
Education and Information Technologies (2025) 30:6925–6949
https://doi.org/10.1007/s10639-024-13092-1

Abstract
In the last two decades, computational thinking has gained wide relevance in in-
ternational educational systems. The inclusion of this new type of thinking poses
educational challenges with some underlying research questions that need to be an-
swered to meet these challenges with quality. Thus, this study focuses on analyzing
the difficulties that teachers in initial training experience have, when carrying out
translation tasks of programming languages used by certain educational robots, in
this case, the Cubetto. For this purpose, a specific learning sequence has been de-
signed to work with different programming languages (Cubetto, Bee-Bot, Scratch)
and natural language. The work of early childhood and elementary trainee teachers
in these tasks has been analyzed using a descriptive approach. The main results are:
(1) some of the difficulties encountered are clearly caused by the Cubetto hardware
(regardless of the language to which it is translated) and (2) the designed learning
sequence has enabled coding skills to be improved remarkably. We conclude that
translation tasks between programming languages are necessary in initial teacher
training to improve their ability programming and their computational thinking, and
for them to be able to detect the disadvantages and benefits of educational robots
in their transposition to the classroom.

Keywords  Coding · Computational thinking · Pre-service teachers · Early
childhood and primary education

1  Introduction

The growing interest in computational thinking within educational settings has grad-
ually led to its integration into school curricula, starting from the earliest educational
stages. Following this idea, computational thinking should be developed in Early

Received: 16 February 2024 / Accepted: 1 October 2024 / Published online: 18 October 2024
© The Author(s) 2024

The importance of coding and translation between
programming languages in sequential activities of pre-
service teachers: an approach

Ainhoa Berciano1 · Astrid Cuida2 · María-Luisa Novo2

Extended author information available on the last page of the article

1 3

http://orcid.org/0000-0001-7399-4745
http://orcid.org/0000-0002-9682-0825
http://orcid.org/0000-0001-6621-1255
http://crossmark.crossref.org/dialog/?doi=10.1007/s10639-024-13092-1&domain=pdf&date_stamp=2024-10-16

Education and Information Technologies (2025) 30:6925–6949

Childhood Education (BOE, 2022) through “processes of observation and manipu-
lation of objects” (p. 23) that enable children to “program sequences of actions or
instructions for the resolution of analog and digital tasks, thereby developing basic
computational thinking skills” (p. 25).

Therefore, considering the new skills to be developed at this educational stage
and the challenge of achieving meaningful learning that fosters computational think-
ing (CP), it is necessary to provide teachers with training scenarios which enable
them to understand what computational thinking represents. The acquisition of this
knowledge implies: (1) to identify its terms, (2) to achieve a good attitude towards
its learning, (3) favor the development of indispensable skills which can successfully
address the development of computational thinking in school (Yadav et al., 2017) and
(4) provide a pedagogy that enhances the development of computational thinking for
the early educational stages (Zapata et al., 2021).

According to these considerations, teachers in initial training must be trained to be
competent in all aspects related to computational thinking, including programming.
Regarding programming, Bers (2017) raises seven associated big ideas: modular-
ity, debugging, representation, hardware/software, algorithms, control structures, and
design processes.

Focusing on hardware/software, we can establish a graduation in the complexity
of imperative programming, depending on whether physical manipulation is required
in the coding process (Martín et al., 2002). Thus, we have tangible programming,
carried out through objects with tangible interfaces and with the capacity to be pro-
grammed (for example, educational robots: Bee-Bot, Code-a-pillar, Code ‘n Learn
Kinderbot, Cubetto, Bluebot, …) and non-tangible programming, carried out through
software (computers and tablets). In this sense, some previous research suggests that,
to develop computational thinking at early ages, programming must be tangible, with
emphasis on understanding the type of programming involved in each educational
robot (Misirli & Komis, 2023; Bers et al., 2014).

Furthermore, this dimension, hardware/software, delves into the importance of
the translation processes between natural language and the language used by the
programmable object, and the necessity of understanding that it is not sufficient to
merely find a theoretical solution to a given problem. It is equally crucial to know
how to accurately translate this solution into the respective programming environ-
ment to ensure the instructions are conveyed correctly.

Thus, given the relevance of the dimension hardware/software and the language
involved, different authors have been concerned with the errors in programing and
compiling costs in programing learning. In particular, the correction of the code
requires a constant assistance from the teachers and the revision of it could be a
better tool for teachers and students to improve their knowledge (Zeller, cited by
Fernández-Medina et al., 2011). It is necessary that research goes deeper and ana-
lyzes the types of errors that students do in programming tasks to better understand
this process (Fernández-Medina et al., 2014).

So, the aim of this work is to respond to the need mentioned in the previous para-
graph, presenting as a novelty of research the interest in better understanding the
teaching and learning processes of programming through the detection of errors made
by students. Our interest is focused on exploring the difficulties that trainee teach-

1 3

6926

Education and Information Technologies (2025) 30:6925–6949

ers have in imperative language translation processes, where implied language is
completely determined by the hardware used, in this case, an educational robot. The
final objective is to better understand the process of programming learning involved
in teacher initial training to go further in their computational thinking skill develop-
ment, designing better tasks that help them to be able to use educational robots in
their prospective schools. The detection of errors will allow us to design a scaffolding
system of tasks that will help trainee teachers to identify their errors and overcome
them, improving their computational thinking.

Centering our interest in trainee teachers (Early Childhood and Primary Educa-
tion), we want to analyze their errors and the determination of the nature of these
errors, when they learn the use of educational robots. For this end, starting from
a learning sequence specifically designed and implemented to perform translations
between the educational robot Cubetto (an object with tangible programming) and
Bee- bot (another with tangible programming) or Scratch (one with non-tangible pro-
gramming), we intend to answer the following questions:

RQ 1) What are the errors made by trainee teachers in the translation from Cubetto language to
Bee-Bot and Scratch languages, their nature, and the extent of casuistry involved?

RQ 2) How does the trainee teachers’ ability to solve a translation task from the Cubetto language
to natural language evolve throughout the learning sequence?

RQ 3) To what extent does this learn-sequence help trainee teachers in the translation skills of
inter-imperative languages?

RQ 4) What are the errors by trainee teachers in the translation from natural language to Cubetto?

Next, the theoretical framework is described, explaining the relationship between
computational thinking, programming and coding, then, its potential in Early Child-
hood Education is explained, as well as the need for teacher training for the develop-
ment of computational thinking. Subsequently, the research methodology, the results
and the main discussions and conclusions of this research are described.

2  Theoretical framework

2.1  Computational thinking, programming and coding

Computational thinking, defined as a broad spectrum of reasoning skills to formulate
and solve problems algorithmically, and develop a sense of technological fluency
(Garcia-Peñalvo & Mendes, 2018; Wing, 2006, 2011), which can be applied in other
contexts (Lee et al., 2011), has taken on great relevance in recent years; a relevance
to which education has not been oblivious.

Thus, recent studies have investigated the treatment of Computational Thinking
in the educational field; showing in many cases a close relationship between com-
putational thinking, that is, programming, and coding; where programming is the
process of constructing programs, i.e. algorithms expressed in a specific language for
an automatic processor (Knuth, 2005); an ability increasingly demanded in society
(Ching et al., 2018), which enables effective participation in a society where there
is an increasing ubiquity of digital devices (Bers, 2018; Kafai, 2016); and coding or

1 3

6927

Education and Information Technologies (2025) 30:6925–6949

code-literacy is the ability to create new socially situated symbolic systems that, in
turn, enable new types of expressions, as well as the extension of pre-existing forms
of communication (Vee, 2017); a skill that, according to Wing (2006), is essential in
the process of learning computational thinking.

Thus, a detailed analysis of these three concepts, computational thinking, pro-
gramming, and coding, allows us to highlight that they are closely related, but clearly
distinct; that is, computational thinking is an expressive process that enables new
ways to communicate ideas while programming can be seen as a tool for teaching
computational thinking and coding as writing connected to technology.

Regarding programming in the educational field, several researchers propose the
need to work on it as an essential aspect involved in the development of compu-
tational thinking, because: (1) it helps “[…] children to develop as computational
thinkers” (Resnick & Rusk, 2020, p.122), (2) it empowers children to solve problems
(Bers, 2018; García-Valcárcel & Caballero-González, 2019), (3) it involves a practi-
cal way of teaching inquiry-based computational thinking (Ladzowska & Patterson,
2013; Halverson & Sheridan, 2014); (4) it offers a new way to express ideas (Austin
et al., 2020; Bers & Sullivan, 2019; Papert, 1980).

On coding and its incorporation into education, Resnick et al. (2009) state that it
provides meaningful and motivating learning opportunities. For Bers (2019) coding
is a new language that children can learn through play and creativity from a very
early age. Different authors suggest working on coding by starting with simple and
fun tasks until achieving more complex ones, focusing the child’s progress on the
difficulty of the tasks and their motivating characteristics (Delacruz, 2020; DiSessa,
2001; Duin & Tham, 2019). Resnick and Rusk (2020) state that with this teaching-
learning process for the literacy of computer programming languages “students are
not just learning to code, they are coding to learn” (p.121) and “As students create
their own stories, games, and animations with code, they start to see themselves as
creators, developing confidence and pride in their ability to create things and express
themselves […]” (p.123).

Thus, the inclusion of coding in education has driven: (1) the development of dif-
ferent types of programming interfaces (Bau et al., 2017), (2) the rise of global out-
reach initiatives supporting education science education such as Code.org, CSforAll,
CoderDojo and Code Club, (3) the proliferation of a wide variety of programmable
devices that bring flexibility to the spectrum of ways of coding that students can use
such as micro: bit (Austin et al., 2020), robotics kits (Khine, 2017) and program-
mable toys (Yu & Roque, 2019; Clarke-Midura et al., 2019), (4) the increase in the
number of teachers who manage to integrate creative and expressive approaches to
coding in the classroom (Resnick & Rusk, 2020) and (5) the promotion, globally, of
the development of computational thinking skills and the introduction of program-
ming concepts and languages from early childhood education (Macrides et al., 2022).

2.2  Computational thinking, programming and coding in early childhood
education

Given the potential of computational thinking, programming, and coding and, con-
sidering that quality learning opportunities from early childhood not only impact

1 3

6928

Education and Information Technologies (2025) 30:6925–6949

the achievement of social, emotional, and cognitive milestones but also positively
affect later learning stages (Bers, 2017; Yu & Roque, 2019), governments have been
increasingly concerned with encouraging the introduction of computer programming
concepts and languages from early ages (Bers et al., 2022; Strawhacker et al., 2018;
Sullivan et al., 2017). These learning opportunities can be provided through employ-
ing the seven key programming ideas outlined in the introduction: algorithms, mod-
ularity, control structures, representation, hardware/software, design process, and
debugging (Bers, 2017).

Regarding hardware/software, García-Peñalvo and Mendes (2018) highlight the
importance of its selection in classroom contexts. Thus, their selection depends on
the educational stage and on the programming associated with the hardware/software
(tangible or non-tangible). Given the above, it is recommended to start with tan-
gible and then move on to non-tangible, because tangible programming and coding
environments can be more effective for introducing programming at the early ages,
as can block-based programming, as “it is a practical way to encourage the child to
explore coding, as well as to use languages with simple movement commands such
as forward, sideways, or backward, to support spatial, visual, and cognitive skills”
(Bers et al., 2022: p.26).

As examples of tangible programming it appears that for early ages educational
computational kits (educational robots) are the favorites, because, among other
aspects, it has been seen that educational robotics contributes to the construction of
knowledge due to its versatility, providing interdisciplinarity and getting students to
be active agents of their own learning (Segatto & Teixeira, 2021) and consequently
educational robotics or programming are currently being included in curricula
throughout the world (Bers et al., 2022; Yu & Roque, 2019). Among the many exam-
ples of educational robots, we highlight Cubetto (from Primo Toys). The Cubetto
kit includes a robot named Cubetto, with a tangible interface, a set of external tan-
gible manipulative coding blocks and parts that control the robot, a control board on
which to place the coding blocks, and maps and storybooks. As children program the
robot to move from place to place, they are breaking down the problem/complex into
smaller/elementary parts (Pridmore et al., 2010; Angeli et al., 2016) in which children
can correct errors within their programs by working debugging (Selby, 2014; Angeli
et al., 2016). In addition, there are tools to measure coding ability for children aged
three to six years old in tasks carried out with Cubetto (e.g., Marinus et al., 2018).

Among the examples of non-tangible programming, one such educational tool
is Scratch (Resnick et al., 2009), a programming language that is part of an online
community and authoring environment in which computational thinking is defined
around three key dimensions including (1) computational concepts (2) computational
practices and (3) computational perspectives (Brennan & Resnick, 2012); it also has
an early childhood version, Scratch Jr. (Flannery et al., 2013) and has been conceived
as a language that enables knowledge not only relevant to Computational Thinking or
mathematics to be built but also provides opportunities for learning ideas from other
disciplines and for the development of problem-solving, design, collaboration and
communication skills (Resnick & Rusk, 2020; Roque & Rusk, 2019).

1 3

6929

Education and Information Technologies (2025) 30:6925–6949

2.3  Initial teacher training for the development of computational thinking

In line with international approaches to incorporate computational thinking into edu-
cation from an early age, teachers should know how to use them in school. In this
sense, it is necessary that trainee teachers have the necessary knowledge and condi-
tions to successfully incorporate computational thinking into classroom practices in
a meaningful way; where, initial teacher training should allow them to know the
variety of computing devices and programming tools (Yadav et al., 2017).

Along these lines, Estebanell et al. (2018) put forward a proposal for teacher train-
ing that they describe in four levels of computational thinking development: (1) user
level (training focused on learning computational languages and increasingly com-
plex computational problem solving strategies); (2) reflective user level (training
focused on fostering reflection on solving a computational challenge); (3) teacher
level (training focused on knowing how to decide what they want to teach, what they
expect their students to learn about Computational Thinking); (4) reflective teacher
level (training that fosters reflection on the teaching and learning processes related to
Computational Thinking).

Considering these levels, we find that most of the studies conducted with teachers
in initial training focus on levels 1 and 3, that is, user level and teacher level, to bet-
ter understand the knowledge that this group has about computational thinking and
programming.

Regarding level 1, user level, we find several studies on the programming skills of
teachers in initial training. Angeli (2022), in a study focused on algorithmic thinking
and robotics, claims to evidence significant improvements in algorithmic thinking
and debugging skills. This is the reason which is why the author highlights the impor-
tance of preparing teachers in initial training to integrate the teaching of Computa-
tional Thinking in the classroom from an early age. Likewise, Hamilton et al. (2020)
show how competencies inherent to programming (sequence, action-instruction, and
debugging dimensions) become measurable skills that can be taken as a reference for
teachers to use in the classroom. So, the literature review reveals certain orientations
on essential aspects for initial teacher training in the field of Computational Thinking
and programming, but not on coding.

Considering that our research focuses on the importance of coding, empirical
research on initial teacher development in this area is limited. Research related to the
analysis of the impact of coding on initial teacher education is scarce. Among them,
we find those that state that: (1) in the coding process with Bee-Bot, the most fre-
quent error made by trainee teachers in early childhood education occurs in Euclid-
ean space programming contexts, when instructions related to spatial orientation
are highlighted (Seckel et al., 2021); (2) in the resolution of programming language
translation tasks, based on the use of the Cubetto robot, to verbal language, it turns
out that “a notable percentage of teachers in initial training in early childhood and
primary education have difficulties associated with understanding the programming
language of the Cubetto robot, despite not being aware of such difficulties” (Berciano
et al., 2023, p.1).

Thus, given the relevance of coding, its revision (Zeller, cited by Fernández-
Medina et al., 2011) and the need to analyze the errors that students do in program-

1 3

6930

Education and Information Technologies (2025) 30:6925–6949

ming tasks (Fernández- Medina et al., 2014), our research focuses on how trainee
teachers do code (at user level). This would help to stablish possible links to their
professional work in the future, as heads of early childhood education and primary
education classrooms (levels 3 and 4 (Estebanell et al., 2018). In this work we aim
to understand the difficulties that this group has in understanding the programming
languages associated with both educational robots (tangible programming: Cubetto,
Bee-Bot) and non-tangible programming languages (Scratch); that is, to analyze the
characteristics that determine the difficulties in the coding process. To this end, the
objective is to analyze the errors made by teachers in initial training in the transla-
tion processes between the three programming languages described and the nature of
these errors. This will allow us to gain a better understanding of the idiosyncrasies of
the process of programming learning involved in teacher initial training to go further
in their computational thinking skill development, designing better tasks that help
them to be able to use educational robots in their prospective schools.

3  Methodology

This research is framed within an interpretative paradigm. From this perspective,
to be able to respond to our research objective, we have carried out a mixed type of
research, with a qualitative component that is percentagewise more relevant than the
quantitative one. This method has been chosen, sharing the ideas of Cameron (2010)
who states that research with this type of design involves an excellent fusion between
quantitative and qualitative orientations. The responses obtained from the pre-service
teachers when individually solving four tasks typical of the first level of progression
in the learning of Computational Thinking proposed by Estebanell et al. (2018) are
analyzed. The tasks are focused on learning computational languages using easily
programmable objects (Bee-Bot, Cubetto, Scratch), as suggested by the authors in
their training module (p.29).

Accordingly, the research objectives are:

1.	 To identify the types of errors in Cubetto-> Bee-Bot and Cubetto-> Scratch cod-
ing, to study the specific cases and their percentages (related to RQ1, described
in the introduction).

2.	 To determine the evolution of the trainee teachers’ ability to solve a Cubetto->
natural language translation task developed throughout the didactic sequence in
three moments, initial, intermediate and final (related to RQ2 and RQ3, described
in the introduction).

3.	 To identify the types of errors in natural language-> Cubetto coding, to study
the specific cases and their percentages (related to RQ4, described in the
introduction).

1 3

6931

Education and Information Technologies (2025) 30:6925–6949

3.1  Context and participants

This research featuring in this article takes place at a Spanish university where early
childhood and primary teachers attend their induction training. Thirty-two trainees
(87.5% women, 12.5% men) participated, all of whom were attending the course
of School-based professional activities for early childhood mathematics education
during their fourth year of their undergraduate degree course (four years into their
training).

3.2  Data collection

The data presented in this article were collected during four working sessions with
the participants after they had signed an informed consent form.

The learning sequence was developed in four working sessions with Cubetto, each
lasting 90 min. Bee-Bot was also used in the second session and Scratch in the third.
The activities developed in the different sessions are detailed below. In all of them,
the trainees carried out the tasks individually.

3.2.1  Sessions 1, 2 and 3

1.	 Explanation of the operating characteristics of the Cubetto or Bee-Bot robot with
all its elements.

2.	 To explain the characteristics of the operation of the programming language with
all its elements.

3.	 Several examples of paths are practiced using different commands.
4.	 The task sheet is provided with the task divided into three parts:

(a)	 The image of the sequence created on the Cubetto board is given (Fig. 1b). The
trainee had to write the same sequence in natural language, Bee-Bot language
(Fig. 2), or Scratch language, depending on whether it was the first, second or
third session, respectively.

(b)	 The difficulties encountered when transcribing should be explained.
(c)	 With the Cubetto map in view (Fig. 1d) and the image of the created sequence,

for the respective session, the trainee teacher has to deduce to which square the
robot arrives and in which direction it is facing. (Fig. 1c).

In terms of teaching objectives, the three sessions aim to:

(a)	 Transcribe the Cubetto language into the other languages, natural, Bee-bot, or
Scratch, according to the corresponding session.

(b)	 Note down the difficulties encountered in the transcription.
(c)	 Work on orientation and location based on a route on the board starting from

specific coordinates.

1 3

6932

Education and Information Technologies (2025) 30:6925–6949

3.2.2  Session 4

In the last session, the fourth one, a task was carried out that was the inverse of
those performed in the previous sessions. With the Cubetto board without counters,
trainees were asked to create a sequence starting from the square (5, B) facing the
building (6, B) and aiming to reach the ship (3, F) without passing through squares
with letters or objects with a plain background. The teaching aim of this session is to
check the trainee teachers’ understanding of how Cubetto works, and do translations
form natural language to Cubetto language. It should be noted that, due to the lack
of boards, each trainee was provided with one board and 16 printed coding blocks to
work with (Fig. 1a).

The teaching objectives of this session are:

a)	 Transcribe into Cubetto language a resolution done in natural language of a given
problem.

b)	 Work on orientation and location based on a route on the board with initial and
final coordinates given.

Fig. 2  Bee-Bot’s directional
language

Fig. 1  Cubetto Playset

1 3

6933

Education and Information Technologies (2025) 30:6925–6949

3.3  Data analysis

To answer RQ1, in order to examine the productions made by the participants in
the didactic sequencing tasks (item 4a of sessions 2 and 3), we use the categorical
analysis structure of Berciano et al. (2023), given in Table 1, as a tool to evaluate any
translation errors. This tool considers any classic programming errors and some oth-
ers that have emerged because of the use of Cubetto and its hardware idiosyncrasy,
as described in Berciano et al. (2023). Therefore, the process of research and inves-
tigation of the errors in the tasks performed by the participants is twofold (inductive-
deductive): first, using Table 1, the errors made by the participants are classified
(inductively) and, second, new categories, if needed, are created (Table 2) for those
errors that do not fit into the given ones (deductively).

The answers provided by the participants were individually explored and reviewed
by the research team and, subsequently, the following were analyzed: (1) the align-
ment of the criteria used by each member of the research team in the individual analy-

Table 1  Initial categorical structure source: Berciano et al. (2023)
N. Category designation Explanation of interpretation
1 Good The translation is correct.
2 One order is missing. One command has been omitted.
3 One command is wrong. One command has been translated incorrectly.
4 The loop is wrongly translated. The loop has been translated incorrectly.
5 One command is missing, and the loop is wrong.
6 One command and the loop are wrong.
7 Several wrong commands
8 It does not interpret the natural order of the

Cubetto instruction.
The translation does not follow the order
established by the Cubetto template.

9 Wrong The translation is composed of multiple errors
which makes it incomprehensible.

Table 2  Final categorical structure
N. Category designation Explanation of interpretation
1 Good The translation is correct.
2 One order is missing. One command has been omitted.
3 One command is wrong. One command has been translated incorrectly.
4 The loop is wrongly translated. The loop has been translated incorrectly.
5 One command is missing, and the loop is

wrong.
6 One command and the loop are wrong
7 Several wrong commands
8 It does not interpret the natural order of the

Cubetto instruction.
The translation does not follow the order
established by the Cubetto template.

9 Wrong The translation is composed of multiple er-
rors which makes it incomprehensible.

10 Cancelling reverse commands in the loop* Simplification of commands (left-right).
11 Too many commands* Excessive commands.
Source Self-generated table (*examples 1 and 2 of Sect. 4.1.1)

1 3

6934

Education and Information Technologies (2025) 30:6925–6949

ses of the participants’ productions and (2) the robustness of the categorical system
used, created by Berciano et al. (2023). To this end, we proceeded to calculate the
inter-observation consistency index, the kappa index, obtaining a value of k = 0.936
(p = .000). This index value legitimizes, on the one hand, the usability of the categori-
cal system used; and, on the other, the suitability and alignment of the classifications
made by the research team about the trainees’ productions.

To answer RQ2 and RQ3, the degree of correctness in solving the translation task
described above was analyzed over three moments (item 4c of sessions 1, 2 and 3)
and an inferential analysis was performed to see if the differences found were sta-
tistically significant. This study was carried out with IBM SPSS 28.0 software; non-
parametric tests for repeated measures (Friedman test) were performed, due to the
non-normality of the distributions.

Finally, to answer RQ4, a mixed analysis was carried out, first determining the
different ways of solving the task described above (session 4), and then analyz-
ing the number of instructions given in each of the resolutions, making a statistical
description.

4  Results

To answer the research questions, we first demonstrated the degree of correctness,
and the typology of errors detected in the translation task from Cubetto to Bee-Bot.
Second, we analyzed the translation from Cubetto to Scratch.

4.1  Translation errors Cubetto-> Bee-Bot and Cubetto-> Scratch

In this task, given two similar sequences created on the board (Figs. 3 and 4), the
trainee teachers were asked to translate them into Bee-Bot or Scratch language,
respectively.

Regarding the degree of correctness of the task proposed in Session 2 (Fig. 3), it
is worth noting that 28% of the participants made translation errors in this activity;
these errors are categorized accordingly in Table 3. In this process, given that the
kappa index was not full (k = 0.936 < 1), a triangulation of the discordant classifica-
tions was performed. This resulted in the detection of small variants in the classifi-
cation of new errors, leading to the need to create two new error categories, which
emerged from the qualitative analysis of the participants’ productions: (1) cancella-
tion of inverse orders in the loop and (2) orders left over. With the incorporation of
these two new categories, the calculation of the Kappa index of the inter-observation
differences gave a value k = 1, p-value = 0.000, implying a 100% agreement in the
classification by the independent observations.

Thus, these two categories were incorporated into the initial categorical table
(Table 2), giving rise to a total of 11 different types of errors that reflect the reality of
participant difficulty in this type of translation task.

An analysis of the correctness of the tasks developed in Sessions 2 and 3 (Figs. 3
and 4) allows us to verify that in the former the percentage of successes is 72%, in the
latter there is a certain improvement since the jobs correctly carried out account for

1 3

6935

Education and Information Technologies (2025) 30:6925–6949

Fig. 4  Scratch translation task

Fig. 3  Bee-Bot translation task

1 3

6936

Education and Information Technologies (2025) 30:6925–6949

82%. The most typical translation error is associated with the lack of understanding
of the loop defined in the Cubetto board. Therefore, Table 3 incorporates the percent-
ages of errors found.

4.1.1  Examples of errors detected in the analysis of session 2

The following examples are some of the errors detected in the translation of Cubetto
into Bee-Bot by the participants (in the new categories that appeared):

1.	 Too many commands

�In the transcription made by Participant A (Fig. 5) we can see that when translat-
ing the loops he includes a non-existent command, a right-hand turn that is left
over (framed in red), giving rise to a total of 23 commands, when only 21 are
needed.

2.	 Cancellation of inverse commands in the loop

�In this case, in the transcription of Participant B (Fig. 6) there are, in total, 15
symbols instead of 21, due to the fact that when translating the loops he has
cancelled reverse commands (he repeats 3 times “right and forward”, instead of
“right, left, right and forward”).

Table 3  Degree of correctness of the Cubetto-Bee-Bot and Cubetto-Scratch
Translation Cubetto–Bee-Bot Cubetto-

Scratch
Degree of correctness (%) 72 82
Degree of incor-
rectness (%)

N2. One order missing 3 3
N4. The loop is wrongly translated 13 3
N7. Several wrong commands 3 0
N8. Failure to interpret the natural order of the
Cubetto instruction

3 6

N9. Wrong 0 3
N10. Cancelling reverse commands in the loop 3 0
N11. Too many commands 3 3

Fig. 5  Transcript of Participant A

1 3

6937

Education and Information Technologies (2025) 30:6925–6949

4.1.2  Examples of participant productions observed in session 3

Similarly, we show some resolutions (two incorrect and one correct) and the categori-
zation of the error in the case it occurs is during the translation of Cubetto to Scratch:

1.	 Incorrect solutions of two participants C and D

�In the transcript of Participant C (Fig. 7) one command is missing and, in addi-
tion, the code is not efficient in the sense that it does not use compact commands

Fig. 7  Transcript of Participant C (original and its English translation, left and right respectively)

Fig. 6  Transcript of Participant B

1 3

6938

Education and Information Technologies (2025) 30:6925–6949

to reduce the number of instructions. In the transcription of Participant D (Fig. 8)
there are too many commands.
�Missing an order (Fig. 7).

Too many commands (Fig. 8).

2.	 Correct resolution
3.	 In the following Figure (Fig. 9), it is the correct exercise done by Participant E,

who has understood and solved correctly the problem.

4.2  Evolution of the trainee teachers’ ability to solve a Cubetto to natural
language translation task carried out at three points during the didactic
sequence (initial, intermediate and final)

As for the evolution of the final board (Objective 2), given an instruction in Cubetto
and an exit point, locating it in space by giving the point of arrival and direction in
which the Cubetto faces, after repeating the exercise on three different occasions, we
analyzed the degree of correctness of this task in terms of the time variable, as shown
in Fig. 10. In this case, the sample was reduced to 30 participants (27 women and 3
men), who each carried out the three exercises. The two participants who only com-
pleted two of the three exercises were excluded from the study.

First, we see that the results of the third exercise are (Fig. 10), a priori, better than
those obtained in the first and second exercises, which leads us to assess whether this
improvement is statistically significant. Similarly, we observe a slight reduction in
the success rate in Exercise 2, with respect to the first and third exercises. This evo-

Fig. 8  Transcript of Participant D (original and its English translation, left and right respectively)

1 3

6939

Education and Information Technologies (2025) 30:6925–6949

lution, expressed as success rates in the resolution, gives us a clearer view of what
happened: in Exercise 1, 70% solved it correctly, in Exercise 2, this percentage drops
to 56.7% and in Exercise 3, the success rate is 83.3%, therefore, we see that between
Exercise 1 and Exercise 3 we obtain an improvement of 13.3% in the success rate.

An inferential analysis allows us to conclude that there are statistically significant
differences over time (Friedman test: Chi-square = 7.385, p-value = 0.025 < 0.05). Fur-
thermore, the Wilcoxon test allows us to affirm that the results obtained in Exercise 3
are better than those obtained in Exercise 1 and Exercise 2, and that this improvement
restricted to the comparison of Exercise 2 and Exercise 3 is statistically significant
(see Table 4):

Fig. 10  Evolution of the degree
of correctness of the location in
the plan

Fig. 9  Transcript of Participant E (original and its English translation, left and right respectively)

1 3

6940

Education and Information Technologies (2025) 30:6925–6949

4.3  Degree of correctness and efficiency in a task translating natural language to
Cubetto

Finally, we analyze the degree of correctness in a reverse coding task, i.e., the initial
position of the Cubetto (location and orientation), the final point of arrival (location
and orientation) and step restrictions are given, and the participants must write the
instructions on a Cubetto board, without being able to test whether their instructions
are correct or not. In this case, the sample consisted of 26 participants. It is striking
that only 57.60% (15 participants) solved the task correctly, while 42.30% (11 par-
ticipants) made some error in its resolution.

Regarding the degree of efficiency in solving the task, understood as the ability to
use the minimum number of commands, incorporating as far as possible the use of
the function card, we find that only 20% of the participants who performed the task
correctly do so in an optimal way (see Fig. 11), while the rest use a higher number of
commands than necessary:

4.3.1  Example of optimal tasks collected from session 4

Among the optimal (and correct) examples, we show two different resolution paths,
one from Participant F (Fig. 12) who places 9 tokens with two loops and another from
Participant G (Fig. 13) who uses 9 tokens with three loops.

Fig. 11  Efficiency in resolution

Exercise (i) Exercise (j) Difference i-j p-value
2 1 -0.133 0.157
3 1 0.133 0.206
3 2 0.267 0.005

Table 4  Differences in success
rates and Wilcoxon test p-value

1 3

6941

Education and Information Technologies (2025) 30:6925–6949

4.3.2  Analysis of the most common types of errors

A detailed analysis of the types of errors committed reveals that in 81.81% of the
erroneous cases, the errors are due to incorrect orientation of the Cubetto; that is, the
Cubetto does not face the direction specified, although it does arrive at the correct

Fig. 13  Transcript of Partici-
pant F

Fig. 12  Transcript of Partici-
pant F

1 3

6942

Education and Information Technologies (2025) 30:6925–6949

destination. Meanwhile, the other 18.18% of errors are related to both incorrect loca-
tion and orientation. Below, two examples of these errors are presented:

1.	 Incorrect orientation and correct location

�The Participant H, on this occasion, follows all the guidelines of the task, avoid-
ing passing through boxes with letters or boxes with objects with a plain back-
ground, but the Cubetto ends up facing east and not north (Fig. 14).

2.	 Incorrect location and orientation

�We highlight the exercise performed by Participant I (Fig. 15). Only 16 tiles can
be placed on the panel. She places a loop on one curve of the template (blue tile)
and a left turn (yellow tile) on the other curve.

5  Discussion and conclusions

Throughout this work, we have seen the importance of performing translation tasks
between programming languages. The findings highlight the significance of cor-
rectly linking different coding systems through these tasks. And the results allow us
to clearly answer to the research questions, described in the introduction: RQ1) What
are the errors made by teachers in initial training in the translation from Cubetto
language to Bee-Bot and Scratch languages, their nature, and the extent of casu-
istry involved?; RQ2) How does the trainee teachers’ ability to solve a translation
task from the Cubetto language to natural language evolve throughout the learning

Fig. 14  Transcript of Partici-
pant H

1 3

6943

Education and Information Technologies (2025) 30:6925–6949

sequence?; RQ3) To what extent does this learn-sequence help trainee teachers in
the translation skills of inter-imperative languages? and RQ4) What are the errors by
trainee teachers in the translation from natural language to Cubetto?

With respect to RQ1, various difficulties have been observed in the way the trainee
teachers carry out the tasks. Some errors that occurred in the task resolution are
related to common errors in programing (25% of total exercises in Cubetto-Bee-bot
translation and 12% in Cubetto-Scratch translation), as described in Berciano et al.
(2023), for example a loop incorrectly written (13%, 3%, respectively), one order
missing, one command incorrectly written. This reality show how coding is one of
the most difficult aspects in programing learning, and the nature of the errors should
be analyzed (Fernández-Medina et al., 2014).

But another special error appears in the translation tasks (Cubetto-Bee-bot,
Cubetto-Scratch), who is related to the characteristics of the Cubetto educational
robot, completely defined by its hardware (It does not interpret the natural order of
the Cubetto instruction) and emerges in translation to Bee-bot and to Scratch. This
result was unexpected since the tasks, considered easy for adults, and the educa-
tional robot, designed for early childhood use, were supposed to be simple. More-
over, despite the small sample size, it is striking how Cubetto was found to be more
complex than expected; its hardware is designed with a simple coding system for
use with young children, so it was not hypothesized that trainee teachers might have
difficulties to use it. The difficulties of the educational robot, linked to the peculiari-
ties of its coding language, have become evident throughout the learning sequence,
regardless of the target programming language. These difficulties complement those
evidenced by Angeli (2022) in her study with another type of programmable robot
(Lego Wedo); in which she concluded that teachers lacked preparation in their initial
training to face the didactic challenges involved in teaching computational think-
ing to the very young learners. We support the need for trainee teachers to receive

Fig. 15  Transcript of Partici-
pant I

1 3

6944

Education and Information Technologies (2025) 30:6925–6949

adequate training to be able to develop computational thinking at the user level; to
later, be able to assume tasks at the levels of teacher and reflective teacher (according
to Estebanell et al., 2018).

As an added value in this work, we emphasize that the detection of difficulties
with this educational robot has allowed us to establish a categorical system consist-
ing of eleven different types of errors. This categorial system provides a solid basis
for analyzing the difficulties of any student using this hardware. Furthermore, it can
be used to propose complementary activities that help to overcome these difficulties
successfully, measuring their efficiency by the number and type of errors done. In this
sense, the detection of errors can be used to design a scaffolding system of tasks that
will help trainee teachers to identify their errors and overcome them, improving their
computational thinking. Indeed, this categorical system complements and extends
the one developed by Berciano et al. (2023) and can be used as a tool to measure
coding ability for everyone, not only for children aged three to six years old in tasks
carried out with Cubetto (e.g., Marinus et al., 2018).

With respect to RQ2, the performance of the inverse translation task (Cubetto to
natural language), the results show that most of the trainee teachers performed this
task with a huge number of commands, highlighting certain difficulties in coding
optimization in a context of basic complexity. This result complements the results
obtained by Berciano et al. (2023), which detailed the difficulties encountered by the
trainee teachers in the inverse coding process (Cubetto-natural language). So, this
work opens new lines of research associated with (1) investigating whether the lack
of code optimization occurs in more sophisticated coding contexts, and (2) categoriz-
ing the reasons that lead some trainee teachers to perform simple translation tasks
with a huge number of commands.

With respect to RQ3, considering the favorable results of this research, we should
highlight that the learning sequence has served to significantly improve the trainee teach-
ers’ ability to translate between programming languages. These results are in line with
research evidence showing the positive effects of learning computer programming on the
development of students’ algorithmic thinking and debugging skills (Bers et al., 2014;
Resnick et al., 2009; Resnick & Rusk, 2020; Roque & Rusk, 2019), and are completely
new for the case of coding. In our case, we add the idiosyncrasy of working with coding
as one of the dimensions of the learning of computer programing, because of this dimen-
sion had so far not been valued until now, even though it is considered as a new skill to
understand the languages associated to computational thinking and its development (Bers,
2018; Delacruz, 2020; DiSessa, 2001; Duin & Tham, 2019; Resnick & Rusk, (2020).

With respect to RQ4, only the 57.60% of participants do correctly the exercise.
With respect to the errors detected, the main type is related to incorrect orientation
of the Cubetto (81.81% of the erroneous cases). This result is aligned with the main
error detected by Seckel et al. (2021) for the analogous case with the Bee-Bot. In the
same lane, it is notably that we find that only 20% of the participants who performed
the task correctly do so in an optimal way; so, these results open new research lines
to analyze which are the reasons involved.

Finally, like previous research that has highlighted the need for more in-depth
studies regarding the ability of trainee teachers, to correctly perform algorithms and
debugging and the difficulties encountered in these tasks (Angeli et al., 2016; Bers

1 3

6945

Education and Information Technologies (2025) 30:6925–6949

et al., 2022; Yadav et al., 2017). It is necessary that research goes deeper and ana-
lyzes the types of errors that students do in programming tasks to better understand
this process (Fernández- Medina et al., 2014). So, the aim of this work has been to
respond to the need mentioned, presenting as a novelty of research the interest in
better understanding the teaching-learning processes of programming through the
detection of errors made by students. In this sense, we have seen how the learning
sequence specifically designed to work on the translation between the programming
languages of Cubetto, Bee-Bot, Scratch and natural language has helped teachers in
initial training to improve their problem solving skills in the Cubetto-natural lan-
guage case, where the improvement is remarkable and coincides with emerging skills
in other studies (Bers et al., 2014; Khine, 2017; Yu & Roque, 2019; Clarke-Midura et
al., 2019), although there is still a long way to go, as pointed out by Bers et al. (2023).

We would like to emphasize the importance of pursuing this type of research in
the teaching and learning of computational thinking through programming. More
specifically, research should focus on translation tasks between programming lan-
guages where coding is crucial and the establishment of links between equivalent
representation systems is valued.

5.1  Limitations and future research lines

As limitations of the study, we must point out that the sample was small and that,
therefore, as a future improvement and line of research, we would like to extend this
study to a larger sample. Likewise, the aim is to investigate whether the lack of code
optimization occurs in more sophisticated coding contexts, as well as to categorize
the reasons that lead some students to carry out simple translation tasks with a very
high number of commands.

Funding  Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature.

Data availability  The datasets generated during and/or analyzed during the current study are available
on request from the corresponding author A. B. The data are not publicly available because they contain
information that could compromise research participant privacy.

Declarations

Ethical approval  This paper has not been published before; it is not under consideration for publication
anywhere else; it has been approved by all co-authors at the university where the work has been carried out.

Conflict of interest   The authors have no financial or non-financial interests to disclose.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons licence, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use
is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission
directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/
licenses/by/4.0/.

1 3

6946

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Education and Information Technologies (2025) 30:6925–6949

References

Angeli, C. (2022). The effects of scaffolded programming scripts on pre-service teachers’ computational
thinking: Developing algorithmic thinking through programming robots. International Journal of
Child-Computer Interaction, 31, 100329. https://doi.org/10.1016/j.ijcci.2021.100329

Angeli, C., Voogt, J., Fluck, A., Webb, M., Cox, M., Malyn-Smith, J., & Zagami, J. (2016). A K-6 compu-
tational thinking curriculum framework: Implications for teacher knowledge. Journal of Educational
Technology & Society, 19(3), 47–57.

Austin, J., Baker, H., Ball, T., Devine, J., Finney, J., De Halleux, P., & Stockdale, G. (2020). The BBC
micro: Bit: From the UK to the world. Communications of the ACM, 63(3), 62–69. https://doi.
org/10.1145/3368856

Bau, D., Gray, J., Kelleher, C., Sheldon, J., & Turbak, F. (2017). Learnable programming: Blocks and
beyond. Communications of the Acm, 60, 6, 72–80. https://doi.org/10.1145/3015455

Berciano, A., Cuida, A., & Novo, M.L. (2023). Translation errors between sequential programming lan-
guages in Cubetto activities. RED. Revista de Educación a Distancia, 23(76), 1–23. https://doi.
org/10.6018/red.552581

Bers, M. U. (2017). Coding as a playground: Programming and computational thinking in the early child-
hood classroom. Routledge. https://doi.org/10.4324/9781315398945

Bers, M. U. (2018). Coding and computational thinking in early childhood: The impact of ScratchJr in
Europe. European Journal of STEM Education, 3(3), 8. https://doi.org/10.20897/ejsteme/3868

Bers, M. U. (2019). Coding as another language: A pedagogical approach for teaching computer sci-
ence in early childhood. Journal of Computers in Education, 6(4), 499–528. https://doi.org/10.1007/
s40692-019-00147-3

Bers, M., & Sullivan, A. (2019). Computer Science Education in Early Childhood: The case of ScratchJr.
JITE: IIP, 18(1), 113–138. https://doi.org/10.28945/4437

Bers, M. U., Flannery, L., Kazakoff, E. R., & Sullivan, A. (2014). Computational thinking and tinker-
ing: Exploration of an early childhood robotics curriculum. Computers & Education, 72, 145–157.
https://doi.org/10.1016/j.compedu.2013.10.020

Bers, M. U., Strawhacker, A., & Sullivan, A. (2022). The state of the field of computational thinking in
early childhood education, OECD Education Working Papers, No. 274, OECD Publishing, Paris.
https://doi.org/10.1787/3354387a-en

Bers, M. U., Blake-West, J., Kapoor, M. G., Levinson, T., Relkin, E., Unahalekhaka, A., & Yang, Z. (2023).
Coding as another language: Research-based curriculum for early childhood computer science. Early
Childhood Research Quarterly, 64, 394–404. https://doi.org/10.1016/j.ecresq.2023.05.002

Brennan, K., & Resnick, M. (2012). Using artifact-based interviews to study the development of compu-
tational thinking in interactive media design. Annual Meeting of the American Educational Research
Association, Vancouver, B.C, 2012.

Cameron, R. (2010). Mixed methods in VET research: Usage and quality. International Journal of Train-
ing Research, 8(1), 25–39. https://doi.org/10.5172/ijtr.8.1.25

Ching, Y. H., Hsu, Y. C., & Baldwin, S. (2018). Developing computational thinking with educational tech-
nologies for young learners. Tech Trends, 62, 563–573. https://doi.org/10.1007/s11528-018-0292-7

Clarke-Midura, J., Lee, V. R., Shumway, J. F., & Hamilton, M. M. (2019). The building blocks of cod-
ing: A comparison of early childhood coding toys. Information and Learning Sciences, 120(7/8),
505–518. https://doi.org/10.1108/ILS-06-2019-0059

Cubetto Universe – New Maps and Adventures (2023). (n.d.). https://www.kickstarter.com/projects/pri-
motoys/cubetto. Accessed December 11.

Delacruz, S. (2020). Starting from scratch (Jr.): Integrating code literacy in the primary grades. The Read-
ing Teacher, 73(6), 805–812. https://doi.org/10.1002/trtr.1909

DiSessa, A. (2001). Changing minds: Computers, learning, and literacy. MIT Press. https://doi.
org/10.7551/mitpress/1786.001.0001

Duin, A. H., & Tham, J. C. K. (2019). Cultivating code literacy: Course redesign through advi-
sory board engagement. Communication Design Quarterly Review, 6(3), 44–58. https://doi.
org/10.1145/3309578.3309583

Estebanell, M., López, V., Peracaula, M., Simarro, C., Cornellà, P., Couso, D., González, J., Alsina, A.,
Badillo, E., & Heras, R. (2018). Pensament Computacional en la formació de mestres. Guia didàc-
tica. Servei de Publicacions UdG.

1 3

6947

https://doi.org/10.1016/j.ijcci.2021.100329
https://doi.org/10.1145/3368856
https://doi.org/10.1145/3368856
https://doi.org/10.1145/3015455
https://doi.org/10.6018/red.552581
https://doi.org/10.6018/red.552581
https://doi.org/10.4324/9781315398945
https://doi.org/10.20897/ejsteme/3868
https://doi.org/10.1007/s40692-019-00147-3
https://doi.org/10.1007/s40692-019-00147-3
https://doi.org/10.28945/4437
https://doi.org/10.1016/j.compedu.2013.10.020
https://doi.org/10.1787/3354387a-en
https://doi.org/10.1016/j.ecresq.2023.05.002
https://doi.org/10.5172/ijtr.8.1.25
https://doi.org/10.1007/s11528-018-0292-7
https://doi.org/10.1108/ILS-06-2019-0059
https://www.kickstarter.com/projects/primotoys/cubetto
https://www.kickstarter.com/projects/primotoys/cubetto
https://doi.org/10.1002/trtr.1909
https://doi.org/10.7551/mitpress/1786.001.0001
https://doi.org/10.7551/mitpress/1786.001.0001
https://doi.org/10.1145/3309578.3309583
https://doi.org/10.1145/3309578.3309583

Education and Information Technologies (2025) 30:6925–6949

Fernández-Medina, C., Pérez-Pérez, J. R., Paule-Ruiz, M. P., & Álvarez García, V. M. (2011). Assistance in
computer programming learning using educational data mining and learning analytics COLMENA:
Collaborative knowledge and user classification environment based on programming experience. In
Proceedings of the VIII Multidisciplinary Symposium on Design and Evaluation of Digital Content
for Education (50–58).

Fernández-Medina, C., Pérez-Perez, J. R., Paule-Ruiz, M. P., & Álvarez-García, V. M. (2014). Aprendizaje
de la programación guiado por los errores de compilación. JENUI 2014. XX Jornadas de Enseñanza
Universitaria de la Informática. Oviedo: Universidad de Oviedo. Escuela de Ingeniería Informática,
371–378. https://hdl.handle.net/2099/15498.

Flannery, L. P., Silverman, B., Kazakoff, E. R., Bers, M. U., Bontá, P., & Resnick, M. (2013). Design-
ing ScratchJr: Support for early childhood learning through computer programming. In Proceed-
ings of the 12th international conference on interaction design and children (1–10). https://doi.
org/10.1145/2485760.2485785

García-Peñalvo, F. J., & Mendes, A. J. (2018). Exploring the computational thinking effects in pre-
university education. Computers in Human Behavior, 80, 407–411. https://doi.org/10.1016/j.
chb.2017.12.005

García-Valcárcel, A., & Caballero-González, Y. (2019). Robótica para desarrollar El pensamiento com-
putacional en Educación Infantil. Comunicar: Revista científica Iberoamericana De comunicación Y
educación, 27(59), 63–72. https://doi.org/10.3916/C59-2019-06

Halverson, E. R., & Sheridan, K. (2014). The maker movement in education. Harvard Educational Review,
84(4), 495–504. https://doi.org/10.17763/haer.84.4.34j1g68140382063

Hamilton, M., Clarke-Midura, J., Shumway, J. F., & Lee, V. R. (2020). An Emerging Technology Report on
Computational toys in early childhood. Tech. Know Learn, 25(1), 213–224. https://doi.org/10.1007/
s10758-019-09423-8

Kafai, Y. B. (2016). From computational thinking to computational participation in K-12 education. Com-
munications of the ACM, 59(8), 26–27. https://doi.org/10.1145/2955114

Khine, M. S. (2017). Robotics in STEM Education. Springer. https://doi.org/10.1007/978-3-319-57786-9
Knuth, D. E. (2005). The art of computer programming. Pearson Education.
Ladzowska, E., & Patterson, D. (2013). Students of All Majors Should Study Computer Science. Chroni-

cle of Higher Education. https://bit.ly/3Oj55j4
Lee, I., Martin, F., Denner, J., Coulter, B., Allan, W., Erickson, J., Malyn-Smith, J., & Werner, L.

(2011). Computational thinking for youth in practice. ACM Inroads, 2(1), 32. https://doi.
org/10.1145/1929887.1929902

Macrides, E., Miliou, O., & Angeli, C. (2022). Programming in early childhood education: A systematic
review. International Journal of Child-Computer Interaction, 32, 100396. https://doi.org/10.1016/j.
ijcci.2021.100396

Marinus, E., Powell, Z., Thornton, R., McArthur, G., & Crain, S. (2018, August). Unravelling the
cognition of coding in 3-to-6-years old: The development of an assessment tool and the relation
between coding ability and cognitive compiling of syntax in natural language. In Proceedings of
the 2018 ACM Conference on International Computing Education Research (133–141). https://doi.
org/10.1145/3230977.3230984

Martín, G., Toledo, G., & Cerverón, V. (2002). Fundamentos De Informática Y Programación. Universi-
dad de Valencia.

Misirli, A., & Komis, V. (2023). Computational thinking in early childhood education: The impact of pro-
gramming a tangible robot on developing debugging knowledge. Early Childhood Research Quar-
terly, 65, 139–158. https://doi.org/10.1016/j.ecresq.2023.05.014

Papert, S. (1980). Mindstorms: Children, computers and powerful ideas. Harvester.
Pridmore, L., Lardieri, P., & Hollister, R. (2010). National Cyber Range (NCR) automated test tools:

Implications and application to network-centric support tools. In 2010 IEEE AUTOTESTCON (pp.
1–4). IEEE.

Real Decreto 95 (2022). / de 1 de febrero, por el que se establece la ordenación y las enseñanzas mínimas
de la Educación Infantil. Boletín Oficial del Estado, BOE, núm. 28, 2 de febrero de 2022, 2022 – 1654.
https://www.boe.es/buscar/pdf/2022/BOE-A-2022-1654-consolidado.pdf

Resnick, M., & Rusk, N. (2020). Coding at a crossroads. Communications of the ACM, 63(11), 120–127.
https://doi.org/10.1145/3375546

Resnick, M., Maloney, J., Monroy-Hernández, A., Rusk, N., Eastmond, E., Brennan, K., & Kafai, Y.
(2009). Scratch: Programming for all. Communications of the ACM, 52(11), 60–67. https://doi.
org/10.1145/1592761.1592779

1 3

6948

https://doi.org/10.1145/2485760.2485785
https://doi.org/10.1145/2485760.2485785
https://doi.org/10.1016/j.chb.2017.12.005
https://doi.org/10.1016/j.chb.2017.12.005
https://doi.org/10.3916/C59-2019-06
https://doi.org/10.17763/haer.84.4.34j1g68140382063
https://doi.org/10.1007/s10758-019-09423-8
https://doi.org/10.1007/s10758-019-09423-8
https://doi.org/10.1145/2955114
https://doi.org/10.1007/978-3-319-57786-9
https://bit.ly/3Oj55j4
https://doi.org/10.1145/1929887.1929902
https://doi.org/10.1145/1929887.1929902
https://doi.org/10.1016/j.ijcci.2021.100396
https://doi.org/10.1016/j.ijcci.2021.100396
https://doi.org/10.1145/3230977.3230984
https://doi.org/10.1145/3230977.3230984
https://doi.org/10.1016/j.ecresq.2023.05.014
https://www.boe.es/buscar/pdf/2022/BOE-A-2022-1654-consolidado.pdf
https://doi.org/10.1145/3375546
https://doi.org/10.1145/1592761.1592779
https://doi.org/10.1145/1592761.1592779

Education and Information Technologies (2025) 30:6925–6949

Roque, R., & Rusk, N. (2019). Youth perspectives on their development in a coding community. Info
Learning Sci. https://doi.org/10.1108/ILS-05-2018-0038

Seckel, M. J., Vásquez, C., Samuel, M., & Breda, A. (2021). Errors of programming and ownership of
the robot concept made by trainee kindergarten teachers during an induction training. Education and
Information Technologies, 27(3), 2955–2975. https://doi.org/10.1007/s10639-021-10708-8

Segatto, R., & Teixeira, A. C. (2021). Utilização do Robô Cubetto em um Processo De Formação Docente
para Professores Da Educação Básica na Área Da Robótica Educacional. Ensino De Ciências E Tec-
nologia em Revista–ENCITEC, 11(1), 219–236. https://doi.org/10.31512/encitec.v11i1.390

Selby, C. (2014). How can the teaching of programming be used to enhance computational thinking skills?
(Doctoral dissertation, Thesis (Doctoral)–Southampton Education School, University of Southamp-
ton, Hampshire).

Strawhacker, A., Lee, M., & Bers, M. U. (2018). Teaching tools, teachers’ rules: Exploring the impact of
teaching styles on Young Children’s programming knowledge in ScratchJr. International Journal
of Technology and Design Education, 28(2), 347–376. https://doi.org/10.1007/s10798-017-9400-9

Sullivan, A., Bers, M., & Pugnali, A. (2017). The impact of user interface on Young Children’s computa-
tional thinking. J Inf Tech Educ Innov Pract, 16(1), 171–193. https://doi.org/10.28945/3768

Vee, A. (2017). Coding literacy: How computer programming is changing writing. MIT Press. https://doi.
org/10.7551/mitpress/10655.001.0001

Wing, J. M. (2006). Computational thinking. Communications of the ACM, 49(3), 33–35. https://doi.
org/10.1145/1118178.1118215

Wing, J. M. (2011). Research notebook: Computational thinking—what and why? The link magazine.
Pittsburgh: Spring. Carnegie Mellon University. Retrieved from: https://www.cs.cmu.edu/link/
research-notebook-computational-thinking-what-and-why

Yadav, A., Stephenson, C., & Hong, H. (2017). Computational thinking for teacher education. Communi-
cations of the ACM, 60(4), 55–62. https://doi.org/10.1145/2994591

Yu, J., & Roque, R. (2019). A review of computational toys and kits for young children. Int’l J Child-
Computer Interaction, 21(C), 17–36. https://doi.org/10.1016/j.ijcci.2019.04.001

Zapata, J. M., Jameson, E., Ros, M. Z., & Merrill, D. (2021). El Principio De Activación en El Pensam-
iento Computacional, las Matemáticas Y El STEM: Presentación Del número especial. Revista De
Educación a Distancia (RED), 21(68), 1–9. https://doi.org/10.6018/red.498531

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Authors and Affiliations

Ainhoa Berciano1 · Astrid Cuida2 · María-Luisa Novo2

	
 Ainhoa Berciano
ainhoa.berciano@ehu.eus

Astrid Cuida
mariaastrid.cuida.gomez@uva.es

María-Luisa Novo
marialuisa.novo@uva.es

1	 Department of Didactics of Mathematics, Experimental and Social Sciences, University of
the Basque Country (UPV/EHU), Leioa, Spain

2	 Department of Didactics of Experimental, Social Sciences and Mathematics, University of
Valladolid (UVa), Valladolid, Spain

1 3

6949

https://doi.org/10.1108/ILS-05-2018-0038
https://doi.org/10.1007/s10639-021-10708-8
https://doi.org/10.31512/encitec.v11i1.390
https://doi.org/10.1007/s10798-017-9400-9
https://doi.org/10.28945/3768
https://doi.org/10.7551/mitpress/10655.001.0001
https://doi.org/10.7551/mitpress/10655.001.0001
https://doi.org/10.1145/1118178.1118215
https://doi.org/10.1145/1118178.1118215
https://www.cs.cmu.edu/link/research-notebook-computational-thinking-what-and-why
https://www.cs.cmu.edu/link/research-notebook-computational-thinking-what-and-why
https://doi.org/10.1145/2994591
https://doi.org/10.1016/j.ijcci.2019.04.001
https://doi.org/10.6018/red.498531
http://orcid.org/0000-0001-7399-4745
http://orcid.org/0000-0002-9682-0825
http://orcid.org/0000-0001-6621-1255

	﻿The importance of coding and translation between programming languages in sequential activities of pre-service teachers: an approach
	﻿Abstract
	﻿1﻿ ﻿Introduction
	﻿2﻿ ﻿Theoretical framework
	﻿2.1﻿ ﻿Computational thinking, programming and coding
	﻿2.2﻿ ﻿Computational thinking, programming and coding in early childhood education
	﻿2.3﻿ ﻿Initial teacher training for the development of computational thinking

	﻿3﻿ ﻿Methodology
	﻿3.1﻿ ﻿Context and participants
	﻿3.2﻿ ﻿Data collection
	﻿3.2.1﻿ ﻿Sessions 1, 2 and 3
	﻿3.2.2﻿ ﻿Session 4

	﻿3.3﻿ ﻿Data analysis
	﻿4﻿ ﻿Results
	﻿4.1﻿ ﻿Translation errors Cubetto-> Bee-Bot and Cubetto-> Scratch
	﻿4.1.1﻿ ﻿Examples of errors detected in the analysis of session 2
	﻿4.1.2﻿ ﻿Examples of participant productions observed in session 3

	﻿4.2﻿ ﻿Evolution of the trainee teachers’ ability to solve a Cubetto to natural language translation task carried out at three points during the didactic sequence (initial, intermediate and final)
	﻿4.3﻿ ﻿Degree of correctness and efficiency in a task translating natural language to Cubetto
	﻿4.3.1﻿ ﻿Example of optimal tasks collected from session 4
	﻿4.3.2﻿ ﻿Analysis of the most common types of errors

	﻿5﻿ ﻿Discussion and conclusions
	﻿5.1﻿ ﻿Limitations and future research lines

	﻿References

