525, �̂1 =

�y1� = 17:06, �̂2 = �y2� = 18:98, �̂3 = �y3� = 22:54 and �̂4 = �y4� = 22:03. Therefore, we have �̂1 = �3:0925,

�̂2 = �1:1725, �̂3 = 2:3875 and �̂4 = 1:8775. The next graph plots the observed values and the estimated

parameters:

Calculating the sum of squares we obtain: SST= 16988:56� 40�y2�� =743:630, SSA=10
P
i

�̂2i=201:635

and SSE=541:995. Then MSE = 541:995
36 = 15:0554 and the estimated value for the parameter � is

�̂ =
p
MSE = 3:88. The F-test with Ho : �i = 0 for all i leads to FA = 201:635=3

15:0554 = 4:46 and the

p-value for the test is p (F3;36 > 4:46) = 0:0091, which is signi�cative with � = 0:05. Therefore there are

signi�cant di¤erences among species in the expected diameter growth.

The standard error for the means is SE =
q

15:0554
10 = 1:227 and, taking into account that ta(n�1);�=2 =

t36;0:025 = 2:0281, the 95% con�dence intervals for the expected values are 17:06�2:49 = (14:57; 19:55) for

�1, 18:98�2:49 = (16:49; 21:47) for �2, 22:54�2:49 = (20:05; 25:03) for �3 and 22:03�2:49 = (19:54; 24:52)

for �4. For a signi�cance level � = 0:05, the least signi�cant di¤erent is LSD = 2:0281
q

30:1108
10 = 3:52

and the di¤erences between the observed means are:

Pair �1 � �2 �1 � �3 �1 � �4 �2 � �3 �2 � �4 �3 � �4
Di¤erence �1:92 �5:48� �4:97� �3:56� �3:05 0:51

Therefore, there are signi�cant di¤erences between �1 and �3, �1 and �4, and �2 and �3; because the

di¤erence is larger in absolute value than the LSD value. The other pairs of means are not signi�cantly

di¤erent, that is, �1 and �2, �2 and �4, and �3 and �4. The results of this LSD Fishers�s test are usually

summarized as:
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Specie Mean

1 17:06 A

2 18:98 AB

4 22:03 BC

3 22:54 C

or, alternatively,

Specie Mean

1 17:06 X

2 18:98 XX

4 22:03 XX

3 22:54 X

so that mean values without any common letter are signi�cantly di¤erent, and mean values with at least

a common letter are not signi�cantly di¤erent. Or similarly, mean values together vertically by the sign

X are homogeneous subgroups without signi�cant di¤erences, and pair of means which do not appear

together in any homogeneous group are signi�cantly di¤erent.
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Chapter 2

MAIN EFECTS ANOVA

In this model more than one factor is considered and we will use two and three factors to illustrate it.

We begin with the case of two factors.

Let us suppose that yijk with i = 1; :::; a, j = 1; :::; b and k = 1; :::; n are the observed values for ab

independent random samples of the dependent variable Y . That is, we have a dependent variable Y and

two factors: A with a levels and B with b levels, such that all the pairs i; j are tested. Moreover, we

suppose that Yijk  N
�
�ij ; �

�
and � = 1

ab

P
i;j

�ij is the global expected value if the factors A and B have

no e¤ect on the dependent variable Yijk. In addition, is considered that the posible e¤ect of the pair i; j

on the global expected value is the sum of the main e¤ect �i for the level i of factor A and the main

e¤ect �j for the level j of factor B. That is, the model is now E (Yij) = �ij = �+�i+�j and, therefore,

Yijk = �+�i+�j + "ijk with "ijk  N (0; �) and "ijk independent of "i0j0k0 for any values i; i0; j; j0; k; k0.

The purpose is now to solve two statistical tests: Ho : �i = 0 for all i and Ho : �j = 0 for all j, which

can be understood as no e¤ect of each of the factors A and B on the global expected value, respectively.

As usual, the logical assumptions
P
i

�i = 0 and
P
j

�j = 0 are considered. In real practical situations,

this model is commonly used with n = 1, that is, there is no replica for each of the combinations of the

levels of the two factors A and B.

Using notation Y ���= 1
abn

P
i;j;k

Yijk, Y i��= 1
bn

P
j;k

Yijk and Y �j�= 1
an

P
i;k

Yijk, it seems appropriate to estimate

the parameters of the model as �̂=Y ���, �̂i=Y i���Y ���, �̂j=Y �j��Y ���, and �̂ij=�̂+�̂i+�̂j=Y i��+Y �j��Y ���.

Then, the estimated residuals are "̂ijk = eijk = Yijk � �̂ij . As in the previous model, it is clear that all

these estimators are unbiased with normal distribution. Moreover, it can be shown thatX
i;j;k

�
Yijk � Y ���

�2
= bn

X
i

�
Y i�� � Y ���

�2
+ an

X
j

�
Y �j� � Y ���

�2
+
X
i;j;k

�
Yijk � Y i�� � Y �j� + Y ���

�2
or, more brie�y, SST = SSA + SSB + SSE with SST =

P
i;j;k

�
Yijk � Y ���

�2
, SSA = bn

P
i

�
Y i�� � Y ���

�2
,

SSB = an
P
j

�
Y �j� � Y ���

�2
and SSE =

P
i;j;k

�
Yijk � Y i�� � Y �j� + Y ���

�2
. As in the previous model, we

can also write SST=
P
i;j;k

(Yijk � �̂)2, SSE=
P
i;j;k

�
Yijk � �̂ij

�2
and now SSA=bn

P
i

�̂2i and SSB=an
P
j

�̂
2

j .
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In this model we have
SSE

�2
 �2abn�a�b+1 and the estimation for �

2 isc�2 = SSE

abn� a� b+ 1 =MSE.

Moreover, using SSModel = SSA + SSB , if �i = �j = 0 for all i; j then

FModel =
SSModel= (a+ b� 2)
SSE= (abn� a� b+ 1)  Fa+b�2;abn�a�b+1

and we have a whole model test. The goodness of �t for the model is measured by the determination

coe¢ cient, which is de�ned as R2 =
SSModel

SST
= 1 � SSE

SST
, and the variability of the model is given by

the variation coe¢ cient CV =

p
MSE

Y ���
, both commonly expressed as percentages. R2-values close to

1 (100%) and CV -values close to 0 provide a higher quality of the model and better sensitivity to �nd

signi�cant di¤erences due to the factors.

In a similar way, if �i = 0 for all i then

FA =
SSA= (a� 1)

SSE= (abn� a� b+ 1) =
MSA
MSE

 Fa�1;abn�a�b+1

And, if �j = 0 for all j then

FB =
SSB= (b� 1)

SSE= (abn� a� b+ 1) =
MSB
MSE

 Fb�1;abn�a�b+1

These statistics can be used for the two F -tests in the ANOVA table of the model, as follows:

SS DF MS F-value p-value H0

Factor A SSA a� 1 MSA FA pA �i = 0 for all i

Factor B SSB b� 1 MSB FB pB �j = 0 for all j

Error SSE abn� a� b+ 1 MSE

Total SST abn� 1

Now the least signi�cant di¤erence (LSD) for each pair of means Y i��; Y i0�� is

LSD = tabn�a�b+1;�=2

r
2MSE

bn

and the least signi�cant di¤erence (LSD) for each pair of means Y �j�; Y �j0� is

LSD = tabn�a�b+1;�=2

r
2MSE

an

Finally, the con�dence intervals for the expected values �+�i and �+�j are Y i���tabn�a�b+1;�=2
q

MSE
bn

and Y �j� � tabn�a�b+1;�=2
q

MSE
an , respectively. Note that, using the model, the point estimates for the

expected values �ij are �̂ij = Y i�� + Y �j� � Y ���, which variance is given by (see the note below)

V ar
�
�̂ij
�
=

�
1� (a� 1)(b� 1)

ab

��
�2

n

�
and, therefore, a con�dence interval for the expected values �ij is

�̂ij � tabn�a�b+1;�=2

r
1� (a� 1)(b� 1)

ab

r
MSE

n
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In a similar way, a prediction interval for a new independent observation is given by

�̂ij � tabn�a�b+1;�=2

r
1 +

1

n
� (a� 1)(b� 1)

abn

p
MSE

The check of the assumptions of the model can be made as in the oneway ANOVA with the estimated

residuals eijk.

Note. For a �xed pair io; jo we have

Y io�� + Y �jo� � Y ���=
a+ b� 1
abn

X
k

Yiojok +
a� 1
abn

X
j;k;j 6=jo

Yiojk +
b� 1
abn

X
i;k;i 6=io

Yijok �
1

abn

X
i;j;k;i 6=io;j 6=jo

Yijk

and, taking into account that all Yijk are independent, we have

V ar
�
Y io�� + Y �jo� � Y ���

�
=
(a+b�1)2 n+ (a�1)2 (b�1)n+ (b�1)2 (a�1)n+ (a�1) (b�1)n

a2b2n2
�2

=
(a� 1) (b� 1)

h
(a+b�1)2
(a�1)(b�1) + a+ b� 1

i
a2b2

�
�2

n

�

=
(a� 1) (b� 1) (a+ b� 1)

h
a+b�1

(a�1)(b�1) + 1
i

a2b2

�
�2

n

�
=
a+ b� 1
ab

�
�2

n

�
=

�
1� (a� 1)(b� 1)

ab

��
�2

n

�
Example 2: Randomized complete block design. In an experimental study to compare the

total production for 10 tomato varieties, a total of 40 experimental small plots were used (10 for each

variety). Due to possible heterogeneity among the experimental plots, they were grouped into 4 groups

with 10 plots per group, such that the plots within the same group are more homogeneous. Then, for

each block, a plot is randomly assigned to each variety and the total production of tomatoes is measured.

This experimental design is called randomized complete block design. Let us denote by yij the total

production for the i variety at the j block, with i = 1; :::; 10 and j = 1; 2; 3; 4. The obtained data (kg/m2)

are included in the following table:

Variety: 1 2 3 4 5 6 7 8 9 10 Mean (�y�j)

Block 1 8:036 6:024 5:336 7:792 12:828 5:620 9:964 7:020 7:540 9:672 7:9832

Block 2 3:132 7:252 7:124 9:356 15:020 13:488 22:520 5:880 8:448 9:320 10:154

Block 3 9:356 3:840 3:176 5:620 10:260 10:300 11:048 10:280 14:060 8:396 8:6336

Block 4 7:344 3:796 3:280 8:696 6:056 3:996 18:428 4:112 10:028 9:812 7:5548

Mean (�yi�) 6:967 5:228 4:729 7:866 11:041 8:351 15:490 6:823 10:019 9:300 y�� = 8:5814

For the statistical analysis, we consider two factors (A =variety and B =block) and we use the main

e¤ects model E (Yij) = �ij = � + �i + �j , that is, Yij = � + �i + �j + "ij with "ij  N (0; �) and

"ij independent of "i0j0 for any values i; i0; j; j0 (note that we do not use subscript k because there is

no replicates in this experiment). Taking into account that
P
i;j

yij = 343:256 and
P
i;j

y2ij = 3605:25, the

estimated values for the parameters of the model are: �̂ = �y�� = 8:581, �̂1 = �y�1 � �y�� = �0:5982,

�̂2=�y�2��y��=1:5726, �̂3=�y�3��y��=0:0522, �̂4=�y�4��y��=�1:0266 and the following values for �̂i=�yi���y��:
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Variety 1 2 3 4 5 6 7 8 9 10

�̂i = �yi� � �y���1:6144 �3:3534 �3:8524 �0:7154 2:4596 �0:2304 6:9086 �1:7584 1:4376 0:7186

Calculating the sum of squares we obtain: SST = 3605:25 � 40�y2�� = 659:6345, SSA = 4
P
i

�̂2i =

354:844, SSB = 10
P
j

�̂
2

j = 38:8755 and SSE = 265:915. Therefore, MSE = 265:915
27 = 9:8487 and the

estimated value for the parameter � is �̂ =
p
MSE = 3:138.

The determination coe¢ cient of the model is R2 = 1� 265:915
659:6345 = 59:7% and the variation coe¢ cient

is CV = 313:8
8:5814 = 36:6%. The whole model test gives FModel =

(354:844+38:8755)=12
9:8487 = 3:33 which leads to

p-value= p (F12;27 > 3:33) = 0:0046. Therefore the model is signi�cative with � = 0:05.

The F-test for the variety factor gives FA =
354:844=9
9:8487 = 67:2116

15:0551 = 4:00 with p-value= p (F9;27 > 4:00) =

0:0024. That is, the variety factor is signi�cative with � = 0:05 and there are di¤erences between varieties.

The F-test for block factor leads to FB =
38:8755=3
9:8487 = 12:9585

15:0551 = 1:32 with p-value= p (F3;27 > 1:32) =

0:2897. That is, the block factor is not signi�cative with � = 0:05 and there are no di¤erences between

blocks.

The standard error for the means of the varieties is SE =
q

9:8487
4 = 1:5691 and, taking into account

that t27;0:025 = 2:0518, the 95% con�dence intervals for the expected values are �yi� � 3:219.

Finally, the least signi�cant di¤erence (LSD) with � = 0:05 for each pair of means �yi�; �yi0� is LSD =

t27;0:025

q
2MSE
4 = 4:55. Using this value we obtain the following results for the LSD Fisher�s test of the

varieties with � = 0:05:

Variety Mean

3 4:729 A

2 5:228 AB

8 6:823 ABC

1 6:967 ABC

4 7:866 ABC

6 8:351 ABC

10 9:300 BC

9 10:019 C

5 11:041 CD

7 15:490 D

or, alternatively,

Variety Mean

3 4:729 X

2 5:228 XX

8 6:823 XXX

1 6:967 XXX

4 7:866 XXX

6 8:351 XXX

10 9:300 XX

9 10:019 X

5 11:041 XX

7 15:490 X

Therefore, with 95% of con�dence, the variety with the number 7 has a greater expected value than

all the others, except the variety with number 5.

As an extension of the previous model, we will consider a case with three factors.

Example 3: Latin square design. In the randomized block design studied previously we considered

a major factor and a control factor or block which is introduced in order to eliminate their in�uence on
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the response variable and reduce the experimental error. In this new design we use more than one variable

block to reduce experimental error.

Thus, if two block variables are considered simultaneously, a complete randomized block design would

be to form a block for every combination of levels of these variables and then apply all levels of the

main factor in each of the blocks obtained. For example, suppose an experiment in which we want to

study the e¤ect of di¤erent types of seed on wheat yield and we believes that this performance can also

be in�uenced by the types of fertilizers and insecticides. To perform this study, it is possible to use a

complete randomized block design, where the main factor is the type of seed and the block variables

are the types of fertilizers and insecticides. A disadvantage of these designs is sometimes the excessive

experimental units required for implementation. A complete block design with a main factor and two

block factors, with K1, K2 and K3 levels in each factor, requires K1K2K3 experimental units. In our

example, if the main factor, type of seed, has 4 levels, the �rst block variable, type of fertilizer, 5 levels

and the second block variable, type of insecticide, 3 levels, it would take 60 experimental units.

Some experiments can have di¤erent causes, such as economic in nature, that advise against using

many experimental units. In this situation you can use a special type of randomized incomplete block

designs. The basic idea of these designs is the fraction, that is, select a part of the whole design so

that, under certain general assumptions, we can estimate the e¤ects of interest. One the most important

designs with randomized incomplete blocks using a main factor and two block factors is the latin square

design. This model assumes the same number of levels for the three factors.

In general, for K levels in each factor, a complete randomized block design uses K2 blocks, each

block being applied in the K levels of the main factor, resulting in a total of K3 experimental units.

Latin square designs reduce the number of experimental units to K2 by considering the K2 blocks in

the experiment but using only one treatment in each block with a special provision. Speci�cally, in each

block a single treatment is applied so that each treatment must appear with each of the levels of the two

control factors applied. Thus, if K = 4, a complete block design would need 64 observations, while the

latin square design would need only 16 observations.

If we consider a two-way table where rows and columns represent each of the two block factors and

the cells represent the levels of the main factor or treatments, the above requirement means that each

treatment must appear once and only once in each row and in each column. For example, let us suppose

that a1; a2; :::; aK denote the K levels of the �rst block factor A (rows); b1; b2; :::; bK denote the K levels

of the second block factor B (columns) and c1; c2; :::; cK denote the K levels of the main factor C.

Then, a latin square design with order K is an arrangement in rows and columns of the K latin letters

c1; c2; :::; cK , so that each letter appears only once in each row and each column. For the example we

have been considering, if we have 4 fertilizers (factor A), 4 insecticides (factor B) and 4 types of seeds

(factor C) a latin square with order 4 may have the following distribution:
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Insecticides

Fertilizers b1 b2 b3 b4

a1 c3 c4 c2 c1
a2 c2 c1 c3 c4
a3 c4 c3 c1 c2
a4 c1 c2 c4 c3

In a latin square design with order k, we denote by yij(k), with i; j; k 2 f1; 2; ::;Kg, the K2 ob-

served values of the dependent variable Y and, for the statistical analysis, we use the main e¤ects model

E
�
Yij(k)

�
= �ij(k) = � + �i + �j + 
k, that is, Yij(k) = � + �i + �j + 
k + "ij(k) with "ij(k)  N (0; �)

and "ij(k) independent of "i0j0(k0) for any values i; i0; j; j0; k; k0. Therefore, it is considered that the posible

e¤ect of the combination of the levels i; j; k of the factors A, B and C on the global expected value is the

sum of the main e¤ect �i for the level i of factor A, the main e¤ect �j for the level j of factor B and the

main e¤ect 
k for the level k of factor C. As usual, we suppose that
P
i

�i =
P
j

�j =
P
k


k = 0.

Using notation Y ��� = 1
K2

P
i

P
j

Yij(k), Y i�� =
1
K

P
j

Yij(k), Y �j� =
1
K

P
i

Yij(k) and Y ��k =
1
K

P
i;j

Yij(k), it

seems appropriate to estimate the parameters of the model as �̂=Y ���, �̂i=Y i���Y ���, �̂j =Y �j��Y ���,


̂k=Y ��k�Y ��� and �̂ij(k) = �̂+�̂i+�̂j+
̂k=Y i��+Y �j�+Y ��k�2Y ���. Then, the estimated residuals are

"̂ij(k) = eij(k) = Yij(k)� �̂ij(k) and, as always, all these estimators are unbiased with normal distribution.

Moreover, it can be shown that:X
i:j

�
Yij(k)�Y ���

�2
=K

X
i

�
Y i���Y ���

�2
+K

X
j

�
Y �j��Y ���

�2
+K

X
k

�
Y ��k�Y ���

�2
+
X
i;j

�
Yij(k)�Y i���Y �j��Y ��k+2Y ���

�2
or, more brie�y, SST=SSA+SSB+SSC+SSE with SST=

P
i;j

�
Yij(k) � Y ���

�2
, SSA=K

P
i

�
Y i�� � Y ���

�2
,

SSB = K
P
j

�
Y �j� � Y ���

�2
, SSC = K

P
j

�
Y ��k � Y ���

�
and SSE =

P
i;j

�
Yij(k) � Y i�� � Y �j� � Y ��k + 2Y ���

�2
.

As usual, we can also write SST =
P
i;j

�
Yij(k) � �̂

�2
, SSE =

P
i;j

�
Yij(k) � �̂ij(k)

�2
and now SSA =

K
P
i

�̂2i , SSB = K
P
j

�̂
2

j and SSC = K
P
j


̂2k.

In this model we have
SSE

�2
 �2K2�3K+2 and the estimation for �

2 is c�2 = SSE

K2 � 3K + 2
= MSE

(note that K2 � 3K + 2 = (K � 1) (K � 2)).

Moreover, using SSModel = SSA + SSB + SSC , if �i = �j = 
k = 0 for all i; j; k then

FModel =
SSModel= (3K � 3)

SSE= ((K � 1) (K � 2))  F3K�3;(K�1)(K�2)

and we have a whole model test. The R2 and CV coe¢ cients can be evaluated as in the previous model.

In this model, if �i = 0 for all i then

FA =
SSA= (K � 1)

SSE= ((K � 1) (K � 2)) =
MSA
MSE

 FK�1;(K�1)(K�2)

In a similar way, if �j = 0 for all j then
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FB =
SSB= (K � 1)

SSE= ((K � 1) (K � 2)) =
MSB
MSE

 FK�1;(K�1)(K�2)

and, �nally, if 
k = 0 for all k then

FC =
SSC= (K � 1)

SSE= ((K � 1) (K � 2)) =
MSC
MSE

 FK�1;(K�1)(K�2)

These statistics can be used for the three F -tests in the ANOVA table, as follows:

SS DF MS F-value p-value H0

Factor A SSA K � 1 MSA FA pA �i = 0 for all i

Factor B SSB K � 1 MSB FB pB �j = 0 for all j

Factor C SSC K � 1 MSC FC pC 
k = 0 for all k

Error SSE (K � 1)(K � 2) MSE

Total SST K2 � 1

Now the least signi�cant di¤erences (LSD) for all pair of means Y i�� and Y i0��, Y �j� and Y �j0�, and Y ��k

and Y ��k0 , are

LSD = t(K�1)(K�2);�=2

r
2MSE

K

and the con�dence intervals for the expected values �+�i, �+�j and �+
k are Y i���t(K�1)(K�2);�=2
q

MSE
K ,

Y �j� � t(K�1)(K�2);�=2
q

MSE
K and Y ��k � t(K�1)(K�2);�=2

q
MSE
K , respectively.

For the estimators �̂ij(k) = Y i�� + Y �j� + Y ��k � 2Y ��� we obtain (see the note below)

V ar
�
�̂ij(k)

�
=

�
1� (K � 1)(K � 2)

K2

�
�2

and, therefore, a con�dence interval for the expected values �ij(k) is

�̂ij(k) � t(K�1)(K�2);�=2

r
1� (K � 1)(K � 2)

K2

p
MSE

In a similar way, a prediction interval for a new independent observation is given by

�̂ij(k) � t(K�1)(K�2);�=2

r
2� (K � 1)(K � 2)

K2

p
MSE

The check of the assumptions of the model can be made as in the previous models with the estimated

residuals eij(k).

Note. For a �xed pair io; jo (with k = ko) we have

Y io�� + Y �jo� + Y ��ko � 2Y ��� =
3K � 2
K2

Yiojo(ko) +
K � 2
K2

X
j 6=jo

Yioj(k) +
K � 2
K2

X
i 6=io

Yijo(k)

+
K � 2
K2

X
i 6=io;j 6=jo

Yij(ko) �
2

K2

X
i 6=io;j 6=jo;k 6=ko

Yij(k)

and, taking into account that all Yij(k) are independent, we have

V ar
�
Y io�� + Y �jo� + Y ��ko � 2Y ���

�
=
(3K � 2)2 + 3(K � 2)2 (K � 1) + 4 (K � 1) (K � 2)

K4
�2

=
(3K � 2)2 + (K � 1) (K � 2) (3K � 2)

K4
�2

=
(3K � 2)K2

K4
�2 =

�
1� (K � 1)(K � 2)

K2

�
�2
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To illustrate this model suppose that, in the example we have been considering, we obtained the

following data for the wheat yield with di¤erent fertilizers, insecticides and seed types:

Insecticides

Fertilizers b1 b2 b3 b4 �yi�� �̂i = �yi�� � �y���
a1 y11(3) = 7 y12(4) = 8 y13(2) = 4 y14(1) = 3 �y1�� =

22
4 �̂1 =

�115
16

a2 y21(2) = 15 y22(1) = 16 y23(3) = 18 y24(4) = 23 �y2�� =
72
4 �̂2 =

85
16

a3 y31(4) = 18 y32(3) = 12 y33(1) = 12 y34(2) = 10 �y3�� =
52
4 �̂3 =

5
16

a4 y41(1) = 14 y42(2) = 13 y43(4) = 16 y44(3) = 14 �y4�� =
57
4 �̂4 =

25
16

�y�j� �y�1� =
54
4 �y�2� =

49
4 �y�3� =

50
4 �y�4� =

50
4 �y��� =

203
16

�̂j = �y�j� � �y��� �̂1 =
13
16 �̂2 =

�7
16 �̂3 =

�3
16 �̂4 =

�3
16

P
y2ij(k) = 3001

For the seed types, the means and the estimated parameters are included in the next table:

Seed type: c1 c2 c3 c4

�y��k
45
4

42
4

51
4

65
4


̂k = �y��k � �y��� �23
16

�35
16

1
16

57
16

Calculating the sum of squares we obtain: SST = 3001�16�y2�� = 425:4375, SSA = 4
P
i

�̂2i = 329:6875,

SSB = 4
P
j

�̂
2

j = 3:6875, SSC = 4
P
k


̂2k = 78:1875 and SSE = 13:875. Therefore, MSE = 13:875
6 =

2:3125 and the estimated value for the parameter � is �̂ =
p
MSE = 1:52.

The determination coe¢ cient of the model is R2 = 1� 13:875
425:4375 = 96:7% and the variation coe¢ cient

is CV = 1:52
12:6875 = 12:0%. The whole model test gives FModel =

(329:6875+3:6875+78:1875)=9
2:3125 = 19:77 which

leads to p-value= p (F9;6 > 19:77) = 0:0008. Therefore the model is signi�cative with � = 0:05.

The F-test for the fertilizers (�rst block factor) gives FA =
329:6875=3
2:3125 = 47:52 with p-value= p (F3;6 > 47:52) =

0:0001. That is, this factor is signi�cative with � = 0:05 and there are di¤erences between fertillizers.

The F-test for the insecticides (second block factor) leads to FB = 3:6875=3
2:3125 = 0:53 with p-value=

p (F3;6 > 0:53) = 0:6781. That is, this factor is not signi�cative with � = 0:05 and there are no di¤erences

between insecticides.

Finally, for the main factor (seeds type) the F-test leads to FC =
78:1875=3
2:3125 = 11:27 with p-value=

p (F3;6 > 11:27) = 0:0071. That is, this factor is signi�cative with � = 0:05 and there are di¤erences

between seed types.

The standard error for all the means of the fertilizers, insecticides and seed types is SE =
q

2:3125
4 =

0:7603 and, taking into account that t6;0:025 = 2:4469, the 95% con�dence intervals for the expected

values are �yi�� � 1:86, �y�j� � 1:86 and �y��k � 1:86.

Finally, the least signi�cant di¤erence (LSD) with � = 0:05 for all the pair of means is LSD =

t6;0:025

q
2MSE
4 = 2:63. Using this value we obtain the following results for the LSD Fisher�s test of the

three factor with � = 0:05:
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Fertilizers Mean

a2 18 A

a4 14:25 B

a3 13 B

a1 5:5 C

Insecticides Mean

b1 13:5 A

b3 12:5 A

b4 12:5 A

b2 12:25 A

Seed types Mean

c4 16:25 A

c3 12:75 B

c1 11:25 B

c2 10:5 B

Therefore, the wheat yield is signi�cantly higher with the seed type c4 and there are not di¤erences for

the other three seed types. With respect to the block factors, there are no di¤erences between insecticides

and the wheat yield is signi�cantly higher with the fertilizer a2, signi�cantly lower with the fertilizer a1

and there are no di¤erences between fertilizers a3 and a4.

The 95%-con�dence intervals for the expected values �ij(k) are �̂ij(k)�2:94 and the prediction interval

for a new independent observation is �̂ij(k) � 4:74. For example, for the best option with fertilizer a2,

insecticide b1 and seed type c4, these intervals are 22:375�2:94 and 22:375�4:74, that is, (19:435; 25:315)

for the expected value and (17:635; 27:115) for a new independent observation.
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Chapter 3

TWO-WAY FACTORIAL ANOVA

With the same assumptions as in the previous model with two factors, is now considered that the posible

e¤ect of the pair i; j on the global expected value is not necessarily the sum of the main e¤ect �i for

the level i of factor A and the main e¤ect �j for the level j of factor B. That is, a posible interaction

e¤ect ��ij between levels i; j of the factors A and B is allowed. Then, the model is now E (Yij) = �ij =

�+�i+�j+��ij and, therefore, Yijk = �+�i+�j+��ij+"ijk with "ijk  N (0; �) and "ijk independent

of "i0j0k0 for any values i; i0; j; j0; k; k0. In addition to the two statistical tests of the previous model, we

have now a third test Ho : ��ij = 0 for all i; j, which can be understood as no interaction e¤ect between

factors A and B. Besides the previous conditions
P
i

�i = 0 and
P
j

�j = 0, these others are now added:P
j

��ij = 0 for all i and
P
i

��ij = 0 for all j. Finally, it should be noted that now n > 1 is required in

this model, which was not necessary in the previous model with main e¤ects.

Using Y ���, Y i�� and Y �j� as in the previous model, Y ij�= 1
n

P
k

Yijk is now considered and the appropriate

estimators for the parameters are �̂ = Y ���, �̂ij = Y ij�, �̂i = Y i�� � Y ���, �̂j = Y �j� � Y ��� and

c��ij = (Y ij� � Y ���)� �̂i � �̂j = Y ij� � Y i�� � Y �j� + Y ���
Then, the estimated residuals are now "̂ijk = eijk = Yijk � Y ij� and, as always, all these estimators

are unbiased with normal distribution. Moreover, it can be shown thatX
i;j;k

�
Yijk�Y ���

�2
= bn

X
i

�
Y i���Y ���

�2
+ an

X
j

�
Y �j��Y ���

�2
+ n

X
i;j

�
Yij��Y i���Y �j�+Y ���

�2
+
X
i;j;k

�
Yijk�Y ij�

�2
or brie�y SST = SSA+SSB +SSAB +SSE with SST =

P
i;j;k

�
Yijk � Y ���

�2
, SSA = bn

P
i

�
Y i�� � Y ���

�2
,

SSB = an
P
j

�
Y �j� � Y ���

�2
, SSAB = n

P
i;j

�
Yij��Y i���Y �j�+Y ���

�2
and SSE =

P
i;j;k

�
Yijk�Y ij�

�2
. As usual,

we can also write SST =
P
i;j

(Yij � �̂)2, SSE =
P
i;j;k

�
Yijk � �̂ij

�2
and now SSA=bn

P
i

�̂2i , SSB=an
P
j

�̂
2

j

and SSAB=n
P
i;j

�c��ij�2.
In this model we have

SSE

�2
 �2ab(n�1) and the estimation for �

2 is c�2 =MSE = SSE

ab(n� 1) .

17



Using SSModel = SSA + SSB + SSAB , if �i = �j = ��ij = 0 for all i; j then

FModel =
SSModel= (ab� 1)
SSE= (ab(n� 1))  Fab�1;ab(n�1)

and we have a whole model test. The R2 and CV coe¢ cients can be evaluated as before.

In a similar way, if �i = 0 for all i then

FA =
SSA= (a� 1)

SSE= (ab(n� 1)) =
MSA
MSE

 Fa�1;ab(n�1)

And, if �j = 0 for all j then

FB =
SSB= (b� 1)

SSE= (ab(n� 1)) =
MSB
MSE

 Fb�1;ab(n�1)

And, �nally, if ��ij = 0 for all i; j then

FAB =
SSAB= ((a� 1) (b� 1))
SSE= (ab(n� 1)) =

MSAB
MSE

 F(a�1)(b�1);ab(n�1)

These statistics can be used for the three F -test in the ANOVA table, as follows:

SS DF MS F-value p-value H0

Factor A SSA a� 1 MSA FA pA �i = 0 for all i

Factor B SSB b� 1 MSB FB pB �j = 0 for all j

Interaction A �B SSAB (a� 1)(b� 1) MSAB FAB pAB ��ij = 0 for all i; j

Error SSE ab(n� 1) MSE

Total SST abn� 1

Now the con�dence intervals for the expected values �+�i, �+�j and �ij are Y i���tab(n�1);�=2
q

MSE
bn ,

Y �j� � tab(n�1);�=2
q

MSE
an and Y ij� � tab(n�1);�=2

q
MSE
n , respectively.

Finally, the least signi�cant di¤erences (LSD) for each pair of means are: LSD = tab(n�1);�=2

q
2MSE
bn

for Y i��; Y i0��, LSD = tab(n�1);�=2

q
2MSE
an for Y �j�; Y �j0� and LSD = tab(n�1);�=2

q
2MSE
n for Y ij�; Y i0j0�.

The check of the assumptions of the model can be made as in the previous models with the estimated

residuals eijk.

Example 4: Two-way factorial design. To study the e¤ect of fertilization with nitrogen and

potassium on growth of cauli�ower, a fertilization experiment is performed with three nitrogen doses (60,

120 and 180 kg/ha) and three potassium doses (100, 200 and 300 kg/ha). In the area of land available 27

micro plots are plotted and 3 are randomly assigned to each of the 9 possible combinations of fertilization.

At the end of the experiment, the production of each micro plot is scored (the data are given in tons per

hectare).

60+100 60+200 60+300 120+100 120+200 120+300 180+100 180+200 180+300

18 20 23 21 24 21 23 20 19

18 20 24 23 25 19 22 19 18

16 19 21 20 22 20 24 21 21
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Considering a factor A with 3 levels for nitrogen doses and a factor B with three levels for potasium

doses, we can use a two-way factorial model E(Yijk) = �ij = � + �i + �j + ��ij and therefore Yijk =

�+�i+�j +��ij + "ijk with "ijk  N (0; �) and "ijk independent of "i0j0k0 for any values i; i0; j; j0; k; k0.

For i; j = 1; 2; 3, �i is the main e¤ect for i-dose of nitrogen, �j is the main e¤ect for j-dose of potasium

and ��ij is the possible interaction e¤ect between i-dose of nitrogen and j-dose of potasium.

Initially, we calculate
P
i;j;k

yijk = 561,
P
i;j;k

y2ijk = 11785 and all the means observed in the experiment,

which are included in the following table with the usual notation:

�y11� = 52=3 �y12� = 59=3 �y13� = 68=3 �y1�� = 179=9

�y21� = 64=3 �y22� = 71=3 �y23� = 60=3 �y2�� = 195=9

�y31� = 69=3 �y32� = 60=3 �y33� = 58=3 �y3�� = 187=9

�y�1� = 185=9 �y�2� = 190=9 �y�3� = 186=9 �y��� = 187=9

From these data we can obtain the estimated parameters of the model. For example, �̂1=�y1����y���=�8
9 ,

�̂1 = �y�1�� �y��� = �2
9 and c��11 = �y11�� �y���� �̂1� �̂1 = � 31

9 +
10
9 =

�21
9 . In a similar way, the estimations

of the other parameters are evaluated and they are included in the following table:

c��11 = �21=9 c��12 = �5=9 c��13 = 26=9 �̂1 = �8=9c��21 = �1=9 c��22 = 15=9 c��23 = �14=9 �̂2 = 8=9c��31 = 22=9 c��32 = �10=9 c��33 = �12=9 �̂3 = 0

�̂1 = �2=9 �̂2 = 3=9 �̂3 = �1=9 �̂ = �y��� = 187=9

Calculating the sum of squares we obtain: SST = 11785 � 27�y2��� = 386
3 , SSA = 9

P
i

�̂2i =
128
9 ,

SSB = 9
P
j

�̂
2

j =
14
9 , SSAB = 3

P
i;j

�c��ij�2 = 764
9 and SSE = 1158�128�14�764

9 = 28. Therefore,

MSE = 14
9 = 1:55 and the estimated value for the parameter � is �̂ =

p
MSE = 1:25. The whole model

test leads to FModel =
302=24
28=18 = 8:0893 with p-value= p (F8;18 > 8:0893) = 0:0001. Therefore the model

is signi�cative with � = 0:05. The determination coe¢ cient of the model is R2 = 1� 28
386=3 = 78:2% and

the variation coe¢ cient is CV =
p
14=3

187=9 = 6:0%.

The evaluation of the three F-tests in the ANOVA table leads to:

FA =
64
14 = 4:57 with p-value= p (F2;18 > 4:57) = 0:0248

FB =
7
14 = 0:50 with p-value= p (F2;18 > 0:50) = 0:6147

FAB =
191
14 = 13:64 with p-value= p (F4;18 > 13:64) = 0:0000

Therefore the interaction between factor A and factor B is signi�cative with � = 0:05, and the e¤ect

of the nitrogen doses depends on the potassium doses and upside. Note that the main e¤ect of potassium

dose is not signi�cant, but we can not say that potassium fertilization has no e¤ect on growth, because

the interaction is signi�cant. To assist in interpreting the interaction e¤ect, it is helpful plotting a graph

of the means at each treatment combination. This graph is shown below:
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The signi�cant interaction is indicated by the lack of parallelism of the lines. By using the low dose

of potassium, the mean of production increases with higher doses of nitrogen. Inversely, with the higher

dose of potassium, the mean of production decreases with higher doses of nitrogen. With the intermediate

dose of potassium, the mean of production �rst grows and then decreases. The higher mean of production

is obtained with intermediate doses of nitrogen and potassium (120 and 200 kg/ha respectively).

The standard error for the mean of each combination of doses is SE =
q

14=9
3 = 0:72 and, taking into

account that t18;0:025 = 2:101, the 95% con�dence intervals for the expected values are �yij�� 1:51. These

intervals are included in the previous �gure. Averaging in doses of potassium, the standard error for the

mean of each nitrogen dose is SE =
q

14=9
9 = 0:42 and the 95% con�dence intervals for the expected

values are �yi���0:87. In a similar way, averaging in doses of nitrogen, the same standard error is obtained

and the 95% con�dence intervals for the expected values are �y�j� � 0:87.

Finally, the least signi�cant di¤erence (LSD) with � = 0:05 for each pair of means �yij�; �yi0j0� is

LSD = t18;0:025

q
2MSE
3 = 2:14. In a similar way, the least signi�cant di¤erence (LSD) with � = 0:05 for

each pair of means �yi��; �yi0�� or �y�j�; �y�j0� is LSD = t18;0:025

q
2MSE
9 = 1:24. Using these values, we obtain

the following results for the LSD Fisher�s tests of the interaction and the main e¤ects, with � = 0:05:

Potassium= 100 Potassium= 200 Potassium= 300

Nitrogen= 60 17:33 Bc 19:67 Bb 22:67 Aa 19:89 B

Nitrogen= 120 21:33 Ab 23:67 Aa 20:00 Bb 21:67 A

Nitrogen= 180 23:00 Aa 20:00 Bb 19:33 Bb 20:78 AB

20:56 a 21:11 a 20:67 a

where we have used uppercase letters for nitrogen doses and lowercase letters for potassium doses.

The complete LSD Fisher�s test with all the nine means leads to:

Fertilization Mean

60� 100 17:33 A
180� 300 19:33 AB
60� 200 19:67 B
120� 300 20:00 B
180� 200 20:00 B
120� 100 21:33 BC
60� 300 22:67 CD
180� 100 23:00 CD
120� 200 23:67 D

or, alternatively,

Fertilization Mean

60� 100 17:33 X
180� 300 19:33 XX
60� 200 19:67 X
120� 300 20:00 X
180� 200 20:00 X
120� 100 21:33 XX
60� 300 22:67 XX
180� 100 23:00 XX
120� 200 23:67 X

20



Chapter 4

NESTED ANOVA

In certain multifactor experiments, the levels of one factor (e.g., factor B) occurs in conjunction with

only one level of another factor (e.g., A). Then, we say that the levels of factor B are nested within the

factor A. Let us suppose that yijk with i = 1; :::; a, j = 1; :::; b and k = 1; :::; n are the observed values

for ab independent random samples of the dependent variable Y where a is the number of levels of the

factor A and b is the number of levels of the factor B nested whitin each level of the factor A. As a

consequence, the total number of levels for the factor B is ab and they have been nested whitin the levels

of factor A in a balanced way. That is, we have a dependent variable Y and two factors: A with a levels

and B with ab levels balanced way nested in factor A. Moreover, we suppose that Yijk  N
�
�j(i); �

�
and � = 1

ab

P
i;j

�j(i) is the global expected value if the factors A and B have no e¤ect on the dependent

variable Yijk.

This model states that E (Yijk) = �ij = � + �i + �j(i), where �i is the e¤ect due to level i of

factor A and �j(i) is the e¤ect due to level j of factor B nested within level i of factor A. Therefore,

Yijk = �+�i+�j(i)+"ijk with "ijk  N (0; �) and "ijk independent of "i0j0k0 for any values i; i0; j; j0; k; k0.

Note that in this model the e¤ect of the nested factor B is measured within each level of factor A and

it is supposed that
P
j

�j(i) = 0 for each value i of the factor A (there are a restrictions for the levels of

factor B instead of a unique restriction
P
i;j

�j(i) = 0). Using the same notation as in the previous model,

the appropriate estimators for the parameters of the model are �̂ = Y ���, �̂ij = Y ij�, �̂i = Y i�� � Y ���,

�̂j(i) = Y ij� � Y i��, with estimated residuals "̂ijk = eijk = Yijk � �̂ij , and the decomposition of sum

squares is nowX
i;j;k

�
Yijk � Y ���

�2
= bn

X
i

�
Y i�� � Y ���

�2
+ n

X
i;j

�
Y ij� � Y i��

�2
+
X
i;j;k

�
Yijk � Y ij�

�2
or brie�y SST = SSA + SSB(A) + SSE with SST =

P
i;j;k

�
Yijk � Y ���

�2
, SSA = bn

P
i

�
Y i�� � Y ���

�2
,

SSB(A)=n
P
i;j

�
Y ij� � Y i��

�2
and SSE=

P
i;j;k

�
Yijk� Y ij�

�2
. As usual, we can also write SST=

P
i;j;k

(Yij � �̂)2,

SSE =
P
i;j;k

�
Yijk � �̂ij

�2
and now SSA = bn

P
i

�̂2i and SSB(A) = n
P
i;j

�̂
2

j(i).

In this model, we also have
SSE

�2
 �2ab(n�1) and the estimation of �

2 is c�2 =MSE = SSE

ab(n� 1) .
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Using SSModel = SSA + SSB(A), if �i = �j(i) = 0 for all i; j then

FModel =
SSModel= (ab� 1)
SSE= (ab(n� 1))  Fab�1;ab(n�1)

and we have a whole model test. The R2 and CV coe¢ cients are evaluated as usual.

In a similar way, if �i = 0 for all i then

FA =
SSA= (a� 1)

SSE= (ab(n� 1))  Fa�1;ab(n�1)

And, if �j(i) = 0 for all i; j then

FB(A) =
SSB(A)= (a(b� 1))
SSE= (ab(n� 1))  Fa(b�1);ab(n�1)

These statistics can be used for the two F -test in the ANOVA table, as follows:

SS DF MS F-value p-value H0

Factor A SSA a� 1 MSA FA pA �i = 0 for all i

Factor B(A) SSB(A) a(b� 1) MSB(A) FB(A) pB(A) �j(i) = 0 for all i; j

Error SSE ab(n� 1) MSE

Total SST abn� 1

Now the con�dence intervals for the expected values �+�i and �ij are Y i��� tab(n�1);�=2
q

MSE
bn and

Y ij� � tab(n�1);�=2
q

MSE
n , respectively.

Finally, the least signi�cant di¤erences (LSD) for each pair of means are: LSD = tab(n�1);�=2

q
2MSE
bn

for Y i��; Y i0�� and LSD = tab(n�1);�=2

q
2MSE
n for Y ij�; Y ij0� within each level i of the factor A. Note

that we do not initially have a test for the expected values for two levels in the factor B nested within

di¤erent levels of the factor A, that is, for example, to compare �j(i) and �j0(i0) with i 6= i0. This is

because if i = i0 we have �̂j(i) � �̂j0(i) = Y ij� � Y ij0�, but this is not true if i 6= i0 since now �̂j(i) �

�̂j0(i0) =
�
Y ij� � Y i0j0�

�
�
�
Y i�� � Y i0��

�
. Therefore, to carry out this test we need to use Y ij��Y i�� versus

Y i0j0� � Y i0��. Taking into account that Y ij� � Y i�� is independent of Y i0j0� � Y i0�� and, for �xed values i

and j0, we have Y ij0� � Y i�� = Y ij0� � 1
b

P
j

Y ij� =
�
1� 1

b

�
Y ij0� � 1

b

P
j 6=j0

Y ij�, then V ar
�
Y ij0� � Y i��

�
=�

1� 1
b

�2 ��2
n

�
+ b�1

b2

�
�2

n

�
=
�
1� 1

b

� �
�2

n

�
and, we can prove that

�
Y ij� � Y i��

�
�
�
Y i0j0� � Y i0��

�
�
�
�j(i) � �j0(i0)

�
q�
1� 1

b

�
2MSE
n

 tab(n�1)

This statistic let us to obtain a test for Ho : �j(i) = �j0(i0).

The check of the assumptions of the model can be made as usual with the estimated residuals eijk.

Example 5: Two nested factors design. We want to study the e¤ect of three fertilizers (factor A)

and nine irrigation doses (factor B) on the growth of potted plants. It is recognized that the two factors

are independent (no interaction) and we decide to perform �ve repetitions. Because of the independence
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between the factors and in order to use a lower number of experimental units, we decide to nest the

irrigation doses within the fertilizers and to limit the experiment to 45 pots (instead of the 135 pots

required in the factorial design). The irrigation doses nested within each fertilizer were randomly selected.

The plant heights at the end of the experiment were recorded (cm).

Fertilizer Irrigation dose
P
k

yijk
P
k

y2ijk
P
j;k

yijk
P
j;k

y2ijk

1 1 (1) 39 43 41 46 48 217 9471
1 2 (2) 52 58 55 50 55 270 14618 813 45425
1 3 (3) 69 62 71 61 63 326 21336

2 1 (4) 72 65 69 62 71 339 23055
2 2 (5) 61 63 55 52 60 291 17019 921 57229
2 3 (6) 55 50 55 69 62 291 17155

3 1 (7) 65 69 62 71 61 328 21592
3 2 (8) 63 55 48 52 58 276 15366 895 54113
3 3 (9) 55 50 55 69 62 291 17155

For the statistical analysis we use the two-factors nested model E (Yij) = �ij = �+ �i + �j(i), where

�i is the e¤ect due to the i-fertilizer and �j(i) is the e¤ect due to j-dose of irrigation nested within the

i-fertilizer, with i = 1; 2; 3 and j = 1; 2; 3. Therefore, Yijk = � + �i + �j(i) + "ijk with "ijk  N (0; �)

and "ijk independent of "i0j0k0 for any values i; i0; j; j0; k; k0 (k = 1; :::; 5).

Initially, we calculate
P
i;j;k

yijk = 2629,
P
i;j;k

y2ijk = 156767 and all the means observed in the experiment,

which are included in the following table with the usual notation:

�y11� �y12� �y13� �y21� �y22� �y23� �y31� �y32� �y33� �y1�� �y2�� �y3�� �y���

217
5

270
5

326
5

339
5

291
5

291
5

328
5

276
5

291
5

813
15

921
15

895
15

2629
45

From these data we can obtain the estimated parameters of the model. For example, �̂1=�y1�� � �y���=
�190
45 and �̂1(1) = �y11� � �y1�� =

�162
15 . In a similar way, the estimations of the other parameters are

evaluated and they are included in the following table:

�̂1(1) �̂2(1) �̂3(1) �̂1(2) �̂2(2) �̂3(2) �̂1(3) �̂2(3) �̂3(3) �̂1 �̂2 �̂3 �̂ = �y���

�162
15

�3
15

165
15

96
15

�48
15

�48
15

89
15

�67
15

�22
15

�190
45

134
45

56
45

2629
45

Calculating the sum of squares we obtain: SST = 156767� 45�y2��� = 142874
45 , SSA = 15

P
i

�̂2i =
19064
45 ,

SSB(A) = 5
P
i;j

�̂
2

j(i) =
80196
45 and SSE = 142874�19064�80196

45 = 43614
45 . Therefore, MSE = 43614

1620 = 26:92

and the estimated value for the parameter � is �̂ =
p
MSE = 5:19. The whole model test leads

to FModel =
99260=360
43614=1620 = 10:24 with p-value= p (F8;36 > 10:24) = 0:0000. Therefore the model is

signi�cative with � = 0:05. The determination coe¢ cient of the model is R2 = 99260
142874 = 69:5% and the

variation coe¢ cient is CV = 5:19
2629=45 = 8:9%.

The evaluation of the two F-tests in the ANOVA table leads to:

FA =
19064=90
43614=1620 = 7:87 with p-value= p (F2;36 > 7:87) = 0:0015

FB(A) =
80196=270
43614=1620 = 11:03 with p-value= p (F2;36 > 11:03) = 0:0000
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Therefore, both factors in the experiment are signi�cative with � = 0:05.

The standard error for the means of the nine treatments is SE =
q

MSE
5 = 2:32 and, taking into

account that t36;0:025 = 2:028, the 95% con�dence intervals for the expected values �ij are �yij� � 4:71.

The least signi�cant di¤erence (LSD) with � = 0:05 for the comparison of the estimations of �ij , that

is, for each pair of means �yij�; �yi0j0�, is LSD = t36;0:025

q
2MSE
5 = 6:66. Using this value, we obtain the

following results for the LSD Fisher�s tests of the nine treatments, with � = 0:05:

Fertilizer Irrigation dose Mean (�yij�)

1 1 (1) 43:4 A
1 2 (2) 54:0 B
3 2 (8) 55:2 B
2 2 (5) 58:2 B
2 3 (6) 58:2 B
3 3 (9) 58:2 B
1 3 (3) 65:2 C
3 1 (7) 65:6 C
2 1 (4) 67:8 C

Therefore, the best growth is obtained with the dose 1 within the fertilizer 2 (that is, the fourth dose)

but no signi�cative di¤erences with the dose 1 within the fertilizer 3 (that is, the seventh dose), and

with the dose 3 within the fertilizer 1 (that is, the third dose). All the other treatments lead to a lower

expected growth.

Nevertheless, as we said before, the comparison of the estimated expected values (that is, �̂ij �

�̂i0j0 = �yij� � �yi0j0�) is di¤erent of the comparison of the estimated e¤ects of the irrigation doses (that is,

�̂j(i) � �̂j0(i0) = �yij� � �yi�� � �yi0j0� + �yi0��), if i 6= i0. In this case, the least signi�cant di¤erence (LSD) with

� = 0:05 for the comparison of the estimated e¤ects is LSD = t36;0:025

q�
1� 1

3

�
2MSE
5 = 5:43. Then the

comparison of estimated e¤ects with i 6= i0 leads to the following results:

�̂1(1)��̂1(2) �̂1(1)��̂2(2) �̂1(1)��̂3(2) �̂1(1)��̂1(3) �̂1(1)��̂2(3) �̂1(1)��̂3(3) �̂2(1)��̂1(2) �̂2(1)��̂2(2) �̂2(1)��̂3(2)
�17:2� �7:6� �7:6� �16:7� �6:3� �9:3� �6:6� 3 3

�̂2(1)��̂1(3) �̂2(1)��̂2(3) �̂2(1)��̂3(3) �̂3(1)��̂1(2) �̂3(1)��̂2(2) �̂3(1)��̂3(2) �̂3(1)��̂1(3) �̂3(1)��̂2(3) �̂3(1)��̂3(3)
�6:1� 4:3 1:3 4:6 14:2� 14:2� 5:1 15:5� 12:5�

�̂1(2)��̂1(3) �̂1(2)��̂2(3) �̂1(2)��̂3(3) �̂2(2)��̂1(3) �̂2(2)��̂2(3) �̂2(2)��̂3(3) �̂3(2)��̂1(3) �̂3(2)��̂2(3) �̂3(2)��̂3(3)
0:5 10:9� 7:9� �9:1� 1:3 �1:7 �9:1� 1:3 �1:7

where the di¤erences marked with an asterisk are signi�cant with � = 0:05. With this signi�cance level

we have not observed any di¤erence between this results and the others obtained for the comparisons

of treatments. But if we suppose � = 0:22, as t36;0:11 = 1:25, the least signi�cant di¤erence for the

comparison of treatments is LSD = t36;0:05

q
2MSE
5 = 4:10 and therefore �12 (second dose with the

fertilizer 1) is signi�cantly di¤erent of �33 (ninth dose with the fertilizer 3), because the observed di¤erence

is 4:2. But nevertheless, the least signi�cant di¤erence for the comparison of e¤ects nested within di¤erent

fertilizers LSD = t36;0:11

q�
1� 1

3

�
2MSE
5 = 3:35 and therefore �2(1) (e¤ect of the second dose, which is
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nested within the fertilizer 1) is not signi�cantly di¤erent of �3(3) (e¤ect of the ninth dose, which is nested

within the fertilizer 3), because �̂2(1) � �̂3(3) = 1:3.

Finally, for the fertilizers, the standard error of the means is SE =
q

MSE
15 = 1:34 and the 95%

con�dence intervals for the expected values �+ �i are �yi�� � 2:72. The least signi�cant di¤erence (LSD)

with � = 0:05 for the comparison of the estimations of � + �i, that is, for each pair of means �yi��; �yi0��,

is LSD = t36;0:025

q
2MSE
5 = 3:84. Using this value, we obtain the following results for the LSD Fisher�s

tests of the three fertilizers, with � = 0:05:

Fertilizer Mean

1 54:20 A
3 59:67 B
2 61:40 B

and we can say that the expected growth is lower with the fertilizer 1, with no signi�cant di¤erences

between the fertilizers 2 and 3.
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Chapter 5

CROSSED-NESTED ANOVA

Occasionally in a multifactor experiment, some factors are arranged in a factorial layout and other factors

are nested. This type of designs are usually called crossed�nested designs. The statistical analysis of one

such design with three factors is now illustrated. Let us suppose that yijkl are the observed values for

abc independent random samples of size n from a dependent variable Y where a is the number of levels

of factor A, b is the number of levels of factor B and c is the number of levels of factor C nested whitin

the levels of the factor B in a balanced way (as a consequence, bc is the total number of levels in factor

C). As usual, we suppose that Yijkl  N
�
�ijk; �

�
and � = 1

abc

P
i;j;k

�ijk is the global expected value if

none of the factors A, B and C have any e¤ect on the dependent variable Yijkl.

In this model, we state that E (Yijk) = �ijk = � + �i + �j + 
k(j) + ��ij + �
ik(j), where �i is

the e¤ect due to level i of factor A, �j is the e¤ect due to level j of factor B, 
k(j) is the e¤ect due to

level k of factor C nested within level j of factor B and ��ij , �
ik(j) are the interaction e¤ects between

pair of factors A;B and A;C respectively. Note that we can not consider an interaction e¤ect between

factors B and C due to nesting used in these factors. In addition, we have now many restrictions on the

parameters, namely:
P
i

�i = 0,
P
j

�j = 0,
P
k


k(j) = 0 for all j,
P
j

��ij = 0 for all i,
P
i

��ij = 0 for all

j,
P
k

�
ik(j) = 0 for all i; j and
P
i

�
ik(j) = 0 for all j; k. Therefore, the model is

Yijkl = �+ �i + �j + 
k(j) + ��ij + �
ik(j) + "ijkl

with "ijkl  N (0; �) and "ijkl independent of "i0j0k0l0 for any values i; i0; j; j0; k; k0; l; l0.

With the usual notation, the appropriate estimators for the parameters of the model are �̂ = Y ����,

�̂ijk = Y ijk�, �̂i = Y i��� � Y ����, �̂j = Y �j�� � Y ����, c��ij = Y ij�� � Y i��� � Y �j�� + Y ����, 
̂k(j) = Y �jk� � Y �j��
and c�
ik(j) = Y ijk� � Y ij� � Y �jk� + Y �j��, with estimated residuales "̂ijkl = eijkl = Yijkl � �̂ijk. The

decomposition of sum squares is now

SST = SSA + SSB + SSC(B) + SSAB + SSAC(B) + SSE

where SST =
P
i;j;k;l

�
Yijkl � Y ����

�2
, SSA = bcn

P
i

�
Y i��� � Y ����

�2
, SSB = acn

P
j

�
Y �j�� � Y ����

�2
, SSC(B) =

an
P
j;k

�
Y �jk� � Y �j��

�2
, SSAB=cn

P
i;j

�
Y ij���Y i����Y �j��+Y ����

�2
, SSAC(B)=n

P
i;j;k

�
Y ijk��Y ij���Y �jk�+Y �j��

�2
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and SSE=
P
i;j;k;l

�
Yijkl�Y ijk�

�2
. As usual, we can also write SST=

P
i;j;k;l

(Yij � �̂)2, SSE=
P
i;j;k;l

�
Yijkl � �̂ijk

�2
and now SSA = bcn

P
i

�̂2i , SSB = acn
P
j

�̂
2

j , SSC(B) = an
P
j;k


̂2k(j), SSAB = cn
P
i;j

�c��ij�2 and
SSAC(B) = n

P
i;j;k

�c�
ik(j)�2.
In this model, we have

SSE

�2
 �2abc(n�1) and the estimation of �

2 is c�2 = MSE =
SSE

abc(n� 1) .

Then, using SSModel = SSA + SSB + SSC(B) + SSAB + SSAC(B), the whole model test with the null

hypothesis �i=�j=
k(j)=��ij=�
ik(j)= 0 for all i; j; k is given by

FModel =
SSModel= (abc� 1)
SSE= (abc(n� 1))  Fabc�1;abc(n�1)

and the R2 and CV coe¢ cients are evaluated as usual.

The appropriate statistics for the F-tests in the ANOVA table with their respective probability dis-

tributions are:

FA =
SSA= (a� 1)

SSE= (abc(n� 1)) =
MSA
MSE

 Fa�1;abc(n�1) if �i = 0 for all i

FB =
SSB= (b� 1)

SSE= (abc(n� 1)) =
MSB
MSE

 Fb�1;abc(n�1) if �j = 0 for all j

FC(B) =
SSC(B)= (b(c� 1))
SSE= (abc(n� 1)) =

MSC(B)

MSE
 Fb(c�1);abc(n�1) if 
k(j) = 0 for all j; k

FAB =
SSAB= ((a� 1)(b� 1))
SSE= (abc(n� 1)) =

MSAB
MSE

 F(a�1)(b�1);abc(n�1) if ��ij = 0 for all i; j

FAC(B) =
SSAC(B)= (b(a� 1)(c� 1))

SSE= (abc(n� 1)) =
MSAC(B)

MSE
 Fb(a�1)(c�1);abc(n�1) if �
ik(j) = 0 for all i; j; k

The ANOVA table for this model is as follows:

SS DF MS F-value p-value H0

Factor A SSA a� 1 MSA FA pA �i = 0 for all i

Factor B SSB b� 1 MSB FB pB �j = 0 for all j

Factor C(B) SSC(B) b(c� 1) MSC(B) FC(B) pC(B) 
k(j) = 0 for all j; k

Int. A �B SSAB (a� 1)(b� 1) MSAB FAB pAB ��ij = 0 for all i; j

Int. A�C(B) SSAC(B) b(a� 1)(c� 1) MSAC(B) FAC(B) pAC(B) �
ik(j) = 0 for all i; j; k

Error SSE abc(n� 1) MSE

Total SST abcn� 1

Now the con�dence intervals for the marginal expected values are:

Y i�� � tabc(n�1);�=2
r
MSE

bcn
for �+ �i

Y �j�� � tabc(n�1);�=2
r
MSE

acn
for �+ �j

Y ij�� � tabc(n�1);�=2
r
MSE

cn
for �ij� = �+ �i + �j + ��ij

Y �jk� � tabc(n�1);�=2
r
MSE

an
for ��k(j) = �+ �j + 
k(j)

Y ijk� � tabc(n�1);�=2
r
MSE

n
for �ijk
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Finally, the least signi�cant di¤erences (LSD) for each pair of means are:

LSD = tabc(n�1);�=2

r
2MSE

bcn
for Y i��� � Y i0���

LSD = tabc(n�1);�=2

r
2MSE

acn
for Y �j�� � Y �j0��

LSD = tabc(n�1);�=2

r
2MSE

cn
for Y ij�� � Y i0j0��

LSD = tabc(n�1);�=2

r
2MSE

an
for Y �jk� � Y �jk0� with �xed j

LSD = tabc(n�1);�=2

r
2MSE

n
for Y ijk�� � Y i0jk0� with �xed j

Arguing as in the previous model, we obtain that the appropriate statistic for the test 
k(j) = 
k0(j0)

with j 6= j0 is �
Y �jk� � Y �j��

�
�
�
Y �j0k0� � Y �j0��

�
�
�

k(j) � 
k0(j0)

�
q�
1� 1

c

�
2MSE
an

 tabc(n�1)

In a similar way, the appropriate statistic for the test 
ik(j) = 
i0k0(j0) with j 6= j0 is�
Y ijk� � Y ij��

�
�
�
Y i0j0k0� � Y i0j0��

�
�
�

ik(j) � 
i0k0(j0)

�
q�
1� 1

c

�
2MSE
n

 tabc(n�1)

An special case of this type of models is the factorial design augmented with an additional control

treatment de�ned as no application of neither of the factors. Next we illustrate this model using a

factorial design with two factors and a control treatment. Let us suppose that we have two factors, A

with a levels and B with b levels in a complete factorial design with n replicates, and an additional

control treatment T , also with n replicates, de�ned by none of the levels of the factors A and B. Then

we consider two levels for factor T : 0 for the control (no treatment) and 1 for the ab treatments in the

ab factorial design. Let us denote the observed values by yijkl with i = 0; 1; j = 0; 1; :::; a; k = 0; 1; :::; b

and l = 1; :::; n where y000l represent the values for the control treatment and y1jkl with j = 1; :::; a and

k = 1; :::; b the values for the ab treatments in the model. Note that the factors A and B are nested in

factor T with an unbalanced way (level 0 nested within i = 0 and the other levels nested within i = 1)

and the total number of observed values is n(1 + ab). As usual we suppose that Yijkl  N
�
�ijk; �

�
and

� =
�000+

P
j;k

�1jk

1+ab is the global expected value if the treatments de�ned by the factors A and B have no

e¤ect on the dependent variable Yijkl. Therefore we have 1 + ab independent random samples of the

dependent variable.

The model states that E (Yijk) = �ijk = � + � i + �j(i) + �k(i) + ��jk(i), and therefore Yijkl =

�+ � i+�j(i)+�k(i)+��jk(i)+ "ijkl with "ijkl  N (0; �) and "ijkl independent of "i0j0k0l0 for any values

i; i0; j; j0; k; k0; l; l0, where �o is the e¤ect of the control treatment on the global mean �, �1 is the main

e¤ect of the use of factors A and B, and the remaining parameters are de�ned as in a factorial design.

The restrictions on the parameters are now: �o + ab�1 = 0; �0(0) = �0(0) = ��j0(0) = ��0k(0) = 0 for

all j; k;
P
j

�j(1) = 0,
P
k

�k(1) = 0,
P
k

��jk(1) = 0 for all j and
P
j

��jk(1) = 0 for all k (note that we use

�o + ab�1 = 0 instead of �o + �1 = 0 by the unbalanced nesting).
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Now we de�ne Y ���� =

nP
l=1

Y000l+
aP

j=1

bP
k=1

nP
l=1

Y1jkl

n(1+ab) , Y 000� = 1
n

nP
l=1

Y000l, Y 1��� = 1
abn

aP
j=1

bP
k=1

nP
l=1

Y1jkl, Y 1j�� =

1
bn

bP
k=1

nP
l=1

Y1jkl, Y 1�k� = 1
an

aP
j=1

nP
l=1

Y1jkl, Y 1jk� = 1
n

nP
l=1

Y1jkl. The appropriate estimators for the paramet-

ers of the model are �̂ = Y ����, �̂o = Y 000��Y ����, �̂1 = Y 1����Y ����, �̂j(1) = Y 1j���Y 1���, �̂k(1) = Y 1�k��Y 1���,c��jk(1) = Y 1jk��Y 1j���Y 1�k�+Y 1���, �̂000 = �̂+ �̂o = Y 000� and �̂1jk = �̂+ �̂1+ �̂j(1)+ �̂k(1)+c��jk(1) =
Y 1jk�, with estimated residuals "̂ijkl = eijkl = Yijkl � �̂ijk. The decomposition of sum squares is now

SST = SST + SSA(T ) + SSB(T ) + SSAB(T ) + SSE

where SST =
P
l

�
Y000l � Y ����

�2
+
P
j;k;l

�
Y1jkl � Y ����

�2
, SST = n

�
Y 000� � Y ����

�2
+ abn

�
Y 1��� � Y ����

�2
,

SSA(T )=bn
P
j

�
Y 1j���Y 1���

�2
, SSB(T )=an

P
k

�
Y 1�k��Y 1���

�2
, SSAB(T )=n

P
j;k

�
Y 1jk��Y 1j���Y 1�k�+Y 1���

�2
,

and SSE =
P
l

�
Y000l � Y 000�

�2
+
P
j;k;l

�
Y1jkl � Y 1jk�

�2
(note that in all these latter summations the sub-

script 0 is not included). In this case, we also can write SST =
P
i;j;k;l

(Yijkl � �̂)2, SSE =
P
i;j;k;l

�
Yijkl � �̂ijk

�2
and now SST = n�̂

2
0+abn�̂

2
1, SSA(T ) = bn

P
j

�̂2j(1), SSB(T ) = an
P
k

�̂
2

k(1) and SSAB(T ) = n
P
j;k

�c��jk(1)�2.
In this model, we have

SSE

�2
 �2(1+ab)(n�1) and the estimation of �

2 isc�2 =MSE = SSE

(1 + ab)(n� 1) .

Then, SSModel = SST + SSA(T ) + SSB(T ) + SSAB(T ) and the whole model test with the null hypothesis

� i = �j(1) = �k(1) = ��jk(1) = 0 for all i; j; k is given by

FModel =
SSModel= (ab)

SSE= ((1 + ab)(n� 1))  Fab;(1+ab)(n�1)

The R2 and CV coe¢ cients are evaluated as before.

The appropriate statistics for the F-tests in the ANOVA table with their respective probability dis-

tributions are:

FT =
SST

SSE= ((1 + ab)(n� 1)) =
MST
MSE

 F1;(1+ab)(n�1) if �0 = �1 = 0

FA(T ) =
SSA(T )= (a� 1)

SSE= ((1 + ab)(n� 1)) =
MSA(T )

MSE
 Fa�1;(1+ab)(n�1) if �j(1) = 0 for all j

FB(T ) =
SSB(T )= (b� 1)

SSE= ((1 + ab)(n� 1)) =
MSB(T )

MSE
 Fb�1;(1+ab)(n�1) if �k(1) = 0 for all k

FAB(T ) =
SSAB(T )= ((a� 1)(b� 1))
SSE= ((1 + ab)(n� 1)) =

MSAB(T )

MSE
 F(a�1)(b�1);(1+ab)(n�1) if ��jk(1) = 0 for all j; k

The ANOVA table for this model is as follows:

29



SS DF MS F-value p-value H0

Factor T SST 1 MST FT pT �0 = �1 = 0

Factor A(T ) SSA(T ) a� 1 MSA(T ) FA(T ) pA(T ) �j(1) = 0 for all j

Factor B(T ) SSB(T ) b� 1 MSB(T ) FB(T ) pB(T ) �k(1) = 0 for all k

Int. A�B(T ) SSAB(T ) (a� 1)(b� 1) MSAB(T ) FAB(TB) pAB(T ) ��jk(1) = 0 for all j; k

Error SSE (1 + ab)(n� 1) MSE

Total SST (1 + ab)n� 1

The con�dence intervals for the marginal expected values are:

Y 000� � t(1+ab)(n�1);�=2
r
MSE

n
for �000 = �+ �0

Y 1��� � t(1+ab)(n�1);�=2
r
MSE

abn
for �1�� =

1
ab

P
j;k

�1jk = �+ �1

Y 1j�� � t(1+ab)(n�1);�=2
r
MSE

bn
for �1j� = �+ �1 + �j(1)

Y 1�k� � t(1+ab)(n�1);�=2
r
MSE

an
for �1�k = �+ �1 + �k(1)

Y 1jk� � t(1+ab)(n�1);�=2
r
MSE

n
for �1jk = �+ �1 + �j(1) + �k(1) + ��jk(1)

Finally, the least signi�cant di¤erences (LSD) for each pair of means are:

LSD = t(1+ab)(n�1);�=2

r
(1 + ab)MSE

abn
for Y 000� � Y 1���

LSD = t(1+ab)(n�1);�=2

r
2MSE

bn
for Y 1j�� � Y 1j0��

LSD = t(1+ab)(n�1);�=2

r
(1 + b)MSE

bn
for Y 000� � Y 1j��

LSD = t(1+ab)(n�1);�=2

r
2MSE

an
for Y 1�k� � Y 1�k0�

LSD = t(1+ab)(n�1);�=2

r
(1 + a)MSE

an
for Y 000� � Y 1�k�

LSD = t(1+ab)(n�1);�=2

r
2MSE

n
for Y 1jk� � Y 1j0k0� or Y 000� � Y 1jk�

The check of the assumptions of the model can be made as usual with the estimated residuals eijkl.

Example 6: Two-way factorial design augmented with an additional control treatment.

In a research study on bread making is proposed fortifying �our with proteins derived from di¤erent

products. A complete factorial experiment using �ve sources of protein (factor A) and two doses (factor

B), with four replications was designed. Control treatment (T ) de�ned by the non-utilization of protein

in bread making was also used. Protein levels for factor A were: no protein (0), gluten (1), pea (2), egg

(3), milk (4) and soy (5). Doses levels for factor B were: no protein (0), 5% (1) and 10% (2). The T

factor was coded as 0 (no protein) and 1 for all the ten treatments with protein. In this example, the

bread volume Y (hundred of cm3) is used as the dependent variable.
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For the analysis we use the crossed-nested model

E (Yijk) = �ijk = �+ � i + �j(i) + �k(i) + ��jk(i)

with i=0; 1; j=0; 1; 2; 3; 4; 5; k=0; 1; 2 and l=1; 2; 3; 4. That is, just the previous model with a = 5, b = 2

and n = 4.

The obtained data are shown in the following table:

T A B Replications
P
l

yijkl
P
l

y2ijkl

0 0 0 9:76 9:88 14:32 15:52 49:48 638:8048
1 1 1 8:32 7:80 7:36 7:68 31:16 243:2144
1 1 2 8:36 7:44 9:60 9:56 34:96 308:7968
1 2 1 14:32 14:12 12:68 12:76 53:88 728:0368
1 2 2 11:60 10:44 10:04 10:64 42:72 457:5648
1 3 1 12:88 12:56 15:84 15:08 56:36 801:9600
1 3 2 12:00 11:92 11:48 11:20 46:60 543:3168
1 4 1 13:12 12:64 15:32 16:68 57:76 844:8288
1 4 2 15:00 14:48 17:92 17:12 64:52 1048:8912
1 5 1 13:28 13:20 12:96 12:08 51:52 664:4864
1 5 2 11:68 12:08 11:04 10:48 45:28 514:0608

Total sums
P
i;j;k;l

yijkl = 534:24
P
i;j;k;l

y2ijkl = 6793:9616

Initially, all the observed means are included in the following table with the usual notation:

j = 1 j = 2 j = 3 j = 4 j = 5

k=1 �y111�=7:79 �y121�=13:47 �y131�=14:09 �y141�=14:44 �y151�=12:88 �y1�1�=12:534

k=2 �y112�=8:74 �y122�=10:68 �y132�=11:65 �y142�=16:13 �y152�=11:32 �y1�2�=11:704

�y11��=8:265 �y12��=12:075 �y13��=12:87 �y14��=15:285 �y15��=12:1 �y1���=12:119

i = j = k = 0 �y000�=12:37 �y����=
133:56
11

From these data we can obtain the estimated parameters of the model. For example, �̂1(1)=�y11����y1���=

�3:854, �̂1(1)=�y1�1�� �y1���=0:415, c��11(1)=�y111���y1�����̂1(1)��̂1(1)=�0:89, �̂=�y����; �̂o= �y000�� �y����=0:228,

�̂1=�y1��� � �y����=�0:0228. In a similar way, the estimations of the other parameters are evaluated and

they are included in the following table:

c��11(1)=�0:89 c��21(1)=0:98 c��31(1)=0:805 c��41(1)=�1:26 c��51(1)=0:365 �̂1(1)=0:415c��12(1)=0:89 c��22(1)=�0:98 c��32(1)=�0:805 c��42(1)=1:26 c��52(1)=�0:365 �̂2(1)=�0:415

�̂1(1)=�3:854 �̂2(1)=�0:044 �̂3(1)=0:751 �̂4(1)=3:166 �̂5(1)=�0:019

Calculating the sum of squares we obtain: SST = 6793:9616�44�y2���� = 307:3166, SST = n�̂20+abn�̂21 =

0:2291, SSA(T ) = 8
P
i

�̂2i = 203:5454, SSB(T ) = 20
P
j

�̂
2

j = 6:889, SSAB(T )=4
P
j;k

�c��jk(1)�2 = 32:9708
and SSE = 307:3166 � 243:6343 = 63:6823. Therefore, MSE = 63:6823

33 = 1:93 and the estimated value

for the parameter � is �̂ =
p
MSE = 1:39. The whole model test leads to FModel =

243:6343=10
63:6823=33 = 12:63

with p-value= p (F10;33 > 12:63) = 0:0000. Therefore the model is signi�cative with � = 0:05. The

determination coe¢ cient of the model is R2 = 243:6343
307:3166 = 79:3% and the variation coe¢ cient is CV =

1:39
133:56=11 = 11:4%.
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The evaluation of the F-tests in the ANOVA table leads to:

FT =
0:2291

63:6823=33 = 0:12 with p-value= p (F1;33 > 0:12) = 0:7326

FA(T ) =
203:5454=4
63:6823=33 = 26:37 with p-value= p (F4;33 > 26:37) = 0:0000

FB(T ) =
6:889

63:6823=33 = 3:57 with p-value= p (F1;33 > 3:57) = 0:0677

FAB(T ) =
32:9708=4
63:6823=33 = 4:27 with p-value= p (F4;33 > 4:27) = 0:0068

Therefore, the �rst F-test shows that, averaging in the ten treatments with protein, there is no

signi�cative di¤erence with the control treatment (no protein) with � = 0:05. In addition, from the last

F-test, there is a signi�cant interaction between factors A and B with � = 0:05. The FB(T )-test is not

signi�cative and there is no di¤erence between doses if we average the proteins. Finally, FA(T )-test is

signi�cative and there are signi�cative di¤erences between proteins if we average the doses.

The standard error for the means of the ten treatments with protein and the control treatment without

protein is SE =
q

MSE
4 = 0:69 and, taking into account that t33;0:025 = 2:035, the 95% con�dence

intervals for the expected values �ijk are �y1jk� � 1:41 and �y000� � 1:41. The least signi�cant di¤erence

(LSD) with � = 0:05 for the comparison of the estimations of �ijk, that is, for each pair of means

�yijk�; �yi0j0k0�, is LSD = t33;0:025

q
MSE
2 = 2:00. Using this value, we obtain the following results for the

LSD Fisher�s tests of the ten treatments with protein and the control treatment, with � = 0:05:

Protein Source Dose Mean (�yij�)

1 1 (gluten) 1(5%) 7:79 A
1 1 (gluten) 2(10%) 8:74 AB
1 2 (pea) 2(10%) 10:68 BC
1 5 (soy) 2(10%) 11:32 CD
1 3 (egg) 2(10%) 11:65 CDE
0 0 (no protein) 0 12:37 CDEF
1 5 (soy) 1(5%) 12:88 DEFG
1 2 (pea) 1(5%) 13:47 EFG
1 3 (egg) 1(5%) 14:09 FG
1 4 (milk) 1(5%) 14:44 GH
1 4 (milk) 2(10%) 16:13 H

Therefore we obtain the following conclusions:

1. With respect to the control treatment, using protein from pea, soy or egg has not a signi�cant e¤ect

in the expected value for bread volume.

2. With respect to the control treatment, using protein from gluten leads to a signi�cative lower

expected value for bread volume. Generally, this value seems to be also lower than in the other

treatments with protein.

3. With respect to the control treatment, using protein from milk leads to a signi�cative higher ex-

pected value for bread volume. Generally, this value seems to be also higher than in the other

treatments with protein.

4. Using protein from gluten, soy or milk, there are no signi�cative di¤erences between the two doses.

Nevertheless, with protein from egg or pea, using the 5%-dose leads to a signi�cative higher expected

value for bread volume.
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5. The treatment with protein from milk and 10%-dose leads to a signi�cative higher expected value

for bread volumen than all the treatments with other protein.

The next plot includes all the 95% con�dence intervals for the treatments in the experiment:

If we average in the doses, the standard error for the means �y1j�� is SE =
q

MSE
8 = 0:49 and the

95% con�dence intervals for the expected values �1j� are �y1j�� � 0:999. The least signi�cant di¤erence

with � = 0:05 for the comparison of the estimations of �1j�, that is, for each pair of means �y1j��; �y1j0��,

is LSD = t33;0:025

q
MSE
4 = 1:41. For the comparisons of �y000�; �y1j��, the least signi�cant di¤erence is

LSD = t33;0:025

q
3MSE
8 = 1:73. Using these values, we obtain the following results for the LSD Fisher�s

tests of proteins if we average in the two doses, with � = 0:05:

Protein Mean

1 (gluten) 8:265 A
2 (pea) 12:075 B
5 (soy) 12:1 B

0 (no protein) 12:37 B
3 (egg) 12:87 B
4 (milk) 15:285 C
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Chapter 6

THREE-WAY FACTORIAL ANOVA

The two-way factorial model studied previously can be extended with three o more factors in a factorial

design. Next we illustrate this case with three factors: A with a levels, B with b levels and C with c

levels. Let us suppose that all the possible abc treatments have been experimented with n replicates and

yijkl denotes the observed values with i = 1; :::; a; j = 1; :::; b; k = 1; :::; c and l = 1; :::; n. As usual, we

suppose that Yijkl  N
�
�ijk; �

�
and � = 1

abc

P
i;j;k

�ijk is the global expected value if none of the factors

A, B and C have any e¤ect on the dependent variable Yijkl.

In this model we state that E (Yijk) = �ijk = �+ �i + �j + 
k + ��ij + �
ik + �
jk + ��
ijk, where

�i is the e¤ect due to level i of factor A, �j is the e¤ect due to level j of factor B, 
k is the e¤ect due to

level k of factor C, ��ij , �
ik and �
jk are the interaction e¤ects between pairs of factors (A;B), (A;C)

and (B;C) respectively, and ��
ijk is a possible triple interaction between the three factors A;B and C.

In addition, we have now many restrictions on the parameters, namely:
P
i

�i = 0,
P
j

�j = 0,
P
k


k = 0,P
j

��ij = 0 for all i,
P
i

��ij = 0 for all j,
P
k

�
ik = 0 for all i,
P
i

�
ik = 0 for all k,
P
k

�
jk = 0 for all

j,
P
j

�
jk = 0 for all k,
P
k

��
ijk = 0 for all i; j,
P
j

��
ijk = 0 for all i; k and
P
i

��
ijk = 0 for all j; k.

Therefore, the model is

Yijkl = �+ �i + �j + 
k + ��ij + �
ik + �
jk + ��
ijk + "ijkl

with "ijkl  N (0; �) and "ijkl independent of "i0j0k0l0 for any values i; i0; j; j0; k; k0; l; l0.

With the usual notation, the appropriate estimators for the parameters of the model are �̂ = Y ����,

�̂ijk = Y ijk�, �̂i = Y i��� � Y ����, �̂j = Y �j�� � Y ����, 
̂k = Y ��k� � Y ����, c��ij = Y ij�� � Y i��� � Y �j�� + Y ����,c�
ik = Y i�k� � Y i��� � Y ��k� + Y ����, c�
jk = Y �jk� � Y �j�� � Y ��k� + Y ���� and �nallyd��
ijk = (Y ijk� � Y ����)� �̂i � �̂j � 
̂k � c��ij � c�
ik � c�
jk
= Y ijk� � Y ij�� � Y i�k� � Y �jk� + Y i��� + Y �j�� + Y ��k� � Y ����

The estimated residuals for this model are "̂ijkl = eijkl = Yijkl � Y ijk� and the decomposition of sum

squares is now

SST = SSA + SSB + SSC + SSAB + SSAC + SSBC + SSABC + SSE
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where SST =
P
i;j;k;l

�
Yijkl � Y ����

�2
, SSA = bcn

P
i

�
Y i��� � Y ����

�2
, SSB = acn

P
j

�
Y �j�� � Y ����

�2
, SSC =

abn
P
k

�
Y ��k� � Y ����

�2
, SSAB = cn

P
i;j

�
Y ij���Y i����Y �j��+Y ����

�2
, SSAC = bn

P
i;k

�
Y i�k��Y i����Y ��k�+Y ����

�2
,

SSBC = an
P
j;k

�
Y �jk��Y �j���Y ��k�+Y ����

�2
, SSABC=n

P
i;j;k

�
Y ijk��Y ij���Y i�k��Y �jk�+Y i���+Y �j��+Y ��k��Y ����

�2
and SSE=

P
i;j;k;l

�
Yijkl�Y ijk�

�2
. As usual, we can also write SST=

P
i;j;k;l

(Yij��̂)2, SSE=
P
i;j;k;l

�
Yijkl��̂ijk

�2
and now SSA = bcn

P
i

�̂2i , SSB = acn
P
j

�̂
2

j , SSC = abn
P
k


̂2k, SSAB = cn
P
i;j

�c��ij�2, SSAC =

bn
P
i;k

(c�
ik)2, SSBC = anP
j;k

�c
�jk�2 and SSABC = n P
i;j;k

�d��
ijk�2.
In this model, we have

SSE

�2
 �2abc(n�1) and the estimation of �

2 isc�2 =MSE = SSE

abc(n� 1) . Then,

SSModel = SSA+SSB +SSC +SSAB +SSAC +SSBC +SSABC and the whole model test with the null

hypothesis �i = �j = 
k = ��ij = �
ik = �
jk = ��
ijk = 0 for all i; j; k is given by

FModel =
SSModel= (abc� 1)
SSE= (abc(n� 1))  Fabc�1;abc(n�1)

with the usual R2 and CV coe¢ cients.

The appropriate statistics for the F-tests in the ANOVA table with their respective probability dis-

tributions are:
FA =

SSA= (a� 1)
SSE= (abc(n� 1)) =

MSA
MSE

 Fa�1;abc(n�1) if �i = 0 for all i

FB =
SSB= (b� 1)

SSE= (abc(n� 1)) =
MSB
MSE

 Fb�1;abc(n�1) if �j = 0 for all j

FC =
SSC= (c� 1)

SSE= (abc(n� 1)) =
MSC
MSE

 Fc�1;abc(n�1) if 
k = 0 for all k

FAB =
SSAB= ((a� 1)(b� 1))
SSE= (abc(n� 1)) =

MSAB
MSE

 F(a�1)(b�1);abc(n�1) if ��ij = 0 for all i; j

FAC =
SSAC= ((a� 1)(c� 1))
SSE= (abc(n� 1)) =

MSAC
MSE

 F(a�1)(c�1);abc(n�1) if �
ik = 0 for all i; k

FBC =
SSBC= ((b� 1)(c� 1))
SSE= (abc(n� 1)) =

MSBC
MSE

 F(b�1)(c�1);abc(n�1) if �
jk = 0 for all j; k

FABC =
SSABC= ((a�1)(b�1)(c�1))

SSE= (abc(n� 1)) =
MSABC
MSE

 F(a�1)(b�1)(c�1);abc(n�1) if ��
ijk = 0 for all i; j; k

The ANOVA table for this model is as follows:

SS DF MS F-value p-value H0

Factor A SSA a� 1 MSA FA pA �i = 0 for all i

Factor B SSB b� 1 MSB FB pB �j = 0 for all j

Factor C SSC c� 1 MSC FC pC 
k = 0 for all k

Int. A �B SSAB (a� 1)(b� 1) MSAB FAB pAB ��ij = 0 for all i; j

Int. A � C SSAC (a� 1)(c� 1) MSAC FAC pAC �
ik = 0 for all i; k

Int. B � C SSBC (b� 1)(c� 1) MSBC FBC pBC �
jk = 0 for all j; k

Int. A�B�C SSABC (a�1)(b�1)(c�1) MSABC FABC pABC ��
ijk = 0 for all i; j; k

Error SSE abc(n� 1) MSE

Total SST abcn� 1
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The con�dence intervals for the marginal expected values are:

Y i��� � tabc(n�1);�=2
r
MSE

bcn
for �i�� = �+ �i

Y �j�� � tabc(n�1);�=2
r
MSE

acn
for ��j� = �+ �j

Y ��k� � tabc(n�1);�=2
r
MSE

abn
for ���k = �+ 
k

Y ij�� � tabc(n�1);�=2
r
MSE

cn
for �ij� = �+ �i + �j + ��ij

Y i�k� � tabc(n�1);�=2
r
MSE

bn
for �i�k = �+ �i + 
k + �
ik

Y �jk� � tabc(n�1);�=2
r
MSE

an
for ��jk = �+ �j + 
k + �
jk

Y ijk� � tabc(n�1);�=2
r
MSE

n
or �ijk

Finally, the least signi�cant di¤erences (LSD) for each pair of means are:

LSD = tabc(n�1);�=2

r
2MSE

bcn
for Y i��� � Y i0���

LSD = tabc(n�1);�=2

r
2MSE

acn
for Y �j�� � Y �j0��

LSD = tabc(n�1);�=2

r
2MSE

abn
for Y ��k� � Y ��k0�

LSD = tabc(n�1);�=2

r
2MSE

cn
for Y ij�� � Y i0j0��

LSD = tabc(n�1);�=2

r
2MSE

bn
for Y i�k� � Y i0�k0�

LSD = tabc(n�1);�=2

r
2MSE

an
for Y �jk� � Y �j0k0�

LSD = tabc(n�1);�=2

r
2MSE

n
for Y ijk� � Y i0j0k0�

The check of the assumptions of the model can be made as usual with the estimated residuals eijkl.

Example 7: Three-way factorial design. In a study on the germination rate of black pine (Pinus

pinaster Ait.) under di¤erent conditions of water stress and cold, seeds from three provenances with

di¤erent ecological properties (Serranía de Cuenca, Sierra de Gredos and Northwest) were used. Four

levels of water potential (0, �4, �6 and �8 bars, achieved with di¤erent concentrations of polyethylene

glycol 6000) and two di¤erent temperature conditions (F2=20�C for one week, 4oC for one day, 0oC for the

next day, 4oC for the next day and 20�C during the remainder of the experiment, F3=20�C throughout

the experiment) were tested for 48 days in a factorial design with four replications per treatment. The

experiment was performed in a growth chamber and, for each treatment, 100 seeds placed on four petri

dishes of 10 cm diameter with 25 seeds each were used. At the end of the experiment, the percentage of

germinated seeds were scored. To formulate the problem, three factors were considered: A for provenance

with three levels, B for water stress with four levels and C for cold conditions with two levels. In addition,

we will use a signi�cance level � = 0:10. For the statistical analysis we use the three-way factorial model

E (Yijk)=�ijk=� + �i + �j + 
k + ��ij + �
ik + �
jk + ��
ijk with i=1; 2; 3; j=1; 2; 3; 4 and k=1; 2.

That is, just the model previously studied with a = 3, b = 4, c = 2 and n = 4. The obtained data are

shown in the following table:
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A B C = 1
P
l

yij1l
P
l

y2ij1l C = 2
P
l

yij2l
P
l

y2ij2l

1 1 84 96 96 92 368 33952 92 84 92 76 344 29760
1 2 72 76 92 80 320 25824 88 80 88 88 344 29632
1 3 72 72 80 32 256 17792 84 100 72 72 328 27424
1 4 72 80 80 72 304 23168 88 68 88 68 312 24736
2 1 92 92 96 96 376 35630 88 96 88 96 368 33920
2 2 84 92 76 100 352 31296 92 92 92 68 344 30016
2 3 80 88 60 52 280 20448 84 88 96 76 344 29792
2 4 80 80 56 72 288 21120 100 84 72 72 328 27424
3 1 72 96 68 76 312 24800 84 80 80 100 344 29856
3 2 80 72 64 72 288 20864 72 60 72 68 272 18592
3 3 60 68 72 32 232 14432 80 64 72 48 264 17984
3 4 68 60 52 68 248 15552 32 56 36 52 176 8160P

i;j;l

yij1l = 3624
P
i;j;l

y2ij1l = 284608
P
i;j;l

yij2l = 3778
P
i;j;l

y2ij2l = 307296

The total sums are
P
i;j;k;l

yijkl = 7392 and
P
i;j;k;l

y2ijkl = 591904 and we can evaluate all the observed

means, which are shown in the following tables with the usual notation:

i = 1 k = 1 i = 2 k = 1 i = 3 k = 1 i = 1 k = 2 i = 2 k = 2 i = 3 k = 2

j = 1 �y111� = 92 �y211� = 94 �y311� = 78 �y112� = 86 �y212� = 92 �y312� = 86
j = 2 �y121� = 80 �y221� = 88 �y321� = 72 �y122� = 86 �y222� = 86 �y322� = 68
j = 3 �y131� = 64 �y231� = 70 �y331� = 58 �y132� = 82 �y232� = 86 �y332� = 66
j = 4 �y141� = 76 �y241� = 72 �y341� = 62 �y142� = 78 �y242� = 82 �y342� = 44

�y1�1� = 78 �y2�1� = 81 �y3�1� = 67:5 �y1�2� = 83 �y2�2� = 86:5 �y3�2� = 66

i = 1 i = 2 i = 3

j = 1 �y11�� = 89 �y21�� = 93 �y31�� = 82 �y�1�� = 88
j = 2 �y12�� = 83 �y22�� = 87 �y32�� = 70 �y�2�� = 80
j = 3 �y13�� = 73 �y23�� = 78 �y33�� = 62 �y�3�� = 71
j = 4 �y14�� = 77 �y24�� = 77 �y34�� = 53 �y�4�� = 69

�y1��� = 80:5 �y2��� = 83:75 �y3��� = 66:75 �y���� = 77

k = 1 k = 2

j = 1 �y�11� = 88 �y�12� = 88
j = 2 �y�21� = 80 �y�22� = 80
j = 3 �y�31� = 64 �y�32� = 78
j = 4 �y�41� = 70 �y�42� = 68

�y��1� = 75:5 �y��2� = 78:5

From these data we can obtain the estimated parameters of the model. First of all, from the previous

table and by reasoning as in the two-way factorial model for the main e¤ects and the interactions AB

and BC we have:

c��11 = �2:5 c��21 = �1:75 c��31 = 4:25 �̂1 = 11c��12 = �0:5 c��22 = 0:25 c��32 = 0:25 �̂2 = 3c��13 = �1:5 c��23 = 0:25 c��33 = 1:25 �̂3 = �6c��14 = 4:5 c��24 = 1:25 c��34 = �5:75 �̂4 = �8

�̂1 = 3:5 �̂2 = 6:75 �̂3 = �10:25 �̂ = 77

c�
11 = 1:5 c�
12 = �1:5c�
21 = 1:5 c�
22 = �1:5c�
31 = �5:5 c�
32 = 5:5c�
41 = 2:5 c�
42 = �2:5

̂1 = �1:5 
̂2 = 1:5

Finally, for the triple interaction e¤ects we have, for example,d��
111 = �y111� � �y���� � �̂1 � �̂1 � 
̂1 � c��11 � c�
11 � c�
11 = 15� 3:5� 11 + 1:5 + 2:5� 1:5 + 1 = 4
In a similar way, the estimations of the other triple interaction e¤ects are evaluated and they are included

in the following table together with the interaction AC:
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d��
111 = 4 d��
211 = 2:25 d��
311 = �6:25 d��
112 = �4 d��
212 = �2:25 d��
312 = 6:25d��
121 = �2 d��
221 = 2:25 d��
321 = �0:25 d��
122 = 2 d��
222 = �2:25 d��
322 = 0:25d��
131 = �1 d��
231 = 0:25 d��
331 = 0:75 d��
132 = 1 d��
232 = �0:25 d��
332 = �0:75d��
141 = �1 d��
241 = �4:75 d��
341 = 5:75 d��
142 = 1 d��
242 = 4:75 d��
342 = �5:75c�
11 = �1 c�
21 = �1:25 c�
31 = 2:25 c�
12 = 1 c�
22 = 1:25 c�
32 = �2:25
Calculating the sum of squares we obtain: SST = 591904 � 96�̂2 = 22720, SSA = 32

P
i

�̂2i = 5212,

SSB = 24
P
j

�̂
2

j = 5520, SSC = 48
P
k


̂2k = 216, SSAB = 8
P
i;j

�c��ij�2 = 692, SSAC = 16
P
i;k

(c�
ik)2 =
244, SSBC = 12

P
j;k

�c�
jk�2 = 984, SSABC = 4 P
i;j;k

�d��
ijk�2 = 1020 and SSE = 22720�13888 = 8832.
Therefore, MSE = 8832

72 = 368
3 = 122:67 and the estimated value for the parameter � is �̂ =

p
MSE =

11:08. The whole model test leads to FModel =
13888=23
368=3 = 4:92 with p-value= p (F23;72 > 4:92) = 0:0000.

Therefore the model is signi�cative with � = 0:10. The determination coe¢ cient of the model is R2 =
13888
22720 = 61:1% and the variation coe¢ cient is CV = 11:08

77 = 14:4%.

The evaluation of the F-tests in the ANOVA table leads to:

FA =
5212=2
368=3 = 21:24 with p-value= p (F2;72 > 21:24) = 0:0000

FB =
5520=3
368=3 = 15 with p-value= p (F3;72 > 15) = 0:0000

FC =
216
368=3 = 1:76 with p-value= p (F1;72 > 1:76) = 0:1887

FAB =
692=6
368=3 = 0:94 with p-value= p (F6;72 > 0:94) = 0:4719

FAC =
244=2
368=3 = 0:99 with p-value= p (F2;72 > 0:99) = 0:3749

FBC =
984=3
368=3 = 2:67 with p-value= p (F3;72 > 2:67) = 0:0536

FABC =
1020=6
368=3 = 1:39 with p-value= p (F6;72 > 1:39) = 0:2320

Therefore, the main e¤ect of the factor A and the interaction between factors B and C are signi�cant

with � = 0:10. The standard error for the means �yi��� is SE =

r
MSE

32
= 1:96 and, taking into account

that t72;0:05 = 1:67, the 90% con�dence intervals are �yi��� � 3:26. The least signi�cant di¤erence with

� = 0:10 is LSD = 3:26
p
2 = 4:61 and the LSD Fisher�s test with � = 0:10 leads to:

Provenance Mean

3 (Northwest) 66:75 A
1 (Serranía de Cuenca) 80:5 B
2 (Sierra de Gredos) 83:75 B

Therefore, the expected value of the germination rate is signi�cantly lower for the Northwest proven-

ance and there is no signi�cant di¤erences between the other two provenances.

For the interaction between factors B and C, the standard errors for the means are: SE =

r
MSE

12
=

3:20 for �y�jk�, SE =

r
MSE

24
= 2:26 for �y�j�� and SE =

r
MSE

48
= 1:60 for �y��k�. The 90% con�dence

intervals are �y�jk� � 5:33, �y�j�� � 3:77 and �y��k� � 2:66. The least signi�cant di¤erences with � = 0:10 are

LSD = 5:33
p
2 = 7:53 for �y�jk�, LSD = 3:77

p
2 = 5:33 for �y�j�� and LSD = 2:66

p
2 = 3:77 for �y��k�. Then

we obtain the following results for the comparison of the water stress (B) and cold conditions (C) with

� = 0:10:
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B = 1 (0 bar) B = 1 (�4 bar) B = 2 (�6 bar) B = 3 (�8 bar)

C = 1 (F2) 88 Ca 80 Ba 64 Aa 70 Aa 75:5 a
C = 2 (F3) 88 Ca 80 Ba 78 Bb 68 Aa 78:5 a

88 C 80 B 71 A 69 A

where we have used uppercase letters to compare the levels of the water stress and lowercase letters

to compare the levels of cold conditions. Then we observe that the highest values for the expected

germination rate are obtained with 0 bar, without signi�cant di¤erence between cold conditions F2 and

F3. With F3 cold conditions, the expected value for the germination rate is higher for �6 bar than for �8

bar, but there is no di¤erence between �6 bar and �8 bar with F2 cold conditions (in fact, we have even

obtained higher values with �8 bar). This seems to be the reason that the interaction BC is signi�cant.

The complete LSD Fisher�s test with � = 0:10 for all the eight means leads to:

Treatment Mean

�6 bar + F2 64 A
�8 bar + F3 68 A
�8 bar + F2 70 A
�6 bar + F3 78 B
�4 bar + F2 80 B
�4 bar + F3 80 B
0 bar + F2 88 C
0 bar + F3 88 C
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Chapter 7

SPLIT-PLOT ANOVA

The split-plot designs arose from agricultural �eld trials. These often occur when there are two factors

of interest and one factor requires larger experimental units than the other. For example, suppose that

we are interested in studying irrigation amount and fertilizer type on the growth of a particular plant.

Because of the equipment involved, di¤erent amounts of irrigation can only be done on a large scale, while

di¤erent fertilizers can be applied much more locally. For this situation, two type of experimental units

are considered: large plots for the levels of irrigation (whole-plots) and small plots within each plot for

the fertilizers (split-plots). Levels of irrigation are assigned to the whole-plots in a completely randomized

design or a randomized complete block design, and each of the whole plots is divided in split-plots with

one fertilizer randomly assigned to each of them.

Additionally, these types of designs are often used in other situations. For example an industrial

experiment is used to study the freshness of milk. If the two factors are pasteurization process and type

of container, we would need to pasteurize an entire batch, but we could use di¤erent types of containers

in a particular batch. Similarly, this type of design is applicable in many real practical situations.

To illustrate this type of analysis of variance, an experimental design is considered with a factor A

with a levels assigned to the whole-plots in a randomized block design with r blocks (ra is the total

number of whole-plots), and a factor B with b levels randomly assigned to the split-plots within each plot

(rab is the total number of split-plots). The mathematical formulation for the model is

Yijk = �+ �i + �j + �ij + 
k + �
jk + "ijk

where � is the global mean e¤ect; �i is the block e¤ect (i = 1; ::; r), �j is the main e¤ect of factor

A in the whole-plots (j = 1; ::; a); 
k is the main e¤ect of factor B in the split-plots (k = 1; ::; b);

�
jk is the interaction e¤ect between factors A and B; �ij is the random error for the whole-plots with

�ij  N(0; �1) and "ijk is the random error for the split-plots whitin the whole-plots with "ijk  N(0; �2).

The parameters �21 and �
2
2 are the variance parameters for the whole-plots and the split-plots, respectively,

and we suppose that all �ij and "ijk are independent random variables. The restrictions on the parameters

are:
P
i

�i = 0,
P
j

�j = 0,
P
k


k = 0,
P
k

�
jk = 0 for all j, and
P
j

�
jk = 0 for all k.
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Note that a two-way factorial randomized block design would have all the combinations of levels

within each block and a unique random error term, while a split-plot model has the A factor applied only

one time to each block with factor B applied multiple times in each block, and it has two random error

terms.

Therefore, for this model we have E (Yijk) = �ijk = �+�i+�j+
k+�
jk and, with the usual notation,

the appropriate estimators for the parameters of the model are �̂ = Y ���, �̂i = Y i���Y ���, �̂j = Y �j��Y ���,


̂k = Y ��k�Y ���, c�
jk = Y �jk�Y �j��Y ��k+Y ��� and �̂ijk = �̂+�̂i+�̂j+
̂k+c�
jk = Y i��+Y �jk�Y ���. The
estimated residuals for this model are de�ned as "̂ijk = eijk = Yijk� �̂ijk. In addition, this model has two

sources of random variation, due to the existence of whole-plots (for factorA) and split-plots (for factorB).

This is the reason that, �rst, we divide the total variation in two parts, as follows: SST = SST1+SST2,

with SST =
P
i;j;k

�
Yijk � Y ���

�2
, SST1 = b

P
i;j

�
Y ij� � Y ���

�2
and SST2 =

P
i;j;k

�
Y ijk � Y ij�

�2
. The degrees

of freedom for these sum of squares are: rab� 1 for SST , ra� 1 for SST1 and ra(b� 1) for SST2, so that

rab� 1 = ra� 1 + ra(b� 1).

The total variation SST1 due to the whole-plots can be divided in three sources of variation: blocks,

main e¤ect of factor A and a random variation of the whole-plots, as follows

SSBlock = ab
X
i

�
Y i�� � Y ���

�2
= ab

X
i

�̂2i with d:f: = r � 1

SSA = rb
X
j

�
Y �j� � Y ���

�2
= rb

X
j

�̂
2

j with d:f: = a� 1

Whole-plot error = SSE1 = SST1 � SSBlock � SSA = with d:f: = (a� 1)(r � 1)

It is easily seen that SSE1 can be alternatively written as SSE1 = b
P
i;j

�
Y ij� � Y i�� � Y �j� + Y ���

�2
,

that is, as an hypothetical interaction between blocks and factor A. Moreover, it veri�es that E (SSE1) =

(a� 1)(r � 1)
�
�22 + b�

2
1

�
(see the note at the �nal of this experimental design).

In a similar way, the total variation SST2 due to the split-plots can be divided in three sources of

variation: main e¤ect of factor B, interaction e¤ect between factors A and B, and a random variation of

the split-plots, as follows

SSB = ra
X
k

�
Y ��k � Y ���

�2
= ra

X
k


̂2k with d:f: = b� 1

SSAB = r
X
j;k

�
Y �jk � Y �j� � Y ��k + Y ���

�2
= r

X
j;k

�c�
jk�2 with d:f: = (a� 1)(b� 1)
Split-plot error = SSE2 = SST2 � SSB � SSAB = with d:f: = a(b� 1)(r � 1)

Moreover, SSE2 can be alternatively written as SSE2 =
P
i;j;k

�
Y ijk � Y ij� � Y �jk + Y �j�

�2
and it

veri�es that E (SSE2) = a(b� 1)(r � 1)�22 (see the note at the �nal of this experimental design).

Therefore, taking into account the expressions for E (SSE2) and E (SSE1), it seems logical to estimate

the variance parameters of the model as c�22= SSE2
a(b� 1)(r � 1)=MSE2 and

c�21= SSE1
(a� 1)(r � 1)b�

MSE2
b

=

MSE1 �MSE2
b

with MSE1 =
SSE1

(a� 1)(r � 1) (this is the Type I estimation method).

Now, the appropriate statistics for the F-tests in the ANOVA table with their respective probability

distributions are:
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FBlock =
SSBlock=(r � 1)

MSE1
=
MSBlock
MSE1

 Fr�1;(a�1)(r�1) if �i = 0 for all i

FA =
SSA= (a� 1)
MSE1

=
MSA
MSE1

 Fa�1;(a�1)(r�1) if �j = 0 for all j

FB =
SSB= (b� 1)
MSE2

=
MSB
MSE2

 Fb�1;a(b�1)(r�1) if 
k = 0 for all k

FAB =
SSAB= ((a� 1)(b� 1))

MSE2
=
MSAB
MSE2

 F(a�1)(b�1);a(b�1)(r�1) if �
jk = 0 for all j; k

The ANOVA table for this model is as follows:

SS DF MS F-value p-value H0

Blocks SSBlock r � 1 MSBlock FBlock pBlock �i = 0 for all i

Factor A SSA a� 1 MSA FA pA �j = 0 for all j

Plot error SSE1 (a� 1)(r � 1) MSE1

Total plots SST1 ar � 1

Factor B SSB b� 1 MSB FB pB 
k = 0 for all k

Int. A �B SSAB (a� 1)(b� 1) MSAB FAB pAB �
jk = 0 for all j; k

Split-plot error SSE2 a(b�1)(r�1) MSE2

Total split-plots SST2 ar(b� 1)

Total SST abr � 1

The con�dence intervals for the marginal expected values are:

Y i�� � t(a�1)(r�1);�=2
r
MSE1
ab

for �i�� = �+ �i

Y �j� � t(a�1)(r�1);�=2
r
MSE1
rb

for ��j� = �+ �j

Y ��k � ta(b�1)(r�1);�=2
r
MSE2
ra

for ���k = �+ 
k

Y �jk � ta(b�1)(r�1);�=2
r
MSE2
r

for ��jk = �+ �j + 
k + �
jk

Finally, the least signi�cant di¤erences (LSD) for each pair of means are:

LSD = t(a�1)(r�1);�=2

r
2MSE1
ab

for Y i�� � Y i0��

LSD = t(a�1)(r�1);�=2

r
2MSE1
rb

for Y �j� � Y �j0�

LSD = ta(b�1)(r�1);�=2

r
2MSE2
ra

for Y ��k � Y ��k0

LSD = ta(b�1)(r�1);�=2

r
2MSE2
r

for Y �jk � Y �j0k0

The check of the assumptions of the model can be made as usual with the estimated residuals eijk.

It should be noted that if there are no blocks in the model then the parameters �i and the sum

SSBlock do not exist and now

Whole-plot error = SSE1 = b
X
i;j

�
Yij� � Y �j�

�2
with d:f: = a(r � 1)

and �̂jk = Y �jk with residuals "̂ijk = eijk = Yijk � �̂jk, but everything else being equal with replicates

instead of blocks.
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Note. To prove that E (SSE1) = (a � 1)(r � 1)
�
�22 + b�

2
1

�
�rst of all we observe that, for �xed i0

and j0, we have E
�
Y i0j0�� � Y i0��� � Y �j0�� + Y ����

�
= 0 and therefore

E
��
Y i0j0� � Y i0�� � Y �j0� + Y ���

�2�
= V ar

�
Y i0j0� � Y i0�� � Y �j0� + Y ���

�
= V ar

0@1
b

X
k

Yi0j0k �
1

ab

X
j;k

Yi0jk �
1

rb

X
i;k

Yij0k +
1

rab

X
i;j;k

Yijk

1A

= V ar

0BB@
�
1
b �

1
ab �

1
rb +

1
rab

�P
k

Yi0j0k �
�
1
ab �

1
rab

� P
j;k;j 6=j0

Yi0jk

�
�
1
rb �

1
rab

� P
i;k;i 6=i0

Yij0kl +
1
rab

P
i;j;k;i 6=i0;j 6=j0

Yijk

1CCA
=
(a� 1)2 (r � 1)2

r2a2b2
V ar

"
b�i0j0 +

X
k

"i0j0k

#
+
(r � 1)2
r2a2b2

V ar

24b X
j;j 6=j0

�i0j +
X

j;k;j 6=j0

"i0jk

35
+
(a� 1)2
r2a2b2

V ar

24b X
i;i 6=i0

�ij0 +
X

i;k;i 6=i0

"ij0kl

35+ 1

r2a2b2
V ar

24b X
i;j;i6=i0;j 6=j0

�ij +
X

i;j;k;i 6=i0;j 6=j0

"ijk

35

=
(a� 1)2 (r � 1)2

r2a2b2
�
b2�21 + b�

2
2

�
+
(r � 1)2
r2a2b2

�
b2(a� 1)�21 + b(a� 1)�22

�
+
(a� 1)2
r2a2b2

�
b2(r � 1)�21 + b(r � 1)�22

�
+

1

r2a2b2
�
b2(r � 1)(a� 1)�21 + b(r � 1)(a� 1)�22

�
=
(a� 1)2 (r � 1)2

r2a2b

�
b�21 + �

2
2

�
+
(r � 1)2(a� 1)

r2a2b

�
b�21 + �

2
2

�
+
(a� 1)2(r � 1)

r2a2b

�
b�21 + �

2
2

�
+
(a� 1)(r � 1)

r2a2b

�
b�21 + �

2
2

�
=
(a� 1)(r � 1)

r2a2b
[(a� 1)(r � 1) + r � 1 + a� 1 + 1]

�
b�21 + �

2
2

�
=
(a� 1)(r � 1)

rab

�
b�21 + �

2
2

�
As consequence, we have E (SSE1) = b

P
i;j

(a�1)(r�1)
rab

�
b�21 + �

2
2

�
= (a� 1)(r � 1)

�
�22 + b�

2
1

�
.

In a similar way, to prove that E (SSE2) = a(b� 1)(r � 1)�22 �rst of all we observe that, for �xed i0,

j0 and k0, the expression Y i0j0k0 � Y i0j0� � Y �j0k0 + Y �j0� does not depend on the random variables �ij0

and we have E
�
Y i0j0k0 � Y i0j0� � Y �j0k0 + Y �j0�

�
= 0. Therefore

E
��
Y i0j0k0 � Y i0j0� � Y �j0k0 + Y �j0�

�2�
= V ar

�
Y i0j0k0 � Y i0j0� � Y �j0k0 + Y �j0�

�
= V ar

0@Yi0j0k0 � 1bX
k

Yi0j0k �
1

r

X
i

Yij0k0 +
1

rb

X
i;k

Yij0k

1A

= V ar

0BB@
�
1� 1

b �
1
r +

1
rb

�
Yi0j0k0 �

�
1
b �

1
rb

� P
k;k 6=k0

Yi0j0k

�
�
1
r �

1
rb

� P
i;i 6=i0

Yij0k0 +
1
rb

P
i;k;i 6=i0;k 6=k0

Yij0k

1CCA
=
(b� 1)2 (r � 1)2

r2b2
V ar ("i0j0k0) +

(r � 1)2
r2b2

X
k;k 6=k0

V ar ("i0j0k)

+
(b� 1)2
r2b2

X
i;i 6=i0

V ar ("ij0k0) +
1

r2b2

X
i;k;i 6=i0;k 6=k0

V ar ("ij0k)
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=
(b� 1)2 (r � 1)2

r2b2
�22 +

(r � 1)2(b� 1)
r2b2

�22 +
(b� 1)2(r � 1)

r2b2
�22 +

(r � 1)(b� 1)
r2b2

�22

=
(b� 1) (r � 1) [(b� 1) (r � 1) + (r � 1) + (b� 1) + 1]

r2b2
�22 =

(b� 1) (r � 1)
rb

�22

As consequence, we have E (SSE2) =
P
i;j;k

(b� 1) (r � 1)
rb

�22 = a(b� 1)(r � 1)�22.

Example 8: Split-plot design. An experimental design is used to test the e¤ect of four crops of

compost (barley, vetch, barley-vetch growing together and fallow, which is the control level) with two

levels of nitrogen fertilization (120 pounds of nitrogen per acre and no nitrogen application, which is the

control level) on the subsequent production of sugar beet. The experimental area of land is divided into

three blocks because of the possible in�uence of the soil characteristics. At �rst, it was assumed that

the sugar beet would respond in di¤erent ways depending on the level nitrogen fertilization; therefore

the aim was to compare as precisely as possible the e¤ect of plant fertilizers in each level of nitrogen.

Thus each block is divided into two main plots randomly assigning to each one of the two nitrogen levels.

After each main plot was subdivided into four subplots to which were randomized each of the four types

of plant fertilizer. At the �nal of the experiment, the total production of sugar beet in tons per acre was

annotated for each of the 24 subplots. Then we have two types of experimental units: 6 plots associated

with nitrogen levels (2 levels with 3 replicates, one for each block) and 24 subplots associated with the

plant fertilizers (4 levels with 6 replicates). To formulate the problem, three factors were considered:

blocks, A for nitrogen fertilization and B for plant fertilizers. For the statistical analysis we use the

split-plot model
Yijk = �+ �i + �j + �ij + 
k + �
jk + "ijk

which leads to E (Yijk)=� + �i + �j + 
k + �
jk with i=1; 2; 3 for the blocks; j=1; 2 for the nitrogen

fertilization and k=1; 2; 3; 4 for the plant fertilizers. That is, just the model previously studied with

r = 3, a = 2 and b = 4. The obtained results are given in the following table:

No nitrogen (j = 1) Whole Nitrogen=120 (j = 2) Whole Total

Fallow Barley Vetch Bar.-Vet. plot Fallow Barley Vetch Bar.-Vet. plot block

Block k = 1 k = 2 k = 3 k = 4 �yi1� k = 1 k = 2 k = 3 k = 4 �yi2� �yi��

i = 1 27:6 31:0 42:0 37:8 34:60 38:6 44:4 50:6 51:8 46:35 40:475
i = 2 27:0 30:0 45:4 36:6 34:75 36:0 48:4 49:6 53:4 46:85 40:8
i = 3 26:4 30:4 44:6 39:2 35:15 41:0 50:8 56:8 55:2 50:95 43:05

The total sums are
P
i;j;k

yijk = 994:6,
P
i;j;k

y2ijk = 43282:36 and, therefore, SST = 43282:36 � 994:62

24 =

6193:435
3 . In a similar way, for the whole-plots, the total sums are

P
i;j

�yij� = 248:65,
P
i;j

�y2ij� = 10579:3925

and, therefore, SST1 = 4
�
10579:3925� 248:652

6

�
= 3299:065

3 . Now we evaluate the observed means for all

the treatments, which are shown in the following table with the usual notation:

k = 1 k = 2 k = 3 k = 4

j = 1 �y�11 =
81
3 �y�12 =

91:4
3 �y�13 =

132
3 �y�14 =

113:6
3 �y�1� =

104:5
3

j = 2 �y�21 =
115:6
3 �y�22 =

143:6
3 �y�23 =

157
3 �y�24 =

160:4
3 �y�2� =

144:15
3

�y��1 =
98:3
3 �y��2 =

117:5
3 �y��3 =

144:5
3 �y��4 =

137
3 �y��� =

124:325
3
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The estimated parameters of the model are: �̂ = 124:325
3 , �̂1 = 40:475 � 124:325

3 = � 2:9
3 , �̂2 =

40:8 � 124:325
3 = � 1:925

3 , �̂3 = 43:05 � 124:325
3 = 4:825

3 , and, for example, �̂1 =
104:5
3 � 124:325

3 = � 19:825
3 ,


̂1 =
98:3
3 � 124:325

3 = � 26:025
3 , c�
11 = 81�124:325

3 + 19:825
3 + 26:025

3 = 2:525
3 . In a similar way, the other

estimated parameters are evaluated and they are included in the following table:

k = 1 k = 2 k = 3 k = 4

j = 1 c�
11 = 2:525
3

c�
12 = � 6:275
3

c�
13 = 7:325
3

c�
14 = � 3:575
3 �̂1 = � 19:825

3

j = 2 c�
21 = � 2:525
3

c�
22 = 6:275
3

c�
23 = � 7:325
3

c�
24 = 3:575
3 �̂2 =

19:825
3


̂1 = � 26:025
3 
̂2 = � 6:825

3 
̂3 =
20:175
3 
̂4 =

12:675
3

Now we can evaluate all the sums of squares for the model: SSBlock = 8
P
i

�̂2i =
94:39
3 , SSA =

12
P
j

�̂
2

j =
3144:245

3 , SSE1 = SST1 � SSBlock � SSA = 3299:065�94:39�3144:245
3 = 60:43

3 , SSB = 6
P
k


̂2k =

2583:135
3 , SSAB = 3

P
j;k

�c�
jk�2 = 224:375
3 and

SSE2 = SST � SST1 � SSB � SSAB =
6193:435� 3299:065� 2583:135� 224:375

3
=
86:86

3

The estimations for the variance parameters of the model are c�22=MSE2 = SSE212
=2:41 and c�21=

MSE1 �MSE2
4

=
60:43
6 � 86:86

36

4 = 68:93
38 = 1:81.

The evaluation of the F-tests in the ANOVA table leads to:

FBlock =
94:39=6
60:43=6 = 1:56 with p-value= p (F2;2 > 1:56) = 0:3906

FA =
3144:245=3
60:43=6 = 104:06 with p-value= p (F1;2 > 104:06) = 0:0095

FB =
2583:135=9
86:86=36 = 118:96 with p-value= p (F3;12 > 118:96) = 0:0000

FAB =
224:375=9
86:86=36 = 10:33 with p-value= p (F3;12 > 10:33) = 0:0012

Therefore, the two factors are signi�cative and, moreover, there is an interaction between them. The

standard error for the means �y�j� is SE =

r
MSE1
12

= 0:92 and, taking into account that t2;0:025 =

4:30, the 95% con�dence intervals are �y�j� � 3:96. The least signi�cant di¤erence with � = 0:05 is

LSD = 3:96
p
2 = 5:60. For the means �y��k, the standard error is SE =

r
86:86

216
= 0:63 and, taking

into account that t12;0:025 = 2:18, the 95% con�dence intervals are �y��k � 1:37. The least signi�cant

di¤erence with � = 0:05 is LSD = 1:37
p
2 = 1:94. Finally, for the means �y�jk, the standard error is

SE =

r
86:86

108
= 0:87 and the 95% con�dence intervals are �y�jk � 1:90. The least signi�cant di¤erence

with � = 0:05 is LSD = 1:90
p
2 = 2:69.

Using the three previous values for the least signi�cant di¤erences LSD we obtain the following results

for the comparisons of means in the two factors:

Fallow Barley Vetch Barley-Vetch

No nitrogen 81
3 Aa

91:4
3 Ba 132

3 Da 113:6
3 Ca 104:5

3 a

Nitrogen=120 115:6
3 Ab 143:6

3 Bb 157
3 Cb 160:4

3 Cb 144:15
3 b

98:3
3 A 117:5

3 B 144:5
3 D 137

3 C

where uppercase letters are used to compare the plant fertilizers and lowercase letters to compare the

levels of nitrogen fertilization. Then we observe that, for all the plant fertilizers, the expected value for the
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production of sugar beet is higher if we use nitrogen fertilization. If we do not use nitrogen fertilization,

the expected value is higher with vetch, then with barley-vetch, then with barley and �nally with fallow;

being the di¤erences signi�cant in all cases. If we use nitrogen fertilization, the same order is maintained

but there is not signi�cative di¤erences between vetch and barley-vetch. This seems to be the reason

that the interaction between the two factors is signi�cant.

The complete LSD Fisher�s test with � = 0:05 for all the eight means leads to:

Treatment Mean

Fallow with no nitrogen (Control) 81
3 A

Barley with no nitrogen 91:4
3 B

Barley-Vetch with no nitrogen 113:6
3 C

Fallow with nitrogen=120 115:6
3 C

Vetch with no nitrogen 132
3 D

Barley with nitrogen=120 143:6
3 E

Vetch with nitrogen=120 157
3 F

Barley-Vetch with nitrogen=120 160:4
3 F
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Chapter 8

SPLIT-SPLIT-PLOT ANOVA

The model just discussed can be generalized to the case of three factors with di¤erent sizes of experimental

units for each of them. That is, three plot sizes corresponding to the three factors; namely, the whole-plots

for the main factor (factor A with a levels), the intermediate size plot for the split-plot factor (factor

B with b levels), and the smallest plot for the split-split-plot factor (factor C with c levels). In this

case, there are three levels of precision with the whole-plot factor receiving the lowest precision, and the

split-split factor receiving the highest precision. The levels of the factor A are randomly assigned to the

whole-plots in a completely randomized design or a randomized complete block design; then each of the

whole-plots is divided in b split-plots with one of them randomly assigned for each of the levels of the

factor B, and �nally, each of the split-plots is divided in c split-split-plots with one of them randomly

assigned for each of the levels of the factor C.

To illustrate this type of analysis of variance, we consider a experimental design with a factor A with

a levels assigned to the whole-plots in a randomized block design with r blocks (ra is the total number

of whole-plots), a factor B with b levels randomly assigned to the split-plots within each plot (rab is the

total number of split-plots) and a factor C with c levels randomly assigned to the split-split-plots within

each split-plot (rabc is the total number of split-split-plots, which are the smallest experimental units).

The mathematical formulation for the model is

Yijkl = �+ �i + �j + �ij + 
k + �
jk + �ijk + �l + ��jl + 
�kl + �
�jkl + "ijkl

where � is the global mean e¤ect; �i is the block e¤ect (i = 1; ::; r), �j is the main e¤ect of factor A in

the whole-plots (j = 1; ::; a); 
k is the main e¤ect of factor B in the split-plots (k = 1; ::; b); �l is the main

e¤ect of factor C in the split-split-plots (l = 1; ::; c); �
jk; ��jl; 
�kl and �
�jkl are the interaction e¤ects

as in the three-way factorial ANOVA; �ij is a random e¤ect of the whole-plots with �ij  N(0; �1);

�ijk is a random e¤ect of the split-plots with �ijk  N(0; �2) and "ijkl is the random error for the

split-split-plots in the model with "ijkl  N(0; �3). As usual, we suppose that all �ij , �ijk and "ijkl

are independent random variables. The parameters �21, �
2
2 and �

2
3 are the variance parameters for the

whole-plot, the split-plots and the split-split-plots, respectively. Now, the restrictions on the parameters

are:
P
i

�i = 0,
P
j

�j = 0,
P
k


k = 0,
P
l

�l = 0,
P
k

�
jk = 0 for all j,
P
j

�
jk = 0 for all k,
P
l

��jl = 0
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for all j,
P
j

��jl = 0 for all l,
P
l


�kl = 0 for all k,
P
k


�kl = 0 for all l,
P
l

�
�jkl = 0 for all j; k,P
k

�
�jkl = 0 for all j; l and
P
j

�
�jkl = 0 for all k; l.

Therefore, in this model we have

E (Yijkl) = �ijkl = �+ �i + �j + 
k + �
jk + �l + ��jl + 
�kl + �
�jkl

and, with the usual notation, the appropriate estimators for the parameters of the model are �̂ = Y ����,

�̂i = Y i����Y ����, �̂j = Y �j���Y ����, 
̂k = Y ��k��Y ����, �̂l = Y ���l�Y ����, c�
jk = Y �jk��Y �j���Y ��k�+Y ����,c��jl = Y �j�l � Y �j�� � Y ���l + Y ����, c
�kl = Y ��kl � Y ��k� � Y ���l + Y ���� and �nallyd�
�jkl = (Y �jkl � Y ����)� �̂j � 
̂k � �̂l � c�
jk �c��jl �c
�kl
= Y �jkl � Y �jk� � Y ��kl � Y �j�l + Y �j��� + Y ��k� + Y ���l � Y ����

With these estimators we have �̂ijkl=Y i���+Y �jkl�Y ���� and the residuals are "̂ijkl=eijkl=Yijkl� �̂ijkl.

This model has three sources of random variation, due to the existence of whole-plots (for factor

A), split-plots (for factor B) and split-split-plots (for factor C). This is the reason that, �rst, we di-

vide the total variation in the three parts, as follows: SST = SST1 + SST2 + SST3, with SST =P
i;j;k;l

�
Yijkl � Y ����

�2
, SST1 = bc

P
i;j

�
Y ij�� � Y ����

�2
, SST2 = c

P
i;j;k

�
Y ijk� � Y ij��

�2
and SST3 =

P
i;j;k;l

�
Yijkl � Y ijk�

�2
.

The degrees of freedom for these sum of squares are: rabc � 1 for SST , ra � 1 for SST1, ra(b � 1) for

SST2 and rab(c� 1) for SST3, so that rabc� 1 = ra� 1 + ra(b� 1) + rab(c� 1).

The total variation SST1 due to the whole-plots can be divided in three sources of variation: blocks,

main e¤ect of factor A and a random variation of the whole-plots, as follows

SSBlock = abc
X
i

�
Y i��� � Y ����

�2
= abc

X
i

�̂2i with d:f: = r � 1

SSA = rbc
X
j

�
Y �j�� � Y ����

�2
= rbc

X
j

�̂
2

j with d:f: = a� 1

Whole-plot error = SSE1 = SST1 � SSBlock � SSA = with d:f: = (a� 1)(r � 1)

It is easily seen that SSE1 can be alternatively written as SSE1 = bc
P
i;j

�
Y ij�� � Y i��� � Y �j�� + Y ����

�2
,

that is, as an hypothetical interaction between blocks and factor A. Moreover, it veri�es that E (SSE1) =

(a� 1)(r � 1)
�
�23 + c�

2
2 + bc�

2
1

�
(see the note at the �nal of this experimental design).

In a similar way, the total variation SST2 due to the split-plots can be divided in three sources of

variation: main e¤ect of factor B, interaction e¤ect between factor A and B, and a random variation of

the split-plots, as follows

SSB = rac
X
k

�
Y ��k� � Y ����

�2
= rac

X
k


̂2k with d:f: = b� 1

SSAB = rc
X
j;k

�
Y �jk� � Y �j�� � Y ��k� + Y ����

�2
= rc

X
j;k

�c�
jk�2 with d:f: = (a� 1)(b� 1)
Split-plot error = SSE2 = SST2 � SSB � SSAB = with d:f: = a(b� 1)(r � 1)
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Now, SSE2 can be alternatively written as SSE2 = c
P
i;j;k

�
Y ijk� � Y ij�� � Y �jk� + Y �j��

�2
, that is, as

an hypothetical interaction between blocks and factor B within each level of factor A. Moreover, it

veri�es that E (SSE2) = a(b�1)(r�1)
�
�23 + c�

2
2

�
(see the note at the �nal of this experimental design).

Finally, the total variation SST3 due to the split�split-plots can be divided in �ve sources of variation:

main e¤ect of factor C, interaction e¤ects between factor C and factors A and B, triple interaction e¤ect

between factors A, B and C, and a random variation of the split�split-plots, as follows

SSC = rab
X
l

�
Y ���l � Y ����

�2
= rab

X
l

�̂
2

l with d:f: = c� 1

SSAC = rb
X
j;l

�
Y �j�l � Y �j�� � Y ���l + Y ���

�2
= rb

X
j;l

�c��jl�2 with d:f: = (a� 1)(c� 1)
SSBC = ra

X
k;l

�
Y ��kl � Y ��k� � Y ���l + Y ���

�2
= ra

X
k;l

�c
�kl�2 with d:f: = (b� 1)(c� 1)
SSABC = r

X
j;k;l

�
Y �jkl � Y �jk� � Y ��kl � Y �j�l + Y �j��� + Y ��k� + Y ���l � Y ����

�2
= r

X
j;k;l

�d�
�jkl�2 with d:f: = (a� 1)(b� 1)(c� 1)
Split�split-plot error = SSE3 = SST3 � SSC � SSAC � SSBC � SSABC = with d:f: = ab(c� 1)(r � 1)

Note that SSE3 can be alternatively written as SSE3 =
P
i;j;k;l

�
Yijkl � Y ijk� � Y �jkl + Y �jk�

�2
, that is,

as an hypothetical interaction between blocks and factor C within each pair of levels from factors A and

B. Moreover, it veri�es that E (SSE3) = ab(c�1)(r�1)�23 (see the note at the �nal of this experimental

design).

Using the Type I estimation method (other methods are available), the estimations for the variance

parameters are c�23 = MSE3 = SSE3
ab(c� 1)(r � 1) ,

c�22 = MSE2 �MSE3
c

with MSE2 =
SSE2

a(b� 1)(r � 1) ,

and c�21 = MSE1 �MSE2
bc

with MSE1 =
SSE1

(a� 1)(r � 1) .

In addition, the appropriate statistics for the F-tests in the ANOVA table with their respective

probability distributions are:

FBlock =
SSBlock=(r � 1)

MSE1
 Fr�1;(a�1)(r�1) if �i = 0 for all i

FA =
SSA= (a� 1)
MSE1

 Fa�1;(a�1)(r�1) if �j = 0 for all j

FB =
SSB= (b� 1)
MSE2

 Fb�1;a(b�1)(r�1) if 
k = 0 for all k

FAB =
SSAB= ((a� 1)(b� 1))

MSE2
 F(a�1)(b�1);a(b�1)(r�1) if �
jk = 0 for all j; k

FC =
SSC= (c� 1)
MSE3

 Fc�1;ab(c�1)(r�1) if �l = 0 for all l

FAC =
SSAC= ((a� 1)(c� 1))

MSE3
 F(a�1)(c�1);ab(c�1)(r�1) if ��jl = 0 for all j; l

FBC =
SSBC= ((b� 1)(c� 1))

MSE3
 F(b�1)(c�1);ab(c�1)(r�1) if 
�kl = 0 for all k; l

FABC=
SSABC= ((a�1)(b�1)(c�1))

MSE3
=
MSABC
MSE3

 F(a�1)(b�1)(c�1);ab(c�1)(r�1) if �
�jkl = 0 for all j; k; l
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The ANOVA table for this model is as follows:

SS DF MS F-value p-value H0

Blocks SSBlock r � 1 MSBlock FBlock pBlock �i = 0 for all i

Factor A SSA a� 1 MSA FA pA �j = 0 for all j

Plot error SSE1 (a� 1)(r � 1) MSE1

Total plots SST1 ar � 1

Factor B SSB b� 1 MSB FB pB 
k = 0 for all k

Int. A �B SSAB (a� 1)(b� 1) MSAB FAB pAB �
jk = 0 for all j; k

Split-plot error SSE2 a(b�1)(r�1) MSE2

Total split-plots SST2 ar(b� 1)

Factor C SSC c� 1 MSC FC pC �l = 0 for all l

Int. A � C SSAC (a� 1)(c� 1) MSAC FAC pAC ��jl = 0 for all j; l

Int. B � C SSBC (b� 1)(c� 1) MSBC FBC pBC 
�kl = 0 for all k; l

Int. A �B � C SSABC (a�1)(b�1)(c�1) MSABC FABC pABC �
�jkl = 0 for all j; k; l

Ssplit-plot error SSE3 ab(c� 1)(r � 1) MSE3

Total ssplit-plots SST3 abr(c� 1)

Total SST abcr � 1

The con�dence intervals for the marginal expected values are:

Y i��� � t(a�1)(r�1);�=2
r
MSE1
abc

for �i��� = �+ �i

Y �j�� � t(a�1)(r�1);�=2
r
MSE1
rbc

for ��j�� = �+ �j

Y ��k� � ta(b�1)(r�1);�=2
r
MSE2
rac

for ���k� = �+ 
k

Y ���l � tab(c�1)(r�1);�=2
r
MSE3
rab

for ����l = �+ �l

Y �jk� � ta(b�1)(r�1);�=2
r
MSE2
rc

for ��jk� = �+ �j + 
k + �
jk

Y �j�l � tab(c�1)(r�1);�=2
r
MSE3
rb

for ��j�l = �+ �j + �l + ��jl

Y ��kl � tab(c�1)(r�1);�=2
r
MSE3
ra

for ���kl = �+ 
k + �l + 
�kl

Y �jkl � tab(c�1)(r�1);�=2
r
MSE3
r

for ��jkl = �+ �j + 
k + �
jk + �l + ��jl + 
�kl + �
�jkl

Finally, the least signi�cant di¤erences (LSD) for each pair of means are:
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LSD = t(a�1)(r�1);�=2

r
2MSE1
abc

for Y i��� � Y i0���

LSD = t(a�1)(r�1);�=2

r
2MSE1
rbc

for Y �j�� � Y �j0��

LSD = ta(b�1)(r�1);�=2

r
2MSE2
rac

for Y ��k� � Y ��k0�

LSD = tab(c�1)(r�1);�=2

r
2MSE3
rab

for Y ���l � Y ���l0

LSD = t(a�1)(r�1);�=2

r
2MSE2
rc

for Y �jk� � Y �j0k0�

LSD = ta(b�1)(r�1);�=2

r
2MSE3
rb

for Y �j�l � Y �j0�l0

LSD = ta(b�1)(r�1);�=2

r
2MSE3
ra

for Y ��kl � Y ��k0l0

LSD = ta(b�1)(r�1);�=2

r
2MSE3
r

for Y �jkl � Y �j0k0l0

The check of the assumptions of the model can be made as usual with the estimated residuals eijkl.

It should be noted that if there are no blocks in the model then the parameters �i and the sum

SSBlock do not exist and now

Whole-plot error = SSE1 = bc
X
i;j

�
Yij�� � Y �j��

�2
with d:f: = a(r � 1)

and �̂jkl = Y �jkl with residuals "̂ijkl = eijkl = Yijkl�Y �jkl, but everything else being equal with replicates

instead of blocks.

Note. To prove that E (SSE1) = (a� 1) (r � 1)
�
bc�21 + c�

2
2 + �

2
3

�
, �rst of all we observe that, for

�xed i0 and j0, we have E
�
Y i0j0�� � Y i0��� � Y �j0�� + Y ����

�
= 0 and therefore, for �xed values i0 and j0,

it veri�es that:

E
��
Y i0j0�� � Y i0��� � Y �j0�� + Y ����

�2�
= V ar

�
Y i0j0�� � Y i0��� � Y �j0�� + Y ����

�
= V ar

0@ 1

bc

X
k;l

Yi0j0kl �
1

abc

X
j;k;l

Yi0jkl �
1

rbc

X
i;k;l

Yij0kl +
1

rabc

X
i;j;k;l

Yijkl

1A

= V ar

0BB@
�
1
bc �

1
abc �

1
rbc +

1
rabc

�P
k;l

Yi0j0kl �
�
1
abc �

1
rabc

� P
j;k;l;j 6=j0

Yi0jkl

�
�
1
rbc �

1
rabc

� P
i;k;l;i 6=i0

Yij0kl +
1

rabc

P
i;j;k;l;i 6=i0;j 6=j0

Yijkl

1CCA
=
(a� 1)2 (r � 1)2

r2a2b2c2
V ar

24bc�i0j0 + cX
k

�i0j0k +
X
k;l

"i0j0kl

35
+
(r � 1)2
r2a2b2c2

V ar

24bc X
j;j 6=j0

�i0j + c
X

j;k;j 6=j0

�i0jk +
X

j;k;l;j 6=j0

"i0jkl

35
+
(a� 1)2
r2a2b2c2

V ar

24bc X
i;i 6=i0

�ij0 + c
X

i;k;i 6=i0

�ij0k +
X

i;k;l;i 6=i0

"ij0kl

35
+

1

r2a2b2c2
V ar

24bc X
i;j;i6=i0;j 6=j0

�ij + c
X

i;j;k;i 6=i0;j 6=j0

�ijk +
X

i;j;k;l;i6=i0;j 6=j0

"ijkl

35
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=
(a� 1)2 (r � 1)2

r2a2b2c2
�
b2c2�21 + c

2b�22 + bc�
2
3

�
+
(r � 1)2
r2a2b2c2

�
b2c2(a� 1)�21 + c2b(a� 1)�22 + cb(a� 1)�21

�
+
(a� 1)2
r2a2b2c2

�
b2c2(r � 1)�21 + c2b(r � 1)�22 + cb(r � 1)�21

�
+

1

r2a2b2c2
�
b2c2(r � 1)(a� 1)�21 + c2b(r � 1)(a� 1)�22 + cb(r � 1)(a� 1)�23

�
=
(a� 1)2 (r � 1)2

r2a2bc

�
bc�21 + c�

2
2 + �

2
3

�
+
(r � 1)2(a� 1)

r2a2bc

�
bc�21 + c�

2
2 + �

2
3

�
+
(a� 1)2(r � 1)

r2a2bc

�
bc�21 + c�

2
2 + �

2
3

�
+
(a� 1)(r � 1)

r2a2bc

�
bc�21 + c�

2
2 + �

2
3

�
=
(a� 1)(r � 1)

r2a2bc
[(a� 1)(r � 1) + r � 1 + a� 1 + 1]

�
bc�21 + c�

2
2 + �

2
3

�
=
(a� 1)(r � 1)

rabc

�
bc�21 + c�

2
2 + �

2
3

�
Therefore. we have

E (SSE1) = bc
X
i;j

(a� 1)(r � 1)
rabc

�
bc�21 + c�

2
2 + �

2
3

�
= (a� 1) (r � 1)

�
bc�21 + c�

2
2 + �

2
3

�

In a similar way, to prove that E (SSE2) = a (b� 1) (r � 1)
�
c�22 + �

2
3

�
, we observe that, for �xed

values i0, j0 and k0, the expression Y i0j0k0� � Y i0j0�� � Y �j0k0� + Y �j0�� does not depend on the values �ij0
(each of them appears two times, one with positive sign and one with negative sign). Then we have:

E
��
Y i0j0k0� � Y i0j0�� � Y �j0k0� + Y �j0��

�2�
= V ar

�
Y i0j0k0� � Y i0j0�� � Y �j0k0� + Y �j0��

�
= V ar

0@1
c

X
l

Yi0j0k0l �
1

bc

X
k;l

Yi0j0kl �
1

rc

X
i;l

Yij0k0l +
1

rbc

X
i;k;l

Yij0kl

1A

= V ar

0BB@
�
1
c �

1
bc �

1
rc +

1
rbc

�P
l

Yi0j0k0l �
�
1
bc �

1
rbc

� P
k;l;k 6=k0

Yi0j0kl

�
�
1
rc �

1
rbc

� P
i;l;i 6=i0

Yij0k0l +
1
rbc

P
i;k;l;i 6=i0;k 6=k0

Yij0kl

1CCA
=
(b� 1)2 (r � 1)2

r2b2c2

"
V ar

�
c�i0j0k0

�
+ V ar

 X
l

"i0j0k0l

!#

+
(r � 1)2
r2b2c2

24 X
k;k 6=k0

V ar
�
c�i0j0k

�
+ V ar

0@ X
k;l;k 6=k0

"i0j0k0l

1A35
+
(b� 1)2
r2b2c2

24 X
i;i6=i0

V ar
�
c�ij0k0

�
+ V ar

0@ X
i;l;i6=i0

"i0j0k0l

1A35
+

1

r2b2c2

24 X
i;k;i 6=i0;k 6=k0

V ar
�
c�ij0k

�
+ V ar

0@ X
i;l;i6=i0

"ij0kl

1A35
=
(b� 1)2 (r � 1)2

r2b2c2
(c2�22 + c�

2
3) +

(r � 1)2
r2b2c2

(b� 1)(c2�22 + c�23)

+
(b� 1)2
r2b2c2

(r � 1)(c2�22 + c�23) +
1

r2b2c2
(r � 1)(b� 1)(c2�22 + c�23)
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=
(b� 1) (r � 1) [(b� 1) (r � 1) + (r � 1) + (b� 1) + 1]

r2b2c
(c�22 + �

2
3)

=
(b� 1) (r � 1)

rbc
(c�22 + �

2
3)

Therefore, we have

E (SSE2) = c
X
i;j;k

(b� 1) (r � 1)
rbc

(c�22 + �
2
3) = a (b� 1) (r � 1)

�
c�22 + �

2
3

�

Finally, to prove that E(SSE3) = ab (c� 1) (r � 1)�23, we observe that, for �xed values i0, j0,k0 and

l0, the expression Yi0j0k0l0 � Y i0j0k0�� Y �j0k0l0 + Y �j0k0� does not depend on �ij0 or �ij0k0 , because of the

same reason as before. Then we have:

E
��
Yi0j0k0l0 � Y i0j0k0� � Y �j0k0l0 + Y �j0k0�

�2�
= V ar

�
Yi0j0k0l0 � Y i0j0k0� � Y �j0k0l0 + Y �j0k0�

�
= V ar

0@Yi0j0k0l0 � 1cX
l

Yi0j0k0l �
1

r

X
i

Yij0k0l0 +
1

rc

X
i;l

Yij0k0l

1A
= V ar

0@�1� 1
c
� 1
r
+
1

rc

�
Yi0j0k0l0�

�
1

c
� 1

rc

�X
l;l 6=l0

Yi0j0k0l�
�
1

r
� 1

rc

�X
i;i 6=i0

Yij0k0l0+
1

rc

X
i;l;i6=i0;l 6=l0

Yij0k0l

1A
=
(c� 1)2 (r � 1)2

r2c2
V ar ("i0j0k0l0) +

(r � 1)2
r2c2

X
l;l 6=l0

V ar ("i0j0k0l)

+
(c� 1)2
r2c2

X
i;i 6=i0

V ar ("ij0k0l0) +
1

r2c2

X
i;l;i 6=i0;l 6=l0

V ar ("ij0k0l)

=
(c� 1)2 (r � 1)2

r2c2
�23 +

(r � 1)2
r2c2

(c� 1)�23 +
(c� 1)2
r2c2

(r � 1)�23 +
1

r2c2
(r � 1)(c� 1)�23

=
(c� 1) (r � 1) [(c� 1) (r � 1) + (r � 1) + (c� 1) + 1]

r2c2
�23

=
(c� 1) (r � 1)

rc
�23

Therefore, we have

E (SSE3) =
X
i;j;k;l

(c� 1) (r � 1)
r

�23 = ab (c� 1) (r � 1)�23

Example 9: Split�split-plot design. We want to evaluate the e¤ect of planting date (factor A),

aphid control (factor B) and the date of harvesting (factor C) on the production of sugar beet. Three

planting dates were chosen: March 2 (level 1), April 2 (level 2) and May 2 (level 3). Two levels were

established for factor B: applying a treatment for the aphid (level 2) and not applying any treatment

(level 1, which is the control). Finally, three harvest dates were chosen for factor C: August 27 (level

1), September 24 (level 2) and October 22 (level 3). The available area of land for the experiment was

divided in four blocks because of the possible di¤erences in physical and chemical soil characteristics.

Three whole-plots in each block are established and a planting date is randomly assigned to each one.

Then, each of the whole-plots was divided into two split-plots, one of which is sprayed against aphids

and other not, at random. Finally, each of the split-plots is divided into three split�split-plots to each
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of them, at random, it is applied to a harvest date. At the end of the experiment, the production of

each of the 72 split-split-plots expressed in tons per acre was recorded. We have, therefore, three types

of experimental units: the 12 whole-plots associated with planting dates (3 levels with 4 repetitions, one

per block), 24 split-plots associated with aphid control (2 levels with 12 repetitions, 3 per block) and 72

split-split-plots associated with the harvest date (3 levels with 24 repetitions, 6 per block).

For the statistical analysis we use the split�split-plot model

Yijkl = �+ �i + �j + �ij + 
k + �
jk + �ijk + �l + ��jl + 
�kl + �
�jkl + "ijkl

which leads to E (Yijkl) = � + �i + �j + 
k + �
jk + �l + ��jl + 
�kl + �
�jkl with i=1; 2; 3; 4 for the

blocks; j=1; 2; 3 for the planting date, k=1; 2 for the aphid control and l = 1; 2; 3 for the harvest date.

That is, just the model previously studied with r = 4, a = 3, b = 2 and c = 3. The observed data and

some of the means in the model are given in the following table:

Treatments Blocks Treatment

Aj Bk Cl i = 1 i = 2 i = 3 i = 4 totals �y�jkl

1 1 1 25:7 25:4 23:8 22:0 �y�111 =
96:9
4

1 1 2 31:8 29:5 28:7 26:4 �y�112 =
116:4
4

1 1 3 34:6 37:2 29:1 23:7 �y�113 =
124:6
4

Split-plot �yi11� �y111� =
92:1
3 �y211� =

92:1
3 �y311� =

81:6
3 �y411� =

72:1
3 �y�11� =

337:9
12

1 2 1 27:7 30:3 30:2 33:2 �y�121 =
121:4
4

1 2 2 38:0 40:6 34:6 31:0 �y�122 =
144:2
4

1 2 3 42:1 43:6 44:6 42:7 �y�123 =
173:0
4

Split-plot �yi12� �y112� =
107:8
3 �y212� =

114:5
3 �y312� =

109:4
3 �y412� =

106:9
3 �y�12� =

438:6
12

Whole-plot �yi1�� �y11�� =
199:9
6 �y21�� =

206:6
6 �y31�� =

191:0
6 �y41�� =

179:0
6 �y�1�� =

776:5
24

2 1 1 28:9 24:7 27:8 23:4 �y�211 =
104:8
4

2 1 2 37:5 31:5 31:0 27:8 �y�212 =
127:8
4

2 1 3 38:4 32:5 31:2 29:8 �y�213 =
131:9
4

Split-plot �yi21� �y121� =
104:8
3 �y221� =

88:7
3 �y321� =

90:0
3 �y421� =

81:0
3 �y�21� =

364:5
12

2 2 1 38:0 31:0 29:5 30:7 �y�221 =
129:2
4

2 2 2 36:9 31:9 31:5 35:9 �y�222 =
136:2
4

2 2 3 44:2 41:6 38:9 37:6 �y�223 =
162:3
4

Split-plot �yi22� �y122� =
119:1
3 �y222� =

104:5
3 �y322� =

99:9
3 �y422� =

104:2
3 �y�22� =

427:7
12

Whole-plot �yi2�� �y12�� =
223:9
6 �y22�� =

193:2
6 �y32�� =

189:9
6 �y42�� =

185:2
6 �y�2�� =

792:2
24

3 1 1 23:4 24:2 21:2 20:9 �y�311 =
89:7
4

3 1 2 25:3 27:7 23:7 24:3 �y�312 =
101:0
4

3 1 3 29:8 29:9 24:3 23:8 �y�313 =
107:8
4

Split-plot �yi31� �y131� =
78:5
3 �y231� =

81:8
3 �y331� =

69:2
3 �y431� =

69:0
3 �y�31� =

298:5
12

3 2 1 20:8 23:0 25:2 23:1 �y�321 =
92:1
4

3 2 2 29:0 32:0 26:5 31:2 �y�322 =
118:7
4

3 2 3 36:6 37:8 34:8 40:2 �y�323 =
149:4
4

Split-plot �yi32� �y132� =
86:4
3 �y232� =

92:8
3 �y332� =

86:5
3 �y432� =

94:5
3 �y�32� =

360:2
12

Whole-plot �yi3�� �y13�� =
164:9
6 �y23�� =

174:6
6 �y33�� =

155:7
6 �y43��

163:5
6 �y�3�� =

658:7
24

Total block �yi��� �y1��� =
588:7
18 �y2��� =

574:4
18 �y3��� =

536:6
18 �y4��� =

527:7
18 �y���� =

2227:4
72
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The rest of the means are given in the following table:

�y�1�1 =
1964:7
72 �y�2�1 =

2106
72 �y�3�1 =

1636:2
72

�y�1�2 =
2345:4
72 �y�2�2 =

2376
72 �y�3�2 =

1977:3
72

�y�1�3 =
2678:4
72 �y�2�3 =

2647:8
72 �y�3�3 =

2314:8
72

�y�1�� =
2329:5
72 �y�2�� =

2376:6
72 �y�3�� =

1976:1
72

�y��11 =
1748:4
72 �y��21 =

2056:2
72 �y���1 =

1902:3
72

�y��12 =
2071:2
72 �y��22 =

2394:6
72 �y���2 =

2232:9
72

�y��13 =
2185:8
72 �y��23 =

2908:2
72 �y���3 =

2547
72

�y��1� =
2001:8
72 �y��2� =

2453
72 �y���� =

2227:4
72

The total sums are
P
i;j;k;l

yijkl = 2227:4,
P
i;j;k;l

y2ijkl = 71747:7 and, therefore, SST = 71747:7� 2227:42

72 =

204523:64
72 . In a similar way, for the whole-plots, the total sums are

P
i;j

�yij�� =
2227:4
6 ,

P
i;j

�y2ij�� =
417635:98

36

and, therefore, SST1 = 6
�
417635:98

36 � (
2227:4

6 )
2

12

�
= 50321

72 . Finally, for the split-plots, we have
P
i;j;k

�y2ijk� =

211295:72
9 ,

P
i;j;k

�y2ij�� =
417635:98

18 and, therefore, SST2 = 3
�
211295:72

9 � 417635:98
18

�
= 825:91.

First of all, the estimated parameters �̂ = �y���� and �̂i = �yi���� �y���� are included in the following table:

�̂ �̂1 �̂2 �̂3 �̂4

2227:4
72

127:4
72

70:2
72 � 81

72 � 116:6
72

In a similar way, the estimated parameters �̂j = Y �j�� � Y ����, 
̂k = Y ��k� � Y ����, �̂l = Y ���l � Y ����,c��jl = Y �j�l � Y ���� � �̂j � �̂l and c
�kl = Y ��kl � Y ���� � 
̂k � �̂l are included in the following tables:
c��11 = � 39:7

72
c��21 = 54:5

72
c��31 = � 14:8

72 �̂1 = � 325:1
72c��12 = 10:4

72
c��22 = � 6:1

72
c��32 = � 4:3

72 �̂2 =
5:5
72c��13 = 29:3

72
c��23 = � 48:4

72
c��33 = 19:1

72 �̂3 =
319:6
72

�̂1 =
102:1
72 �̂2 =

149:2
72 �̂3 =

�251:3
72

c
�11 = 71:7
72

c
�21 = � 71:7
72c
�12 = 63:9

72
c
�22 = � 63:9

72c
�13 = � 135:6
72

c
�23 = 135:6
72


̂1 = � 225:6
72 
̂2 =

225:6
72

Finally, the estimated parameters c�
jk = Y �jk� � Y ���� � �̂j � 
̂k andd�
�jkl = Y �jkl � Y ���� � �̂j � 
̂k � �̂l � c�
jk �c��jl �c
�kl
are included in the following table:

d�
�111 = 9:9
72

d�
�211 = � 101:7
72

d�
�311 = 91:8
72

d�
�121 = � 9:9
72

d�
�221 = 101:7
72

d�
�321 = � 91:8
72d�
�112 = � 12

72
d�
�212 = 50:1

72
d�
�312 = � 38:1

72
d�
�122 = 12

72
d�
�222 = � 50:1

72
d�
�322 = 38:1

72d�
�113 = 2:1
72

d�
�213 = 51:6
72

d�
�313 = � 53:7
72

d�
�123 = � 2:1
72

d�
�223 = � 51:6
72

d�
�323 = 53:7
72c�
11 = � 76:5

72
c�
21 = 36

72
c�
31 = 40:5

72
c�
12 = 76:5

72
c�
22 = � 36

72
c�
32 = � 40:5

72

Now we can evaluate all the sums of squares for the model: SSBlock = 18
P
i

�̂2i =
10328:84

72 , SSA =

24
P
j

�̂
2

j =
31945:58

72 , SSE1 = SST1�SSBlock�SSA = 50321�10328:84�31945:58
72 = 8046:58

72 , SSB = 36
P
k


̂2k =

50895:36
72 , SSAB = 12

P
j;k

�c�
jk�2 = 2929:5
72 , SSE2 = SST2 � SSB � SSAB = 59465:52�50895:36�2929:5

72 =

5640:66
72 , SSC = 24

P
l

�̂
2

l =
69288:14

72 , SSAC = 8
P
j;l

�c��jl�2 = 943:9
72 , SSBC = 12

P
k;l

�c
�kl�2 = 9203:82
72 ,
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SSABC = 4
P
j;k;l

�d�
�jkl�2 = 3169:38
72 , and �nally

SSE3 = SST � SST1 � SST2 � SSC � SSAC � SSBC � SSABC =

= 204523:64�50321�59465:52�69288:14�943:9�9203:82�3169:38
72 = 12131:88

72

Then we have MSE3 =
SSE3
36

= 4:68, MSE2 =
SSE2
9

= 8:70, MSE1 =
SSE1
6

= 18:63, and the

estimations for the variance parameters of the model are c�23=MSE3=4:68, c�22=MSE2 �MSE33
=1:34

and c�21=MSE1 �MSE26
=1:66.

The evaluation of the F-tests in the ANOVA table leads to:

FBlock =
SSBlock=3

MSE1
= 10328:84=216

18:63 = 2:57 with p-value= p (F3;6 > 2:57) = 0:1502

FA =
SSA=2

MSE1
= 31945:58=144

18:63 = 11:91 with p-value= p (F2;6 > 11:91) = 0:0081

FB =
SSB
MSE2

= 50895:36=72
8:70 = 81:21 with p-value= p (F1;9 > 81:21) = 0:0000

FAB =
SSAB=2

MSE2
= 2929:5=144

8:70 = 2:34 with p-value= p (F2;9 > 2:34) = 0:1522

FC =
SSC=2

MSE3
= 69288:14=144

4:68 = 102:80 with p-value= p (F2;36 > 102:80) = 0:0000

FAC =
SSAC=4

MSE3
= 943:9=288

4:68 = 0:70 with p-value= p (F4;36 > 0:70) = 0:5969

FBC =
SSBC=2

MSE3
= 9203:82=144

4:68 = 13:66 with p-value= p (F2;36 > 13:66) = 0:0000

FABC =
SSABC=4

MSE3
= 3169:38=288

4:68 = 2:35 with p-value= p (F4;36 > 2:35) = 0:0725

Therefore, there are a signi�cant e¤ect of factor A (planting date) and a signi�cative interaction

between factors B and C (aphid control and harvest date). For the planting date, the standard error

for the means �y�j�� is

r
MSE1
24

= 0:88 and, taking into account that t6;0:025 = 2:45, the 95%-con�dence

intervals for the means are �y�j��� 2:16. The least signi�cant di¤erence (LSD) for these means is LSDA =

2:16
p
2 = 3:05 and the LSD-Fisher test leads to:

Planting date Mean

May 2 1976:1
72 = 27:45 A

March 2 2329:5
72 = 32:35 B

April 2 2376:6
72 = 33:01 B

that is, planting at May cause a signi�cantly decrease on the average production and there is no signi�cant

di¤erence between March and April.

For the interaction e¤ect between the factors B and C, the standard error for the means �y��kl isr
MSE3
12

= 0:62 and, taking into account that t36;0:025 = 2:03, the 95%-con�dence intervals for the

means are �y��kl�1:26. The least signi�cant di¤erence (LSD) for these means is LSDBC = 1:26
p
2 = 1:78.

In a similar way, the standard error for the means �y���l is

r
MSE3
24

= 0:44, the 95%-con�dence intervals

for the means are �y���l � 0:89 and the least signi�cant di¤erence (LSD) for these means is LSDC =

56



0:89
p
2 = 1:26. Finally, the standard error for the means �y��k� is

r
MSE2
36

= 0:49 and, taking into

account that t9;0:025 = 2:26, the 95%-con�dence intervals for the means are �y��k� � 1:11 and the least

signi�cant di¤erence (LSD) for these means is LSDB = 1:11
p
2 = 1:57.

Using the three previous values for the least signi�cant di¤erences LSD we obtain the following results

for the comparisons of means in the two factors:

Harvest date

August 27 September 24 October 22

No aphid control 1748:4
72 = 24:28 Aa 2071:2

72 = 28:77 Ba 2185:8
72 = 30:36 Ba 2001:8

72 = 27:80 a

Treatment for aphid 2056:2
72 = 28:56 Ab 2394:6

72 = 33:26 Bb 2908:2
72 = 40:39 Cb 2453

72 = 34:07 b

1902:3
72 = 26:42 A 2232:9

72 = 31:01 B 2547
72 = 35:38 C

where uppercase letters are used to compare the harvest dates and lowercase letters to compare the

treatment for the aphid. Therefore, we observe that the average production is always higher with the

treatment for the aphid and, in general, it is better late harvesting. However, with no aphid control,

there is no signi�cant di¤erences between September 24 and October 22. This seems to be the reason

that the interaction between the two factors is signi�cant.

The complete LSD Fisher�s test with � = 0:05 for all the means in the interaction BC leads to:

Treatment Mean

No aphid control with harvest date August 27 24:28 A

Treatment for the aphid with harvest date August 27 28:56 B

No aphid control with harvest date September 24 28:77 BC

No aphid control with harvest date October 22 30:36 C

Treatment for the aphid with harvest date September 24 33:26 D

Treatment for the aphid with harvest date October 22 40:39 E

It seems clear that the best option would be to plant in March or April, applying treatment for the

aphid, and to harvest in October.
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