Part 11

ANALYSIS OF VARIANCE AND
DESIGN OF EXPERIMENTS



The analysis of variance (ANOVA) is an statistical procedure which allows us to find possible di-
fferences in the expected value of a random dependent variable Y with normal distribution for different
groups of experimental units in the same population. These groups are defined by the possible levels
of one or more factors that can be considered as categorical independent variables (A, B, C,...). Each
combination of factor levels is known as a treatment in the ANOVA and the purpose is to detect any
significant differences between treatments and, if necessary, quantify the magnitude of the differences.

Then an statistical experiment is a scientifically planned work to meet this goal.

The methodology of experimental design is based on experimentation and its associated variability,
because if we repeat an experiment under identical conditions, the obtained results are likely to show
some variability. Thus, the design of experiments studies how to vary experimental conditions in order
to increase the probability of detecting significant changes in the dependent variable, also called response

variable.

The reasons for experimentation may be different. For example: to discover possible causes of variation
in the response variable; or find experimental conditions under which an optimum value for the response
variable is achieved; or compare responses at different levels of observation of controlled variables; or even

obtain a statistical-mathematical model to make predictions of future responses.
The results of any experiment are subjected to three types of variability which must be distinguished:

e Planned systematic variability. Caused by the different experimental conditions imposed on
the design. It is the type of variability that we try to identify with the design.

e Random variability. It is an unpredictable and unavoidable variability due to factors beyond our
control. If the experiment was well designed it can be measured and used to draw conclusions and
make predictions on the response variable.

e Unplanned systematic variability. It is due to unknown causes and unplanned. There are two

basic strategies to avoid the presence of this type of variability: randomization and blocking.

Next we present the four basic principles in the design of experiments:

1. Replication. It is the use of several experimental units for each of the treatments in the experiment.
This principle allows us to obtain an estimation of the random variability, which will be necessary
in the further analysis, and, moreover, estimate the effect of each treatment more accurately.

2. Randomization. It is to assign levels of the factors to the experimental units at random and also
the random selection of the order in which measurements of the response variable are made. This
principle transforms the unplanned systematic variability in random variability, prevents the occur-
rence of systematic errors, avoids the dependence between observations ensuring the independence
of the errors in the model and, finally, provides unbiased estimates for the random variability and
the effects of the treatments.

3. Blocking. If there is a great heterogeneity in the experimental units, they should be divided into

groups called blocks so that the observations made in each block are under experimental conditions



as similar as possible. Then all the treatments are used in each block. This principle let us to
transform the unplanned systematic variability in planned systematic variability.

Factorization. It is to cross all the levels of the factors in all possible combinations. This principle
let us to detect the existence of interactions between different factors and it is a more efficient

strategy than the analysis of the influence of a factor with fixed levels for the other factors.

In general, the steps to be followed in the design and analysis of any statistical experiment are as

follows:

1.

Define the objectives of the experiment and develop a comprehensive list of questions that must be

answered.

. Identify all possible sources of variation: treatment factors to be taken into account and other

"nuisance" factors that are not directly relevant but are contemplated to reduce unplanned variab-
ility. The treatment factors may be qualitative or quantitative and the levels of the factors to be
used must also be set. If a factor is quantitative, it is desirable that the levels are equally spaced.
Sometimes a control treatment is necessary to be used as a reference for assessing the effect of
all the other treatments.

Define the experimental units, that is, the experimental material (individuals, trees, plots, etc.)
that apply to the different levels of the factors and on which it will assess the response variable.
They should be a representative sample of the target population of the study. As we have said
before, if there is a great heterogeneity between them, it may be desirable to add a block factor
with homogeneous experimental units in each level.

Choose a mapping rule of the experimental units to the treatments. If you choose a standard design

(as you will learn in this course) this rule will be defined by the design.

. Formulate the statistical model by a mathematical equation with the parameters to be estimated,

as we will do in each of the designs.

Specify the steps in the statistical analysis: the estimates to be calculated, the contrasts to be
performed, the confidence intervals to be evaluated, the degree of fit of the model and the compliance
of the assumptions set out in the model.

Determine the sample size for each of the treatments, that is, the number of replicates for each
of them. To choose it beforehand, an estimator of the random variability is required, which is not
generally available. Therefore sometimes a pilot experiment with a small number of observations is
previously executed to obtain this estimator.

Run the experiment, randomizing, if it is possible, the order in which the treatments are used and
the order in which the measurements of the response variable are made.

Perform the statistical analysis of the obtained data with the proposed model, and answer the

questions previously raised in the experiment.

In the next chapters we will study some ANOVA models and the basic experimental designs that can

be analyzed with each of them.



Chapter 1

ONE-WAY ANOVA

Let us suppose that y;; with i =1,...,a and j = 1,...,n are the observed values for a independent random
samples of the dependent variable Y. That is, we have a dependent variable Y and a factor A with a
levels. Moreover, we suppose that Y;; ~» N (u;,0) and the purpose is to solve a hypothesis test with

H, : p; = p; for all 4,4’ versus Hy : p; # p, at least for one pair 4,4’

The model can be formulated as E (Y;;) = p; and, therefore, Y;; = p; + €;; with g;; ~» N (0,0) and
¢;; independent of ;. for any values 4,4, j,j'. Taking into account that the null hypothesis H, does
not specify a particular value for the expected values p;, we consider a new parameter p = %Z 1; such
that, if H, is true, then u; = p for all <. Then, o; = p, — p can be considered as the specific zeﬂ“ect for
the level 7 of the factor A on the overall expected value u, with Z o; = 0. As a consequence, the model
can be alternatively formulated as E (Y;;) = p + «; and, thereforel7 Yij = p+ a; +€;5 with Z a; = 0 and
eij ~» N (0,0). Now, the null hypothesis is H, : a; = 0 for all ¢ versus Hy : a; # 0 at least tl"or one value
4, which is more suitable.

Using the notation Y.. = - > Yij and Yi=1+ >_ Yij, it seems appropriate to estimate the parameters
of the model as i =Y., i, = %Z and &; = Y, — j? Then, the estimated residuals for the model are
&ij = eyj = Y;; — [i; and it is clear that all these estimators are unbiased with normal distribution.
Moreover, it can be easily shown that

S (=T =Y (T T+ 3 (v - T
i, i i
or, more briefly, SST = SS4 + SSE with SST = (Yij — ?..)2, SSa=nd (?i. —?..)2 and SSE =
j i

> (Vi —Yi.)z. Note that, alternatively, we can write SST = 3 (Y, — i1)°, SSE = 3 (Yi; — f1;)” and
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Using the Fisher’s theorem for each of the a samples, is clear that -2 ~ x2_, for all i, and

o2

E
they are independent random variables. Then we can ensure that —— ~» Xi(nfl) and we can estimate
o



SSE

( 0 This ratio is called the mean square error of the model and it is
a(n —
usually denoted by MSE = o2.

the parameter o2 as 02 =

In addition, if o;; = 0 for all 4, it is clear that Y;. ~ N (u, ﬁ) with ¢ =1, ..., a and they are a simple
random sample of this distribution with V.. = % Y.

. Then, using again the Fisher’s theorem, we have
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Finally, taking into account that SS4 is independent of SSFE, we obtain that, if H, : a; = 0 for all 4
SS
is true and M Sy = Al’ then

_ SSa/la—1)  MS,

FA= 98B/ —1)) = msE "~ Fartety

Therefore, this statistic let us to obtain an appropriate test for H, vs H; reasoning as usual in the
hypothesis test theory.

After solving this test, if H, is rejected, it is interesting to compare each pair of means u; and p,,

that is, to solve individual tests with H, : yu; = p; (or a; — ar = 0) for each pair ¢,4’. To do this, we
observe that

(Vi - Vs

7

) — Qg — Qg
) ( ) ~ N (0,1)
o\ %
and, if a; = a;r, we have L
Y, =Y.

~ ta(nfl)
2MSE
V n

Then, we can solve individual tests for each pair of means using this statistic. For a fixed level of

significance o, the least significant difference (LSD) for each pair of observed means Y., Y. is

2MSE
LSD = ta(nfl);a/2 n

such that each test is significative if |?i_ —-Y,.

> LSD. This is the classical LSD Fisher’s test for the
means in the analysis of variance.

The standard error for the means is defined as SE = MSE

expected values p; can be evaluated as

and the confidence intervals for the

_ IMSE
Y, £ ta(nfl);a/Q T

Moreover, for a new independent observation Y;, ;,, we can ensure that Y; ;, — Y, ~ N (0, o\/1+ %)
and a prediction interval for the observed value is given by

/ 1
Y, £ ta(nfl);a/QV MSE\/1+ ”



Example 1: Completely randomized design. To compare the diameter growth in four pine
species living on a plantation 15 years old, ten pines of each specie were randomly selected from the

plantation and the following data for the diameter (cm) were obtained:

Specie 1 (y1;) | 16.6 16.7 132 132 229 130 151 255 19.6 14.8 | > yi; =170.6
J

Specie 2 (y2;) | 149 20.5 206 21.1 136 21.1 21.1 169 20.9 19.1 | > yo; =189.8
J

Specie 3 (y3;) | 26.4 16.3 31.6 256 209 21.9 214 172 19.6 255 | > y3; =2254
J

Specie 4 (y4;) | 279 22.0 164 199 227 233 191 26.1 187 24.2 | > ya; =220.3
J

Denoting by u,; the expected value for the diameter in the i-specie, we consider the one-way model
E(Yij) = p; = pp+ o + €55 with Zai = 0 and €;; ~» N (0,0). Taking into account that y;; = 806.1
and Zy” = 16988.56, the estlmated parameters for the expected values are: i = §.. = 5(]) 1625, 1, =

Y. = 17 06, iy = Yo. = 18.98, fi15 = ¥3. = 22.54 and fiy = ys. = 22.03. Therefore, we have &; = —3.0925,
Qg = —1.1725, &g = 2.3875 and &y = 1.8775. The next graph plots the observed values and the estimated

parameters:

12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 3,0 3 2
¥

Calculating the sum of squares we obtain: SST= 16988.56 — 4072 =743.630, $S4=10Y 42=201.635

and SSE=541.995. Then MSE = 54%295 = 15.0554 and the estimated value for the parameter o is

& = VMSE = 3.88. The F-test with H, : a; = 0 for all i leads to Fy = 29-635/3 — 446 and the

p-value for the test is p (F3 36 > 4.46) = 0.0091, which is significative with o = 0.05. Therefore there are

significant differences among species in the expected diameter growth.

The standard error for the meansis SE = 4/ 15. fg“ = 1.227 and, taking into account that tg(n—1);a/2 =
t36:0.025 = 2.0281, the 95% confidence intervals for the expected values are 17.06+2.49 = (14.57,19.55) for
ey, 18.98+2.49 = (16.49, 21.47) for p,, 22.5442.49 = (20.05, 25.03) for uu5 and 22.03+2.49 = (19.54, 24.52)
for y1,. For a significance level o = 0.05, the least significant different is LSD = 2.0281, /321108 1108 = 3.52

and the differences between the observed means are:

Pair My — Mo My — M3 My T Mg Mo — M3 Mo — My H3 — Hy
Difference | —1.92  —5.48* —4.97* -3.56* —3.05 0.51

Therefore, there are significant differences between p, and pg, pq and py, and py and pg; because the
difference is larger in absolute value than the LSD value. The other pairs of means are not significantly
different, that is, p; and gy, 1o and gy, and pg and p,. The results of this LSD Fishers’s test are usually

summarized as:



Specie | Mean Specie | Mean
1 1706 A 1 17.06 X
2 18.98 AB |or, alternatively, | 2 18.98 XX
4 22.03 BC 4 22.03 XX
3 2254 C 3 22.54 X

so that mean values without any common letter are significantly different, and mean values with at least
a common letter are not significantly different. Or similarly, mean values together vertically by the sign
X are homogeneous subgroups without significant differences, and pair of means which do not appear

together in any homogeneous group are significantly different.



Chapter 2

MAIN EFECTS ANOVA

In this model more than one factor is considered and we will use two and three factors to illustrate it.

We begin with the case of two factors.

Let us suppose that y;;; with ¢ =1,...,a, j = 1,...,b and k = 1,...,n are the observed values for ab
independent random samples of the dependent variable Y. That is, we have a dependent variable Y and
two factors: A with a levels and B with b levels, such that all the pairs 4, j are tested. Moreover, we
suppose that Yij, ~» N (u;;,0) and pu = 25 3 p1;; is the global expected value if the factors A and B have
no effect on the dependent variable Yj;y. InZ éddition, is considered that the posible effect of the pair i, j
on the global expected value is the sum of the main effect «; for the level i of factor A and the main
effect 3; for the level j of factor B. That is, the model is now E (Yi;) = 1;; = pp+ a; + 3; and, therefore,
Yijk = i+ i+ B; + e with €55 ~ N (0, o) and €;j; independent of e ;4 for any values 4,7, j, j’', k, k'
The purpose is now to solve two statistical tests: H, : a; = 0 for all 4 and H, : 3; = 0 for all j, which
can be understood as no effect of each of the factors A and B on the global expected value, respectively.
As usual, the logical assumptions Z a; = 0 and Z B; = 0 are considered. In real practical situations,
this model is commonly used with ;L =1, that is, tjhere is no replica for each of the combinations of the

levels of the two factors A and B.

Using notation 7..:% Zk Yijks ?i”:i% Yijr and Y.j.:ﬁzlg Yijk, it seems appropriate to estimate
1.4, 3, i,

the parameters of the model as =Y ..., &;=Y;..—Y ..., Bj:?.j.—?...7 and ﬂij:ﬂ—i—di—i—Bj:?i..—&—?.j. -Y..
Then, the estimated residuals are &;j5 = e;jx = Yijr — f1;;- As in the previous model, it is clear that all

these estimators are unbiased with normal distribution. Moreover, it can be shown that

Y W -Y) =) (Vi - V) van Y (V- Vo) + Y (Y — Vi — ¥y + 7.
3,7,k i J 4,4,k

or, more briefly, SST = §S4 + SSp + SSE with SST = ¥ (Yije —Y..)%, SSa =tn Y (Vi - V..)7,
i,k i
SSp =an, (?.]; —74..)2 and SSE = Y (Yijk -Y;.. -Y, +7.4.)2. As in the previous model, we
J .5,k
can also write SST=Y" (Yijr — p)?, SSE=Y" (Y — ﬂij)Q and now SS,=bn Y &2 and SSB:anZBj.
.9,k 4,3,k i J



SSE _
abn —a—b+1

In this model we have ~ X2y —a—ps1 and the estimation for o2 is 02 = MSE.

Moreover, using SSyroder = SSa4 + SSp, if a; = ﬂj =0 for all 4, j then

SSModel/ (CL—|—b—2)
F odel — Fa —z,abn—a—
Model = 'GGE (abn —a —b+1) = “tb-zebn-abil

and we have a whole model test. The goodness of fit for the model is measured by the determination

SSMode SSE - -
coefficient, which is defined as R? = %ﬁl =1- 9T and the variability of the model is given by
vVMSE
the variation coefficient CV = v , both commonly expressed as percentages. RZ-values close to

1 (100%) and CV-values close to 0 .1f.>.rovide a higher quality of the model and better sensitivity to find

significant differences due to the factors.

In a similar way, if a; = 0 for all 7 then
F 584/ (a—1) MSa
- - ~ - aon—a—
AT SSE/(abn—a—b+1) MSE ~hetnentd

And, if 3; = 0 for all j then

SSB/(b—l) MSp

Fi = = Fy abn—a—
B = SSE/(abn —a—b+1)  MSE ~ Thlabnabil

These statistics can be used for the two F-tests in the ANOVA table of the model, as follows:

SS DF MS | F-value | p-value Hy
Factor A | SSa a—1 MS Fy DA a; = 0 for all ¢
Factor B | SSp b—1 MSpg Fp PB ﬂj:()for all j
Error SSE | abn—a—-0b+1| MSE
Total SST abn —1

Now the least significant difference (LSD) for each pair of means Y .., Y .. is

2MSE
bn

LSD = tabnfa7b+1;a/2

and the least significant difference (LSD) for each pair of means Y .;.,Y ;. is

2MSFE

LSD = tabnfaberl;a/Q an

MSE

Finally, the confidence intervals for the expected values pi+a; and pu+j; are Yi..:lztab,b_a_b+1;a /2 o

MSE
an

and ?j + tabn7a7b+1;a/2

, respectively. Note that, using the model, the point estimates for the

expected values p,; are ji;; = Y. +Y.. —Y.., which variance is given by (see the note below)

Var (fi;) = (1 - (a_lc)d()b_l)> (22)

and, therefore, a confidence interval for the expected values p,; is

(a—1)(b—-1) |MSE
ab \/ n

ﬂij + tabn—a—b+1;a/2\/]- -



In a similar way, a prediction interval for a new independent observation is given by

L 1 (a—1)(b-1
/J‘ij + tabnabJrl;a/Q\/l + E _ MW

abn

The check of the assumptions of the model can be made as in the oneway ANOVA with the estimated

residuals e;j.

Note. For a fixed pair i,, j, we have
_ — — a+b-1 a—1 b—1 1
Vet Voo =Vom g D Vot g 2, Yiswt or D, Ve =g 2 Yo
k Jiks3# 5o i,k,i#io i,5,k,i#%0,j# 5o
and, taking into account that all Y;;;, are independent, we have

Var (Vo +7, —T7.)= (a4+b-1)*n + (a—1)* (b=1)n + (b—1)* (a—1) n + (a—1) (b—1) n s

a2b?n?
a+b—1)2
(a—1)(b-1) {%—ka—i—b—l} 2
- a?b? n

)-8 6)

Example 2: Randomized complete block design. In an experimental study to compare the

(@a—1 (-1 (a+b—1) [%Jﬂ} (02>

total production for 10 tomato varieties, a total of 40 experimental small plots were used (10 for each
variety). Due to possible heterogeneity among the experimental plots, they were grouped into 4 groups
with 10 plots per group, such that the plots within the same group are more homogeneous. Then, for
each block, a plot is randomly assigned to each variety and the total production of tomatoes is measured.
This experimental design is called randomized complete block design. Let us denote by y;; the total
production for the i variety at the j block, with i = 1,...,10 and j = 1,2, 3,4. The obtained data (kg/m?)

are included in the following table:

Variety: | 1 2 3 4 5 6 7 8 9 10 Mean (g.;)
Block 1 | 8.036 6.024 5.336 7.792 12.828 5.620 9.964 7.020 7.540 9.672 7.9832
Block 2 | 3.132 7.252 7.124 9.356 15.020 13.488 22.520 5.880 8.448 9.320 10.154
Block 3 | 9.356 3.840 3.176 5.620 10.260 10.300 11.048 10.280 14.060 8.396 8.6336
Block 4 | 7.344 3.796 3.280 8.696 6.056 3.996 18.428 4.112 10.028 9.812 7.5548
Mean (g;.)| 6.967 5.228 4.729 7.866 11.041 8.351 15.490 6.823 10.019 9.300 | y.. = 8.5814

For the statistical analysis, we consider two factors (A =variety and B =block) and we use the main
effects model E (Y;;) = pi; = B+ a; + B, that is, Yi; = p+ a; + B; + &;; with g5 ~ N (0,0) and
¢i; independent of €, for any values i,7’, 7,7’ (note that we do not use subscript k because there is

no replicates in this experiment). Taking into account that )_y;; = 343.256 and ) y7; = 3605.25, the
4,J ,j
estimated values for the parameters of the model are: i = 5. = 8.581, Bl = g1 —y. = —0.5982,

BQZQ‘Q—Q‘.=1.5726, /33:@.3—@.:0.0522, 34:@4—;{].:—1.0266 and the following values for &;=y;.—7..:

10



Variety 1 2 3 4 5 6 7 8 9 10
.|—1.6144 —3.3534 —3.8524 —0.7154 2.4596 —0.2304 6.9086 —1.7584 1.4376 0.7186

Calculating the sum of squares we obtain: SST = 3605.25 — 405> = 659.6345, SS4 = 43, &7 =
354.844, SSp = 10255 = 38.8755 and SSE = 265.915. Therefore, MSE = 263215 — 9 8487 and the
J
estimated value for the parameter o is 6 = VMSFE = 3.138.

The determination coefficient of the model is RZ2 =1 — 625695.6931455 = 59.7% and the variation coefficient

is CV = 8_%2'184 = 36.6%. The whole model test gives Faoger = (354'84?8358'5755)/12 = 3.33 which leads to

p-value= p (F12,27 > 3.33) = 0.0046. Therefore the model is significative with o = 0.05.

354.844/9

98igT — 672116 — 4 00 with p-value= p (Fy 27 > 4.00) =

15.0551

The F-test for the variety factor gives Fq =

0.0024. That is, the variety factor is significative with ae = 0.05 and there are differences between varieties.

38.8755/3
9.8487

= 129585 _ 1 32 with p-value= p (F3 27 > 1.32) =

The F-test for block factor leads to F'lg = 50551

0.2897. That is, the block factor is not significative with @ = 0.05 and there are no differences between

blocks.

The standard error for the means of the varieties is SE = % = 1.5691 and, taking into account

that £27,0.025 = 2.0518, the 95% confidence intervals for the expected values are ;. + 3.219.

Finally, the least significant difference (LSD) with o = 0.05 for each pair of means g;., . is LSD =
t27:0.0251/ QMfE = 4.55. Using this value we obtain the following results for the LSD Fisher’s test of the

varieties with o = 0.05:

Variety | Mean Variety | Mean
3 4.729 A 3 4729 X
2 5.228 AB 2 5.228 XX
8 6.823 ABC 8 6.823 XXX
1 6.967 ABC 1 6.967 XXX
4 7.866 ~ABC | or, alternatively, 4 7.866 XXX
6 8.351 ABC 6 8.351 XXX
10 9.300 BC 10 9.300 XX
9 10.019 C 9 10.019 X
5 11.041 CD 5 11.041 XX
7 15.490 D 7 15.490 X

Therefore, with 95% of confidence, the variety with the number 7 has a greater expected value than

all the others, except the variety with number 5.

As an extension of the previous model, we will consider a case with three factors.

Example 3: Latin square design. In the randomized block design studied previously we considered

a major factor and a control factor or block which is introduced in order to eliminate their influence on

11



the response variable and reduce the experimental error. In this new design we use more than one variable

block to reduce experimental error.

Thus, if two block variables are considered simultaneously, a complete randomized block design would
be to form a block for every combination of levels of these variables and then apply all levels of the
main factor in each of the blocks obtained. For example, suppose an experiment in which we want to
study the effect of different types of seed on wheat yield and we believes that this performance can also
be influenced by the types of fertilizers and insecticides. To perform this study, it is possible to use a
complete randomized block design, where the main factor is the type of seed and the block variables
are the types of fertilizers and insecticides. A disadvantage of these designs is sometimes the excessive
experimental units required for implementation. A complete block design with a main factor and two
block factors, with K7, Ko and K3 levels in each factor, requires K; K5 K3 experimental units. In our
example, if the main factor, type of seed, has 4 levels, the first block variable, type of fertilizer, 5 levels

and the second block variable, type of insecticide, 3 levels, it would take 60 experimental units.

Some experiments can have different causes, such as economic in nature, that advise against using
many experimental units. In this situation you can use a special type of randomized incomplete block
designs. The basic idea of these designs is the fraction, that is, select a part of the whole design so
that, under certain general assumptions, we can estimate the effects of interest. One the most important
designs with randomized incomplete blocks using a main factor and two block factors is the latin square

design. This model assumes the same number of levels for the three factors.

In general, for K levels in each factor, a complete randomized block design uses K? blocks, each
block being applied in the K levels of the main factor, resulting in a total of K3 experimental units.
Latin square designs reduce the number of experimental units to K2 by considering the K2 blocks in
the experiment but using only one treatment in each block with a special provision. Specifically, in each
block a single treatment is applied so that each treatment must appear with each of the levels of the two
control factors applied. Thus, if K = 4, a complete block design would need 64 observations, while the

latin square design would need only 16 observations.

If we consider a two-way table where rows and columns represent each of the two block factors and
the cells represent the levels of the main factor or treatments, the above requirement means that each
treatment must appear once and only once in each row and in each column. For example, let us suppose
that a1, as, ...,ax denote the K levels of the first block factor A (rows); b1, ba, ..., bx denote the K levels
of the second block factor B (columns) and ¢q,cs,...,cx denote the K levels of the main factor C.
Then, a latin square design with order K is an arrangement in rows and columns of the K latin letters
c1,Co,...,Ck, SO that each letter appears only once in each row and each column. For the example we
have been considering, if we have 4 fertilizers (factor A), 4 insecticides (factor B) and 4 types of seeds

(factor C) a latin square with order 4 may have the following distribution:

12



Insecticides

Fertilizers | b1 by b3 by

ay C3 Cq Co C1
as C2 C1 C3 Cq
as Cq C3 C1 C2
a4 C1 Co Cy C3

In a latin square design with order k, we denote by y;;), with ,j,k € {1,2,.., K}, the K% ob-
served values of the dependent variable Y and, for the statistical analysis, we use the main effects model
E (Yijiy) = bijoy = 1+ i + B + g, that is, Yijy = p+ i + 8 + i + €350 With g5500) ~ N (0,0)
and ;) independent of € ;) for any values i, v,4,7', k, k'. Therefore, it is considered that the posible
effect of the combination of the levels i, j, k of the factors A, B and C on the global expected value is the
sum of the main effect a; for the level i of factor A, the main effect 3; for the level j of factor B and the

main effect vy, for the level k of factor C. As usual, we suppose that ) a; = 8, => v, =0.
i j %

Using notation V... = 2 ZZYm(k), i = KZ Yiiy, Y. = %Z Vi) and Y. = %Z Yiiky, it
i Y

seems appropriate to estimate the parameters of the model as =Y .., ;=Y ;.—Y.., ﬁj =Y ,;-Y.,
4,=Y .,—Y .. and Bijky = /l—i—di—i-Bj-i-’?k:7i..+?.j.+7..k—2?.... Then, the estimated residuals are
Eij(k) = €ij(k) = Yij(k) — ﬂij(k) and, as always, all these estimators are unbiased with normal distribution.

Moreover, it can be shown that:

S Yy KZ +KZ +KZYk—Y +Z Y Y=Y 427 )"

i.J

or, more briefly, SST=S5S54+ 555 +95¢+SSE with §5T= Z( e — Vo) SSa=K Y (Vi —Y..)%,

SSp=KY (V; -V.) SSc =K¥ (Y.x - Y. )andSSE z( i =Y =Y =Y 42V )"
J J

2
As usual, we can also write SST = Z( i (k) — ) SSE = Z( 53 (k) —/lij(k)) and now SS4 =

i, i,
.2
KY a3, 5Sp = K B and SSc = K 343
i J Fi
— E
~ X%(Z_3K+2 and the estimation for o2 is 02 = L = MSFE

In this model we have 3K 19
(note that K2 — 3K +2 = (K — 1) (K — 2)).

Moreover, using SSnodet = SSa + S5 + 5S¢, if a; = B; =, =0 for all 4, j, k then

I ~ SSmoder/ (3K — 3) .
Model = SSE/ (K - 1) (K —2)) 3K—3,(K—1)(K—2)

and we have a whole model test. The R? and C'V coefficients can be evaluated as in the previous model.

In this model, if o; = 0 for all ¢ then
S84/ (K —1) _ MS,

Fa= gem/ (k=& —2)) ~ msE ~ Fr-1m-nu-2

In a similar way, if 3; = 0 for all j then
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_ SSp/ (K —1) _MSp .

- SSE/((K—-1)(K-2)) MSE K-1,(K-1)(K-2)
and, finally, if 7, = 0 for all k¥ then

_ SSc/(K-1) _ MSo .
 SSE/((K—-1)(K—-2)) MSFE K-1,(K-1)(K-2)

Fp

Ic

These statistics can be used for the three F-tests in the ANOVA table, as follows:

SS DF MS F-value | p-value H,
Factor A | SSa K-1 MS 4 Fx PA «; = 0 for all 4
Factor B | SSp K-1 MSp Fp DB ﬁj =0 for all j
Factor C | SS¢ K-1 MSeo Feo pC v, =0 for all k&
Error SSE | (K—-1)(K—-2) | MSE
Total SST K?-1

Now the least significant differences (LSD) for all pair of means Y;.. and V.., Y.;. and Y jr., and Y .5

2MSFE
LSD = t(x-1)(k-2);a/2\/ N

and the confidence intervals for the expected values u+a;, pu+03; and p+,, are ?Z-..:tt(K_l)(K_Q);a/m / %,

?.j. K1) (K—2);0/21/ M;E and Y., + LK—1)(K—2);a/24/ MTSE, respectively.

For the estimators fi;; ) = Yi.+Y. . +Y.;—2Y.. we obtain (see the note below)

Var (ﬂij(k)) = (1 — (K_l)(K_?)> o2

KQ

and Y..,s, are

and, therefore, a confidence interval for the expected values p; () 1s

A K- DK
Pij(ky t(Kl)(K2);a/2\/1 -V MSE

In a similar way, a prediction interval for a new independent observation is given by

[ (K —1)(K —2)
flijiwy =+ t(Kl)(K2);a/2\/2 TR Y MSE

K2

The check of the assumptions of the model can be made as in the previous models with the estimated

residuals e;;(x)-

Note. For a fixed pair i,, j, (with k = k,) we have

— — - 3K — 2 K -2 K—-2
Vi #Yjo + Yok, =2V = —5—Yijo00) + 2 > Y + KT > Yium
i#do i,
K -2 2
t e D Yiko — 3 2. Yaw
i#i0,j# 0 ii0,j# G0 k# ko

and, taking into account that all Y;;) are independent, we have

(3K —2)° +3(K —2)2 (K —1)+4(K —1)(K -2) ,

g

Var (?10 +?'jo' +?'~ko — 2?) =

K4
(3K -2+ (K —1)(K —2) (3K —2) ,
= K4 g
_BE-2)K* , (K -1(K —2)\ ,
- k7 _<1_K2>J

14



To illustrate this model suppose that, in the example we have been considering, we obtained the

following data for the wheat yield with different fertilizers, insecticides and seed types:

Insecticides
Fertilizers by by b3 by Ui.. &; = Yi.. — Y...
a Y113) = 7 Yi12(4) = 3 Y13(2) = 4 Y1a1) = 3 Y1.. = % by = %615
ag Yor2) =15 Yooy =16 yoz3) =18 you) =23 | . = 2 b =22
as Ysia) = 18 Yaaz) =12 g3y =12 yzye) =10 | f5. = 52 b3 = 15
a4 Yoy =14 yaa) =13 wyaza) =16 yaazy = 14 | ga. = 3 dy =2
Y.j- g1 =73 Yo = 2 ys. =2 Ja =% | 7.=3%%
Bi=0j—9-| Bi=1 Bo=m B=% B=% >y = 3001

For the seed types, the means and the estimated parameters are included in the next table:

Seed type: c1 Co c3 ¢4
- 45 42 51 65
Y-k 1 1 4 4
N —23  -35 1 57
Te =Yk Y- 16 16 16 16

Calculating the sum of squares we obtain: SST = 3001 —16y2 = 425.4375, SS4 =45 ézf = 329.6875,

SSp = 42[3? = 3.6875, SS¢ = 4347 = 78.1875 and SSE = 13.875. Thercfore, MSE = 13875 —
J k

2.3125 and the estimated value for the parameter o is ¢ = vV MSE = 1.52.

The determination coefficient of the model is R? =1 — 4%?%?5 = 96.7% and the variation coefficient
is OV = 132 = 12.0%. The whole model test gives Fyjoqe = (2208THEGTATSISTNS _ 19 77 which

leads to p-value= p (Fy ¢ > 19.77) = 0.0008. Therefore the model is significative with o = 0.05.

The F-test for the fertilizers (first block factor) gives Fa = % = 47.52 with p-value= p (F3 6 > 47.52) =

0.0001. That is, this factor is significative with o = 0.05 and there are differences between fertillizers.

3.6875/3
2.3125

The F-test for the insecticides (second block factor) leads to Fp = = 0.53 with p-value=
p(F56 > 0.53) = 0.6781. That is, this factor is not significative with o = 0.05 and there are no differences
between insecticides.

78.1875/3

Finally, for the main factor (seeds type) the F-test leads to Fo = —535¢

= 11.27 with p-value=
p(F36 > 11.27) = 0.0071. That is, this factor is significative with o = 0.05 and there are differences
between seed types.

The standard error for all the means of the fertilizers, insecticides and seed types is SE = % =
0.7603 and, taking into account that te.0.025 = 2.4469, the 95% confidence intervals for the expected

values are ;.. £ 1.86, 7.;. £ 1.86 and .., &= 1.86.

Finally, the least significant difference (LSD) with o« = 0.05 for all the pair of means is LSD =
16:0.0254/ % = 2.63. Using this value we obtain the following results for the LSD Fisher’s test of the
three factor with o = 0.05:

15



Fertilizers | Mean Insecticides | Mean Seed types | Mean
ag 18 A b1 135 A o 1625 A
o 1425 B bs 125 A c3 1275 B
as 13 B by 125 A 1 11.25 B
ay 55 C b 1225 A ca 105 B

Therefore, the wheat yield is significantly higher with the seed type c4 and there are not differences for
the other three seed types. With respect to the block factors, there are no differences between insecticides
and the wheat yield is significantly higher with the fertilizer as, significantly lower with the fertilizer a;

and there are no differences between fertilizers az and a4.

The 95%-confidence intervals for the expected values ij(k) are fbijr) £2.94 and the prediction interval
for a new independent observation is fi;;(;) = 4.74. For example, for the best option with fertilizer as,
insecticide by and seed type c4, these intervals are 22.37542.94 and 22.375+4.74, that is, (19.435,25.315)
for the expected value and (17.635,27.115) for a new independent observation.
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Chapter 3

TWO-WAY FACTORIAL ANOVA

With the same assumptions as in the previous model with two factors, is now considered that the posible
effect of the pair 7,7 on the global expected value is not necessarily the sum of the main effect «; for
the level i of factor A and the main effect 3; for the level j of factor B. That is, a posible interaction
effect a3;; between levels i, j of the factors A and B is allowed. Then, the model is now E (Y;;) = p;; =
ptai+pB;+aB;; and, therefore, Yijp = p+a;+08;+ap;;+¢eijr with g5, ~» N (0,0) and ¢;;;, independent
of ey for any values 4,4, 7,7’ k,k’. In addition to the two statistical tests of the previous model, we
have now a third test H, : ozB .. =0 for all 4, j, which can be understood as no interaction effect between
factors A and B. Besides the previous conditions Z o; = 0 and Z B; = 0, these others are now added:
Z af;; = 0 for all i and Z af;; =0 for all j. Flnally, it should be noted that now n > 1 is required in

thlb model, which was not necessary in the previous model with main effects.

UsingY...,Y;.. and 7.]-. as in the previous model, ?ij.:% >~ Yk is now considered and the appropriate
k
estimators for the parameters are i =Y., fi,; = Yij,; =Y. =Y., Bj =Y., —Y. and

—

O‘ﬁij = (?’LJ -Y..)—d&; — ﬁj = ?Z] ~Y,. - ?j +Y..

Then, the estimated residuals are now &z = e;x = Yijr — ?ij. and, as always, all these estimators
are unbiased with normal distribution. Moreover, it can be shown that

S (Vi Y.) =ty (Vi-Y..) Jranz +nZ Y Y A S (Vi Y

.5,k i .5,k

i,k

or briefly SST = 5S4+ SS5 + SSap +SSE with SST = 3 (Vi — ¥...)", SSa =nY (Vi — V...)7,
2

SSp=any (Y —Y..)?, SSap = nz(nj._?i.._?.jﬁ.. ) and SSE = 3 (Yijr—Yi;.)°". As usual,
J N i,5,k

we can also write SST =) (Y;; — i), SSE Z (Yijr — [Lij)z and now SSa=bn " &7, SSB:anZQj
27 o !
and SSap=n)_ (aﬂij) .
4,3

SSE -3 SSE

In this model we have —— ~~ XQb _1y and the estimation for 0?is02=MSE = ————.
o? ab(n—1) ab(n — 1)
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Using SSmodet = SSa +SSp + 554, if a; = 3; = af,;; =0 for all 4, j then

SSModel/ (ab — 1)
SSE/ (ab(n — 1)

Firroder = ~ Fabflﬁab(nfl)

and we have a whole model test. The R? and CV coefficients can be evaluated as before.

In a similar way, if o; = 0 for all ¢ then

g, S5a/la=1) _ MSy
AT SSE/(ab(n—1))  MSE ' ohebnD)

And, if 8; = 0 for all j then

88/ (b—-1)
= SSE/ (ab(n — 1))

MSp
= MSE ~ bel,ab(nfl)

Fp

And, finally, if a3;; = 0 for all 4, j then

oo 9848/ ((a-1)(b-1))  MSap
AB = TTGSE  (ab(n— 1))  MSE

~ Fla—1)(b—1),ab(n—1)

These statistics can be used for the three F-test in the ANOVA table, as follows:

SS DF MS F-value | p-value Hy
Factor A SSa a—1 MS 4 Fy pA «; = 0 for all ¢
Factor B SSp b—1 MSp Fp PB B; =0 for all j
Interaction Ax B | SSap | (a—1)(b—1) | MSap Fag PAB aB;; =0 for all 4,5
Error SSE ab(n — 1) MSE
Total SST abn — 1

Now the confidence intervals for the expected values p+a;, p+83; and p,; are Y. Flab(n—1)ia/21/ %,

?.j. T tabtn—1);a/2 J\/{liE and ?Z—j. T tabtn—1);a/24/ MSE, respectively.
Finally, the least significant differences (LSD) for each pair of means are: LSD = t,p(n—1y0/21/ 2L
for ?i-w?i’~; LSD = tab(n—1);0/2 QAG/IEE for ?.j.,?.jr. and LSD = Lab(n—1);a/2 QJV[nSE for ?ij-v?i’j’-'

The check of the assumptions of the model can be made as in the previous models with the estimated

residuals €.

Example 4: Two-way factorial design. To study the effect of fertilization with nitrogen and
potassium on growth of cauliflower, a fertilization experiment is performed with three nitrogen doses (60,
120 and 180 kg/ha) and three potassium doses (100, 200 and 300 kg/ha). In the area of land available 27
micro plots are plotted and 3 are randomly assigned to each of the 9 possible combinations of fertilization.

At the end of the experiment, the production of each micro plot is scored (the data are given in tons per

hectare).
60+100 604200 60+300 1204100 1204200 1204300 180+100 1804200 1804300
18 20 23 21 24 21 23 20 19
18 20 24 23 25 19 22 19 18
16 19 21 20 22 20 24 21 21
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Considering a factor A with 3 levels for nitrogen doses and a factor B with three levels for potasium
doses, we can use a two-way factorial model E(Yjjx) = p1;; = p+ a; + B; + aB;; and therefore Y;, =
pt o+ B +ap;; +ijr with €5, ~» N (0,0) and ;5 independent of &4 for any values 1, v, 5,9 kK.

For i,5 = 1,2,3, a; is the main effect for i-dose of nitrogen, 5

; is the main effect for j-dose of potasium

and af;; is the possible interaction effect between i-dose of nitrogen and j-dose of potasium.
Initially, we calculate > vy, = 561, > yfjk = 11785 and all the means observed in the experiment,

i,9,k i3,k
which are included in the following table with the usual notation:

U11. = 52/3  f12. =59/3  @i3. =68/3 | 1. = 179/9
G21. =64/3  Gaz. =T71/3  Faz. =60/3 | F2.. = 195/9
T31. = 69/3  fs2. =60/3 sz = 58/3 | 3. = 187/9
7.1. = 185/9 4.0 =190/9 @3 =186/9 | 3. = 187/9

From these data we can obtain the estimated parameters of the model. For example, &1=1%;.. —g...:%g,
[31 =Y1.— Y. = _72 and &BH =911. —Y... — Q1 —Bl = —39—1 + 19—0 = —721. In a similar way, the estimations

of the other parameters are evaluated and they are included in the following table:

&Bn =-21/9 &Bu —5/9 0/4313 =26/9 Gy =—8/9
C/“Bm =-1/9 0/4522 =15/9 0/4523 =—14/9 | G2 =8/9
0/4531 = 22/9 0/4332 =—10/9 0/4333 =-12/9 | a3 =0

By =-2/9 By=3/9 By =—-1/9 fr=g.. = 187/9

Calculating the sum of squares we obtain: SST = 11785 — 27¢%. = %, SSy = 92&? = %,
SSp = 9233 = Y SSap = 3> (O/zBij)Q = T4 and SSE = H58=128-14-T61 — 98 Therefore,
MSE = 19—4J: 1.55 and the estimateifvalue for the parameter o is & = VM SE = 1.25. The whole model
test leads to Fasoder = % = 8.0893 with p-value= p (Fg 15 > 8.0893) = 0.0001. Therefore the model
is significative with o = 0.05. The determination coefficient of the model is R? =1 — % = 78.2% and
the variation coefficient is CV = %%’ = 6.0%.

The evaluation of the three F-tests in the ANOVA table leads to:

Fy = % = 4.57 with p-value= p (Fz,15 > 4.57) = 0.0248
Fp = £ = 0.50 with p-value= p (Fp,13 > 0.50) = 0.6147
Fap = % = 13.64 with p-value= p (F4 15 > 13.64) = 0.0000

Therefore the interaction between factor A and factor B is significative with @ = 0.05, and the effect
of the nitrogen doses depends on the potassium doses and upside. Note that the main effect of potassium
dose is not significant, but we can not say that potassium fertilization has no effect on growth, because
the interaction is significant. To assist in interpreting the interaction effect, it is helpful plotting a graph

of the means at each treatment combination. This graph is shown below:
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mean praduction (ton/ha)

© &= potassium dose (kg/ha)=100
& potassium dose (kg/a)=200
5 = potassium dose (kg/ha)=300

60 120 180
nitrogen dose (kg/ha)

The significant interaction is indicated by the lack of parallelism of the lines. By using the low dose
of potassium, the mean of production increases with higher doses of nitrogen. Inversely, with the higher
dose of potassium, the mean of production decreases with higher doses of nitrogen. With the intermediate
dose of potassium, the mean of production first grows and then decreases. The higher mean of production
is obtained with intermediate doses of nitrogen and potassium (120 and 200 kg/ha respectively).

The standard error for the mean of each combination of doses is SE = %

= 0.72 and, taking into
account that ¢1s,0.025 = 2.101, the 95% confidence intervals for the expected values are 9i;. £1.51. These
intervals are included in the previous figure. Averaging in doses of potassium, the standard error for the
mean of each nitrogen dose is SE = %/9 = 0.42 and the 95% confidence intervals for the expected
values are ;.. £0.87. In a similar way, averaging in doses of nitrogen, the same standard error is obtained

and the 95% confidence intervals for the expected values are g.;. & 0.87.

Finally, the least significant difference (LSD) with a = 0.05 for each pair of means g;j., g ;. is
LSD = t18.0.0254/ % = 2.14. In a similar way, the least significant difference (LSD) with oo = 0.05 for
each pair of means ¥;.., ir.. or ¥.;., 9.5 is LSD = t18,0.0251/ % = 1.24. Using these values, we obtain

the following results for the LSD Fisher’s tests of the interaction and the main effects, with o = 0.05:

Potassium= 100 | Potassium= 200 | Potassium= 300
Nitrogen=60 | 17.33 Bc 19.67 Bb 22.67 Aa 19.89 B
Nitrogen= 120 | 21.33 Ab 23.67 Aa 20.00 Bb 21.67 A
Nitrogen= 180 | 23.00 Aa 20.00 Bb 19.33 Bb 20.78 AB
20.56 a 2111 a 20.67 a

where we have used uppercase letters for nitrogen doses and lowercase letters for potassium doses.

The complete LSD Fisher’s test with all the nine means leads to:

Fertilization | Mean Fertilization | Mean
60 — 100 1733 A 60 — 100 1733 X
180 — 300 19.33 AB 180 — 300 19.33 XX
60 — 200 19.67 B 60 — 200 19.67 X
120 — 300 20.00 B or, alternatively, | 120 —300 20.00 X
180 — 200 20.00 B 180 — 200 20.00 X
120 — 100 21.33 BC 120 — 100 21.33 XX
60 — 300 22.67 CD 60 — 300 22.67 XX
180 — 100 23.00 CD 180 — 100 23.00 XX
120 — 200 23.67 D 120 — 200 23.67 X
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Chapter 4

NESTED ANOVA

In certain multifactor experiments, the levels of one factor (e.g., factor B) occurs in conjunction with
only one level of another factor (e.g., A). Then, we say that the levels of factor B are nested within the
factor A. Let us suppose that y;j, withi¢=1,...,a, j = 1,...,b and k = 1,...,n are the observed values
for ab independent random samples of the dependent variable Y where a is the number of levels of the
factor A and b is the number of levels of the factor B nested whitin each level of the factor A. As a
consequence, the total number of levels for the factor B is ab and they have been nested whitin the levels
of factor A in a balanced way. That is, we have a dependent variable Y and two factors: A with a levels
and B with ab levels balanced way nested in factor A. Moreover, we suppose that Y, ~» N (,uj(i),a)
and p = ﬁ > Wiy is the global expected value if the factors A and B have no effect on the dependent
4,J

variable Y.

This model states that E(Yjjx) = p;; = p+ a; + Bj;), where a; is the effect due to level i of
factor A and f3;;) is the effect due to level j of factor B nested within level i of factor A. Therefore,
Yijk = ptai+ B +€ijk With €55 ~ N (0, 0) and €;5;, independent of ;15 for any values i,4', j, j', k, k.
Note that in this model the effect of the nested factor B is measured within each level of factor A and
it is supposed that E I6] iy =0 for each value i of the factor A (there are a restrictions for the levels of

J

factor B instead of a unique restriction ) By = 0). Using the same notation as in the previous model,
0,
the appropriate estimators for the parameters of the model are i =Y., fi,; = Y5, &; =Y. =Y.,

Bj(i) = ?ij; — Y., with estimated residuals &;;; = e = Yijn — [Lij, and the decomposition of sum

squares is now

Y Vi —Y.) =Y (Vi V) 40 (Vip - Vi) + Y (Yige — Vig)
5,k i ,J 1,5,k
or briefly SST = S84 + SSp(a) + SSE with SST = 3> (Yije —Y..)°, 54 = tn > (Vi - V..)7,
.3,k i
SSpay=ny_ (?ij. - ?i.‘)Q and SSE=3" (K;jk— ?ij.)2. As usual, we can also write SST= ) (Y;; — ﬂ)Q,
i,J i,g,k ik
SSE =% (Yir — ﬂij)z and now S5, = bn S &7 and SSpa) = nZBj(Z)
i.4.k i i.j
SSE

~ ng(n_l) and the estimation of o2 is 02 = MSE = =1

In this model, we also have ——
o
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Using SSarodet = SSa + SSB(A), ifa; =p ) = 0 for all ¢,j then

FIC

P _ SSroder/ (ab—1) - F
Model SSE/ (ab(n — 1)) ab—1,ab(n—1)

and we have a whole model test. The R? and CV coefficients are evaluated as usual.

In a similar way, if a; = 0 for all ¢ then
S84/ (a—1) -
SSE/ (ab(n —1)) a—1,ab(n—1)

Py =

And, if 8.,y = 0 for all 4, j then

_ 889p@y/(alb-1) .
B(A) - SSE/ (ab(n _ 1)) ~ a(bfl),ab(nfl)
These statistics can be used for the two F-test in the ANOVA table, as follows:

J(3)

SS DF MS F-value | p-value Hy
Factor A SSa a—1 MSy F5 PA a; = 0 for all ¢
Factor B(A) | SSpay | a(b—1) | MSpay | Fpea pB(A) | By =0foralli,j
Error SSE | ab(n—1) | MSE
Total SST abn — 1
Now the confidence intervals for the expected values p + a; and Mij are Y.+ Lab(n—1);a/2 MbiE and

Yij. £ tapn-1)a/21/ 22E, respectively.

Finally, the least significant differences (LSD) for each pair of means are: LSD = t,p(n—1);a/2 2MSE

bn

for Y., Y. and LSD = topn-1ya/2y/ 222 for V5., Y. within each level i of the factor A. Note
that we do not initially have a test for the expected values for two levels in the factor B nested within

different levels of the factor A, that is, for example, to compare 53‘@) and Bj,(i,) with 4 # ¢/. This is

because if ¢ = ¢/ we have Bj(i) BJ Gy = =Y. — Y., but this is not true if i # 4’ since now Bj(i) —
Bj/(i/) = (?ij‘ — ?i/j/.) — (?1 — Yi/..). Therefore, to carry out this test we need to use ?ij. —Y,.. versus

Yirj. — Y. Taking into account that 72-]-. — Y. is independent of Y;/j. — Y ;.. and, for fixed values i

and jo, we have Y. — Y, =Y. — 1 ( — l) Yijo-— Z Y;., then Var( ijo- —?Z-..) =

b b
()5 ()0 ”
(?ij. ,?i”) - (Yilja f?iu.) — (53'(1') _ Bj/(i/))

(1) mezz

n

J
) and, we can prove that

3\%

~ tab(nfl)

This statistic let us to obtain a test for H, : 8y = B/ (i)-
The check of the assumptions of the model can be made as usual with the estimated residuals e;j.

Example 5: Two nested factors design. We want to study the effect of three fertilizers (factor A)
and nine irrigation doses (factor B) on the growth of potted plants. It is recognized that the two factors

are independent (no interaction) and we decide to perform five repetitions. Because of the independence
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between the factors and in order to use a lower number of experimental units, we decide to nest the
irrigation doses within the fertilizers and to limit the experiment to 45 pots (instead of the 135 pots
required in the factorial design). The irrigation doses nested within each fertilizer were randomly selected.

The plant heights at the end of the experiment were recorded (cm).

Fertilizer Irrigation dose MYk Uik | DYk 2 Yk
k k ik ik

1 1(1 39 43 41 46 48 217 9471
1 2 (2 52 58 55 50 55 270 14618 813 45425
1 3 (3 69 62 71 61 63 326 21336
2 1(4 72 65 69 62 71 339 23055
2 2 (5 61 63 55 52 60 291 17019 921 57229
2 3 (6 59 H0 55 69 62 291 17155
3 1(7 65 69 62 71 61 328 21592
3 2 (8 63 55 48 52 58 276 15366 895 54113
3 3 (9 55 H0 55 69 62 291 17155

For the statistical analysis we use the two-factors nested model E (Yj;) = p1;; = p+ o + Bj(), where
«; is the effect due to the i-fertilizer and j,(;y is the effect due to j-dose of irrigation nested within the
i-fertilizer, with ¢ = 1,2,3 and j = 1,2,3. Therefore, Y5 = p+ a; + By + €iji, With ;55 ~ N (0,0)
and ¢, independent of €,/ for any values 4,4, 4,5, k, k' (k=1,...,5).

Initially, we calculate > y;;r = 2629, > yfj x = 156767 and all the means observed in the experiment,

.5,k 0,5,k
which are included in the following table with the usual notation:

Yi1- Yi2- Yi3- Y21 Y22 Y23. Y31 Y32 Y33 | Y1 Y2 Y3 | Y.

217 270 326 339 291 291 328 276 291 | 813 921 895 | 2629
5 5 5 5 5 5 5 5 5 | 15 15 15 | 45

From these data we can obtain the estimated parameters of the model. For example, &1=%;.. — §...=

%5?0 and B1(1) = Y11. — Y1.. = %562. In a similar way, the estimations of the other parameters are

evaluated and they are included in the following table:

Bray By Bsay Biwy Bawy Bsy Busy Pasy Bas | & Qo Q3 | =7

—162 -3 165 96 —48 —48 89 —67 —22 —190 134 56 | 2629
15 15 15 15 15 15 15 15 15 15 5 45 15

Calculating the sum of squares we obtain: SST = 156767 — 4592, = %, 5SS, =15 Z &? = %,

2
SSpa) =53 By = 80196 and SSF — 142874-19064-80196 _ 43614 Therefore, MSE = 4614 — 26.92
0

and the estimated value for the parameter o is 6 = vVMSE = 5.19. The whole model test leads
to Frrodel = 99260/360  _ 1() 94 with p-value= p(Fg3s > 10.24) = 0.0000. Therefore the model is

13614/1620
significative with o = 0.05. The determination coefficient of the model is R? = &92286704 = 69.5% and the
variation coefficient is CV = 26%91?45 = 8.9%.

The evaluation of the two F-tests in the ANOVA table leads to:

Fa = giata/ress = 7-87 with p-value=p (Fh 36 > 7.87) = 0.0015

Fp(a) = % = 11.03 with p-value= p (Fh 35 > 11.03) = 0.0000
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Therefore, both factors in the experiment are significative with o = 0.05.

MSE __
£ =

The standard error for the means of the nine treatments is SE = 2.32 and, taking into

account that tse0.025 = 2.028, the 95% confidence intervals for the expected values i are ¥ij. = 4.71.

The least significant difference (LSD) with a = 0.05 for the comparison of the estimations of f,;, that

2MSE
5

is, for each pair of means ¥;j., §irj., is LSD = t36.0.025 = 6.66. Using this value, we obtain the

following results for the LSD Fisher’s tests of the nine treatments, with a = 0.05:

Fertilizer | Irrigation dose

1(1)
2 (2

Mean (;.)

43.4
54.0
55.2
98.2
98.2
98.2
65.2
65.6
67.8

OISR I R SC RS
QAT T

(2)
(8)
(5)
(6)
(9)
(3)
(7)
(4)

== W W W NN
= W o Oy Ut o

Therefore, the best growth is obtained with the dose 1 within the fertilizer 2 (that is, the fourth dose)
but no significative differences with the dose 1 within the fertilizer 3 (that is, the seventh dose), and
with the dose 3 within the fertilizer 1 (that is, the third dose). All the other treatments lead to a lower

expected growth.

Nevertheless, as we said before, the comparison of the estimated expected values (that is, iy —

fuirjr = Yij. — Yirjr.) is different of the comparison of the estimated effects of the irrigation doses (that is,

Bjy = By = Yij- — Yo — Yirje- + Yir..), if i # 4. In this case, the least significant difference (LSD) with

a = 0.05 for the comparison of the estimated effects is LSD = t36.0.025

1
3

(1

comparison of estimated effects with ¢ # i’ leads to the following results:

)

2MSE — 5.43. Then the

31(1)—31(2)

31(1)—32(2)

31(1)—33(2)

31(1)—31(3)

31(1)—32(3)

31(1)—33(3)

32(1)—31(2)

32(1)—32(2)

Ba1)—Bs(2)

—17.2*

—7.6"

—7.6*

—16.7*

—6.3*

—9.3"

—6.6"

3

3

32(1)—51(3)

32(1)_32(3)

32(1)—33(3)

33(1)—31(2)

33(1)—52(2)

33(1)—33(2)

53(1)—31(3)

33(1)—32(3)

33(1)—53(3)

—6.1%

4.3

1.3

4.6

14.2*

14.2*

5.1

15.5*

12.5*

51(2)*51(3)

5’1(2)*32(3)

31(2)*33(3)

52(2)*31(3)

52(2)*52(3)

Ba2)—B3(3)

33(2)*31(3)

53(2)*32(3)

53(2)*53(3)

0.5

10.9*

7.9%

—-9.1*

1.3

—-1.7

—-9.1*

1.3

—-1.7

where the differences marked with an asterisk are significant with o = 0.05. With this significance level
we have not observed any difference between this results and the others obtained for the comparisons
of treatments. But if we suppose o = 0.22, as t36,0.11 = 1.25, the least significant difference for the
comparison of treatments is LSD = t36;0_051/% = 4.10 and therefore p5 (second dose with the
fertilizer 1) is significantly different of p155 (ninth dose with the fertilizer 3), because the observed difference
is 4.2. But nevertheless, the least significant difference for the comparison of effects nested within different

(1-3)

1
3

2MSE

fertilizers LSD = t36.0.11 5

= 3.35 and therefore 8, (effect of the second dose, which is
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nested within the fertilizer 1) is not significantly different of B33, (effect of the ninth dose, which is nested
within the fertilizer 3), because 32(1) - 33(3) =1.3.

Finally, for the fertilizers, the standard error of the means is SE = MlgE = 1.34 and the 95%

confidence intervals for the expected values pu + «; are ;.. & 2.72. The least significant difference (LSD)
with o = 0.05 for the comparison of the estimations of p + «;, that is, for each pair of means .., ..,
is LSD = t36,0.0251/ % = 3.84. Using this value, we obtain the following results for the LSD Fisher’s
tests of the three fertilizers, with a = 0.05:

Fertilizer | Mean

1 54.20 A
3 59.67 B
2 61.40 B

and we can say that the expected growth is lower with the fertilizer 1, with no significant differences

between the fertilizers 2 and 3.
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Chapter 5

CROSSED-NESTED ANOVA

Occasionally in a multifactor experiment, some factors are arranged in a factorial layout and other factors
are nested. This type of designs are usually called crossed—nested designs. The statistical analysis of one
such design with three factors is now illustrated. Let us suppose that ;i are the observed values for
abc independent random samples of size n from a dependent variable Y where a is the number of levels
of factor A, b is the number of levels of factor B and c¢ is the number of levels of factor C' nested whitin
the levels of the factor B in a balanced way (as a consequence, bc is the total number of levels in factor

C). As usual, we suppose that Y ~» N (uijk,a) and p = Z Higk is the global expected value if

abc

none of the factors A, B and C have any effect on the dependent Varlable Yiint-

In this model, we state that E (Yjjx) = pjn = b+ a; + B + Vi) + @By + avig(j), where a; is
the effect due to level i of factor A, 3, is the effect due to level j of factor B, Vi(j) is the effect due to
level k of factor C' nested within level j of factor B and af;;, avy;x;) are the interaction effects between
pair of factors A, B and A, C respectively. Note that we can not consider an interaction effect between
factors B and C' due to nesting used in these factors. In addition, we have now many restrictions on the

parameters, namely: Za, =0, Zﬁ =0, Z’yk =0 for all j, Z aB;; =0 for all i, Y af,;; =0 for all

7, Za’ylku =0 for all 1,7 and Za%k(j) = 0 for all 7, k. Therefore the model is
Yijri = p+ i+ B + i) + @by + aviggg) + Eijm

with €5, ~» N (0,0) and €;55; independent of €4y for any values ¢,4', 7,5/, k, k', 1, I'.

With the usual notation, the appropriate estimators for the parameters of the model are o = Y ...,
[Lijk = ?ijk<7 (A)él = ?1 — ?, ﬂj = ?j —?...., aﬂij = ?U — ?1 —?J'.. +?, ’?k(j) = ?.jk. —?j
and @ik(j) = ?ijk- - ?’LJ - ?-jk- + ?.j.., with estimated residuales éijk:l = €ijkl = Yvijkl — ﬂzgk The

decomposition of sum squares is now
SST =554+ 55+ SSC(B) + SSap + SSAC(B) + SSE

7.k,
LM’LZ (?-jk- - ? ) SSAB CTLZ ( ij- .—Yi...—Y.j“—}-Y..A.)Q, SSAc(B):’n Z (?ijk-_?ij--_?~jk-+?~j~)2

5,k

where SST = 52 (YVigt — Y ..)%, SS4 = ben 32 (Vi ~Y..)% 885 =acn Y (V. =V ..)?, SScqp) =
J
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and SSE= )’ (Yéjkz—?ijk ) As usual, we can also write SST= Z (Y35 /fL)27 SSE= )" (Yéjkz — /lijk)z
1,5,k,1 7.kl i,9,k,1
k

and now SS, = bcnz&?, SSp = aanB?, SScpy = an , SSup = an(aﬂ”) and
i J

SSac)y =n Z (Q’Ylk(J))z-

0,5,k

SSE — SSE
In this model, we have ~ X2b _;y and the estimation of 0?is 02 = MSE = ————.
o2 abe(n—1) abe(n — 1)
Then, using SSyoder = SSa + SSp + SSc(p) + SSap + SSac(p), the whole model test with the null
hypothesis o; =8 ;=)= ;=01 ;)= 0 for all ¢, j, k is given by
SSModel/ (abc — 1)
~ Fabcfl,abc(nfl)

SSE/ (abc(n — 1))

and the R? and CV coefficients are evaluated as usual.

FModel =

The appropriate statistics for the F-tests in the ANOVA table with their respective probability dis-

tributions are:

Fy = SSSZ’?S/?(/LZSZ(’; i)l)) = ]J\\jgg ~ Foa_1 abe(n—1) if ; =0 for all ¢
B = ssf@i%b(f(; i) ) ﬁﬁg Fo-t,abe(n-1) if ;=0 for all j
Fop = ggﬁc{ b(:((;: 3; M]\jg P s Fiem1)atetn-1) if 73y = O for all j, k
Fap = S%;é/(((zb_c(;)(_b 1_))1)) = J\]\/‘;%g ~ Fla—1)(b-1),abe(n—1) if af;; =0 for all 4,5
Faom) = SSASSE//((Z(;;(:;_)(;))_ D) _ ME;CZ;B) ~ Fya—1)(e—1),abe(n—1) i @¥;) = 0 for all 4,7,k
The ANOVA table for this model is as follows:
SS DF MS F-value | p-value Hy
Factor A SSa a—1 MS 4 Fy DA a; = 0 for all ¢
Factor B SSg b—1 MSg Fp PB ﬂj:Ofor all j
Factor C(B) | SS¢(p) blc—1) MSc(B) Fop) PC(B) Vi(jy = 0 for all j, k
Int. AxB SSan (a—1)(b—-1) MSyB Fap DAB afB;; =0 for all 4, j
Int. AxC(B) | SSac) | bla—1)(c—1) | MSac) | Fac) | Pac) | @ik =0 for all 4, j, k
Error SSE abe(n — 1) MSE
Total SST aben — 1

Now the confidence intervals for the marginal expected values are:

Yi %+ tabe(n—1)a/2 biE for p+ o

Y o £ tabe(n—1)sa/2 ]anE for p+ 3,

Yij. £ tabe(n—1);a/2 JWCiE for p;;. = p+a; + B8, +aby;
Y jk & tabe(n—1);0/2 MaiE for pr.p,j) = 1+ B; + i)
Yijk & tabe(n—1)0/2 M:E for p;;u,
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Finally, the least significant differences (LSD) for each pair of means are:

2MSE — —
LSD = Labe(n—1);a/2 bci forY;. =Y.
2MSE = =
LSD =t _1). for Y. =Y .
abe(n—1);a/2 acn or r . J
2MSFE — —
LSD = tabc(nfl);oz/2 on for Yij,. - Yi/j/“
2MSE — —
LSD = Labe(n—1);a/2 for Y k. — Y jp. with fixed j
an
2MSE - —
LSD = tabc(n—l);a/Q 5 for Yijk~ - Yi/jkh with ﬁxedj
n

Arguing as in the previous model, we obtain that the appropriate statistic for the test V() = Vi (§)

with j # 5 is

Ve =Y j.) = (Vow. = Yj) = <7k<j) - vw/))

1\ 2MSFE
1-2) 20

~ tabc(n—l)

—~

In a similar way, the appropriate statistic for the test Yik(G) = Virkr(j7) With j # 7 is

(YVije =Yij) = (Vi = Vi) = (%k(j) B Wk/(j’))

(1 _ ;) 2MSE

C n

~ tabc(n—l)

An special case of this type of models is the factorial design augmented with an additional control
treatment defined as no application of neither of the factors. Next we illustrate this model using a
factorial design with two factors and a control treatment. Let us suppose that we have two factors, A
with a levels and B with b levels in a complete factorial design with n replicates, and an additional
control treatment T, also with n replicates, defined by none of the levels of the factors A and B. Then
we consider two levels for factor 7 0 for the control (no treatment) and 1 for the ab treatments in the
ab factorial design. Let us denote the observed values by y;ji with ¢ = 0,1; j =0,1,...,a; k =0,1,...,b
and [ = 1,...,n where ygoo; represent the values for the control treatment and yij,; with j =1,...,a and
k =1,...,b the values for the ab treatments in the model. Note that the factors A and B are nested in
factor T' with an unbalanced way (level 0 nested within ¢ = 0 and the other levels nested within ¢ = 1)

and the total number of observed values is n(1 + ab). As usual we suppose that Yjji ~» N (pij,w 0’) and
Booot 2o M1k
W= # is the global expected value if the treatments defined by the factors A and B have no

effect on the dependent variable Yj;i;. Therefore we have 1 4 ab independent random samples of the

dependent variable.

The model states that E (Yjjx) = p5, = p+ 70 + oy + Bry + aBjre), and therefore Yijp =
T+ o) +ﬂk(i) —|—aﬂjk(i) +€ijr with ;5 ~» N (0,0) and €;;z; independent of ;51 for any values
1,1,7,5', k, k', 1,I', where 7, is the effect of the control treatment on the global mean p, 71 is the main
effect of the use of factors A and B, and the remaining parameters are defined as in a factorial design.
The restrictions on the parameters are now: 7, + abr1 = 0; ag0) = By = @Bjo0) = ¥Boke) = 0 for
all 4, k; %:Oéj(l) =0, Zk:ﬁk(l) =0, zk:aﬁjk(l) =0 for all j and Zj:aﬂjk(l) = 0 for all k£ (note that we use

To + abry = 0 instead of 7, + 71 = 0 by the unbalanced nesting).
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n a b n
> Yooourt 2o >0 > Yijm
=1

n a b n
= j=1k=11=1 i3 1 % 1 Y
Now we define Y.... = n(1tab) y Yooo. = Z Yboo[, Y1 = Zbn Z Z Z Yljkl; Y1j~ =
=1 J=1k=1i=1
1 b n o 1 n o 1 n
O Yije, Yie = o > Yk, Yije = 5 > Yijr. The appropriate estimators for the paramet-
k=11=1 j=1i=1 =1

1 1
ersof themodelare t =Y ..., 7o = Ygo0.—Y ..., 1 = Y 1..—Y ..., Q1) = ?11:.—?1..., Bk(l) =Y 1, -Yi.,
Bty = Yije —Y1je — Y1k + Y 1, flgoo = f+7o = Yooo. and fiyj = fu+71+ 61y + By + 0By =

?1jk-7 with estimated residuals &;k1 = €501 = Yijr — ﬂijk. The decomposition of sum squares is now

SST = SSr+ SSacry + SSp(r) + SSap(r) + SSE

where SST = Y (Yooor = V...)" + ¥ (Yiju — Y..)°, S0 = n (Vooo. = V...)* + abn (V1. - Y..)°,
l ‘

gkl

— = 2 — = 2 — = = = 2
SSA(T):ban: (Ylj..—Yl..A) 5 SSB(T):anzk: (Ylk_yl) 5 SSAB(T):TL% (Yljk-_Y1j~~_Y1-k~+Y1~--) s
J B

and SSE =" (Yoooz — ?000.)2 + > (Yljkl — 71jk.)2 (note that in all these latter summations the sub-
l gkl

script 0 is not included). In this case, we also can write SST =5 (Yijn — i)? SSE=%" (Yijrt — ﬂijk)Q
i3kl i,gkl

. . . A2 — 2
and now SSt = nT%JrabnT?, SSar) = ana?(l), SSp(r) = anzkzﬁk(l) and SSap(r) = nzlg (aﬁjk(l)) )
j 3

SSE

(1+ab)(n—1)
Then, SSaroder = SST + SSa(ry + SSB(1) + SSap(T) and the whole model test with the null hypothesis

In this model, we have ~ X%l—i—ab)(n—l) and the estimation of 02 is 02 = MSE =

o2

Ti = Q1) = Bk(l) = aﬁjk(l) = 0 for all 4, j, k is given by

SSModet/ (ab) o
SSE/ ((1 + ab)(n _ 1)) ab,(14-ab)(n—1)

Faroger =

The R? and CV coefficients are evaluated as before.

The appropriate statistics for the F-tests in the ANOVA table with their respective probability dis-

tributions are:

1= 5sE) ((1i82b)(n “1) - Vigh P fro=m=0
Facr) = Ssgf&fjr/éz)(nlz T Aﬁ;‘g) s Fo1 (1+ab)(n—1) if 1) = 0 for all j
o = SSJz?S/S(Lz(lTi/cfZ)mlz ) - e = PGy Ay = 0 forall
Fanm = Sgng?(/T 2(/1((+a a_b)l()vfb—_l)l))) B MJ\%%T) > Fla—1o-1),0+ab)(n-1) i aBjp) = 0 for all j, k

The ANOVA table for this model is as follows:
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SS DF MS F-value | p-value H,

Factor T SSt 1 MSt Fr pr T70=71=0
Factor A(T') | SSa) a—1 MS A1y Fy) PA(T) ajy = 0 for all j
Factor B(T) | SSp(r) b—1 MSpr) Fp(r) PB(T) Bray =0 for all k
Int. AxB(T) | SSapr) | (a=1)(b—1) | MSapr) | FaBrn) | PaBr) | @Bjrny =0 for all j, k

Error SSE (I14+ab)(n—1) MSE
Total SST (I4+abn—1

The confidence intervals for the marginal expected values are:

Y 000- & t(14ab)(n—1)50/2 MSE for pgge = p+ 7o

Y.+ t(14ab)(n—1);a/2 ]\zan for py.. = ﬁ jz’;/iljk =pu+71

Vi) tatab)(n-1)ia/2 MbiE for puy;. = p+ 71+ 050

Y1k £ L1 gab)(n-1)i0/2 MaiE for py. = p+ 711+ Bia)

Y 1jk £ ttab)(n—1)ia/2 M:E for puyjp, = p+ 71+ i) + Bray + aBjrq)

Finally, the least significant differences (LSD) for each pair of means are:

LSD = t(11ab)(n—1);a/2 (14";5# for Yooo. — Yi...
L5D = t(14ab)(n—1)sa/2 MZ:E for Yij.. — Yqjr.
LSD = t(14ab)(n—1);a/2 (1+ l;)nMSE for Yooo. — ?U--
LSD = t(14aby(n—1);a/2 ZJ\Z:E for Vi — Y.
LSD = t(11ab)(n—1);a/2 % for Yooo. — Y11
LSD = t(14aby(n—1);a/2 2]\/;SE for YUk. - ?lj’k“ or Yooo. — ?ljb

The check of the assumptions of the model can be made as usual with the estimated residuals e;j;.

Example 6: Two-way factorial design augmented with an additional control treatment.
In a research study on bread making is proposed fortifying flour with proteins derived from different
products. A complete factorial experiment using five sources of protein (factor A) and two doses (factor
B), with four replications was designed. Control treatment (7') defined by the non-utilization of protein
in bread making was also used. Protein levels for factor A were: no protein (0), gluten (1), pea (2), egg
(3), milk (4) and soy (5). Doses levels for factor B were: no protein (0), 5% (1) and 10% (2). The T
factor was coded as 0 (no protein) and 1 for all the ten treatments with protein. In this example, the

bread volume Y (hundred of cm?) is used as the dependent variable.
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For the analysis we use the crossed-nested model
E(Yijk) = pige = b+ 7i + i) + Brgiy T @Bk

with ¢=0,1; j=0,1,2,3,4,5; k=0,1,2 and [=1, 2, 3,4. That is, just the previous model with a =5, b =2

and n = 4.

The obtained data are shown in the following table:

T A B Replications > Yijk > yfj Kl
1 1
0 0 0] 976 9.88 14.32 15.52 49.48 638.8048
1 1 1 8.32 7.80 7.36 7.68 31.16 243.2144
1 1 2 8.36 7.44 9.60 9.56 34.96 308.7968
1 2 1| 14.32 14.12 12.68 12.76 53.88 728.0368
1 2 2 ]11.60 1044 10.04 10.64 42.72 457.5648
1 3 1 |12.88 1256 15.84 15.08 56.36 801.9600
1 3 2 |12.00 11.92 11.48 11.20 46.60 543.3168
1 4 1 ]1312 1264 15.32 16.68 57.76 844.8288
1 4 2 |1500 14.48 1792 17.12 64.52 1048.8912
1 5 1 ]1328 13.20 1296 12.08 51.52 664.4864
1 5 2 ]11.68 12.08 11.04 10.48 45.28 514.0608
Total sums > Wi = 53424 Y yfjkl = 6793.9616
04kl 04kl

Initially, all the observed means are included in the following table with the usual notation:

j=1 j=2 j=3 j=4 ji=5
k=1 | §111.=7.79  T121.=1347 7131.=14.09  §141.=14.44 15, =12.88 | 71.1.=12.534
k=2 | 7112.=8.74  7122.=10.68  7132.=11.65 §142.=16.13  §150.=11.32 | 71.0.=11.704
U11..=8.265  §12.=12.075  §13.=12.87 §14.=15.285  §15.=12.1 | §;..=12.119
i=j=k=0 T000.=12.37 g...=133:56

From these data we can obtain the estimated parameters of the model. For example, & (1)=%11..—%1...=
—3.854, 31(1)1371.1- —¥1...=0.415, 04511(1):ﬂln-*ﬂr--*@1(1)*31(1):*089» A=Y...., To= Yooo- — Y....=0.228,
T1=%1... — §...=—0.0228. In a similar way, the estimations of the other parameters are evaluated and

they are included in the following table:

06612(1):0.89 &ﬁ22(1)2—0.98 Oéﬁ32(1):—0.805 Oéﬁ42(1):1.26 04652(1):—0.365 32(1):—0415

Calculating the sum of squares we obtain: SST = 6793.9616—44%%. = 307.3166, SSt = m‘%—l—abn%% =
0.2291, SSu(ry = 82&? = 203.5454, SSp(1) = 202@5 = 6.889, SSAB(T)=4Z (&Bjk(l)f = 32.9708
and SSE = 307.3165 — 243.6343 = 63.6823. Therefoie, MSE = 833823 — 193 ]2;,];1(1 the estimated value
for the parameter o is 6 = VMSE = 1.39. The whole model test leads to Fasoqer = % = 12.63
with p-value= p (Fig33 > 12.63) = 0.0000. Therefore the model is significative with o = 0.05. The

determination coefficient of the model is B2 = 243:6343 _ 79 3% and the variation coefficient is CV =

307.3166
1.39 _
T/ = 11.4%.
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The evaluation of the F-tests in the ANOVA table leads to:

Fr = 5%353755 = 0.12 with p-value= p (Fy 33 > 0.12) = 0.7326
Fary = % = 26.37 with p-value= p (Fy 33 > 26.37) = 0.0000
Fi(r) = gramssrss = 3.57 with p-value=p (Fy 33 > 3.57) = 0.0677

Fan(r) = sorzsls = 427 with p-value= p (F 33 > 4.27) = 0.0068

Therefore, the first F-test shows that, averaging in the ten treatments with protein, there is no
significative difference with the control treatment (no protein) with o = 0.05. In addition, from the last
F-test, there is a significant interaction between factors A and B with a = 0.05. The Fp(r)-test is not
significative and there is no difference between doses if we average the proteins. Finally, F'y(r)-test is

significative and there are significative differences between proteins if we average the doses.

The standard error for the means of the ten treatments with protein and the control treatment without

protein is SE = 4/ MfE = 0.69 and, taking into account that t¢33.0.025 = 2.035, the 95% confidence

intervals for the expected values fi,;;, are ;5. £ 1.41 and gogo. = 1.41. The least significant difference

(LSD) with @ = 0.05 for the comparison of the estimations of p;;;,, that is, for each pair of means

Yijk-» Yir 'k, 15 LSD = t33,0.025 MzSE = 2.00. Using this value, we obtain the following results for the

LSD Fisher’s tests of the ten treatments with protein and the control treatment, with o = 0.05:

Protein Source Dose | Mean (g;;.)
1 1 (gluten) 1(5%) 7.79 A
1 1 (gluten) 2(10%) 8.74 AB
1 2 (pea) 2(10%) 10.68 BC
1 5 (soy) 2(10%) | 1132  CD
1 3 (egg) 2(10%) 11.65 CDE
0 0 (no protein) 0 12.37 CDEF
1 5 (soy) 1(5%) 1288  DEFG
1 2 (pea) 1(5%) 13.47 EFG
1 3 (egg) 1(5%) 14.09 FG
1 4 (milk) 1(5%) 1444  GH
1 4 (milk) | 2010%) | 1613  H

Therefore we obtain the following conclusions:

1. With respect to the control treatment, using protein from pea, soy or egg has not a significant effect
in the expected value for bread volume.

2. With respect to the control treatment, using protein from gluten leads to a significative lower
expected value for bread volume. Generally, this value seems to be also lower than in the other
treatments with protein.

3. With respect to the control treatment, using protein from milk leads to a significative higher ex-
pected value for bread volume. Generally, this value seems to be also higher than in the other
treatments with protein.

4. Using protein from gluten, soy or milk, there are no significative differences between the two doses.
Nevertheless, with protein from egg or pea, using the 5%-dose leads to a significative higher expected

value for bread volume.
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5. The treatment with protein from milk and 10%-dose leads to a significative higher expected value

for bread volumen than all the treatments with other protein.

The next plot includes all the 95% confidence intervals for the treatments in the experiment:
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—o— Control
15 - Doze 5%
—oo Doze 10%
14
2
5 13
=
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E 12
2
o 1
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Z 10
|
5
7
6
Control Gluten Pea Egg Milk: Soy
Protein
If we average in the doses, the standard error for the means g .. is SE = MgE = 0.49 and the

95% confidence intervals for the expected values p,;. are y1;.. £0.999. The least significant difference

with o = 0.05 for the comparison of the estimations of p,;., that is, for each pair of means 1., y1;..,

is LSD = t33.0.025 MfE = 1.41. For the comparisons of ¥ooo., y1;.., the least significant difference is

LSD = t33.0.025 3MSSE = 1.73. Using these values, we obtain the following results for the LSD Fisher’s

tests of proteins if we average in the two doses, with @ = 0.05:

Protein Mean
1 (gluten) 8.265 A
2 (pea) 12.075 B
5 (soy) 121 B
0 (no protein) | 12.37 B
3 (egg) 1287 B
4 (milk) 15.285 C
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Chapter 6

THREE-WAY FACTORIAL ANOVA

The two-way factorial model studied previously can be extended with three o more factors in a factorial
design. Next we illustrate this case with three factors: A with a levels, B with b levels and C' with ¢
levels. Let us suppose that all the possible abc treatments have been experimented with n replicates and
Yijli denotes the observed values with ¢ =1,...,a; j =1,...,0; k =1,...,cand [ = 1,...,n. As usual, we

suppose that Yijr ~ N (uijk, O’) and p = ﬁ > Mijx is the global expected value if none of the factors

1,5,k
A, B and C have any effect on the dependent variable Y;;z;.

In this model we state that E (Yijx) = pi;5 = pt+ i + B + 75 + By + oy + Bjx + @By, where
a; is the effect due to level i of factor A, §; is the effect due to level j of factor B, v, is the effect due to

level k of factor C, af3;;, a7, and v, are the interaction effects between pairs of factors (4, B), (4,C)

iy
and (B, C) respectively, and a3y, is a possible triple interaction between the three factors A, B and C.

In addition, we have now many restrictions on the parameters, namely: Z a; =0, Z B; =0, Z’yk =0,
Zaﬂm =0 for all 4, Zaﬂ” =0 for all j, Za’ylk =0 for all 4, Za*ylk = 0 for all k Zﬁ%k = 0 for all
j Eﬁ%k =0 for all k Zaﬁvmk =0 for all i, 7, Zaﬁvuk =0 for all 4,k and Zaﬁ’y”k =0 for all j, k.

Therefore the model is
Yijei = o+ i + B + v + aBy; + oy + By + aBvik + ikl

with €55 ~» N (0,0) and €;;5; independent of €/ for any values ¢,4', 7,5/, k, k', 1,1’

ﬂijk = Y,‘j}c., &; = ?Z -Y.., ﬁj = ?j —?...., ﬁ/k =Y. i — ?, Odﬁij = ?23 _?z — ?j +?,
iy =Yik — Vi =Yy 4 Yo, By =Yg — Yoo — Yoy + V... and finally
By = (YVigp —Y..)—d;— Bj — Ve — aBi; — Vi — B

Yije =Yij =Yk =Y o + Y+ Y+ Y g = Y

The estimated residuals for this model are &;;5; = ejjr = Yijr — Vijk. and the decomposition of sum

squares is now

SST =554+ 55 + 5S¢+ SSap + SSac + SSpc + SSapc + SSE
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where SST = > (Yijkl —74...)2, SS4 =ben . (71 —?....)2, SSp =acen ), (?.j.. —?....)2, SSc =
i,9,k,1 % 7
anY (Vop —=V..)°, SSap =en Y (Vi Vi~V ;. 4Y..), SSac =Y (Vi —Yi —Y o4Y.)°,
k ik

i,J

SSpe=any (V. jp—Y .~V oAV ) SSapo=nY (Vijr—Yij—Yip—Y jptY s AY ;. 4V -Y..)°
Jk i,k
and SSE= ) (Kjkl—Yijk.)2. As usual, we can also write SST= Y (Yij—/l)2, SSE= " (Y;jkl—ﬂijk)Q
i,5,k,1 i,5,k,1 i,5,k,1 ’

~ — 2
and now SSa = ben Y2 a2, SSp = acn B, SSo = abn 42, SSap = eny (aﬁij) , SSac =
7 J k ,J

N2 _ 2
bny (&'\Vik)Za SSpc =any (76jk) and SSapc =n >, (aﬂ’%’jk) .
ik gk ik
SSE
m. Then,
SSnrodel = SSA+SSp+SSc+SSap+ SSac+ SSe +5Sape and the whole model test with the null

SSE —
In this model, we have —— ~ X?Lbc(nfl) and the estimation of 62 is 02 = MSFE =
o

hypothesis a; = 8; = v, = af;; = av;, = BV = afvy,;, = 0 for all 4, 7, k is given by

SSModer/ (abec — 1) -
SSE/ (abe(n — 1)) abe—1,abe(n—1)

Firoder =
with the usual R? and CV coefficients.

The appropriate statistics for the F-tests in the ANOVA table with their respective probability dis-

tributions are:

L SS%S/A(/ZEQ(_ 1)1)) _ Af\gg s Fy 1 abe(n1) if a; = 0 for all i
aocin —

Fp = 5525/3(/ b(b< ”1)) ol R if 8, = 0 for all j
aoc{n —

o= oo/l Zl) _ MSo g ey if v, = 0 for all k

SSE/(abc(n—1)) MSE e havenT ’
Fpo = Ss;;é; (l;b_c(lrz(j I))l)) = ]\J\ifiBEc‘ ~ Fly—1)(c—1),abe(n—1) if By, = 0 for all j, k
SSapc/ ((a—1)(b-1)(c-1))  MSapc . .
Fapc = SSE/ (abe(n— 1)) = s~ Fla-ne-ne-1.aben-1) if afv;j, = 0 for all ¢, j, k

The ANOVA table for this model is as follows:

SS DF MS F-value | p-value Hy
Factor A SS4 a—1 MSy Fy DA a; = 0 for all 4
Factor B SSg b—1 MSg Fp PB ﬂj =0 for all j
Factor C SSc c—1 MSc Feo pC v, =0 for all k
Int. AxB SSan (a—1)(b-1) MS g Fup DAB afB;; =0 for all 4, j
Int. AxC SSac (a—1)(c—1) MSac Fac DAC ay;, =0 for all 4,k
Int. BxC SSpe b—-1)(c—1) MSpe Fpe PBC B, =0 for all j, k
Int. AxBxC | SSapc | (a=1)(b=1)(c—1) | MSapc | Fapc papc | @By, =0 for all 4, j, k
Error SSE abe(n — 1) MSE
Total SST aben — 1
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The confidence intervals for the marginal expected values are:

Y. & tabe(n—1)a/2 ]\ZiE for p;.. = p+a;

Yj % tabe(n—1)0/2 Aﬁan for p.;. = p+B;

Y ke & tabe(n—1):a/2 A:I[an for pu.; = p+ 4

Yij. + tabe(n—1);0/2 ]WC;S;E for p;;. = p+ai + B; + aBy;
Yik £ tabe(n—1)0/2 MbiE for p = p+a; +y, +ayy
Yk % tabe(n—1):a/2 AiiE for p.jp =p+ B+ vk + Bvjk
Yijk £ tabe(n—1):a/2 MSE Or ;i1

Finally, the least significant differences (LSD) for each pair of means are:
2MSE

LSD = Labe(n—1);a/2 ben for Yi.. — Y.
2MSE — —
LSD = topein1)a for V.. — V..
be(n—1);0/2 acn or I .; J
2MSE — —
LSD = tabc(n—l);a/? for Yk - Y..k/.
abn
2MSE — —
LSD = tabc(nfl);a/Q on for YU — Yi/j“
2MSE — —
LSD = tabc(nfl);a/Q bn for Vg — Yirg.
2MSE — —
LSD = tabc(n—l);a/Z an for ij — Y-j/k’~
2MSE — —
LSD = tape(n—1);0/2 - for Vijr. — Yijip.

The check of the assumptions of the model can be made as usual with the estimated residuals e;j;.

Example 7: Three-way factorial design. In a study on the germination rate of black pine (Pinus
pinaster Ait.) under different conditions of water stress and cold, seeds from three provenances with
different ecological properties (Serrania de Cuenca, Sierra de Gredos and Northwest) were used. Four
levels of water potential (0, —4, —6 and —8 bars, achieved with different concentrations of polyethylene
glycol 6000) and two different temperature conditions (F2=20°C for one week, 4°C for one day, 0°C for the
next day, 4°C for the next day and 20°C during the remainder of the experiment, F3=20°C throughout
the experiment) were tested for 48 days in a factorial design with four replications per treatment. The
experiment was performed in a growth chamber and, for each treatment, 100 seeds placed on four petri
dishes of 10 cm diameter with 25 seeds each were used. At the end of the experiment, the percentage of
germinated seeds were scored. To formulate the problem, three factors were considered: A for provenance
with three levels, B for water stress with four levels and C for cold conditions with two levels. In addition,
we will use a significance level a = 0.10. For the statistical analysis we use the three-way factorial model
E (Yijr)=pij=pn+ i + B + v + By + avy, + By + afv,, with i=1,2,3; j=1,2,3,4 and k=1, 2.
That is, just the model previously studied with a = 3, b = 4, ¢ = 2 and n = 4. The obtained data are

shown in the following table:
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hS
@

Cc=1 El:yiju ;yrfjll C=2 ;yml ;y?jﬂ

84 96 96 92 | 368 33952 | 92 84 92 76 | 344 29760
72 76 92 80 | 320 25824 | 88 80 83 88 | 344 29632
72 72 80 32 | 256 17792 | 84 100 72 72 | 328 27424
72 80 80 72 | 304 23168 | 88 68 88 68 | 312 24736
92 92 96 96 | 376 35630 | 88 96 88 96 | 368 33920
84 92 76 100 | 352 31206 | 92 92 92 68 | 344 30016
80 88 60 52 | 280 20448 | 84 88 96 76 | 344 29792
80 80 56 72 | 288 21120 | 100 84 72 72 | 328 27424
72 96 68 76 | 312 24800 | 84 80 80 100 | 344 29856
80 72 64 72| 288 20864 | 72 60 72 68 | 272 18592
60 68 72 32 | 232 14432 | 80 64 72 48 | 264 17984
68 60 52 68 | 248 15552 | 32 56 36 52 | 176 8160
S oyu=3624 Yyl = 284608 | X yim =3778 Yyl = 307296

49,0 49,0 49,0 49,0

The total sums are > ;i = 7392 and ) yfjkl = 591904 and we can evaluate all the observed
ikl 1,4kl
means, which are shown in the following tables with the usual notation:

W W W WNNNDN = ==
B~ W N WD - WwN -

t=1k=1 i=2k=1 1=3k=1 i=1k=2 i=2k=2 i=3k=2

J=1| J111- =92  Po11. =94  Y311. =78 Yri2. =86  Yar2. =92 Y312 = 86
J=21 ¥io1. = Yo21. = Y321. = 72 Yi22. =86  Yoo2. =86  Y320. = 68
J=3 1| Y131. =64  Y231. =70  Ys31. =58  Yi32. =82  Yoz2. =86  Yzzo. = 66
J=4 | %141. =76 Yoa1. =72 Y341. =62 Yrg2. =78 Yoz =82 Yzgo. =44

Y11. =18 Yo.1. =81  Y31. =675  Y1.2. =83  Yo2. =86.5 Y30 =66

1=1 1=2 1=3 k=1 k=2
j: =1 :1211.. =89 2221 =93 2231.. =82 :12.1. = 88 j =1 g-ll- =88 :12.12. = 88
_]_ =2 g12~- =83 :1122 =87 QJ,Q =70 Q.Q. =80 j =2 g-Ql- =80 g 292. = 80
] =3 y13~ =73 y23 =78 ggg‘. =62 g‘g. =71 ] =3 y~31~ =64 y.gg. =78
] = 4 Yi4.. = 77 Yo4.. = it Y34q.. = 53 Y.q4.. = 69 J = 4 Y.41. = 70 Y.42. = 68
Gr.. = 80.5  Fo.. = 83.75 3. = 66.75 | §... =TT §1. =755  Goo =785

From these data we can obtain the estimated parameters of the model. First of all, from the previous
table and by reasoning as in the two-way factorial model for the main effects and the interactions AB

and BC' we have:

aBy =25 afy =175 afy =425 | By=11 || By, =15 [Byp=-15
afiy =—=05  afyy =025  afz =025 | By=3 || Byy =15 [yy=-15
aﬂ14 - 4.5 aﬂ24 - 1.25 06534 - _5.75 54 — _8 /6’}/41 - 2.5 /6’}/42 - _2.5

&1 =35 b =675  G3=-1025 | p=77 || 4, =-15 4y =1.5

Finally, for the triple interaction effects we have, for example,

aBY111 = P11t — G — 61 — By — Ay — By — By — @9y = 15— 35— 114+15+25-15+1=4

In a similar way, the estimations of the other triple interaction effects are evaluated and they are included

in the following table together with the interaction AC":
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Qﬁ%n =4 a/ﬂ\%u =2.25 a/ﬁ\v?,u = —6.25 aﬁluz =—4 a/ﬂ\vzm = —-2.25 a/ﬁ\%u =6.25
0@121 = -2 0;5\7221 =2.25 aﬁq\/:m = —0.25 a/ﬁ\’ylm =2 04/5\7222 = —-2.25 %7322 =0.25
a/ﬁ\'ylgl =-1 gﬁfy%l =0.25 %331 =0.75 a/ﬂ\’ylgg =1 aﬁb;ﬂ =—0.25 OLﬁ\%SQ = —0.75
afyig = —1 afyen = —4.75 afvygyy =5.75 abvise =1  aByus =475 afygyy = —5.75

ayy = -1 @y = —1.25 sy = 2.25 ayp =1 QY = 1.25 sy = —2.25

Calculating the sum of squares we obtain: SST = 591904 — 964> = 22720, SS4 = 322&? = 5212,
i
. N2
SSp = 2453} = 5520, SS¢ = 4847 = 216, SSap = 8% (aﬁij) — 692, SSac = 16 (@7,,)° =
J k 5 ik

N2 _— 2

244, SSpc =123 (mjk) =984, SSupc =4 Y (amijk) — 1020 and SSE — 22720 — 13888 — 8832.
J.k i,5,k

Therefore, MSE = % = % = 122.67 and the estimated value for the parameter ¢ is 6 = Vv MSE =

13888/23 _ 4 99 with p-value= p (Fh3 72 > 4.92) = 0.0000.

11.08. The whole model test leads to Fijoger = 365/3

Therefore the model is significative with a@ = 0.10. The determination coefficient of the model is R? =

%g?]gg = 61.1% and the variation coefficient is CV = % = 14.4%.

The evaluation of the F-tests in the ANOVA table leads to:

Fa = 212/2 _ 91 24 with p-value= p (Fy 75 > 21.24) = 0.0000

368/3
Fp= 535628€/33 = 15 with p-value= p (F3 72 > 15) = 0.0000
Fo = % = 1.76 with p-value= p (F} 72 > 1.76) = 0.1887
Fyp= ggﬁjg = 0.94 with p-value= p (Fg 72 > 0.94) = 0.4719
Fac = 272 = 0.99 with p-value= p (Fy2 > 0.99) = 0.3749
Fpc = ggg?g = 2.67 with p-value= p (F5 72 > 2.67) = 0.0536
1020/6

Fapc = 368/3 = 1.39 with p-value= p (Fs 72 > 1.39) = 0.2320

Therefore, the main effect of the factor A and the interaction between factors B and C' are significant
with o = 0.10. The standard error for the means ;... is SE = 4/ MT‘SQE = 1.96 and, taking into account
that t79,0.05 = 1.67, the 90% confidence intervals are ;... & 3.26. The least significant difference with
a=0.101is LSD = 3.261/2 = 4.61 and the LSD Fisher’s test with o = 0.10 leads to:

Provenance Mean

3 (Northwest) 66.75 A
1 (Serrania de Cuenca) | 80.5 B
2 (Sierra de Gredos) 83.75 B

Therefore, the expected value of the germination rate is significantly lower for the Northwest proven-

ance and there is no significant differences between the other two provenances.

[IMSE
For the interaction between factors B and C, the standard errors for the means are: SE = BT
|MSE MSE
3.20 for §.jk., SE = Ti = 2.26 for ;.. and SE = % = 1.60 for 3.... The 90% confidence

intervals are g.jx. & 5.33, ¥.5.. & 3.77 and y..,. = 2.66. The least significant differences with oo = 0.10 are
LSD = 5.33v/2 = 7.53 for §.jx., LSD = 3.77\/2 = 5.33 for §.;.. and LSD = 2.66+/2 = 3.77 for §..;.. Then
we obtain the following results for the comparison of the water stress (B) and cold conditions (C) with

a = 0.10:
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B=1(0bar) B=1(—-4bar) B=2(—6bar) B=3/(-8bar)

C=1(F2) 88 Ca 80 Ba 64 Aa 70 Aa 75.5 a
C =2 (F3) 88 Ca 80 Ba 78 Bb 68 Aa 78.5 a
88 C 80 B 1A 69 A

where we have used uppercase letters to compare the levels of the water stress and lowercase letters
to compare the levels of cold conditions. Then we observe that the highest values for the expected
germination rate are obtained with 0 bar, without significant difference between cold conditions F2 and
F3. With F3 cold conditions, the expected value for the germination rate is higher for —6 bar than for —8
bar, but there is no difference between —6 bar and —8 bar with F2 cold conditions (in fact, we have even

obtained higher values with —8 bar). This seems to be the reason that the interaction BC' is significant.

The complete LSD Fisher’s test with o = 0.10 for all the eight means leads to:

Treatment Mean

—6 bar + F2 64
—8 bar + F3 68
—8 bar + F2 70
—6 bar + F3 78
—4 bar + F2 80
—4 bar + F3 80

0 bar + F2 88

0 bar + F3 88

QAR s
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Chapter 7

SPLIT-PLOT ANOVA

The split-plot designs arose from agricultural field trials. These often occur when there are two factors
of interest and one factor requires larger experimental units than the other. For example, suppose that
we are interested in studying irrigation amount and fertilizer type on the growth of a particular plant.
Because of the equipment involved, different amounts of irrigation can only be done on a large scale, while
different fertilizers can be applied much more locally. For this situation, two type of experimental units
are considered: large plots for the levels of irrigation (whole-plots) and small plots within each plot for
the fertilizers (split-plots). Levels of irrigation are assigned to the whole-plots in a completely randomized
design or a randomized complete block design, and each of the whole plots is divided in split-plots with

one fertilizer randomly assigned to each of them.

Additionally, these types of designs are often used in other situations. For example an industrial
experiment is used to study the freshness of milk. If the two factors are pasteurization process and type
of container, we would need to pasteurize an entire batch, but we could use different types of containers

in a particular batch. Similarly, this type of design is applicable in many real practical situations.

To illustrate this type of analysis of variance, an experimental design is considered with a factor A
with a levels assigned to the whole-plots in a randomized block design with r blocks (ra is the total
number of whole-plots), and a factor B with b levels randomly assigned to the split-plots within each plot

(rab is the total number of split-plots). The mathematical formulation for the model is
Yijk =p+ai + B+ & + v+ BVjk + €ijk

where p is the global mean effect; «; is the block effect (i = 1,..,7), B; is the main effect of factor
A in the whole-plots (j = 1,..,a); 7, is the main effect of factor B in the split-plots (k = 1,..,b);
B7;i is the interaction effect between factors A and Bj; &;; is the random error for the whole-plots with
ij ~ N(0,01) and €5 is the random error for the split-plots whitin the whole-plots with e;;5 ~+ N (0, 02).
The parameters o3 and o3 are the variance parameters for the whole-plots and the split-plots, respectively,

and we suppose that all §;; and €;j, are independent random variables. The restrictions on the parameters

are: Zai =0, Zﬁj =0, zkjwk =0, Zk:ﬁ'yjk =0 for all j, and Zﬁ’yjk =0 for all k.
2 7 7 J
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Note that a two-way factorial randomized block design would have all the combinations of levels
within each block and a unique random error term, while a split-plot model has the A factor applied only
one time to each block with factor B applied multiple times in each block, and it has two random error

terms.

Therefore, for this model we have E (Yj;x) = ;5 = pt+ai+08;+7,+0687;, and, with the usual notation,

the appropriate estimators for the parameters of the model are p =Y ..., &; = Y;.. —Y .. B = Y. -Y.,

V=Y. =Y ., B\%k =Y k=Y. =Y., +Y . and fi ), = ity +p; +7k+ﬁ%k =Y. 4+Y jp—Y .. The
estimated residuals for this model are defined as &;;, = e;jr = Yijr — uij x- In addition, this model has two
sources of random variation, due to the existence of whole-plots (for factor A) and split-plots (for factor B).
This is the reason that, first, we divide the total variation in two parts, as follows: SST = SST; + SSTs,
with SST = > (Yuk - ) SST, = bz ( -Y. )2 and SSTy, = Y (?ijk —?,-j.)z. The degrees
of freedom for’jtflese sum of squares are: rab 1 for SST', ra—1 for SST} );fld ra(b—1) for SST5, so that

rab—1=ra—1+rad-1).

The total variation SST; due to the whole-plots can be divided in three sources of variation: blocks,

main effect of factor A and a random variation of the whole-plots, as follows

SSBlock:abZ -Y.. —abZa with d.f.=r—1
SS’A—rbZ —rbZﬂ withd.f.=a—1

Whole-plot error = SS’E1 SST, — SSBiock — SSA = withd.f. = (a—1)(r —1)
Tt is easily seen that SSE; can be alternatively written as SSE; = b (?Z-j. -Y,. — ?.j. +7...)2,
,J
that is, as an hypothetical interaction between blocks and factor A. Moreover, it verifies that E (SSE;) =

(a—1)(r — 1) (63 + bo?) (see the note at the final of this experimental design).

In a similar way, the total variation SST» due to the split-plots can be divided in three sources of
variation: main effect of factor B, interaction effect between factors A and B, and a random variation of

the split-plots, as follows

SSp=ray (Vo —Y..) =raY A3 withd.f. =b—1
k k

N2
SSap —TZ =YY+ ¥.) =ry (mj,c) with d.f. = (a — 1)(b — 1)
3k
Spht—plot error = SSEy = SSTy, — SSp — SSap = withd.f. =a(b—1)(r — 1)

Moreover, SSE, can be alternatively written as SSE> = Y (Yije — Yij. — Y.k +?.j.)2 and it
.5,k
verifies that E (SSEy) = a(b— 1)(r — 1)o3 (see the note at the final of this experimental design).

Therefore, taking into account the expressions for £ (SSEs) and E (SSE1), it seems logical to estimate
SSEQ - SSEl MSEQ

P97 _MSE,and 02= - =

a(b—1)(r —1) e P Y S T A

(this is the Type I estimation method).

the variance parameters of the model as o3=

MSE, — MSE, with MSE, = SSE,
b (a—1)(r—1)

Now, the appropriate statistics for the F-tests in the ANOVA table with their respective probability

distributions are:
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Fplock = SSBZ;\’;%/;;; ) = Aﬁggfk ~ FrZq (a—1)(r—1) if ; =0 for all ¢
Fa= 202D O e B ta e if §; = 0 for all j
P ss%é%; 1 _ 5552 o Byt a(h1)(r1) if v, = 0 for all k

Fap = SSap/ (](\ZE;Q)(IJ —) _ %g%i ~ Fla—1)(-1),a-1)(r—1) if By, =0 for all j, k

The ANOVA table for this model is as follows:

SS DF MS F-value | p-value Hy
Blocks SSBiock r—1 MSBiock | FBiock | PBlock o; =0 for all ¢
Factor A SSa a—1 MS 4 Fp PA Bj:0for all 5
Plot error SSE; | (a—1)(r—1)| MSE;
Total plots SSTy ar —1
Factor B SSg b—1 MSpg Fg B v, = 0 for all k
Int. Ax B SSanp (a—1)(b-1) MSap Fug PAB B, =0 for all 4,k
Split-plot error SSE, a(b-1)(r-1) MSE,
Total split-plots | SSTh ar(b—1)
Total SST abr — 1

The confidence intervals for the marginal expected values are:

_ MSE;

Yi Eta—1)(r—1)a/21/ 7 for p;. = p+ a;
MSE;

3 Fta-ne-1a2\ — ¢ for ;. =p+B;

_ MSE

Yok Etap-1)(r-1)0/21/ a 2 for pg = gty

_ MSE,
Y. jk £ ta-1)(r—1);0/21/ " for p., = p+B; + v, + Bk

Finally, the least significant differences (LSD) for each pair of means are:

i-<

LSD = t@u—1)(r-1);a/2 2]\4(5;E1 for Y. — Y.
LSD = t(q_1)(r—1);a/2 ZA{’?;EI for ?.j. - Y.j/.
LSD = to(p—1)(r—1)a/2 2]\4’,;sz2 for Y., —Y. 1
LSD = top_1)(r—1):0/2 QMfEQ for Y j — Y ji

The check of the assumptions of the model can be made as usual with the estimated residuals e; .

It should be noted that if there are no blocks in the model then the parameters «; and the sum

SSBlock do not exist and now

Whole-plot error = SSFE; = bz (Yij — Y‘j.)z with d.f. = a(r — 1)

]
and ﬂjk =Y with residuals &, = ejx = Yijn — ﬂjk7 but everything else being equal with replicates
instead of blocks.




Note. To prove that E (SSE;) = (a — 1)(r — 1) (63 4 bo?) first of all we observe that, for fixed g
and jo, we have (?iojO“ Y — ?-jm +?....) = 0 and therefore

_ J— —_ 2 — —_ _
E ((Yioj()' — YLO — Y'jU' + Y) ) =Var (Yiojo' — Y’ig-~ - Y'jo’ +

Y
=Var EZYiojok Z ik — Zymk + € Yijk
b - ab rb rab

i,k 4,5,k

(% - ai - 7b + rab) Z}/L()jok (Lb - riib) Z Yiojk
=Var Jsk.g#jo
— (% —75) X Yior + g > Yiin
)

i,k,i#io 1,5,k,i7#%0,5# 50
(a—1)%(r —1)2
- anr i0jo +25’0J0k r2 2b2 V ar |b Z Eioj T Z Ciojk
Jri#jo Jik,j#50
(a—1)
+7T20,2b2 Var |b Z §ijo + Z Eijokl | T+ 2 sz ———=Var |b Z &+ Z Eijk
i,i#i0 1,k,i#i0 1,5,i7%0,J7#Jo 1,5,k,i7#%0,57jo
(afl)Q(Tfl)Q 2 2 2 (7’*1)2 2 2 2
BT [b o1+ b0'2:| + 247)2 [b (a—1)o7 + bla— 1)0—2]
(a —1)?

+W [62(7“ —1)o? +b(r — 1)03] + ﬁ [b2(7’ —1)(a—1)o? +b(r —1)(a — 1)03]

:ﬁtﬂfﬁ:ﬂﬁ[w%+ﬁ]+g:iﬁgiizWﬁ+aﬂ

T2a,2b r2a2b 2
(a—1)>%(r—1) (a—1)(r—1) ,
gy ot T3]+ g [bot 4 03]
(a—D(r—1) (a—1)(r—1)
= W[(a—l)(r—l)—kr—l—!—a—l—l—l] [bo + 03] = — [bo? + o]

As consequence, we have E (SSE1) =03 (a=1)(r=1) [bo} + 03]

rab

=(a—1)(r—1) (¢} + bo?).

,J

In a similar way, to prove that E (SSE;) = a(b— 1)(r — 1)o3 first of all we observe that, for fixed i,

jo and ko, the expression Y jor, — Yigjo- — Y joko + Y -jo- does not depend on the random variables &;;,

and we have E (Y joko — Yinjo- — Y -joko + Y jo-) = 0. Therefore

J— —_ — 2 — — —
E ((Yiojoko - Yiojo' - Y'joko + Y'jO') ) Var ( iojoko — Yioj(y - Y'joko + Y'jO')
1 1 1
=Var | Yigjoko — b ZYinjok Ty Zyijoko + b Zyijok
% i ik

(1 - % - % + %) Yiojoko — (% - %) > Yiojok
=Var k,k#kq
- %) Z Yijoko + % Z )/;j()k:
i i ik, itio,k#ko
_ =D -1 (r—1)?

S
=
Jh
S
<)

22 Var (igjoko) + poTE Z Var (gigjok)
k,k#ko
b — 1 1
T Z Var (€ijoko) o Z Var (€ijok)
PREZN i, k,i7#50,k#ko
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-1 =12, (=1°6-1) , G-120-1_, ¢-Db-1 ,

= 22 2 722 P 212 2 212 P
C-Dr-D[E-Hr-D+r-D+OG-1)+1] 5 (G-1(-1) ,
B r2ph? 927 rb 72

As consequence, we have E (SSE3) = WU% =a(b—1)(r —1)o3.
i3,k r

Example 8: Split-plot design. An experimental design is used to test the effect of four crops of
compost (barley, vetch, barley-vetch growing together and fallow, which is the control level) with two
levels of nitrogen fertilization (120 pounds of nitrogen per acre and no nitrogen application, which is the
control level) on the subsequent production of sugar beet. The experimental area of land is divided into
three blocks because of the possible influence of the soil characteristics. At first, it was assumed that
the sugar beet would respond in different ways depending on the level nitrogen fertilization; therefore
the aim was to compare as precisely as possible the effect of plant fertilizers in each level of nitrogen.
Thus each block is divided into two main plots randomly assigning to each one of the two nitrogen levels.
After each main plot was subdivided into four subplots to which were randomized each of the four types
of plant fertilizer. At the final of the experiment, the total production of sugar beet in tons per acre was
annotated for each of the 24 subplots. Then we have two types of experimental units: 6 plots associated
with nitrogen levels (2 levels with 3 replicates, one for each block) and 24 subplots associated with the
plant fertilizers (4 levels with 6 replicates). To formulate the problem, three factors were considered:
blocks, A for nitrogen fertilization and B for plant fertilizers. For the statistical analysis we use the

split-plot model
Yijk = 406 + B+ & + v + BYji + Eijk

which leads to E (Yjjr)=p + o4 + B; + v, + B, with i=1,2,3 for the blocks; j=1,2 for the nitrogen
fertilization and k=1,2,3,4 for the plant fertilizers. That is, just the model previously studied with

r =3, a =2 and b = 4. The obtained results are given in the following table:

No nitrogen (j = 1) Whole Nitrogen=120 (j = 2) Wholel Total

Fallow Barley Vetch Bar.-Vet. plot |Fallow Barley Vetch Bar.-Vet. | plot | block
Block |[k=1 k=2 k=3 k=4 g1 |k=1 k=2 k=3 k=4 Tio- Ti-.

=11 276 310 420 37.8 34.60 | 38.6 444 50.6 51.8 46.35| 40.475
1=2 1] 27.0 300 454 36.6 34.75 | 36.0 484 49.6 53.4 46.85| 40.8
1=3 ] 264 304 446 39.2 35.15 | 41.0 50.8 56.8 55.2 50.95| 43.05

The total sums are Y y;j, = 994.6, Zk yfjk = 43282.36 and, therefore, SST = 43282.36 — 993462 =
0.,

.9,k

%. In a similar way, for the whole-plots, the total sums are Zgij. = 248.65, nyj = 10579.3925
2,7 2,7

and, therefore, SST; = 4 (10579.3925 — 2486652) = 32993'065. Now we evaluate the observed means for all

the treatments, which are shown in the following table with the usual notation:

k=1 k=2 k=3 k=4
o 81 ~ 914 o _ 132 - _ 1136 | -~ _ 1045
J=1] gn=%  Gi2="%3 Yaz =3  Yaua= 73 U1 =3
. ~ 1156 - _ 1436 - __ _ 157 - _ 1604 | -  _ 144.15
J=2| Yo ="5> Yoa="3> Yo23==3 Yoa = 5= | P2 = =3
~ 983 - _ 1175 - _ _ 1445 - _ 137 | - _ 124325
Y1 = "3 Y2 ==—3- Y3= "3 Y.a= "3 Y.. = —%




The estimated parameters of the model are: i = 124825 4. = 40.475 — 1245,’& = 2

3 T3 A2 =

124.325 _ _ 1.925 ~  _ 124.325 _ 4.825 A 104.5 _ 124.325 _ _ 19.825

40.8 — =522 = — 222 43 = 43.05 — == = =3=, and, for example, 3, 30— T = — e
Ay = 95;.3 _ 1243325 _ _26.;)257 By = 81—134.325 + 19.;525 + 26.§25 _ 2.225' In a similar way, the other

estimated parameters are evaluated and they are included in the following table:

k=1 k=2 k=3 k=4
J=1 B?Yn: 2%25 @12:_6%75 B?hs:% @14:—3'375 31:_%
J=2 B’\Ym = _&325 B’\Yzz = 6'2375 B’\Yzza = _7'?;’;25 37724 = ?’?;j By = %
’?1:_% ’72:_&325 ’?3:% &4:%
Now we can evaluate all the sums of squares for the model: SSpjock = 8207? = &:‘f’g, SS) =
i

~2 . - B .
12 ZBJ — 3144%)’.2457 SSEl — SSTl - SSBlock - SSA — 3299.065 94339 3144.245 __ 601.)’437 SSB — GZ,yi —
J k

' RN
2083135 GG, = 3Zk (5%%) = 224375 4
7,

6193.435 — 3299.065 — 2583.135 — 224.375  86.86

SSE; = SST — SSTy — SSp — SSap = 3 3

SSE;

The estimations for the variance parameters of the model are o3=MSE,; = 12

MSE, — MSE, _ soga_sese 693 4 o
1 = 1 =3 — 1oL

=241 and o2 =

The evaluation of the F-tests in the ANOVA table leads to:

Fpiock = 334376 = 1.56 with p-value= p (Fy > 1.56) = 0.3906

Fa = St = 104.06 with p-value= p (Fy 5 > 104.06) = 0.0095

Fp = 255555 = 118.96 with p-value=p (F3 15 > 118.96) = 0.0000

Fap = 2550k = 10.33 with p-value= p (F3 12 > 10.33) = 0.0012

Therefore, the two factors are significative and, moreover, there is an interaction between them. The

|IMSE
standard error for the means ¢.;. is SE = 12 L — 092 and, taking into account that ¢.0.025 =

4.30, the 95% confidence intervals are g.;. £ 3.96. The least significant difference with oo = 0.05 is

86.86
LSD = 3.96v/2 = 5.60. For the means §.., the standard error is SE = y/ —— = 0.63 and, taking

216
into account that t12,0.025 = 2.18, the 95% confidence intervals are §..,, £ 1.37. The least significant

difference with a = 0.05 is LSD = 1.37v/2 = 1.94. Finally, for the means i.jk, the standard error is

/86.86
SE = Tos = 0.87 and the 95% confidence intervals are g.;; £ 1.90. The least significant difference
with o = 0.05 is LSD = 1.90v/2 = 2.69.
Using the three previous values for the least significant differences LS D we obtain the following results

for the comparisons of means in the two factors:

Fallow Barley Vetch  Barley-Vetch
No nitrogen 83—1 Aa % Ba 12—2 Da —115"6 Ca —10§‘5 a
Nitrogen=120 —115‘6 Ab —149?'6 Bb % Cb —16:,?'4 Cb —14%'15 b
98.3 117.5 144.5 137
5 A 55 B =D 5 C

where uppercase letters are used to compare the plant fertilizers and lowercase letters to compare the

levels of nitrogen fertilization. Then we observe that, for all the plant fertilizers, the expected value for the
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production of sugar beet is higher if we use nitrogen fertilization. If we do not use nitrogen fertilization,
the expected value is higher with vetch, then with barley-vetch, then with barley and finally with fallow;
being the differences significant in all cases. If we use nitrogen fertilization, the same order is maintained
but there is not significative differences between vetch and barley-vetch. This seems to be the reason
that the interaction between the two factors is significant.

The complete LSD Fisher’s test with o = 0.05 for all the eight means leads to:

Treatment Mean

Fallow with no nitrogen (Control) &l A
. . 91.4

Barley with no nitrogen == B
Barley-Vetch with no nitrogen % C
Fallow with nitrogen=120 % C
Vetch with no nitrogen % D
Barley with nitrogen=120 % E
Vetch with nitrogen=120 % F
Barley-Vetch with nitrogen=120 % F
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Chapter 8

SPLIT-SPLIT-PLOT ANOVA

The model just discussed can be generalized to the case of three factors with different sizes of experimental
units for each of them. That is, three plot sizes corresponding to the three factors; namely, the whole-plots
for the main factor (factor A with a levels), the intermediate size plot for the split-plot factor (factor
B with b levels), and the smallest plot for the split-split-plot factor (factor C' with ¢ levels). In this
case, there are three levels of precision with the whole-plot factor receiving the lowest precision, and the
split-split factor receiving the highest precision. The levels of the factor A are randomly assigned to the
whole-plots in a completely randomized design or a randomized complete block design; then each of the
whole-plots is divided in b split-plots with one of them randomly assigned for each of the levels of the
factor B, and finally, each of the split-plots is divided in ¢ split-split-plots with one of them randomly

assigned for each of the levels of the factor C.

To illustrate this type of analysis of variance, we consider a experimental design with a factor A with
a levels assigned to the whole-plots in a randomized block design with r blocks (ra is the total number
of whole-plots), a factor B with b levels randomly assigned to the split-plots within each plot (rab is the
total number of split-plots) and a factor C' with ¢ levels randomly assigned to the split-split-plots within
each split-plot (rabc is the total number of split-split-plots, which are the smallest experimental units).
The mathematical formulation for the model is

Yijei =+ ai + B85 + & + Vi + Bk + Niji + 01+ Bt + Y0kt + BYOjkt + €ijri

where p is the global mean effect; «; is the block effect (i = 1,..,7), B; is the main effect of factor A in
the whole-plots (j = 1, .., a); 7y, is the main effect of factor B in the split-plots (k = 1,..,b); d; is the main
effect of factor C in the split-split-plots (I = 1, .., ¢); BY ks Bdji, Yok and Bydjx; are the interaction effects
as in the three-way factorial ANOVA; §;; is a random effect of the whole-plots with &;; ~ N(0,071);
N, 18 a random effect of the split-plots with n,;, ~ N(0,02) and €;j; is the random error for the
split-split-plots in the model with ;51 ~ N(0,03). As usual, we suppose that all fij, Mijk and €;;x1
are independent random variables. The parameters o7, 03 and o3 are the variance parameters for the

whole-plot, the split-plots and the split-split-plots, respectively. Now, the restrictions on the parameters
are: o o; =0, 8, =0, 7, =0,20, =0, > fvy;, =0forall j, > Bvy;, =0forall k, > 35 =0
i j k 1 k j 1
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for all 7, Zﬁél = 0 for all I, Z’yékl = 0 for all k, Z’y(m = 0 for all I, Zﬁ'yéjkl = 0 for all j,k,
Zﬁ’yém = O for all 5,1 and Zﬂ'yéjkl =0 for all k,I.

Therefore, in this model we have
E (Yiji) = pijr = p+ i+ B85 + v, + By i + 61+ B+ vok + Brydjm

and, with the usual notation, the appropriate estimators for the parameters of the model are fi = Y ...,

G; = ?z -Y.., Bj = ?] -Y.. " 'Ayk =Y .. Y. Sl = ?l —?...., ﬁ’}/jk = Y~jk‘ —Y.j.. _?“k‘ _1_?7
B\‘Sjl =Y =Y. —Y.u+Y.., 75kz Y.u—Y. —Y.;+Y.. and finally

575jkz = (?-jkl -Y.. ) — ﬂ Sz - 57jk - 55jz — Y0
= Yu—Yjp—Yuu—-Y  +Y, +Y. 0 +Y.  —Y..

With these estimators we have ﬂijkl:?l‘.‘. +?4ij —Y ... and the residuals are Eijki=€ijk1=Yijkl *ﬂijkl-

This model has three sources of random variation, due to the existence of whole-plots (for factor
A), split-plots (for factor B) and split-split-plots (for factor C). This is the reason that, first, we di-
vide the total variation in the three parts, as follows: SST = SST; + SST» + SST3, with SST =
% (Vi = V..)? 88T = bcz (Vi —Y..)%, SST, = ci%:k (Vijr — Yi;.)" and SSTy = Jzk (i = Viir)®.

The degrees of freedom for these sum of squares are: rabc — 1 for SST, ra — 1 for SSTy, ra(b— 1) for
SS8T, and rab(c — 1) for SST53, so that rabc — 1 =ra — 1+ ra(b — 1) + rab(c — 1).

The total variation SST; due to the whole-plots can be divided in three sources of variation: blocks,

main effect of factor A and a random variation of the whole-plots, as follows

SSpiock = abey (Vi = Y.) = abe a2 with d.f. =r — 1

S5y = rbcz (?.j“ —?A...)2 = rchB? with d.f.=a—1
J J
Whole-plot error = SSE; = SST) — SSBiock — 5S4 = with d.f. = (a—1)(r — 1)
It is easily seen that SSF; can be alternatively written as SSFE; = bcy (7”-.. -Y;. — 7.];. + 7....)2,

4,J
that is, as an hypothetical interaction between blocks and factor A. Moreover, it verifies that F (SSFE;) =

(a—1)(r —1) (63 + co3 + bca?) (see the note at the final of this experimental design).

In a similar way, the total variation SST5 due to the split-plots can be divided in three sources of
variation: main effect of factor B, interaction effect between factor A and B, and a random variation of

the split-plots, as follows

SSp = TGCZ (74.16. 77.4..)2 = racZ’yﬁ withd.f.=b—1
k k

SSap = TCZ g =Y. =Y. p + Y. —cm(B*yjk) with d.f. = (a—1)(b—1)

Spht—plot error = SSEy = SS8Ty, — SSp — SSap = withd.f. =a(b—1)(r — 1)
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Now, SSEs can be alternatively written as SSEy = ¢ ) (?ijk. —?Z-j.. —?.jk. +7.j..)2, that is, as
i3,k
an hypothetical interaction between blocks and factor B within each level of factor A. Moreover, it

verifies that E (SSE2) = a(b—1)(r —1) (63 + co3) (see the note at the final of this experimental design).

Finally, the total variation SST3 due to the split—split-plots can be divided in five sources of variation:
main effect of factor C, interaction effects between factor C' and factors A and B, triple interaction effect

between factors A, B and C, and a random variation of the split—split-plots, as follows

SSc=raby (V.= Y..)" =rab> 5] with d.f. = ¢~ 1
l l

_ _ . . o~ 2
SSac =103 (Vi -V —You+7.) =rb> (mﬂ) with d.f. = (a — 1)(c — 1)
Jil Jil

_ _ _ _ N2
SSpc = raz (Y“kl Y. . -Y. . + Y...)2 = raz (vékl> with d.f.=(b—1)(c—1)
k.l

Kl
— — — — — — — — 2
SSapc = TZ (Y~jkl - Y.jk. Y. - Y.]:l + Yj +Y. . +Y. - Y)
7.k,
— 2 .
=y (,Byaj,d) with d.f. = (a — 1)(b— 1)(c — 1)
7.k,

Split-split-plot error = SSE3 = SST3 — SSc — SSac — SSpc — SSapc = with d.f. = ab(c —1)(r — 1)

Note that SSE5 can be alternatively written as SSE3 = > (Y;jkl - 7ijk. — Y.jkl + Y.jk.)27 that is,
ikl
as an hypothetical interaction between blocks and factor C' within each pair of levels from factors A and

B. Moreover, it verifies that E (SSE3) = ab(c—1)(r —1)o3 (see the note at the final of this experimental

design).
Using the Type I estimation method (other methods are available), the estimations for the variance
-5 SSEg -5 MSEQ —MSE3 . SSE2
t 2=MSEy;= ————° 02 =" " """ with MSEy = ———— =
parameters are o3 3 =1 =1)’ o5 p wi 2 a1 =1’
-~ MSE, - MSE E
and o7 = M5B = MEB oy g, = S5E
be (a—1)(r—1)

In addition, the appropriate statistics for the F-tests in the ANOVA table with their respective

probability distributions are:
SSBiock/(r — 1)

Flock= ——————— > Fo_{ (a—1)(r— if a; = 0 for all ¢
Block o /Z\{SEll) 1,(a—1)(r—1)
a— . .
Fy= ‘?\457& ~ Fo_1 (a=1)(r=1) if 8; =0 for all j
SSp/(b—1 .
Fp = %2) ~ By 1 a(b=1)(r=1) if v, =0 for all £
SS a—1)(b-1 . .
Fyup = Ap/ (](\LS‘EQ)( ) ~ Fla—1)(b—1),a(b=1)(r—1) if B, =0 for all j,k
SSc/(c—1 .
FC = %3) Fc—l,ab(c—l)(r—l) if 51 =0 for all {
SS a—1)(c—1 . .
Fac = ac/ (J(WSEg)( )., Fla—1)(e—1),ab(c—1)(r—1) if 41 = 0 for all j,!
SS b—1)(c—1 .
Fpc = 5c/ (J(\/[SEg)( )., Flo—1)(c—1),ab(c—1)(r—1) if ¥0; = 0 for all £, !
:SSABC/ ((a—l)(b—l)(c—l))_MSABC

Fupc NSE, = MSE, > Fla—1)(b-1)(c—1),ab(c—1)(r—1) 1 B0k = 0 for all j, k,1
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The ANOVA table for this model is as follows:

SS DF MS F-value | p-value Hy
Blocks SSBiock r—1 MSBiock | FBlock | PBlock a; =0 for all ¢
Factor A SSy a—1 MSy Fy DA Bj:0for all j
Plot error SSE, (a—1)(r—1) MSE,
Total plots SSTy ar —1
Factor B SSp b—1 MSp Fp PB v, = 0 for all &
Int. Ax B SSam (a—1)(b-1) MSap Fug DAB B, =0 for all 4,k
Split-plot error SSE, a(b—1)(r-1) MSE,
Total split-plots SST, ar(b—1)
Factor C SSc c—1 MSq Fe | %6, 6; =0 for all [
Int. AxC SSac (a—1)(c—1) MSac Faic PAC B804, =0 for all j,1
Int. BxC SSBc b-1)(c—-1) MSgc Fgo PBC Y6 = 0 for all k,1
Int. AxBxC SSapc | (a=1)(b—1)(c—1) | MSapc | Fapc | pasc | Bydjm =0 for all j,k,1

Ssplit-plot error | SSE3 | ab(c—1)(r—1) | MSE;s

Total ssplit-plots | SST3 abr(c—1)

Total SST aber — 1

The confidence intervals for the marginal expected values are:

Yi. £ta-1)(r-1)a/2 ]Waifl for p;.. =p+a;

Y Etam1)r—1)ia/2 MicEl for ;.. =+ B;

Yok £ tap—1)(r—1)50/2 Mri52 for .. = p+ v

Yoo £ tap(e—1)(r—1)5a/2 MSZJS for p..;=p+d

Yk Etap-1)(r—1):a/2 MchQ for pjp. =+ B+ + Bk

Y i1 £ tap(e—1)(r—1);a/2 MiEg for ;= p+B;+ 0+ B
Yokt £ tap(e—1)(r—1);a/2 M;S;EB for p.y = p+ v, + 91 +70m
Ykt £ tape—1)(r—1);a/2 MfE?) for p.jp =+ B; + vk + Bvj, + 01+ Boji + Yokt + BV ki

Finally, the least significant differences (LSD) for each pair of means are:
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LSD =t—1)(r—1);0/2

[N}
2|3
s

LSD =t—1)(r—1);0/2

[\&)
1[5
s
g
~|
|
~|

LSD = t,(-1)(r—1);a/2 2MSE, for Y., — Y. 1.
rac

LSD = tope—1)(r—1):a/2 2]\fij3 for Y., =Y.

LSD = t(u_1)(r—1):a/2 21\451@2 for Y j. — Y. jrp.

LSD = top—1)(r—1);a/2 QA{’iE?’ for Y. =Y ju

LSD = ta@p-1)(r—1);a/2 2]\/‘:§E3 for Y. —Y.pr

LSD =tap-1)(r—1);0/2 QMfE?) for Y ju — Y jrww

The check of the assumptions of the model can be made as usual with the estimated residuals e;;;.

It should be noted that if there are no blocks in the model then the parameters «; and the sum

SSBiock do not exist and now

Whole-plot error = SSE; =bc Y (V5. Y.j..)Q with d.f. = a(r — 1)

(]

4,9

and ﬂjkl =Y i with residuals &;;11 = €501 = Yijm —Y jr1, but everything else being equal with replicates

instead of blocks.

Note. To prove that E (SSE;) = (a — 1) (
fixed i¢p and jg, we have F (?ioj()" -Y, . -Y.

<

— 1) (beo? + co3 + 03), first of all we observe that, for

19+

o + ?) = 0 and therefore, for fixed values iy and jg,

)

it verifies that:

FE ((?Z‘an.. — Yio--- — Y-jo-- +Y.

~—

2) =Var (YVigjo — Yigoo = Vojo +Y..)

1 1 1 1
=Var | ZYiojokl ~ e ZYiojkl ~ e ZYijokl t e Z Yijki
k,l 7.k, i,k,l i,7,k,l

(bic - ﬁ - % + ralbc) %Y;Ojf)kl - (ﬁ - ralbc) Z }/;Ojkl

Ny
= Var ) X : Jik,Lj#d0
- (% - rabc) Z }/ijokl + rabe Z )/ijk'l
i7k3l7i¢i0 i:jvk)l77;7£i07j¢j0
2 2
(a—1"(r—1)
= r2a2bh2c2 Var bcgiujo tc §k : Migjok + Ek l: Eigjokl

(r—1)2
+’I’2a27b202 Var |bc Z 510] +c Z nzojk + Z Eigjkl

J,3#jo Jik.3 750 3.k, Li#jo

(a—1)2
—&—WVW bcz fijO—FC Z Nijok + Z Eijokl

i,iio i,k iio i,k,Lizig

1
s Vo |be Yoo Gite Y mgkt > Eijkl

i,J,i#40,5 %o i,3,k,i7#10,57# 5o i3,k Lyi#i0,5# o

o1



—1)% (r — 1)2
= =D r—1)° [b*co + c*bo + beos]

1202b2¢2
gii%;@%%a—lb?+§da—lﬁ%+c“g—lwﬂ
% [5202(7‘ — 1o 4+ 2b(r — 1)o2 + cb(r — l)oﬂ
—|—m [b°c*(r —1)(a — 1)o7 + *b(r — 1)(a — 1)o3 + cb(r — 1)(a — 1)073]
= W [bco? + co3 + o3] + % [bcot + co3 + 03]
+% [beot + col + 03] + % [bea? + co? + o]
= %[(0_1)0’_1)4‘7“—14-&—1—!-1] [bcot + co5 + 03]

— (-1
_(a=Dr=1) TC)LE)Z ) [beo? + co3 + 03]

Therefore. we have

(a-Dir=1)

rabe

E(SSEy) =bey

1,7

beot + coy +03) = (a — 1) (r — 1) (beo? + co3 + 03)

In a similar way, to prove that E(SSE;) = a(b—1)(r — 1) (co3 + 03), we observe that, for fixed
values g, jo and ko, the expression Y, joko: — Yigjo — Y joko- + Y -jo-- does not depend on the values Eijo
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Finally, to prove that E(SSE3) = ab(c— 1) (r — 1)o3, we observe that, for fixed values ig, jo,ko and
lo, the expression Yiyjokoto — Yigjoko- — Y -jokolo T Y -joko- d0es not depend on &;; or 1, 1, » because of the
same reason as before. Then we have:
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Example 9: Split—split-plot design. We want to evaluate the effect of planting date (factor A),
aphid control (factor B) and the date of harvesting (factor C) on the production of sugar beet. Three
planting dates were chosen: March 2 (level 1), April 2 (level 2) and May 2 (level 3). Two levels were
established for factor B: applying a treatment for the aphid (level 2) and not applying any treatment
(level 1, which is the control). Finally, three harvest dates were chosen for factor C: August 27 (level
1), September 24 (level 2) and October 22 (level 3). The available area of land for the experiment was
divided in four blocks because of the possible differences in physical and chemical soil characteristics.
Three whole-plots in each block are established and a planting date is randomly assigned to each one.
Then, each of the whole-plots was divided into two split-plots, one of which is sprayed against aphids
and other not, at random. Finally, each of the split-plots is divided into three split—split-plots to each
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of them, at random, it is applied to a harvest date. At the end of the experiment, the production of
each of the 72 split-split-plots expressed in tons per acre was recorded. We have, therefore, three types
of experimental units: the 12 whole-plots associated with planting dates (3 levels with 4 repetitions, one
per block), 24 split-plots associated with aphid control (2 levels with 12 repetitions, 3 per block) and 72
split-split-plots associated with the harvest date (3 levels with 24 repetitions, 6 per block).

For the statistical analysis we use the split—split-plot model
Yijei = p+ i+ B85 + & + v + BYjk + Niji + 01+ Bdji + Y0k + BV k1 + €ijr
which leads to £ (Yijr) = o+ ai + B; + v, + By, + 01 + Bdji + vk + Bydjm with i=1,2,3,4 for the
blocks; j=1,2,3 for the planting date, k=1, 2 for the aphid control and [ = 1, 2,3 for the harvest date.
That is, just the model previously studied with r =4, a = 3, b = 2 and ¢ = 3. The observed data and

some of the means in the model are given in the following table:

Treatments Blocks Treatment
A; By C 1=1 1=2 1=3 1=41 totals §.
11 1 25.7 25.4 23.8 22.0 gan = 282
11 2 31.8 29.5 28.7 26.4 Yoo = 1104
1 1 3 34.6 37.2 29.1 23.7 Yoz = 220
Split-plot g1, | 111 = 2L Gorr. = B4 gan. = 5L gun = B | gy = B2
12 1 27.7 30.3 30.2 33.2 Yaor = 124
12 2 38.0 40.6 34.6 31.0 Yoo = 1412
12 3 42.1 43.6 44.6 42.7 Yooz = 110
Split-plot Fia. | G112 = 252 forp. = 22 gy = 1094 gy, = 1080 1 g, — 4380
Whole-plot Zir.. | g1 = 52 gor. = 2L gy =850 gy =100 | g, = TS
2 1 1 28.9 24.7 27.8 23.4 o = 1048
2 1 2 37.5 31.5 31.0 27.8 Yooro = 1218
2 1 3 38.4 32.5 31.2 29.8 Yors = 242
Split-plot Zio1. | f121. = 52 Goor. = BT fzor = VL gug. = HL | gy = 352
2 2 1 38.0 31.0 29.5 30.7 Yooo1 = 1202
2 2 2 36.9 31.9 31.5 35.9 Yoo = 12802
2 2 3 44.2 41.6 38.9 37.6 Yooz = 1823
Split-plot Fioo. | G122 = 4 Gaga. = 182 Gagp = B gypy = 102 | 5oy = BEL
Whole-plot Fiz.. | fra.. = 22(:;,.9 Yoo, = 19(:;,.2 Yzo.. = 183.9 Yao.. = 1865.2 oo = 792.2
31 1 23.4 24.2 21.2 20.9 Jan = 2271
31 2 25.3 27.7 23.7 24.3 Yoz = 142
31 3 29.8 29.9 24.3 23.8 Yoz = 1208
Split-plot Fiz1. | Z1s1. = 52 Jogi. = B2 Pag = B2 gugy = B | ggy = 258
302 1 20.8 23.0 25.2 23.1 Yoor = 24
302 2 29.0 32.0 26.5 31.2 Yoo = 18T
3002 3 36.6 37.8 34.8 40.2 Yoz = 1224
Split-plot Ziza. | F1z2. = 5% Jazo = B2 Pzzo. = 552 Guzo. = %2 | ya = 2%2
Whole-plot ¢;s.. | ¥13.. = L{A)IQ Y23.. = % Y33.. = 156£ §43--% Y.3.. = %
Total block ;... | g1... = 28T g, =504 gy = 8366 g, = 52T | g5 - 22274




The rest of the means are given in the following table:

goa =BT goa =3P ga, =102 | g, =10 g, = 20002 |y, = 1923
Jro =24 oo =20  ga, =103 g, =002 g, =200 | g, = 2309
Jus= 2084 g, ATE 5o US| g 2SSE 5o 20082 | g o 2507
o= 8BRS g, W6 g 10761 | 5o 20018 5 253 | 5 22274

The total sums are - yiju = 2227.4, >, y7;, = 717T47.7 and, therefore, SST = 71747.7—% =

)

1,5,k,0 i,7,k,l
20457%. In a similar way, for the whole-plots, the total sums are Zyw = 22274 = %
i,
1763508 (3224 50321
and, therefore, SST; =6 T T 1o = . Finally, for the split-plots, we have Z v ke =
4,5,k
211295 2 Zk yw _ 41761:;5.98 and, therefore, SSTy = 3 (211285.72 _ 41761385.98) — 825.91.
1.,
First of all, the estimated parameters 1 = 3.... and &; = ;... — ¥.... are included in the following table:
ﬂ (341 (5(2 (3[3 644
2227.4 | 127.4  70.2 81 116.6
72 72 72 T2 72
In a similar way, the estimated parameters B 7J4 Y. A=Y Y 5; =Y., -Y..
B?sz = 7.]-.1 -Y. - Bj - 31 and %kl Yu—-Y.. 51 are included in the following tables:
as 39.7 as 54.5 a5 14.8 | % 325.1 S 71.7 S 71.7
Bo == Bon =% fin=-% | 0= Yo = 5 Voo = —
ax 10.4 a5 6.1 4.3 fy 5 S 63.9 S 63.9
Boig = 5 Bl = —%5 5532 = "7 0y = 23 V1o = 5 Vg = — %25
as 29.3 a5 48.4 19.1 Y 319.6 s 135.6 s 135.6
By =% Bl =—"% 5533 = 72 03 = =57 V13 = — %5 Vo3 = 75
» o 102.1 » 1492 » _ —251.3 A 2256 A 2256
Bi="% B2 = =5 B3 = =% =" 27T "7
Finally, the estimated parameters B’\ij = Y.jk. -Y.. - Bj — 9, and
5’76Ju Jkl - 63‘ - o — ﬁ’ij - ﬁéjl - 'Y(Skl
are included in the following table:
I 9.9 A% 101.7 91.8 I 9.9 7% 101.7 7% 91.8
By0111 = 72 By0911 = 7 575311 R By0191 = — 72 By0991 = 3 BY0391 = 72
I 12 2% 50.1 _38.1 a5 12 Zos 50.1 7o 38.1
Byd112 = ) Bvd210 = 2 575312 = "7 Byd120 = 72 Byd300 = 72 Bvd390 = 72
2% . as 6 B% 7| 2% 1 7% 6 Bo% 3.7
By0113 = % By0313 = % By0313 = % By0123 = _% By0303 = _% By0393 = %
an 76.5 an 36 N 40.5 s 76.5 N 36 an 40.5
By11 = — 72 BY21 = ) By = 75 By12 = 5 By = — 73 BY32 = ~— 72
Now we can evaluate all the sums of squares for the model: SSgiock = 1826412 = 10372%, SSa
i
.2 .
242/3/ — 319’4715.587 SSEl — SSTl _SSBlock'_SSA _ 50321-10328.84—-31945.58 __ 804’1762‘587 SSB — 362};’?2

2929.5

50895.36 GG, = 122 (5,ij) _

5640 66 SSC

24505, = 09281 gg, 8Z(ﬁ6ﬂ)
l

, SSE; = 85T, — SSp — SSap =

95

o~ 2
k,l

72

72

59465.52—50895.36—2929.5 _

9203.82



N2
SSapc =43 (ﬁ’yéjkl) = 310938 " and finally
!

ik,
SSE; = SST —SST, — SSTy — SSc — SSac — SSpc — SSapc =
204523.64—50321—59465.52—-69288.14—943.9—-9203.82—-3169.38 _ 121’?21.88
Then we have MSE; = 5‘353 =4.68, MSEy = SSQE2 =8.70, MSE, = SSGE1 = 18.63, and the
estimations for the variance parameters of the model are %:MSE3:4.68, gg:wzl.?ﬂl
and Ezwzma
The evaluation of the F-tests in the ANOVA table leads to:
Fiiock = S‘jfggl/ 3 _ 10388426 _ g 57 it | value= p(Fye > 2.57) = 0.1502
Fy= if;ﬁ — 31915.38/149 — 11.91 with p-value= p (Fp,6 > 11.91) = 0.0081
Fp= ]\j 522 = D0830/T2 — 81.21 with p-value= p (Fy 9 > 81.21) = 0.0000
Fap = ‘i\‘j g%é 2 2905/ _ 9 34 ith povalue= p (Fyo > 2.34) = 0.1522
Fo = ‘;fg ]éj = 09288 14/140 _ 102.80 with p-value= p (F» 36 > 102.80) = 0.0000
Fac = ii?,%ﬂl = M39/288 _ (.70 with p-value= p (Fy 36 > 0.70) = 0.5969
Fpo = S]\ichj — 20389/148 _ 1366 with p-value=p (Fy 36 > 13.66) = 0.0000
Fapc = Sifggj 1 310038/388 _ g 35 it pvalue= p (Fy 6 > 2.35) = 0.0725

Therefore, there are a significant effect of factor A (planting date) and a significative interaction

between factors B and C' (aphid control and harvest date). For the planting date, the standard error
MSE,

24
intervals for the means are 7.;.. & 2.16. The least significant difference (LSD) for these means is LSD 4 =

2.16v/2 = 3.05 and the LSD-Fisher test leads to:

for the means ¢.;.. is = 0.88 and, taking into account that ¢¢.0.025 = 2.45, the 95%-confidence

Planting date Mean
976.
May 2 | 1 o L —92745 A
March 2 | 22292 = 3235 B
: 2376.6
April 2 - =33.01 B

that is, planting at May cause a significantly decrease on the average production and there is no significant

difference between March and April.

For the interaction effect between the factors B and C, the standard error for the means g..j; is

MSE
12 3~ 0.62 and, taking into account that tse.0.025 = 2.03, the 95%-confidence intervals for the
means are .., +1.26. The least significant difference (LSD) for these means is LSDpc = 1.261/2 = 1.78.
MSE
In a similar way, the standard error for the means .. is 1 8 = 0.44, the 95%-confidence intervals

for the means are §.., = 0.89 and the least significant difference (LSD) for these means is LSD¢o =
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| MSE
0.89v/2 = 1.26. Finally, the standard error for the means ... is ?ii 2 = (.49 and, taking into

account that tg.0.025 = 2.26, the 95%-confidence intervals for the means are §..,. = 1.11 and the least

significant difference (LSD) for these means is LSDp = 1.11y/2 = 1.57.

Using the three previous values for the least significant differences LS D we obtain the following results

for the comparisons of means in the two factors:

Harvest date

August 27 September 24 October 22
No aphid control | 1584 = 2428 Aa 2002 = 28.77 Ba 21352 —30.36 Ba | 2202 =27.80 a

; 2056.2 _ 2394.6 _ 2008.2 _ 2453 _
Treatment for aphid 25— = 28.56 Ab 5 = 33.26 Bb - =40.39 Cb | =32 =34.07b

19025 — 9642 A 2229 3101 B 247 =3538C

where uppercase letters are used to compare the harvest dates and lowercase letters to compare the
treatment for the aphid. Therefore, we observe that the average production is always higher with the
treatment for the aphid and, in general, it is better late harvesting. However, with no aphid control,
there is no significant differences between September 24 and October 22. This seems to be the reason

that the interaction between the two factors is significant.

The complete LSD Fisher’s test with e = 0.05 for all the means in the interaction BC leads to:

Treatment Mean
No aphid control with harvest date August 27 2428 A
Treatment for the aphid with harvest date August 27 28.56 B
No aphid control with harvest date September 24 28.77 BC
No aphid control with harvest date October 22 30.36 C
Treatment for the aphid with harvest date September 24 | 33.26 D
Treatment for the aphid with harvest date October 22 | 40.39 F

It seems clear that the best option would be to plant in March or April, applying treatment for the
aphid, and to harvest in October.
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