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Abstract

The cell cytoplasm is a crowded environment that is host to a variety of macromolecules. The motions
of these molecules deviate from simple Brownian statistics, yet the physical origin of the heavy-tailed,
non-Gaussian step-length distributions reported in the live-cell experiments remains unclear. This work
presents a fully automated, colloidal molecular dynamics framework in LAMMPS to assert whether
size polydispersity by itself can cause such heterogeneity. Proteins and complexes are represented
as rigid, colloidal spheres (log-normal distributed radii from 2 to 40 nm) and are packed at 25-45%
volume fractions and evolved for up to 0.5 ms with Langevin dynamics. A Python code is developed
that fully automates the process of creating a simulation setup, from generating overlap-free initial
configurations, to calculating all N(N + 1)/2 cutoff distances (where N is the number of different
radii present in the simulation) for the colloid pair coefficients. Strong-scaling benchmark and efficient
neighbor list parameters optimization resulted in reaching a performance of ~ 420 us of simulation
time per one day of real time.

When the colloid potential Hamaker constant is set to 107° eV the colloids behave as hard spheres:
diffusion coefficients follow the inverse-radius Stokes-Einstein trend and retain Brownian motion statis-
tics across all crowding levels. Raising A above 0.1 eV introduces short-range attraction that leaves
small particles almost unchanged but doubles the long-time diffusivity of the largest particles and,
crucially, produces the exponential tails in the log-probability of the step-lengths - mirroring the ex-
perimental results. Thus, polydispersity and steric crowding alone insufficient. Weak inter-colloidal

attractions are likely essential for the observed cytoplasmic heterogeneity.

Resumen

El citoplasma celular es un entorno congestionado que alberga una amplia variedad de macromoléculas.
Los movimientos de estas moléculas se apartan de las estadisticas brownianas simples; sin embargo, el
origen fisico de las distribuciones de longitudes de paso con colas pesadas y no gaussianas observadas
en los experimentos in vivo permanece sin esclarecerse. Este trabajo presenta un marco de dinamica
molecular coloidal totalmente automatizado en LAMMPS para determinar si la mera polidispersidad
de tamanos puede generar tal heterogeneidad. Las proteinas y los complejos se representan como esferas
coloidales rigidas (radios distribuidos log—normalmente de 2 a 40 nm), se empaquetan a fracciones de
volumen del 25-45 % y se hacen evolucionar durante hasta 0.5 ms mediante dinamica de Langevin. Se
desarroll6 un c6digo en PYTHON que automatiza completamente la creacion de la configuracion de
simulacion, desde la generaciéon de configuraciones iniciales sin solapamientos hasta el calculo de las
N(N+1)/2 distancias de corte (donde N es el nimero de radios distintos presentes) para los coeficientes
de pares coloidales. Las pruebas de escalado fuerte y la optimizacion eficiente de los parametros de las
listas de vecinos permitieron alcanzar un rendimiento de = 420 us de tiempo de simulacién por dia de
tiempo real.

Cuando la constante de Hamaker del potencial coloidal se fija en 107° eV, los coloides se comportan
como esferas duras: los coeficientes de difusion siguen la tendencia de Stokes—Einstein inversa al radio
y mantienen estadisticas brownianas en todos los niveles de hacinamiento. Elevar A por encima de
0.1eV introduce una atraccion de corto alcance que apenas afecta a las particulas pequenas, pero
duplica la difusividad a largo plazo de las particulas mas grandes y, de forma crucial, produce colas

exponenciales en el logaritmo de la probabilidad de las longitudes de paso, reproduciendo los resultados



experimentales. Por lo tanto, la polidispersidad y el hacinamiento estérico por si solos son insuficientes:
las débiles atracciones intercoloidales son probablemente esenciales para la heterogeneidad observada

en el citoplasma.



1 Introduction

A cell is the most basic unit of life in all living organisms, with the exception of viruses.! Throughout
evolution, life has progressed from simple unicellular forms to increasingly complex multicellular organ-
isms. This transformation has involved both the multiplication of cells and the specialization of their
functions. As a result, the diversity of life seen today is deeply rooted in the structure and behavior
of cells. While cells can vary widely between species and among tissues within the same organism,
they share fundamental characteristics that support life. Gaining a clear understanding of how a cell
works is essential to grasp how organisms develop, survive, and respond to their environment. Cellular
activity underlies all physiological processes, and even small disruptions at the cellular level can lead
to significant consequences.! For these reasons, the study of cells is fundamental to understanding life
at its most essential level. Although the term “cell” is familiar to most people and widely employed
across many disciplines, the cell itself remains an active subject of research; several of its properties
and the phenomena that occur within it are still not fully understood.?”” continue to investigate basic
questions, such as how molecules move through the crowded environment of the cytoplasm. These
studies reveal that even the most familiar aspects of cell biology involve complex dynamics that are
not yet fully explained. Gaining a deeper understanding of how cells function is key to explaining how
organisms maintain balance, how diseases begin at the cellular level, and how living systems respond
to their surroundings. This knowledge can be of great value in fields such as scientific research in
health, development, and biological function, among others.

Inside a cell, the cytoplasm is the space where most biochemical reactions take place. It lies between
the membrane and the organelles, and it might seem like a simple fluid at first, but it is actually very
crowded and much more complex than it was once thought to be. This space is filled with proteins,
nucleic acids, and many other large molecules that are constantly moving and interacting. Because of
this, molecules cannot travel freely. Their movement is affected by how much space is available and by
interactions such as attraction or repulsion based on their charge. This makes the environment inside
the cytoplasm very different from a dilute solution. Molecules might move slowly, follow unusual paths,
or even get temporarily stuck. These conditions influence how reactions happen and how efficiently
the cell can carry out its functions. The structure of the cytoplasm is not fixed either. It can change
depending on what the cell needs to do at a given time. The way molecules are packed also creates
differences in how fast or slow they move from one area to another. Some areas inside the cytoplasm
may allow easier movement, while others act more like barriers. This uneven movement adds another
layer of complexity to how the cell manages its internal processes.?

As outlined earlier, the cytoplasm has been shown in multiple studies to consist of a diverse range of
elements distributed throughout its aqueous environment.® Continuing with the ideas described before,
it can be said that the density in the cytoplasm reflects the combined presence of small molecules,
such as osmolytes, and larger macromolecules. While both contribute to the physical properties of the
cytoplasm, macromolecules are considered to account for a substantial portion of its overall density
under normal physiological conditions.?*

The concentration of macromolecules within the cytoplasm influences how substances move at
intermediate scales by limiting the available space for diffusion.? For this reason, particles in the range
of 2 nm to 40 nm radius are the focus of this work. Other recent works,”>* in mostly experimental
ways, have studied this range of sizes of particles; for example, in fission yeast, 40 nm particles move

significantly slower under crowded conditions, while in E. coli, smaller particles around 20 nm tend to



accumulate in the nucleoid and larger ones, such as 50 nm, are excluded. This size-dependent behavior
suggests that particle distribution inside cells is not random but shaped by physical properties like
size, charge, and crowding. These factors directly affect how molecules move, interact, and localize
within the cytoplasm.?

Although this is a field in constant development, given its potential to provide explanations and
interpretations of various biological phenomena, it still presents several challenges. So far, most studies
have been carried out experimentally. While these efforts have yielded valuable insights, they are
not without limitations. Despite the availability of advanced methodologies well fitted to specific
cellular phenomena, broader investigations comparing variations across cell types and organisms remain
limited.?

Moreover, there is a growing demand for the development of computational models capable of
shedding light on the physical and causal mechanisms behind the dynamic properties of the cytoplasm
observed in experiments. There are open-source simulation software such as LAMMPS or GROMACS,
which of course open new possibilities in this area. While the idea of creating computational systems

410" it remains a field with significant unex-

to model certain attributes or effects is not entirely new
plored potential when applied to complex biological environments like the cytoplasm. There are many
advantages to simulating such systems, but one of the most compelling—especially in the context of
this work—is the ability to visualize particles and dynamic phenomena that are currently beyond the
reach of experimental techniques.

Experiments conducted by the MILE group in LAAS-CNRS have reported non-Brownian particle
displacements in the cytoplasm of cells from diverse species (see Fig.1). The resulting heavy-tailed
distribution points to some underlying heterogeneity, but its origin is still uncertain. One hypothesis
explored here is that this heterogeneity could be linked to cytoplasmic polydispersity—that is, the

broad range of macromolecular sizes present within the cell.
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Figure 1: Universal non-Gaussian shape of intracellular step-length distributions. Log-lin
plot of the probability density P(dz/(dx)) for one-frame displacements dz of 40 nm fluorescent GEM
probes in the cytoplasm of very different organisms and metabolic states (solid Coloured curves;
species/conditions listed at right). Displacements are normalized by the corresponding mean step
length (dz) so all curves are dimensionless and directly comparable. The dashed blue line is the
Rayleigh form expected for purely Brownian (thermal) diffusion in two dimensions. Every biological
condition deviates strongly from the Brownian reference, showing a heavy-tailed distribution that is
nevertheless conserved in shape across species ranging from bacteria to plants and mammalian cells,
as well as under chemical (rapamycin) and energetic perturbations. This collapse onto a single master
curve highlights a common, active and heterogeneous character of cytoplasmic dynamics.

1.1 Objective

The purpose of this work is to initiate a theoretical investigation of the cytoplasm by developing a
simplified computational model using LAMMPS. This model is based on classical molecular dynamics
and simulates colloids to represent macromolecules ranging from 2 nm to 40 nm, distributed according
to a log-normal profile. The default colloid input settings are modified to more accurately mimic a
small, biologically relevant portion of the cytoplasm—excluding the nucleus—to manage complexity
while preserving physical accuracy. Both monodisperse and polydisperse systems are considered, with
particular emphasis on long-timescale simulations in the millisecond range. These extended simulations
are meant to be possible through the use of high-performance computing resources. Additionally, a
systematic analysis of the simulation potential and its key parameters will be carried out to gain a better
understanding of the system’s physical properties and emergent behavior under varying conditions.
The central question is whether introducing polydispersity into this confined patch of cytoplasm
can reproduce the exponential tail observed in Figure 1. If the simulated step-length distribution does
(or does not) show such a tail, the result will help evaluate—and potentially eliminate—one of the

proposed explanations for the cytoplasm’s heterogeneous dynamics.



General steps to reach the goal

1. Assess molecular-dynamics methodology
Review the relevant literature and clarify what classical MD can—and cannot—capture for the

cytoplasmic system of interest.

2. Select an MD platform and force-field package
Work with colloidal systems

3. Build and test initial input files
Familiarize oneself with key parameters and run short, exploratory simulations to verify basic
stability.

4. Refine parameters and automate setup
Tune interaction parameters, customize input scripts, and develop Python utilities to streamline

configuration, enabling trajectories that reach the millisecond timescale required for this project.

5. Optimize computational performance
Conduct benchmarking runs and iterative adjustments to maximize efficiency and minimize com-

putational cost without sacrificing physical fidelity.

6. Perform preliminary “sanity-check’” analyses
Extract diffusion coefficients from short simulations and compare them with theoretical expec-

tations (e.g. via the Stokes—Einstein relation).

7. Run extended simulations and analyze outputs
Generate long trajectories, compute step-length distributions, and determine whether polydis-
persity in the model can reproduce the exponential tail observed experimentally, thereby testing

the core hypothesis.



2 Theoretical background

This section outlines the fundamental concepts and theoretical principles that support the development
of this work. It includes the necessary background to understand the methodologies applied and
provides context for the computational strategies used in the later sections. The theoretical framework
presented here serves as the foundation for the interpretation of the results and the justification of the

chosen approaches.

2.1 Molecular dynamics (MD)

Molecular Dynamics (MD) is a powerful computational technique used to study the behavior of matter
at the atomic and molecular level. It simulates the movement of atoms based on their initial positions
and velocities. By simulating the interactions between particles over time, MD helps understand how
materials behave under different conditions. Instead of performing experiments in a laboratory, it uses
computers to model systems and observe how atoms and molecules move and interact.!

This method is especially useful when studying systems that are difficult or impossible to examine
experimentally. MD is based on classical physics, where Newton’s laws are applied to many-body
systems to calculate the motion of particles. With the rise of computational power, MD has become

an essential tool in physics, chemistry, biology, and materials science.!!

2.1.1 Equations of motion

The motion of atoms in a system is governed by Newton’s second law, which relates the force acting

on a particle to the time derivative of its momentum:'?

dp;
F = 1
=2 (1)

Here, F; is the force and p; is the momentum of atom i. For conservative systems, the force is also

defined as the negative gradient of the potential energy V with respect to position:

av
F=—— 2
ar (2)
Equating the two expressions yields the first Hamilton equation:
dp; av
- _ 3
dt d’l“z' ( )

The second Hamilton equation is derived by differentiating the kinetic energy T; with respect to

2
the momentum p;. Given that T; = %, where m; is the mass of the particle, the result is:

dT; d ( p? Di dr;
= = — = ; =
dp;  dp; \2m; ’

(4)

These two equations describe the time evolution of both the coordinates and momenta of atoms in

a molecular system.
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2.1.2 Time integration algorithm

In 1967, Loup Verlet introduced a numerical integration scheme based on the central differences method
that is still widely used in molecular dynamics (MD) simulations today.!® This method is appreciated
for its simplicity and for conserving total energy over long simulations.

The Verlet algorithm is derived by doing a Taylor expansion of the position vector r(t) forward

and backward in time:

r(t+ At) = r(t) + v(t)At + %a(t)AtQ +0(A%) (5)

r(t — At) =r(t) — v(t)At + %a(zﬁ)At2 + O(A?) (6)

Adding Equations 5 and 6 eliminates the velocity term:

r(t + At) = 2r(t) — r(t — At) + a(t) At*> + O(At?) (7)

This is the Verlet algorithm. It is symmetric and time-reversible, and it shows good energy con-
servation over long simulations. However, the velocity is not explicitly included. If needed, it can be

estimated by using:

Cr(t+ A —r(t - At)
v(t) = 2A¢

One limitation is that the Verlet algorithm is not self-starting; it needs two previous positions

+ O(At?) (8)

to begin the simulation. To fix this, the Velocity Verlet algorithm was introduced.!'* This version
explicitly updates both the position and velocity at each time step. This algorithm is given by two

main equations:

(At)?

r(t+ At) =r(t) + v(t)At + a(t) (9)

2
vu+A@:ww+%@@+au+AmAt (10)

This algorithm requires only position, velocity and acceleration at a time ¢. Each timestep, position
is updated based on current velocity and acceleration. This is followed by recalculating forces and thus
accelerations at the new positions. Finally, velocity is updated using the average acceleration over the

timestep.

2.1.3 Force fields

In classical molecular dynamics, a force field is a mathematical model that defines how the potential
energy of a system depends on the spatial configuration of its constituent particles. This energy is
typically expressed as a function U(ry, s, ..., ry), and it incorporates various parameters that describe
the nature of interparticle interactions. These parameters are often derived from quantum mechanical
computations or are adjusted to reproduce experimental data obtained from techniques such as X-ray
15

or neutron diffraction, Raman and infrared spectroscopy, or nuclear magnetic resonance.

The goal of a force field is to approximate the true potential surface of the system using a form

11



that is computationally tractable yet sufficiently accurate to capture the physical properties of interest.
In molecular systems, atoms are frequently modeled as masses connected by springs, representing
bonds and angles, while non-bonded interactions are commonly handled through Lennard-Jones and

Coulombic terms. A typical expression for a classical force field can be written as:

U= Z %kb(r—ro)Q—l— Z %ka(H—Ho)Q—i— Z %[14—005(71(;5—5)]

bonds angles torsions

[ Tij 2 Oij o 4:9; ()
£ S e Sy | (72) () A2
improper LJ Tij Tij elec Tij

This general formulation underpins many of the empirical force fields used in classical simulations.'®

This general formulation contains terms that can describe complex molecular motions such as bond
stretching, angle bending, and dihedral torsions. However, systems such as colloidal suspensions can
effectively be modeled as assemblies of rigid spherical particles. Rather than from explicit chemical
bonds, the dominant interactions in such systems arise from excluded volume effects and short- or
long-range repulsions or attractions.

In such cases, the pairwise interaction potentials are usually simply a function of interparticle
distance and can be chosen to capture certain essential physics such as van der Waals attraction or

Coulombic interaction, which is the case with the last two terms in Eq 11.

Lennard Jones Potential

The Lennard-Jones potential is a pair potential widely used in molecular simulations to represent

the interaction between atoms or molecules.'%17 The equation most commonly employed is

= [0~ 0] E

Also, the graphic representation is

. Lennard-jones Potential

— Vi) =4e[(2)2 - )5
----- Minimum (equilibrium)
154

104

0.5 1

Potential V(r)

0.0

~1.04

=15

10 15 2.0 2.5 3.0
Distance r

Figure 2: Lennard-Jones potential curve showing the balance between repulsive and attractive forces
between neutral atoms. The curve reaches its minimum at the equilibrium distance where the net
force is zero. In this plot, the parameters are set to e = 1.0 and o = 1.0.

where u(r) is the potential energy as a function of the distance r between two particles. The
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parameter € is the depth of the potential well and o is the distance at which the potential energy is
zero.'” The r~!2 term represents short-range repulsion, primarily due to Pauli exclusion, and the r—6
term represents the long-range dispersion attraction or van der Waals interaction.'®

This potential was originally developed to describe the cohesive energy of crystals of noble gases
such as argon. After London derived that dispersion interactions decay as r—%, the attractive exponent
was set to six, and the repulsive exponent was set to twelve for computational simplicity.!%'” The
Lennard-Jones potential has become a standard model for simple atomic systems and is commonly
used for benchmarking and as a reference in the development and testing of simulation methods.'®

In practice, the Lennard-Jones potential is often truncated at a finite cutoff distance r. to reduce
computational cost. Various truncation and shifting schemes exist, and these can produce significantly
different thermodynamic and transport properties, even though the underlying potential is referred to
as “Lennard-Jones” in each case. There is therefore no unique standard, and care is required when
comparing results across different studies.'”

The Lennard-Jones potential is well-suited for modeling simple liquids and gases, particularly
monatomic systems. However, it is also commonly applied to more complex systems, even when its
underlying assumptions may not fully apply. In such cases, more advanced or system-specific potentials
may be more appropriate. Still, the Lennard-Jones potential remains widely used due to its simplicity,

efficiency, and long-standing role in molecular simulations.%:7

Pair style colloid

To accurately describe the interactions between large colloidal particles or anisotropic molecules in
simulations, it is very important to consider that each particle comprises many smaller interacting sites,
rather than treating them as point particles. In this context, the total interaction energy between two
such bodies can be derived by summing, or in the continuum limit, integrating the pairwise Lennard-
Jones (LJ) potential over the volumes of both particles. This approach yields the so-called Hamaker
potential, which provides a rigorous, parameter-free description of colloidal interactions with a clear
microscopic interpretation.'®

For two spherical particles of radii a; and as, separated by a center-to-center distance r, the
attractive part of the interaction is derived from the van der Waals (r~%) component of the LJ potential

and can be written as:

Ao 2a1 a4 2a1a9 r? — (a1 + az)?
U = —_—= In{| ——— 13
Alr) 6 | (a1 ta? 7P (a—a)? (TQ — (a1 — a)? "

where Aqo is the Hamaker constant, encapsulating material properties and number densities.!® The
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repulsive part, originating from the short-range (r~'2) component of the LJ potential, is given by:

Ap 08 |12 = Tr(a1 + az) 4 6(a? + Taraz + a3)

Un(r) = 37500 + (r—ai —az)"

N r? 4+ Tr(ay + az) + 6(a? + Taraz + a3)
(r+a1 4+ a2)”

3 r? + Tr(a; — ag) + 6(a% — Tajas + a%)
(r4+a; —a9)”

r? —Tr(a; — az) + 6(@% — Tajag + a%)
(r—ai+a)”

where o is the size of the constituent Lennard-Jones particle, with the size of the colloidal particles
being greater than o, a_1 and a_ 2 are the radii of two particles, r is the distance from the center of
one colloid to the center of the other one.™

The total potential function is then given by:

U(r) = Ua(r) + Ur(r) (15)

The Hamaker-derived potentials are rooted directly in the physical properties and geometry of the
interacting particles. Specifically, the interaction strength and distance dependence naturally follow
from the underlying LJ pair potential, the sizes of the spheres, and the Hamaker constant, without the
need for arbitrary fitting or empirical correction factors. This physical basis ensures that the model
remains predictive for a wide range of particle sizes and compositions, making it particularly valuable
for studies of colloidal suspensions, liquid crystals, and related systems where anisotropy and finite-size
effects are impor‘can‘c.18

Figure 3 shows the colloid potential curves for a pair of particles of radius 20 A. It can be seen
that increasing the value of the Hamaker constant from very small values results in appearance of an
attraction well. The value of o which scales the Ug component causes opposite effect. Furthermore,
it appears that increasing both A and o shifts the potential to the right, effectively increasing the
distance at which the particles start interacting. It can also be noted that in the limits of very low A

and o one can mimic a hard-sphere potential.
Hard-sphere

The hard-sphere potential (see Fig 4), one of the simplest and most thoroughly developed pair
interaction models, serves as a reference system for tuning particle behavior.?° In the hard-sphere
model, each particle behaves as a perfectly rigid sphere: the moment their surfaces touch, they expe-

rience an infinitely large repulsive energy, and when they are separated, they are not interacting. This

interaction is defined as:

where h is surface-to-surface distance. This means that the only interactions with hard-sphere

14
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Figure 3: Colloid potential function plotted for two particles of radius 20 A. Left graph shows curves
for value of o = 10 A with varying A, and the right graph shows curves for value of 4 = 0.1V with

varying o

potential are instantaneous elastic collisions. Although simple by definition, such potential definition

is hard to simulate using time-integration, as the potential energy of an interaction can jump from 0

to oo in one timestep. This necessitates modeling hard-sphere potential with approximated steep soft

repulsion potentials and sufficiently small time-steps. As an alternative to time-integration simulations,

event-driven simulations avoid this issue by jumping directly from one collision to the next.

Hard-sphere potential

Potential U(h)

00 02 04
Surface-to-surface distance h

Figure 4: Hard-sphere potential.
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2.1.4 Periodic Boundary Conditions

Periodic boundary conditions provide a method for simulating large or infinite systems by using a
smaller, repeating segment called a unit cell as it is exemplified in Fig 5. This approach allows the
system to be represented as if it extends endlessly in all directions, making complex systems more

manageable to study.

Figure 5: Simple pictorial representation of periodic boundary conditions. A very large or infinite
space is considered, which is difficult or impossible to study in its entirety, so a representative sample
of it is taken instead.

To implement this idea in practice, periodic boundary conditions are applied to the simulation
region. This technique replicates the simulation box in all directions, creating a continuous and uniform
system. When an atom leaves one side of the box, it reenters from the opposite side. Atoms near
the boundaries interact with those in neighboring copies of the box, which prevents artificial effects
caused by physical walls and ensures consistent behavior throughout the system. Atomic positions are
adjusted when they move beyond the defined region to maintain correct calculations of distances and
interactions. The simulation box is often shaped as a rectangular prism, which is a three-dimensional
object with six rectangular faces and right angles between all sides. It is defined by specific lengths
along the x, y, and z directions and is commonly used for its simplicity in numerical implementation.
However, other geometries such as hexagonal or truncated octahedral cells may be chosen to reduce
surface effects or better match the symmetry of certain structures. Although periodic boundaries
greatly improve the physical realism of simulations, some finite-size effects may still occur, particularly
in systems with long-range interactions or strong spatial correlations. These effects should be carefully

considered during both the setup and analysis of the simulation.'!

2.1.5 Temperature in molecular dynamics simulations

Molecular dynamics simulations are often described as computational experiments because they follow
a procedure similar in spirit to laboratory-based investigations. To begin, one defines a model system
composed of a set of interacting particles, assigns physical parameters such as mass and initial velocity,
and allows the system to evolve according to classical mechanics. The evolution is governed by Newton’s

second law, and trajectories are generated by integrating the resulting equations of motion over small
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time steps.'?

Just as in physical experiments, measurements obtained from simulations require care and plan-
ning. A poorly prepared initial state, or insufficient relaxation time, can lead to incorrect conclusions.
Before extracting physical quantities, it is necessary to ensure that the system has reached equilibrium
and that any transient behaviors have subsided. Furthermore, to minimize the effects of random fluc-
tuations, time averaging over long trajectories is typically required. The calculation of thermodynamic
observables in MD relies on quantities that are accessible from the simulation output, such as parti-
cle positions and velocities. One central example is temperature. In a classical system, temperature
is defined through the kinetic energy of the particles. According to the equipartition theorem, each
quadratic degree of freedom contributes an average energy of %kBT where kp is the Boltzmann con-
stant and 7T is the temperature. This leads to a practical expression for computing the instantaneous
temperature based on particle velocities.'? For a system with N particles and of N + degrees of freedom,

the temperature at a given time ¢ is estimated by using:

1 N
T0) = pog domak () (16)

Because particle velocities fluctuate throughout the simulation, so does the instantaneous tem-
perature. These fluctuations are statistical in nature and tend to diminish with larger system size,
scaling inversely with the square root of the number of degrees of freedom. In practice, averaging the

temperature over many time steps provides a stable and reliable estimate.!?

2.1.6 Ensembles

In classical molecular dynamics, energy is conserved as it transitions back and forth between poten-
tial and kinetic energy, keeping the total constant throughout the simulation.?! Although the total
energy remains conserved, it is constantly exchanged between particles within the system. As a result,
multiple microscopic configurations can exist that share the same total energy.?! These configurations
collectively form what is known as an ensemble — a conceptual collection of a large number of identical
systems, each representing a possible microstate consistent with the same macroscopic conditions.??

Once the idea of an ensemble is established, it becomes essential to distinguish between different
types based on the physical constraints imposed on the system. The microcanonical ensemble describes
an isolated system with fixed energy E, volume V, and particle number N. Under these conditions,
no exchange of energy or particles with the surroundings is allowed, and all accessible microstates are
considered equally probable. The entropy S is related to the logarithm of the number of microstates,
and thermodynamic quantities such as temperature T' and pressure P are obtained through appropriate
derivatives of S.2?

The canonical ensemble applies to systems in thermal equilibrium with a heat reservoir at a fixed
temperature T, allowing energy exchange while keeping V' and N constant. As a result, the system’s
energy fluctuates, and microstates are no longer equally probable. Instead, their probabilities follow the
Boltzmann distribution, which decreases exponentially with energy. The canonical partition function
Q(T,V,N), from which all thermodynamic properties can be derived, including the Helmholtz free
energy A.%?

The grand canonical ensemble extends this framework to open systems that can exchange both

energy and particles with external reservoirs. These systems are characterized by constant temperature
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T, volume V', and chemical potential p. Here, both the energy and the particle number fluctuate. The
probability of a particular microstate depends on both its energy and particle number, weighted by the
grand partition function Z(T,V, ). This leads to the grand potential ¥, from which one can compute
pressure, entropy, and average particle number.??

Each ensemble corresponds to a distinct thermodynamic potential and is suited to particular experi-
mental or theoretical conditions. Despite their differences in formulation, all ensembles yield equivalent
thermodynamic predictions in the thermodynamic limit, making them flexible and powerful tools in
statistical mechanics.??

In summary, molecular dynamics naturally is NVE.?3 However, to more closely reproduce exper-
imental conditions, it is often desirable to control the temperature of the system. For this reason,
methods that allow simulations to sample an NVT ensemble are introduced. This work focuses on
both of these ensembles.

There are many different thermostats available in LAMMPS. In the present work, the only two
different ones to be discussed are: Langevin (also for more about Langevin dynamics see section 2.2)

and Nosé-Hoover.

2.1.7 Thermostat: Langevin and Nosé-Hoover

Langevin

To simulate systems at constant temperature, the Langevin thermostat is commonly employed in
classical molecular dynamics (MD). This approach modifies the equations of motion by introducing
additional forces that account for thermal effects due to collisions with an implicit heat bath. In
contrast to the conservative form of Newton’s second law given in Eq. 3, the Langevin equation adds

a friction force and a random force to the momentum update:

dpi - _dV
dt o d?"i

— YiDi + fis (17)

where ~; is a friction coeflicient representing viscous damping, and f; is a random force accounting
for thermal collisions with other particles.?* The friction term slows down particle motion (viscosity),
while the random force models thermal agitation (collisions). Together, they regulate the system’s
temperature and ensure sampling from the canonical NVT ensemble.

The random force f; is drawn from a Gaussian distribution with zero mean and a variance given
by:

0_2 _ Zmi’yik‘BT

’ At

where m; is the particle mass, kg is Boltzmann’s constant, T is the desired temperature, and At is

(18)

the integration timestep.?* These forces are applied at each timestep or at regular intervals defined by
a collision frequency.

Although the Langevin formulation alters the momentum evolution relative to Eq 3, it remains
consistent with the velocity definition in Eq 4 via v; = p;/m;.

As seen in Section 2.1, the evolution of atomic positions and momenta is typically described by
Newton’s second law (see Eq. 1-4). These equations describe an isolated system where total energy is
conserved, NVE.
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Nosé-Hoover

The Nosé-Hoover thermostat is one such method, widely used due to its ability to generate a
canonical distribution without disrupting the deterministic and time-reversible nature of Newtonian
dynamics.2%-26

The Nosé-Hoover method modifies the classical equations of motion by introducing an additional
variable, ((t), which acts as a feedback control term representing the coupling to a thermal reservoir.
The force equation is altered by adding a friction-like term that scales with the momentum, resulting

in the modified momentum equation:
Py = F; — p¢(t)Pi(t) (19)

Here, p is a coupling constant, and the term —u((¢t) P; dynamically adjusts the system’s kinetic energy.
The evolution of ((t) itself is governed by:

() = “Lt)ﬂ)— To (20)
where T'(t) is the instantaneous temperature of the system, and T is the desired target temperature.
This integral feedback mechanism ensures that when the system’s temperature deviates from Ty, the
friction term adjusts accordingly to return the system toward equilibrium.

The main advantage of the Nosé-Hoover thermostat is that it enables correct sampling from the
canonical ensemble while preserving the time-reversibility of the equations of motion. However, if
the thermostat parameters are poorly chosen, it can lead to oscillatory behavior or even persistent

deviations from the canonical distribution.2”

2.2 Langevin dynamics

Langevin dynamics offers a way to simulate particle motion while accounting for thermal fluctuations,
without explicitly including solvent molecules.?® Instead, it represents the solvent’s influence through
additional frictional and random forces, allowing the system to behave similarly to how colloidal
particles move in a fluid, consistent with Brownian motion.2*

In this framework, the total force acting on a particle is composed of three main components:
conservative force F. , a frictional drag force - viscous damping proportional to particles’ velocity F,
and a random force simulating solvent particles bumping randomly into the colloid particles F;.. These

forces combine to form the Langevin force:?4

FLangcvin =F.+ Fj + F; (21)

The conservative force F,. coming from the pair-style/inter-particle interactions. The frictional

force opposes the motion of the particle and is linearly proportional to its velocity:?*

m
Fr=——y 22
i 5 (22)

In this equation, m is the mass of the particle, v is its velocity, and - is the damping constant.

This parameter controls how strongly the particle’s velocity is suppressed to drive the system toward
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thermal equilibrium.?42°

The damping constant v can also be expressed in terms of a damping time 7:242

m
T=— (23)

v
For spherical particles immersed in a viscous medium, the damping constant can be estimated using

Stokes’ law:2429

v = 3mnd (24)

where 7 is the viscosity of the surrounding fluid and d is the diameter of the particle. Substituting

this into the expression for 7, it is obtain:242°

m
T= 3rnd (25)

This relation helps connect microscopic properties of the particle and solvent to the thermostat
parameters in simulations. If one knows the desired viscosity and particle size, one can compute 7 and
assign it to each particle type accordingly—particularly when configuring ‘fix langevin‘ in LAMMPS
or similar tools. A shorter T corresponds to stronger damping (high viscosity), and a longer 7 suggests
a low-viscosity environment.?42°

The stochastic force F;. accounts for the random impacts from solvent molecules. While each colli-
sion is unpredictable, their collective influence is statistically described by the fluctuation-dissipation
theorem, which ensures that the energy introduced by thermal kicks is balanced by the energy lost

through friction. The variance of this random force is expressed as:**

kBTm
~ydt

(26)

where kp is the Boltzmann constant, T is the temperature, and dt is the simulation time step.
The choice of v significantly affects system behavior. A small damping constant corresponds to
rapid temperature relaxation and mimics a low-viscosity solvent, while a larger v leads to slower thermal
adjustment. The particle mass m should also be scaled according to particle size, as it impacts both
the drag force and the intensity of the random fluctuations.?*
Langevin thermostats are particularly useful for maintaining temperature in molecular dynamics

simulations while preserving realistic thermal motion without modeling solvent particles explicitly.
Hydrodynamic interactions

Particles moving through a viscous fluid generate a flow field that alters the motion of surrounding
particles even if they are separated by a considerable distance. The disturbance in the fluid does not
fade quickly but instead decreases slowly over space. These solvent-mediated, long-range effects occur
only when particles are in motion and are known as hydrodynamic interactions.?°

The system is modeled via Langevin dynamics with an implicit solvent, a standard approach that
neglects explicit hydrodynamic interactions (HIs) while still capturing Brownian motion in colloids.3!

In this approximation, solvent-mediated coupling between particles is ignored.?! At the present volume
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fraction (= 25%), hydrodynamic coupling can influence the dynamics; however, many studies of col-
loidal diffusion at similar concentrations omit HIs for simplicity, especially when focusing on short-time
or intermediate-time behavior.3? Incorporating full many-body Hls via methods such as Stokesian dy-
namics or lattice Boltzmann is computationally intensive and often unnecessary for moderately sized

systems.?3

2.3 Dynamic of colloids

Colloidal systems involve large molecules or aggregates termed colloidal or Brownian particles, ex-
hibiting random motion due to collisions with solvent molecules, a phenomenon known as Brownian
motion. Brownian motion reflects thermal agitation observable through microscopy and highlights the
solvent’s molecular structure indirectly. Such systems are defined by size ranges: colloidal particles

must be substantially larger than solvent molecules but small enough to remain thermally agitated.?®

The minimum colloidal particle size is determined by ensuring multiple solvent molecules simul-
taneously interact with its surface, approximately 1 nanometer or larger, typically about ten times
the solvent molecule size. The maximum particle size, typically around 10 micrometers, is limited by
gravitational influences overshadowing thermal motion. Particles surpassing this upper limit settle due

to gravity, preventing observable Brownian motion.2°

These colloidal dispersions vary from rigid particle systems to flexible macromolecules or aggregates
of smaller molecules. Macromolecular colloids, like large proteins or polymer chains, embody thermo-
dynamic equilibrium with their surroundings, revealing insights into molecular behavior and solution
dynamics at microscopic levels. Understanding colloids bridges microscopic molecular interactions to

macroscopic properties like viscosity and temperature dependence.?’

Colloidal suspensions are common in both natural and industrial systems. In biological envi-
ronments, the interior of a cell contains proteins, organelles, and other macromolecules that, while
structurally diverse, can be modeled as colloidal particles to capture essential aspects of their behav-
ior in a simplified form. As mentioned previously in Section 1, these macromolecules contribute to
the crowded nature of the cytoplasm. According to both previous and current studies, modeling this
medium as a dense colloidal suspension provides a useful starting point for understanding key processes
linked to cellular function.®3° This approach offers a less complex representation of the cytoplasm that

can be extended progressively toward a more detailed understanding of its supramolecular organization.

To reduce computational costs, this study employs a coarse-grained modeling approach, repre-
senting complex biological macromolecules as colloidal particles. Fully representing macromolecules
at an atomic level, including structural details such as side chains and internal flexibility, drastically
increases computational complexity and cost, particularly for simulations aimed at reaching millisec-
ond durations.!? By modeling macromolecules as colloidal particles with effective size and interaction
parameters, the simulations become computationally feasible while retaining the essential physical
characteristics. This coarse-grained approach thus provides an efficient method for exploring the col-

lective dynamics of macromolecules in crowded environments such as the cytoplasm.
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2.3.1 Solvent

Accurately capturing solvent effects is important for developing simulations that reliably reproduce
both microscopic and macroscopic behavior. Modeling the solvent explicitly requires much more
computational effort than an implicit one because including individual solvent molecules prolongs the
simulation runtime. For example, a typical simulation setup in this work is a 50003 A? cell with 1000
colloidal particles and 25% packing. Explicitly adding water molecules to the remaining volume would
require simulating additional 3.14 - 10° particles (see Appendix B for an example of this estimation).
This issue is especially acute for systems that already demand lengthy simulation periods such as
this one, where simulations are meant to run a total time of microseconds to milliseconds.?*3% An
alternative to explicit solvent representation is to employ an implicit approach, in which the solvent
is treated as a continuous medium instead of discrete particles.?637 In an implicit framework, the
solvent’s dynamic influence must still be captured through effective terms that reproduce its essential
behavior.3637 Because many phenomena of interest occur over extended time and length scales, the
implicit model needs to replicate not only the primary dynamical features but also preserve microscopic
coupling with colloidal particles. For example, collisions between particles should still influence the
surrounding fluid flow.3>38Maintaining a simplified description allows simulations to reach time-frames
on the order of microseconds to milliseconds.??One way to achieve this balance between accuracy and
efficiency is to use Langevin dynamics, as it was explained in section 2.2 | which incorporates stochastic

and frictional forces to model solvent effects without tracking individual molecules.?®

2.3.2 Diffusion

Brownian motion describes the random, thermally induced motion of particles suspended in a fluid.
This irregular motion results from frequent and uneven collisions with surrounding solvent molecules.
The theoretical explanation linking thermal fluctuations to observable particle displacements was first

developed by Einstein in 19053 and later confirmed experimentally by Jean Perrin.

Diffusion is fundamentally associated with the displacement of molecules resulting from their ther-

mal motion.*? Diffusion processes are generally classified into three distinct types:

e Inter-diffusion: Occurs when two different molecular species mix via diffusion, driven by op-

posing concentration gradients.

e Collective (Gradient) Diffusion: Describes the joint motion of Brownian particles under

density gradients.

e Self-diffusion: Describes the dynamics of a single particle within a system of homogeneous

density.

Self-diffusion, particularly relevant to this study, describes the dynamics of a single particle within
a system of homogeneous density. Typically, the single particle under investigation is referred to as
the tracer particle or tagged particle, whereas the remaining particles constitute the host medium.?°
The fundamental quantity characterizing the motion of a Brownian particle is the mean squared

displacement (MSD), defined as:?°
MSD(t) = ([e(t) — x(0)[*), (27)
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where The mean-squared displacement MSD(t) measures how far, on average, a particle has wan-
dered after a time ¢. It is defined as the ensemble average of the squared distance between its position

at time ¢, r(t), and its initial position, r(0).

At very short timescales, a particle’s motion is predominantly ballistic; it moves nearly linearly
due to inertia and has yet to undergo substantial collisions. In this ballistic regime, the MSD grows
quadratically:

MSD(t) = vat?, (28)
where is the particle’s initial velocity and ¢ the time.
At longer timescales, the particle experiences numerous collisions with solvent molecules, resulting
in randomized and diffusive motion. In this diffusive regime, the MSD increases linearly with time:
MSD(t) = 6Djt, (29)

where D; is the self-diffusion coefficient. The factor of 6 applies to diffusion in three-dimensional
space.

In a dilute suspension (one particle in pure solvent), the self-diffusion coefficient equals the free-
particle diffusion coefficient (Dy) , described by the classical Stokes—Einstein equation:

T
Do = ki

= 30
6mnr’ (30)

where kp is Boltzmann’s constant, 7" is absolute temperature, n is the dynamic viscosity of the
fluid, and r is the particle radius. This relationship indicates that smaller particles, lower viscosity, or
higher temperatures increase diffusion rates.

However, in concentrated suspensions containing multiple Brownian particles, particle interactions
significantly influence diffusion, reducing the self-diffusion coefficient from its infinite-dilution value .
These interactions may be hydrodynamic, arising from fluid-mediated forces, or steric, due to direct
physical exclusion effects. Consequently, the self-diffusion coefficient depends on particle concentration,
typically expressed by the volume fraction , resulting in distinct short-time and long-time diffusion
coefficients.?’

For hard-sphere suspensions, the short-time self-diffusion coefficient characterizes diffusion at short

observation times when the suspension structure remains nearly unchanged:?°

DS =Dy(1+ajp), of ~—1.83. (31)

Conversely, the long-time self-diffusion coefficient describes diffusion after significant structural

rearrangements, capturing sustained particle interactions and cage effects:?%

DE =Dy (1+aky), of ~—2.10. 32
s 1 1

These equations illustrate that increased particle concentration systematically reduces diffusion
rates. The linear relationships provided above are accurate for low volume fractions, typically up

to ¢ = 0.05. Beyond this concentration, deviations from linear behavior arise due to higher-order
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interactions and complex structural changes.?°
In simulations where particle size is the only varying parameter, the diffusion coefficient shows an
inverse relationship with particle size. This relationship allows for model validation by comparing the

ratios of particle radii to their corresponding diffusion coefficients:?°

D. o =
s o (33)

2.3.3 Step-size distribution

In Brownian motion, each particle experiences many small, random bumps from the surrounding
particles.?* These bumps are independent and random over short timescales. Over time, these small

steps sum into particle displacements:

Ax(t) = z(t + At) — x(t) (34)

where Az is a particle’s displacement in the x direction, i.e. the step-size in the xz direction.
This net displacement is the result of many independent, random moves made in a period of time
At. According to the Central Limit Theorem (CLT), the sum (or the average) of many independent,
random variables tends toward a Gaussian distribution, as the number of variables increases.*! This
means, that given a sufficiently large At (in order for many random bumps to happen), the resulting
step-sizes across many particles or across long time will tend to obey the Gaussian distribution. In

other words, the probability distribution of of Az will be proportional to a Gaussian-type function:

p(Azx) x e (Ba)” (35)

and that:

In(p(Ax)) < —(Ax)? (36)

In the case that the particle movements are non-Brownian, the probability distribution of particles’
Ax values will diverge from the bell-shaped distribution and will show exponential tails. In turn, this
would be reflected in the logarithm of p(Ax) deviating from the —(Ax)? shape. This means that the

Brownian motion can be confirmed by examining the step-size distributions.
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3 Computational details

This section provides a detailed description of the computational methods, parameters, and software
used throughout the study. The choices made in terms of theoretical approaches and simulation
settings are justified to ensure the reliability and reproducibility of the results. Every explanation in
the following input files refers to changes that were made and studied before adding or removing new
lines from the default input (Appendix A), in order to build a model aligned with the desired objective

of this project. Several modifications were applied, and all are thoroughly explained.

3.1 LAMMPS

LAMMPS stands for Large-scale Atomic/Molecular Massively Parallel Simulator. It is a software
package used to perform molecular dynamics simulations and was originally developed by researchers
at Sandia National Laboratories. The code is written in C++ and is designed to take advantage of
parallel computing, which allows simulations to run efficiently on high-performance systems. This
makes LAMMPS suitable for studying large systems with many particles or for running simulations
over long time scales. Molecular dynamics simulations, in general, are used to study the behavior of
systems at the particle level, and LAMMPS is one of the most widely used programs for this purpose,
but it can also be implemented for energy minimization or Monte Carlo simulations. One reason
for its popularity is that it is open source and actively maintained, with a large user community that
contributes new features. Because of its flexibility, LAMMPS can be applied to a wide range of physical
systems, from simple coarse-grained models to detailed atomistic simulations in materials science, soft

matter, and biophysics.4243

3.1.1 Initialization

In LAMMPS, the initialization phase defines the simulation environment, including unit conventions,
particle description, spatial dimensions, and boundary conditions. Each of these settings must be
carefully chosen to match the physical model being simulated. This is an example of the beginning
of an input script, specifically for colloid. In the next paragraphs, each of the lines is going to be

explained.

units metal # mass in gmol‘i, distance in A,

atom_style sphere # particles are defined by diameter and density
dimension 3 # dimension of simulation

boundary p p p # periodic boundary conditions in all 3 directions

The units command in LAMMPS is used to define the physical unit system that applies throughout
a simulation. It affects how all numerical values are interpreted in the input script and data files,
including quantities such as distance, energy, mass, and time. It also controls the units of the values
written in output files and on-screen results. This command is usually placed at the very start of the
input script, since all other commands depend on it.** Available unit styles include real, metal, si, cgs,
electron, and [j. The metal unit style is suitable for the present work because its base units align with

the physical scales relevant to the system, as summarized in Table 1. It was also chosen for practical
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reasons, as it had been used in previous projects within the group and was familiar to the supervisor,

which helped ensure a more efficient setup and interpretation of simulation parameters.

Table 1: Base units for the metal unit style in LAMMPS which are the units used for the present
project.**

Quantity Unit (metal)

Distance Angstrom (A)

Time Picosecond (ps)

Mass Gram per mole (g/mol)
Energy Electronvolt (eV)
Temperature Kelvin (K)

Pressure Bars

Force eV/A

Velocity A/ps

Charge Electron charge (e)

The atom — style command in LAMMPS determines what kind of information is stored for each
particle in the simulation. This includes attributes like position, velocity, mass, and others, depending
on the chosen style. Different interaction models in LAMMPS require specific particle properties, so
the atom style must be compatible with the type of simulation being performed.*® The atom style used
in this project is sphere. This style includes basic properties like diameter, mass (via density), and
optional angular velocity. These are enough to represent the particles in the model, which simulate
macromolecules in a simplified, spherical form. More advanced styles exist, but are not needed for this
colloid system. The dimension of the working system is three-dimensional and it is confined within a

cubic simulation box with dimensions of 500 nm x 500 nm x 500 nm.

In LAMMPS, the boundary command defines how particles behave at the edges of the simulation
box. For each dimension, different styles can be assigned depending on the physical scenario being
modeled. The f style applies fixed non-periodic boundaries, meaning particles do not interact across
the edge, and any that move outside the box may be removed from the simulation. The s style uses
shrink-wrapping, where the boundary automatically adjusts to fit the current position of the atoms in
that direction. This can be useful in systems with dynamic size changes but may lead to instability in
parallel runs if the box size changes significantly. The m style also uses shrink-wrapping but maintains
a minimum box size set in the input file, which can prevent atoms from being lost when the system

shrinks too far.6

In this project, the p p p option is used to apply periodic boundary conditions in all three directions.
This means particles that leave the box on one side re-enter from the opposite side with the same
properties, as can be seen in Fig 6.4 This set-up creates a seamless, repeating environment that

mimics a small section of the cytoplasm without introducing artificial borders or edge effects.
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Figure 6: Schematic representation of periodic boundary conditions. Particles that leave one side of
the simulation box re-enter from the opposite side, maintaining continuity across the system. This
meant to represent that small space within the cytoplasmic environment that is being studied.

3.1.2 System definition

To compute short-range interactions efficiently, LAMMPS uses a neighbor list. This list stores atom
pairs that are close enough to interact, which avoids checking all possible pairs and greatly reduces
the computational cost, especially in large systems. Each processor builds its own list, including both

atoms it owns and nearby atoms from neighboring regions, known as ghost atoms.*”

To speed up the neighbor search, LAMMPS divides the simulation space into small boxes. Each
atom is placed into a box based on its position, and it only checks for neighbors in nearby boxes. This
limits the number of comparisons and keeps the process fast. The decision of whether an atom pair
goes into the neighbor list is based on distance. Fig 7 illustrates this idea: atoms within the cutoff

radius are close enough to interact directly, while the outer skin radius adds a margin of safety.*”

The cutoff radius defines the maximum interaction range between two atoms. However, because
atoms move during the simulation, the neighbor list would quickly become outdated without some
buffer. To solve this, LAMMPS adds a skin distance, which allows the same neighbor list to re-
main valid for multiple steps. The list is only rebuilt when an atom moves more than half the skin

distance, which helps reduce unnecessary recalculations while still capturing all relevant interactions.*”
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Figure 7: The purpose of this image is to simplify the concept of neighbor lists itself. You can observe
the cutoff radius (r cut-off) and the skin radius (r skin).

The commands used in the input script configure how these neighbor lists are constructed and
maintained. The line neighbor 50.0 multi sets the skin distance to 50 A. The multi keyword is nec-

essary when interactions involve many different cutoff distances.*”

The line neigh modify delay 250 tells LAMMPS to rebuild the neighbor list every 250 steps. This
setting increases the frequency of neighbor list updates, which can improve accuracy if atoms move

rapidly.*”

Lastly, comm_modify mode multi adjusts how atoms are communicated between processors dur-
ing neighbor list construction. Although not strictly necessary without hybrid potentials, enabling
this mode can improve performance or compatibility when multiple neighbor lists are being used

internally.*”

These settings are important for balancing performance and accuracy in the simulation by control-

ling how and when neighbor lists are updated and managed.

read_data lammps.pos # file specifying simulation cell size and initial particle

positions

neighbor 50.0 multi
neigh_modify delay 250 every 1 check yes

comm_modify mode multi

read data lammps.pos can be checked in section 3.2.
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3.1.3 Simulation settings

This input section should be given special attention (without diminishing the importance of the other
sections), as it forms the core of the simulation. It is here that the interactions between the particles
in the system are defined and understood. For a better understanding of the potential section 2.1.3

must be check and for lammps. force field section 3.2

pair_style colloid

include lammps.forcefield # force field / pair_coeffs

3.1.4 Simulation time-step

The choice of timestep plays a critical role in determining the accuracy of molecular dynamics simu-
lations. A smaller timestep generally leads to better energy conservation and more stable integration
of particle trajectories. However, using very small timesteps significantly increases the total computa-
tional cost, as more steps are needed to simulate a given period of physical time. Conversely, larger
timesteps reduce the simulation time but can introduce integration errors, particularly in systems with
high-frequency motions, and may result in artificial energy drift. For this reason, it is essential to per-
form a timestep sensitivity analysis, where the system’s total energy is monitored across simulations
using different timestep values. This allows for the selection of a timestep that balances numerical

stability with computational efficiency.*®

timestep 0.25 # picoseconds

3.1.5 Minimization

The systems simulated in this work are defined by randomly packed spheres of different radii in a box
of a given size. The random packing is done by a custom Python script, which is explained in the
section 3.2. As this random packing may result in unphysical forces or overlaps of particles, an energy
minimization step is performed to relax the initial configuration by reducing the system’s potential

energy. This is done via minimize and min_ style commands.

The minimize command iteratively adjusts particles’ coordinates until one of the criteria is met.
The criteria are respectively: stopping tolerance for energy, stopping tolerance for force, maximum iter-
ations of the minimizer, and maximum number of force/energy evaluations. The min_ style commands
sets the minimization algorithm, which in this case is the Polak-Ribiere version conjugate gradient (cg)
algorithm. This algorithm uses both current step and previous step force gradient information to up-

date the search directions.

min_style cg

minimize 1.0e-4 1.0e-6 1000 10000 # minimization thresholds

run 0

29



3.1.6 Heating

The simulated systems are initialized as randomly distributed particles in a box of given size that
underwent an energy minimization at 0 K. Such an initial arrangement does not represent a thermally
equilibrated state and particle distribution due to thermal motion.

Therefore, gradually heating the system to the target temperature allows the particles to explore
configuration space, and ensures that the system evolves towards a physically meaningful and ther-

mally relaxed state. This is done via an initial heating stage in all the performed simulations.

The welocity command in LAMMPS assigns velocities to particles. In this specific example, the
velocity all create 1.0 assigns random velocities that correspond to the temperature of 1.0 K to all of
the defined particles. A random number seed is provided that is used to generate the velocities. Net
linear momentum is removed from the system after assigning the velocities with mom yes keywords.
Velocity distribution is set to Maxwell-Boltzmann distribution via the dist gaussian keywords. The

system is then evolved to the desired temperature of 303.15 K using the fixnvt command.

The thermo_style command defines which thermodynamic data will be output to the screen and
log files and in which style, with thermo command specifying the output frequency in number of steps.
Here, thermo__style command specifically asks for step number, temperature, potential, kinetic, and
total energies to be printed every 100 steps. The log heating.log command instructs that everything

output to the screen during this stage is saved into a heating.log file.

In Fig. 8 can be seen the increase of temperature until it reaches the wanted one for the biological-

like system.

velocity all create 1.0 5982396 mom yes dist gaussian
fix heating all nvt temp 1.0 303.15 $(100.0%dt)

log heating.log

thermo_style custom step temp pe ke etotal

thermo 100

run 300000

unfix heating
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Temperature evolution during simulation
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Figure 8: Temperature of the simulation versus step number. First phase shown in green color repre-
sents temperature evolution during the heating phase. The temperature oscillation during the simula-
tion phase is shown in blue color and is cut at 1 million steps (not counting first 300 thousand heating
steps) for visual purposes. Red dashed line represents the mean temperature during the cut simulation
phase. This is obtained from a simulation with a heating phase set to heat from 1.0 to 303.15 K, and
a simulation phase meant to maintain 303.15 K.

3.1.7 Simulation

After the system is brought to the target temperature using a Nose-Hoover thermostat during the heat-
ing stage, the simulation enters the production phase. This stage operates under the micro-canonical
ensemble (NVE)(see sections 2.1.6-2.1.7), but it must be noted that the true NVE nature is altered
by the use of the Langevin thermostat. The primary objective of this phase is to observe the time

evolution and transport properties of the system under equilibrium conditions.

To introduce viscous damping representative of a realistic solvent environment, Langevin dynamics
(see section 2.2) are included via the command fiz langevin. This fix applies the thermostat to a group
of atoms, along with the viscous and stochastic forces. The viscous and the stochastic forces depend
on the damping time which is proportional to the mass and radius of a particle. This means that a
separate fix langevin command which specifies the desired temperature and damping time needs to
be defined for each particle type when running the polydisperse simulations. For that purpose, each
particle type is first defined as a group and then the fix commands are defined to be applied to the
respective groups (where a given group includes all particles of a given radius). For clarity of the
input file, the fix commands are defined in an external file and included via the include command.
LAMMPS natively allows computation of MSD of the particles via compute msd commands which are
defined for any desired group . The NVE integration is then called for by the fiz nve command. The
thermodynamic output is now customized to also output computed MSD values. A trajectory file can
be output for any specific group of particles or all particles via the dump command. In the example

input file presented, the trajectory file is specified to output the Cartesian coordinates and forces acting
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on each individual particle in the given group, which is particularly useful for the visualization of the
particle movements throughout simulation. Lastly, the production stage is run for the desired number
of steps via the run command.

In figure 9 can be seen the final simulation, how it looks, and shows a clear polydisperse environment.

Figure 9: Visualization from OVITO showing macromolecules as spheres of different sizes and colors,
reflecting their dimensional differences.

-group definitions here-

include lammps.langevin

-compute definitions here-

fix simulation all nve

log simulation.log

variable nsteps equal 100000000

variable output_freq equal 10000

thermo_style custom step temp pe ke etotal c_2msd[4] ... c_40msd[4]
thermo $(output_freq)

dump example: dump 2nm custom $(output_freq) 2.lammpstrj id type diameter x y z
fx fy fz vx vy vz

run $(nsteps)
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3.2 Python script

In order to run a simulation, one needs to define the system with all of its particles and their properties
such as initial positions and particle densities, as well as force-field pair coefficients for all of the possible
pairwise interactions, and particle type-specific Langevin thermostat parameters. A Python script is
written to facilitate the workflow and efficiently obtain essential data for the simulation. The code
was designed to automate key tasks and ensure a consistent and reproducible setup of the simulation
environment. This section provides a brief overview of the most important pieces of code. Overall, it

is supposed to, based on user inputs passed as command line arguments, execute the following tasks:

1. Generates the discrete lognormal radii distribution in a given range, and with a given mode
radius, such that it satisfies the desired number of particles or packing fraction within the given

volume.

2. Creates a random initial configuration of the particles within defined simulation cell dimensions,
ensuring no initial overlap of the particles. Writes this configuration in a lammps.pos file, which

is to be read by the program on execution.

3. Writes a lammps. force field file which defines all N(N + 1)/2 colloid pair style pair coefficients,
where NN is the number of particle types. Pair coeflicients include cutoff distances. This code

also calculates the cutoff distances dynamically based on a given energy threshold.

4. Writes a lammps.langevin file which defines the fix langevin commands for each particle type.
This includes dynamically calculating the damp time parameters based on particle’s mass and

input viscosity.

5. Writes the in.lammps file, which is the input file that LAMMPS code executes. The code can
adjust certain sections of the input such as compute and dump coefficients, and other parameters

that user can change to automate creation of multiple system specific files for running batch jobs.

The snippet of code given in Listing 1 is in charge of item 1. of the above list. It takes as inputs
a packing fraction d, volume of the simulation cell V', minimum radius 7,,;,, maximum radius ez,
mode radius (most probable radius) 7,04e, radius step Ar, the width of the underlying Gaussian
distribution o, and optionally the number of particles N. The function first creates an array of radii

in the wanted range:

radit = Tmin, T"min + AT, Tmin + 2A7, ..., Pmas (37)

A log-normal distribution is given by:

1 (Inr — p)?
r) = erp| — ——=—5—" 38
p( ) ro/on p[ 20.2 ] ( )
where p(r) is the probability of the radius r occuring. Here, p is given by:
1= In("mode) + 02 (39)

which is done by the function line 3. The probabilities of each radius p(r;) are then calculated

using the lognorm.pdf function from the SciPy library (line 4). This creates an array of p(r;) values.
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The probabilities are then normalized to obtain a discrete distribution (as the radii take on values in

steps of Ar, rather than a continuous set of values):

norm pZ norm
P = CY =1 (40)
E:jpj f

which is done in line 5.
Volumes of spheres of each defined radius are then calculated with:
4
Vi = gﬂr?’

and stored in an array called volumes. The user can either provide the volume of the simulation cell

(41)

and packing fraction, or provide a desired number of particles. In the case of the former, the number
of particles has to be calculated in such way to conform to the specified cell dimensions and packing
fraction, and abide to the probability distribution. The expected relative volume to be occupied by

the particles of radius r; with probability p;°"™ is:

‘/iPTOb _ p;Lorvai (42)

This means that the number of particles Ny, needed to fill the desired occupied volume d -V is
given by:
d-V d-V

Niotal = = 43
total ZZ ‘/iprob Zi pzwrm‘/i ( )

This is done in lines 10 and 11. The number of times a particle of radius r; with probability p;*"™

will occur in the distribution is then given by:

N; = floor(p}°™™ Niotar) (44)

As a given probability value is typically not a whole number, the product p; N will not give a
whole number either. For this reason, the product is rounded to the nearest lower integer using the
floor() function. This rounding can lead to the number of particles generated being slightly lower
than the desired one, which is handled by the lines of code 20 to 25. In practice, the script was
more commonly used with providing a wanted number of particles directly (with the cell volume being
adjusted dynamically for a given packing fraction). However, this functionality is useful for generating

systems with constant cell dimensions while changing packing fraction.

Listing 1: Generation of lognormal distributed radii

def generate_discrete_lognormal_radii(d, V, r_min, r_max, r_mode, delta_r,

sigma=0.8, N_particles=None):

radii = np.arange(r_min, r_max + delta_r, delta_r)

mu = np.log(r_mode) + sigma**2

probability_values = lognorm.pdf(radii, s=sigma, scale=np.exp(mu))
normalized_probability_values = probability_values / np.sum(

probability_values)

volumes = (4/3) * np.pi * radiix**3
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if N_particles is None:
# Calculate N_total based on packing fraction and box volume
result = np.sum(normalized_probability_values * volumes)
N_total = int ((d*V) / result)

else:
# Use provided N_particles
N_total = N_particles

expected_frequencies = normalized_probability_values * N_total
floored_frequencies = np.floor (expected_frequencies).astype(int)
total = np.sum(floored_frequencies)

deficit = N_total - total
if deficit > O:
remainder = expected_frequencies - floored_frequencies

top_bins = np.argsort(remainder) [-deficit:]

floored_frequencies[top_bins] += 1
samples = np.repeat(radii, floored_frequencies)

return radii, samples, normalized_probability_values, N_total

Figure 10 shows an example resulting distribution generated by the above function.

Log-normal distribution of radii

60 Radii
BN Total volume = 3.13- 107 nm?

Occupied volume = 25.0%
—— Probability function

Frequencies

250

200
Radii values, Angstrom

Figure 10: Histogram of generated particle radii following a discrete log-normal distribution. The bars
represent the frequency of radii sampled within the range of 20 A to 400 A in steps of 10 A, while the
red curve corresponds to the scaled log-normal probability density function used for sampling. The
total volume occupied by the particles is approximately 3.13 x 107 nm?, representing 25.0% of the total
simulation box volume (500% nm?).

The next step is to generate initial Cartesian coordinates of each of the particles from the generated

distribution. The function in charge of that is given in Listing 2. The function takes the list of all
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individual particles (it is a list of radii values, where each radius is repeated the number of times that
radius appears in the distribution) and it attempts to generate a random set of (z,y, z) coordinates
for each of them, such that 0 < z,y,2 < a, where a is the length of the simulation cube’s side (the
box _size variable). This is done particle by particle, starting from the largest particle and going down
to the smallest one. Each time the random (z,y, z) coordinates are generated, the code checks whether
particle at this position would overlap with any of the previously generated particles, regenerating new
random coordinates until a position is found where the newly added particle ¢ is at least r; +7; + 1A
apart from all other particles j. The 1 A buffer is added to ensure no contacts, which could cause
potential energy spikes at the start of the simulation. This is done for maximum 10000 attempts per

particle. For reproducibility, same random seed is used for generating the random numbers.

Listing 2: Generation of initial particle positions

def place_particles(particles, box_size=5000, max_attempts=10000):
np.random.seed (12345)

positions = []
placed_particles = []
for particle in particles:
valid = False
attempts = 0
while not valid and attempts < max_attempts:
new_pos = np.random.uniform(r + 0.5, box_size - r - 0.5, 3)
if is_valid_position(new_pos, r, positions, placed_particles):
positions.append(new_pos)
placed_particles.append(r)
valid = True
attempts += 1
if not valid:
raise RuntimeError (f"Failed to place particle with radius {r}
after {max_attempts} attempts.")

return np.array(positions)

The pair style colloid potential function defines the interaction potential of two particles ¢ and j of
radius a; and a; at a distance 7;; < Tcutof s, for a given values of A and o (see equations 14 and 13).
LAMMPS requires a set of pair coefficients to be defined, which give the values of A4, o, a;, a;, and

Tcutoff for all possible interactions ij. In this work, the cutoff distances were calculated such that

F(Tcutoff) =0eV (45)

where F' is the resulting force from the interaction of particles ¢ and j. The analytical expression
for the force expression is rather complex (due to complexity of potential function U itself), and it can
be seen that the distance r where U = 0eV is the same distance at which F ~ 0eV/A. Because of
this, it was chosen to calculate the cutoff distances such that the potential evaluated at that distance
is arbitrarily close to 0 eV. This is done by the snippet of code shown in Listing 3. Given an energy

threshold ¢, the code attempts to solve the following equation for 7:
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U(A7U,a1,a2,7’cutoff)—520 (46)

Throughout all simulations, a value of € = 0.00001 eV was used. This means that for the particles
at distances greater than r.,¢0fs, interaction potential U < 0.00001 eV and F' § 0.00001eV/ A and are

considered as not interacting.

Listing 3: Calculation of cutoff distances

def U_total(r, A, sigma, al, a2):
UA = -(A / 6) x (
(2 x a1l *x a2) / (r**2 - (al + a2)x*x2) +
(2 * a1l * a2) / (r**2 - (al - a2)*x2) +
np.log ((r**x2 - (al + a2)**x2) / (r*x*2 - (al - a2)x*x2))

)

prefac = A * sigmax*x*6 / (37800 * r)

terml = (r**2 - T7*rx(al + a2) + 6*x(alx**2 + T7*xal*a2 + a2*x2)) / (r - al -
a2) x*7

term2 = (r**x2 + 7xrx(al + a2) + 6x(alx*x*2 + T7*xalxa2 + a2x**2)) / (r + al +
a2) x*7

term3 = (r**x2 + 7xrx(al - a2) + 6x(alx*x*2 - T7*xalxa2 + a2x**2)) / (r + al -
a2) xx7

termd4d = (r*x2 - 7xrx(al - a2) + 6x(al*x*2 - T*xalxa2 + a2%*2)) / (r - al +
a2) xx7

UR = prefac * (terml + term2 + term3 + term4)

return UA + UR

def find_rcut(A, sigma, al, a2, threshold=0.00001, xtol=1le-5, rtol=1le-8,
maxiter=200) :
D = al + a2
r_start = D + 1e-3
r_end = D + 1000.0
f = lambda r: abs(U_total(r, A, sigma, al, a2)) - threshold
try:
r_cut = brentq(f, r_start, r_end, xtol=xtol, rtol=rtol, maxiter=
maxiter)
return r_cut
except ValueError:
return D + 500.0

The use of the Langevin thermostat requires defining a fix langevin command. This command
requires the following parameters: Tsiqrt, Tend, 7 and a random seed. Tgiqrt and Tepq are the desired
temperature at the start and the end of the simulation, 7 is the damping time, and the random number
seed is for generating the stochastic forces (see equations 25 and 26). This fix is applied to a specified
group of atoms. As 7 depends on the mass and radius of a particle, this fix needs to be specified for
each group of particles with the same radius. The code shown in Listing 4 will dynamically calculate
the required values for each radius present in the simulation. It uses the viscosity of water at 303 K

by default, but can optionally adjust the damp times to correspond to viscosities that are equal to
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multiples of the water viscosity. The resulting list of fix commands is written in a lammps.langevin

file, read by the input script and executed by the program.

Listing 4: Calculation of damp times for the Langevin thermostat.

def write_langevin_file(type_mapping, viscosity_multiplier, seed, filename="

lammps.langevin"):

base_viscosity = 0.0007978 # Pa s
viscosity_Pas = base_viscosity * viscosity_multiplier
density = 500 # kg/m~3
with open(filename, "w") as f:
for radius, type_id in type_mapping.items():
r_m = radius * 1le-10 # Angstrom to m
d_m = 2 * r_m
volume = (4/3) * np.pi * r_m*%*3
mass = density * volume # in kg
gamma = 3 * np.pi * viscosity_Pas * d_m # in kg/s
tau_s = mass / gamma # seconds
tau_ps = tau_s * 1el2 # convert to ps

f.write(f"fix langevin_{type_id} {0.5 * d_m * 1e9:.0f}nm langevin
303.15 303.15 {tau_ps:.4f} {seed}\n")

The code can take the following parameters as command line arguments (all have default values set
to match the typical system settings used in this work): neighbor list skin distance and delay value,
timestep, number of simulation steps, packing density, simulation cell size, radii range values, width
of the underlying Gaussian distribution, colloid potential parameters A and o, energy threshold for
calculating cutoffs, and viscosity. This is very convenient for automated generation of input files for

many different systems at once.
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4 Results and discussion

In this section, the main findings of the study are presented and analyzed. The results are discussed
in relation to what the research wants to achieve and relevant literature, highlighting both expected
outcomes and any unexpected observations. This discussion seeks to provide a better understanding

of the implications of the findings within the context of the study.

4.1 Simulation Setup and Model Development Challenges

Before the actual implementation of the model and generation of meaningful simulation results, a
significant portion of the work was dedicated to developing a functional and adaptable simulation
environment. The initial focus was not on producing results directly, but rather on constructing a
reliable system capable of capturing the complexity of the intended biological scenario. This involved
understanding and modifying the baseline simulation framework provided by LAMMPS to reflect the
specific needs of the project. Therefore, the outcomes discussed in this section correspond to the iter-
ative process of model development, highlighting the practical and conceptual challenges encountered
in building a suitable simulation foundation.

Once it was established that the system would be modeled using colloidal particles, the first phase
of the project was to modify the default input given by LAMMPS (see Appendix A) to check changes).
The objective during this stage was to understand the basic structure and functionality of the simula-
tion script and to begin tailoring it to meet the specific requirements of the project. Some of the early
stages of the work involved adapting particle interactions, system dimensions, and physical constants
to better align with the biological context.

All the substantial modifications that were made to the original default input over the course of
the project culminated in the current working version. These modifications are detailed in Section 3.
Changes were implemented methodically and with careful consideration of their implications, as even
small parameter variations could significantly impact system behavior. Selecting the appropriate inter-
action potential was particularly challenging because there are many different potentials for colloidal
systems, and each of them has its peculiarities and difficulties. While there is a substantial body of
theoretical and experimental work on the cytoplasmic environment, to the best of my knowledge, there
is still a lack of clear quantitative data for some of the parameters needed in this work. One example
is the use of interaction potentials, which are often discussed in general terms but not always specified
in a way that supports direct implementation in simulations like the one developed here. Choosing
a potential (see section 2.1.3 to check the theory and the chosen colloid-colloid potential) that could
plausibly represent such a heterogeneous environment required a balance between physical realism
and computational feasibility. This selection process involved reviewing literature, comparing multiple
potential forms, and conducting exploratory simulations to evaluate their behavior in simplified test
cases.

Early simulations often failed due to significant particle overlaps, which indicated fundamental
issues in the input configuration. These overlaps stemmed primarily from three sources: (1) poor
initial packing of colloidal particles, especially challenging due to the large differences in particle sizes
in the polydisperse system; (2) an initial misunderstanding of key interaction parameters, particularly
the Hamaker constant (A) and the interaction scale (o), both of which directly influence the strength

and range of interparticle forces; and (3) inconsistent or arbitrary choices of cut-off distances in the
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potential, which prevented systematic control of the interaction range.

The point 3 here primarily came from the fact that many different radii are considered in these
simulations, and that the radii appear in the colloid potential function (see Eq 13-14). Addressing these
issues required iterative refinement of the system, including parameter sweeps, test simulations with
varying densities and box sizes, and in-depth consultation of documentation and related literature.

In order to better understand the role of the Hamaker constant in the system, the interaction
potential was plotted while all other parameters were held fixed. The analysis focused on how varying
this constant influenced the nature of particle interactions. It was observed that increasing its value
introduced stronger attractive forces, whereas reducing it diminished these attractions, which aligns
with the theory found about the Hamaker constant.'® Based on this understanding, the constant was
initially set to a sufficiently low value to ensure that repulsive interactions were dominant. This choice
aimed to approximate hard-sphere-like behavior during the early stages of model development. Since
it was explained before, the hard-sphere-like behavior is particularly good for early stages analysis
because it is the simplest form of the system.

It is important to clarify that the generality about the theory behind the Hamaker constant, and
its relationship with Van der Waals interactions was understood; the issue was related to what should
be the right value to give to the constant for the system. To my understanding, this is a non-trivial
question and can require much more time; therefore, based on the time and needs of the project, the
conclusion was to start with a small value of Hamaker. A very similar analysis was done to o (see Eq

14 -13 to check the constants in the corresponding potentials).

4.2 Tuning of Neighbor List Parameters

To improve the efficiency of the simulations, I performed a parameter scan of the neighbor list settings.
In LAMMPS, neighbor lists are used to avoid recalculating pairwise interactions at every timestep.
The two key parameters that influence their behavior are the skin distance and the rebuild delay value.
The skin determines the buffer region around each particle, and the delay sets how many time-steps

pass before the list is checked or rebuilt. The results of this optimization are shown in Figure 11.
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Figure 11: Optimization of the neighbor list parameters. Upper two graphs show CPU time and
microseconds/day versus skin distance, with the delay value being 0 (list rebuilt every step). The
lower two graphs show CPU time and microseconds/day versus delay value at skin distance of 50
A. Here, microseconds/day is a performance measure that indicates how much of simulation time in
microseconds would be achieved if the simulation ran for a day of real time. This optimization is
done with 1 M steps simulations of 0.25 packing lognormal distribution polydisperse system with 1000
particles.

The upper two plots in Figure 11 show the total CPU time and throughput (in microseconds per
day of real time) for different skin distances, with the rebuild delay fixed at zero. In this setting,
the neighbor list is rebuilt at every timestep. When the skin is small (e.g., 5 A), the simulation is
extremely slow. This is because the neighbor list needs to be rebuilt very frequently due to particles
quickly moving out of range. As the skin increases to 30-50 A, the performance improves significantly.
This reflects a balance where the neighbor list is large enough to remain valid for several steps, but
not so large that it includes unnecessary pair checks. Above 50 A, the throughput begins to decline
slightly. This is expected, since a very large skin includes more neighbors than needed, increasing the
cost of force calculations.

The lower two plots show how performance is affected by the rebuild delay, with the skin distance
fixed at 50 A. As the delay increases from 0 to 250 time-steps, the simulation becomes more efficient.
The throughput peaks at this point, reaching just over 9 us/day. This is because the overhead of
rebuilding the neighbor list is reduced by checking it less frequently. However, beyond 250 time-steps,
the performance becomes inconsistent and eventually declines. This is likely due to the neighbor list
becoming outdated, which can lead to increased force errors and the need for emergency rebuilds. A
very high delay value (e.g., 1 000 time-steps) results in poor performance and introduces instability
into the integration.

Based on these results, the optimal settings were determined to be a skin distance of 50 A and a

delay of 250 time-steps. This combination provides a good balance between accuracy and efficiency.
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These values were used for all subsequent simulations in this study to ensure consistent and reliable

performance across different core configurations and simulation lengths.

4.2.1 Parallel Scaling Behavior and CPU Core Utilization

To evaluate the parallel performance of the simulation setup, I conducted a strong scaling test using
a 1000-particle polydisperse system at a packing fraction of 0.25. Each simulation consisted of 10
million time-steps and employed the neighbor list parameters optimized in the previous section 4.2.
The results are shown in Figure 12, which displays both the total CPU time per simulation and the
number of microseconds of simulated time per day of real time, plotted as functions of the number of

physical CPU cores.
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Figure 12: CPU time and microseconds of simulated time per one day of real time versus number of
cores used to run a simulation. This is obtained for 10 M steps on a 0.25 packing polydisperse system
of 1000 particles with neighbor list parameters skin 50 and delay 250.

The performance behavior can be divided into three regions. In the low-core range (from 1 to 4),
the CPU time decreases rapidly, dropping from approximately 1100 seconds to around 500 seconds.
Simultaneously, the throughput increases from about 100 to 240 us/day. This reflects efficient scaling,
where each processor performs a substantial amount of computational work, and the time spent on
communication is minimal.

From 4 to 16 cores, the performance gains become less significant. Although both the runtime and
throughput continue to improve, the rate of change slows. This behavior indicates that the cost of
inter-process communication begins to grow. With fewer particles per core, the time required for data
exchanges (such as ghost particle communication and collective operations for temperature, pressure,
and MSD calculations) becomes more prominent and begins to limit overall efficiency.

The maximum throughput is observed at 18 cores, where the simulation achieves approximately
425 us/day. However, this improvement compared to 16 cores (around 420 ps/day) is marginal. Beyond
this point, performance plateaus and fluctuates. Increasing the number of cores further, such as to
24, 28, or 36, results in inconsistent throughput and even increases in wall time in some cases. This
indicates the strong scaling limit of the system has been reached. At these higher core counts, the cost

of communication and synchronization outweighs the computational benefit of distributing the work

42



more finely.
To provide a quantitative estimate of the serial portion of the simulation, I applied Amdahl’s Law,
which relates the maximum achievable speed-up Sy on N cores to the serial fraction fseriar of the

computation:

1

Sy = 1—fserial
fserial + N

(47)

Using the observed performance at 36 cores, the estimated serial fraction was approximately 0.27.
This value is consistent with the known non-parallel components of the simulation, such as neighbor
list rebuild checks and global reductions, which are repeated at every timestep.

Based on these results, I conclude that the most efficient parallel configuration for this system lies
between 12 and 16 cores. At 16, the simulation achieves over 90% of the maximum throughput, while
avoiding the inefficiencies and overhead observed at higher core counts. Although 18 cores provide
a slightly higher throughput, the marginal gain does not justify the increased use of computational
resources. In cases where full-node usage is required, it is more efficient to run multiple simulations
in parallel—for example, two 18-core jobs—rather than a single 36-core simulation. This approach
maintains high resource utilization while avoiding the limitations imposed by communication overhead.

These findings guide the choice of core count for all subsequent production simulations in this study

and ensure that computational resources are used effectively without compromising performance.
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4.3 Sanity checks

Before analyzing the simulation results in detail, it is essential to perform sanity checks to ensure
the reliability and consistency of the data. Sanity checks are straightforward, intuitive tests used
to validate whether a system behaves as expected under well-understood conditions. They do not
guarantee correctness but help detect gross errors, implementation issues, or flawed assumptions early
in the process.

In this context, I use sanity checks to compare simulated diffusion coefficients with theoretical

predictions across a range of packing fractions and particle sizes.

Table 2: Simulated diffusion coefficients D, and theoretical diffusion coefficients Dipeo in cm?/s for
each packing fraction ¢ (%). The simulated coefficients are obtained from monodisperse, 25 us long
simulations with A = 0.00001 eV and ¢ = 10.0 A. The theoretical coefficient are calculated using
Equation 32. Tables (a), (b), (c), (d), and (e) show data for radii 2, 10, 20, 30, and 40 nm respectively.

(a) (b) (c)
¢ Dexp Dthco ¢ Dexp Dthco ¢ Dexp Dthco
1 1.34e-06 1.36e-06 1 2.72e-07  2.73e-07 1 1.39e-07  1.36e-07
3 1.29e-06 1.31e-06 3 2.60e-07  2.62e-07 3 1.35e-07  1.31e-07
5 1.29e-06 1.25e-06 5 2.55e-07  2.50e-07 5 1.35e-07  1.25e-07
10 1.08e-06 1.11e-06 10 2.47e-07  2.23e-07 10 1.32e-07  1.11e-07
15 1.00e-06  9.74e-07 15 2.22e-07 1.95e-07 15 1.29e-07  9.74e-08
20  8.24e-07  8.35e-07 20 1.95e-07 1.67e-07 20 1.22e-07  8.35e-08
25 7.47e-07  6.96e-07 25 1.78e-07 1.39e-07 25 1.14e-07  6.96e-08
(d) (e)

¢ Dexp Dineo ¢ Dexp Dineo

1 9.57e-08  9.09e-08 1 6.98e-08  6.82e-08

3 9.36e-08  8.72e-08 3 6.95e-08  6.54e-08

5 9.29e-08  8.35e-08 5 6.93e-08  6.26e-08

10 9.20e-08  7.42e-08 10  6.87e-08  5.57e-08

15 9.06e-08  6.49e-08 15  6.79¢-08  4.87e-08

20 8.53e-08  5.57e-08 20  6.44e-08  4.17e-08

25  7.92e-08  4.64e-08 25  6.32e-08  3.48e-08

Table 2 summarizes the diffusion coefficients obtained from both simulations and theoretical pre-
dictions at varying packing fractions (¢). A noticeable and consistent trend emerges: as the packing
fraction increases, the diffusion coefficients decrease for all particle sizes. This behavior is expected, as
higher ¢ values indicate a more crowded environment where particle mobility becomes increasingly re-
stricted due to limited free space and frequent interactions. In a study conducted in 2010, it was found
that the diffusion coefficient of macromolecules decreased significantly with increasing volume frac-
tion, an effect attributed to both macromolecular crowding and hydrodynamic interactions.*® Similar
observations were reported by other researchers which demonstrated that protein dynamics in highly
concentrated systems slow down substantially as a function of packing density.?® These results align
with those findings, suggesting that the present simulations reasonably capture the primary influences,
such as steric hindrance and hydrodynamic effects, on diffusion under crowded conditions.

To further investigate how particle size influences diffusion at different crowding levels, the simu-
lated diffusion coefficients were plotted against the inverse particle radius for each packing fraction,
as shown in Figure 14. This representation is directly motivated by the theoretical relationship in-
troduced in Equation (33), which predicts an inverse proportionality between diffusion and particle

size in the dilute limit. According to what is explained in Section 2.3.2, this relation holds accurately
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for low volume fractions, typically up to ¢ = 0.05. The linear trends observed for all values of ¢,
with coefficients of determination (R?) equal to 1.000, suggest that the simulation results follow this
theoretical scaling. Smaller particles consistently display higher diffusion coefficients, and this pattern
can be seen across all crowding conditions considered.

As the packing fraction increases, the slopes of the fitted lines tend to decrease. This reflects a
general decline in diffusion that cannot be attributed to particle size alone. In more crowded environ-
ments, particles encounter spatial restrictions that limit their ability to move. To my understanding,
these effects are not directly accounted for in the dilute-limit theoretical scaling but emerge naturally
in the simulations due to the frequency of inter-particle interactions. The fact that this reduction in
mobility is reproduced in the simulations suggests that the crowding-induced constraints are being rea-
sonably represented, even though the Langevin model assumes an implicit solvent and size-dependent
frictional damping.

Further comparisons can be made using Figure.13, which presents the simulated diffusion coeffi-
cients alongside the theoretical predictions for each particle size. At low packing fractions, the two sets
of values remain close, indicating that the simulations reproduce the expected behavior under those
conditions. As ¢ increases, however, deviations begin to appear, especially for larger particles. To
my understanding, this may be due to the stronger influence of volume exclusion and particle caging
effects, which impact larger particles more significantly. Similar outcomes have been reported in the
literature, where diffusion was observed to decrease more rapidly for macromolecules of larger size as
crowding increased.*?:%0

Altogether, these results support the idea that diffusion is influenced not only by the viscous drag
and particle size, but also by crowding effects that become more prominent at higher volume fractions.
The simulation results appear to reflect both factors, and the agreement with theoretical expectations
at low ¢, together with consistency with prior findings at higher densities, suggests that the model

used here captures the relevant features of the system.
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to 40 nm.

0.‘6 O.‘ﬂ
D_theo (cm?/s)

100 A
100 A
100 A fit (R*=0.980)
05 10 15 20
D_theo (cm?/s)
300 & 400 A
300A
300 A fit (R2=0.901) ,_'—«’
400 A& i
400 A fit (R2=0.908) L4
9. .8 --o0®
-8
T T T
0.2 0.4 0.6

D_theo (cm?/s)




le—6 D_exp vs 1l/radius for each packing fraction

14
e =001 »

-—- 9=0.01 (fit, R?=1.000) et
1.2 | p=0.03 B
@=0.03 (fit, R?=1.000) Vs
® ¢=005 e -
1.0 4 ——- @=0.05 (fit, RZ= 1.000) ol - Y

e 9=0.10 oot s -~
--- @=0.10 (fit, R?=1.000) ol P
087 @ 9=015 e Bt aE— -
——- @=0.15 (fit, RZ=1.000) ot - -

p (cm?/s)

Ay
‘\
AY
Ay

A
A

A

e @=020 e e -

-
0.6 4 o =T e

--- @=020(fit, R?=1.000) - gt -

D_ex

@=0.25 P ,4’ - e

=025 (fit, RZ=1.000) _=
0.4 -

-
0.2 1 52
=

0.0

T ; T T
0.01 0.02 0.03 0.04 0.05
1/ radius [1/A)

Figure 14: Experimental diffusion coefficients Dy, plotted against the inverse particle radius (Eq. 33)
for for each packing fraction ¢ = 0.01-0.25. Linear fits (with R? ~ 1.000) confirm the expected inverse
relationship between diffusion and particle size, and show the decline of D.y, with increasing ¢.

4.4 Effect of Hamaker constant

The Hamaker constant A is a multiplicative factor in both the attraction and repulsion terms of the
pair style colloid potential function (see equations 13 and 14). In the Ug term, it appears as a ﬁ
multiplying the rest of the expression, and in the U4 term it appears as %. This means that the value
of A greatly affects the attractive nature of the interaction. For this reason, a wide range of values of
A =1-107%1-107?,...,3.0eV have been studied for their effects on the particles interactions and
to see how it affects their diffusion. The results of 25 us long simulations of 25% packing polydisperse
system (lognormal distributed radii in the range from 2 nm to 40 nm) with varying A are presented
and discussed in this section.

One of the primary effects of increasing A is the shift of the potential function to greater inter-
particle distance and appearance of an attractive potential well (see Figure 3). This results in the
interactions becoming more long range. This is immediately reflected on the computational cost
of a simulation. Table 3 shows the increase of CPU time with increasing the attractive and long-
range nature of the interactions. The computation time of a simulation of the same system with just
changing the Hamaker constant from A = 1-10"%eV to A = 3.0eV increases ~ 3 times. This is a
direct consequence of the increase in the cutoff distances, which greatly increases the total number of

interactions compared to the very short-range hard-sphere-like scenario of A =1-1076.

Table 3: Wall-clock CPU time in hour:min:second for each of the 25 us long simulations with varying
the value of Hamaker constant A in eV.

A 1.00E-06 1.00E-05 1.00E-04 1.00E-03 0.01 0.1 1 2 3
CPU time 3:41:40 3:57:36 4:14:56 4:47:41 5:37:22 7:11:42 9:23:26 9:23:58 11:37:08
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Mean square displacements (MSD) of the particles is greatly affected by the increase of attraction
potential strength. The point of this simulation is to understand the evolution of MSD over time for
three representative cases: 2 nm, 20 nm, and 40 nm radius particles are presented in Figure.15. The
plots show the MSD curves of each group of particles for each of the 9 Hamaker constant values tested.
Starting from the smallest particle, the first thing that can be noticed with the MSD curves of the
radius 2 nm particles is the significant difference between the curves for A < 1eV and A > 1eV. It
appears that the mean square displacement is greatly reduced when A > 1eV. This is most likely a
consequence of the 2 nm particles tending to stay in the regions close to each other over a long time
due to mutual attraction, rather than diffusing freely. Furthermore, it can be seen that the MSDs
for A < 1€V are quite similar in the short time (up to ~ 8 us), and then diverge as the simulation
progresses. This can be explained in the following way: the changes brought to the shape of the
potential function by increasing A from 1-107%¢eV to 0.1eV are nuanced compared to the changes
for A > 1eV. For example, for the interaction of 2 nm particles, the potential at A = 11076 is
nearly hard-sphere like with only short-range repulsion present and a cutoff distance of less than 5
A surface-to-surface distance. Increasing A to 0.0001 eV results in a slightly less steep repulsion and
a slight increase in the cutoff distance of ~ 1 A. At A = 0.01€eV, a potential well appears with the
minimum of —0.0006 ¢V at ~ 6 A surface-to-surface distance. As this value is about 44 times less than
kT at 303 K, this is still practically only a slightly longer-range repulsive potential. Increasing further
to A = 0.1eV results in a potential well minimum of —0.006 eV, which is about 4 times less than
kT, but can be considered a short-range repulsion and a very weak longer-range attraction potential.
This leads to very similar particle behavior in the short time, with the differences coming to effect
only at very long times (> 10us). Within the 1-107% < A < 0.1¢eV range, it can be seen that the
MSD generally decreases with increasing A, and the outliers in the trend possibly indicating that even
longer simulation times are needed to truly capture the subtle effects of A in this range of values. In
the A > 1.0V range, it can be clearly seen that the MSDs not only decrease with A, but appear to
remain relatively constant after ~ 15us. This is most likely a consequence of the particles clustering
together rather than moving freely in all directions.

Taking a look at the other extreme - the 40 nm radius particles, completely opposite effects of A
are observed. The largest MSD is seen with the largest value of A = 3.0eV, followed by relatively
large drops going down to A = 2.0eV and then A = 1.0eV, and a clear separation from the mean
square displacements at values of A < 1.0eV. Similarly to the 2 nm particles, it can again be observed
that the mean squared displacements are quite similar in short-time (up to ~ 5us, and then diverge
as the time evolves. However, despite the divergence, they still remain relatively similar and no clear
trend in how they change can be observed. The 40 nm particles are the rarest in the lognormal
distribution. Furthermore, due to their low numbers and sheer size of the simulation box, they are
typically not found close to each other and rarely are within the interaction distance. This implies that
the movement of the 40 nm particles is mostly impacted by:a) their interactions with all other, smaller
particles b) the general movement of all other, smaller particles occupying the remaining space, rather
than just simple interactions between just the 40 nm particles. Based on those two reasoning, it can be
assumed that the effects of the low values of the Hamaker constant are more complex and more subtle,
thus most likely requiring very long simulation times to be quantified. As the products of radii of the
interacting particles are found in the numerators of the potential function (see Eq 13), the strength of

the interaction is also intensified by particle sizes. The potential functions for the 40 nm particle with
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a 40 nm particle interactions have the potential well minima of ~ —4.40, ~ —8.80, and —13.15 eV for
the values of A = 1.0,2.0, and 3.0 eV respectively. Said minima are all located around 5.5 A surface-
to-surface distance and are significantly greater than k7. This increase in the attraction strength is
also followed by a great increase in the (surface-to-surface) cutoff distance from 2.8 A at A =1-10"¢
to 500 rA at A = 3.0. This means that the 40 nm - 40 nm interactions potentials are only very short-
range repulsive, strongly attractive at a short-range, and weak attractive at very long ranges. These
long-range attractions steer the 40 nm particles towards each other, and the resulting increases in the
particle accelerations can explain the drastic increase of MSD with increasing A > 1eV. In addition
to this, the movement of the 40 nm particles may also be less hindered by the smaller particles which
tend to cluster together at higher values of A, which leads to more free volume for the 40 nm particles
to diffuse through, compared to when the smaller particles freely move around.

Lastly, the moderately sized particles with 20 nm radius show similar behavior to the 40 nm radius
particles. The greatest values of MSD are seen for A = 3.0eV, followed by the A = 2.0eV curve.
The MSD at A = 1.0eV is seen to be in the similar range as the mean squared displacements for
A < 1.0eV. The fact that the fastest movement of particles is seen with the 2.0 and 3.0 A values can
be explained with the same reasoning as with the 40 nm particles - two possibly synergistic effects of
a) intensified long-range 20 nm - 20 nm attraction due to the ajas terms in Eq 13 resulting in particle
accelerations, and b) the smaller, » < 10 nm particles which dominate in numbers (due to lognormal
distribution) possibly tend to stay close to each other rather than freely move around at large A values,
thus liberating volume for the larger particles’ movements. It can again be seen that the mean squared
displacements of the lower A values (now with the inclusion of A = 1.0eV as well) show similar values
up to &~ 10 us, and diverging later on. This again suggests that the particles are not immediately
affected by the interaction strengths, but that values of A do impact how will particles move on the

average in the long run.
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Figure 15: Mean square displacements of particles with radius 2 nm (a), 20 nm (b), and 40 nm (c) for
values of Hamaker constant ranging from 1-107%eV to 3.0eV.

The mean square displacements of the 2, 10, 20, 30, and 40 nm radius particles are linearly fitted
and the respective diffusion coefficients are extracted as $d(MSD(t))/dt. The resulting values are
collected and presented in Table 4 for all the values of A.

The 2 nm particle diffusion coefficients generally decrease with increasing A. This is particularly
noticeable for A > 0.1eV. The values in the range of A < 0.1eV exhibit very similar values around
1.17 - 107 £ 6.60 - 10~®em?/s. The 40 nm particles see an opposite trend - a steady increase of
diffusion coefficients with increasing A for A > 0.1, with the Dyopm (A = 3.0)/Dyonm (A = 0.1) = 2.64.
While the Doy coefficients generally also increase with increasing A from 1 - 1076 to 0.01, they
show rather similar values around 4.52 - 1078 £ 1.49 - 10? ¢m?/s. Similarly to the 40 nm particles,
the 20 nm radius ones also show a steady increase in D coefficients with increasing A in the A > 0.1

range. The coefficients for A < 0.1 don’t show clear trends, but can all be found to be around
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9.53 - 1078 £ 6.17 - 1072 em?/s. These numbers all quantify what has been visually observed with
the mean squared displacements in the discussion above. The particles with the 10 nm radius, whose
mean squared displacements have not been visualized, show the following behavior: D1gy,, coefficients
generally decrease with increasing A up to 1.0 eV, and then increase in the range from A = 1.0 to
A = 3.0 eV. This shows a somewhat intermediate behaviour between the two extremes of the smallest
particles Ds,,,, coefficients decreasing with increasing A, and the largest particles Dygpy, coefficients
generally increasing with increasing A. Furthermore, it can be noted that the Digy,,, coeflicients vary
little in the 1-1076 < A < 0.01 range, all being around ~ 2.13-10774+1.0-10°8 cm2/s, which indicates
somewhat indifferent behaviour of the 10 nm particles in respect to changing A in that range. Lastly,
the 30 nm radius particles show behavior very close to the 40 nm radius ones - D3g,,, coefficient at
A = 3.0 is slightly over 2 times higher than the Dsg,., at A = 0.1eV. The behaviour in the low
limits of A doesn’t show clear trends and likely needs longer simulation times for the more complex

and subtle effects to come into play.

Table 4: Simulated diffusion coefficients D (in cm?/s) for various values of the interaction strength A
in eV and particle radii r = 2, 10, 20, 30, 40nm. Values are obtained from 25 us long simulations at
25% packing polydisperse systems.

A Doy Do Dyo D3o Dyo
1.00E-06 1.21e-06 2.27e-07 9.51e-08 6.56e-08 4.57e-08
1.00E-05 1.18e-06 2.16e-07 9.39e-08 5.68e-08 4.31e-08
1.00E-04 1.23e-06 2.12e-07 1.03e-07 5.96e-08 4.44e-08
1.00E-03 1.17e-06 2.15e-07 8.62e-08 6.24e-08 4.62e-08

0.01 1.06e-06 2.14e-07  9.82e-08  6.12e-08  4.68e-08
0.1 1.35e-06 1.96e-07  7.64e-08  5.41e-08  3.74e-08
1 1.84e-07 1.12e-07  8.76e-08 7.79e-08  6.01e-08
2 9.66e-08 1.61e-07 1.31e-07 1.14e-07  8.17e-08
3 2.57e-07 1.83e-07 1.55e-07 1.20e-07  9.88e-08

4.5 Step-size distributions

One of the objectives of this work is to investigate whether polydispersity can be contributing to the
heterogeneous dynamics observed in the cytoplasm. To answer this question, step-size distributions of
particles obtained from simulations are analyzed.

Both polydisperse and monodisperse systems are simulated over a total duration of 0.5ms. Step-
size (Ax) distributions are calculated using time intervals of At = 50ns, resulting in a total of 10000
Ax values per particle of a given radius over the full simulation time. This ensures sufficient sta-
tistical sampling for the analysis. For each radius, the resulting Az values are binned according
to the Freedman-Diaconis rule®® | and the probability of each step size, p(Aw;), is calculated as
N(Az;)/N(Ax), where N(Az;) is the number of occurrences in bin i, and N(Az) is the total number
of displacements. The logarithms of the resulting probabilities In(p(Ax;)) are then plotted against
the respective displacements Az;. Any sign of exponential tails would indicate deviation from the
Brownian motion, and would point to some underlying heterogeneity, which in turn could help explain
the behaviour seen in the cytoplasm.

This analysis is done by considering both the effects of crowding (by increasing packing density),

and the possible effects of the Hamaker constant A. The results are presented and discussed below.
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4.5.1 Effect of packing density

Figure 16 shows results obtained for the 2 nm and 40 nm particles in a polydisperse environment
across 25%, 35%, and 45% packing densities. Hamaker constant A = 1-107° eV is applied in order to
mimic hard-sphere-like behavior. In the case of the 2 nm particle, all 3 obtained distributions appear
to be a result of an underlying Gaussian distribution, as indicated by the R? > 0.99 polynomial
fit coefficients (see Section 2.3.3). This is a strong indicator that the motion of these particles in
such an environment is Brownian in the 0.5 ms timescale. 40 nm particles appear to exhibit a slight
deviation from a perfect Gaussian distribution of the displacements, reflected by the slight deviation
from the In(p(Az)) o< —(Ax)? relation. This most likely indicates that the largest particles also
exhibit Brownian motion over such timescales. However, a question still remains whether further
increasing packing density may somehow induce heterogeneity. Furthermore, even longer timescales
might be necessary to analyze in order to confirm this. Therefore, achieving longer time simulations
(t > 0.5ms) still remains a goal, and a challenge after this work. This is particularly made difficult
because a) increasing packing density while keeping all other settings constant will increase both the
number of particles and the number of interactions (due to higher proximity of particles on average)
and thus increasing computational cost and b) the necessity to use a small simulation timestep needed

to faithfully simulate hard-sphere-like interactions.
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Figure 16: Step-size distributions of the 2 nm (17a) and 40 nm (17b) radius particles in polydisperse
environment.

4.5.2 Effect of Hamaker constant

The possible effect of A on heterogeneity is also examined. Simulations are ran for mono- and poly-
disperse systems with a 25% packing density, with values of A = 1-1075,0.001,0.1,and 1.0. Results
obtained for the 40 nm particles in the mono- and polydisperse environments are collected and shown
in Figure 17. Considering first the monodisperse 40 nm particle, it can be seen that for the two of the
lowest A values, step-size distributions are Gaussian. This confirms to so far seen picture - particles
with a hard-sphere-like interactions with 25% packing in a monodisperse system follow Brownian dy-

namics. These two curves also align with the expectations from the sanity checks. However, increasing
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A to 0.1 and 1.0 eV induces significant deviation from the Gaussian distribution. This is reflected in
the shape of the In(p(Ax)) distribution resembling more a —|Az| dependency, rather than the —(Az)?
one. This is most likely a direct consequence of the attractive forces at play, taking over the Langevin
stochastic forces and being the dominant factor in the particle movement. The thicker appearance
of the monodisperse distribution curves compared to the polydisperse one is due to the difference in
number of particles - both simulations contained 1000 particles, which in a lognormal distributed radii
polydisperse system results in 13 particles of radius 40. Taking a look at the 40 nm particle in the
polydisperse environment, it is again evident that for A < 0.1, particles act as hard spheres, and the
motion is Brownian, despite the polydispersity and high packing. However, once strong short-range
attractions and weak long-range attractions are introduced by increasing the Hamaker constant to
A > 0.1 eV, particle movement becomes heavily affected by the interactions with its surroundings.
Both the A = 0.1 and A = 1.0 distributions show a general —|Az| shape, thus confirming existence of
exponential tails and a presence of non heterogeneity in the simulated dynamics. This implies that the
polydispersity and packing density might after all contribute to the heterogeneity of the cytoplasm.
However, in order to truly confirm this hypothesis, it is evident that great attention must be paid to

the modeling of the interactions.
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Figure 17: Step-size distributions of the 40 nm radius particles in mono- (17a) and polydisperse (17b)
environments with 25% packing.
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5 Conclusion

This master thesis was set out with an ambitious goal: to build a series of steps toward a physics-based
and biologically sound, long-timescale molecular dynamics simulation of a small but representative
portion of cytoplasm, and to ask whether the macromolecular polydispersity alone could help explain
the non-heterogeneity in the colloidal dynamics as reported by the experimentalists. Although the
road to this goal proved steeper than expected, and key biological questions remain open, the work has
nonetheless produced a solid computational groundwork for reaching simulation times in the range of
milliseconds, revealed some methodological pitfalls regarding the colloid potential and simulations of
highly polydisperse systems, and pointed to clear priorities for the next phase of the study.

The central piece of work of this thesis is a fully automated workflow, combining Python scripting
with LAMMPS, that can a) generate discrete log-normal radius distributions spanning arbitrary ranges,
b) pack a large number of colloids in user-defined volume fractions without overlaps and up to 45%
packing densities, ¢) dynamically calculate energy-based cutoff distances for given choices of the A and
o parameters in the colloid potential function, d) assign physically based Langevin thermostat damping
times at a desired temperature and viscosity to all individual particle types, and e) automatically adjust
and prepare a ready-to-run input file for any choice of system settings. This allowed going from a once-
manual and error-prone setup to a fully automated way to generate dozens of reproducible systems,
which should enable quicker progress for the future simulations in this study. For example, this script
allows quick benchmarking of the neighbor list parameters - skin distance and delay value, which can
be system-specific and therefore can require individual parameterization.

Using that infrastructure, more than sixty production runs were successfully completed (as a result
of many more trial and error or parametrization runs), ranging from dilute to 45% packing, and from
hard-sphere-like A = 1-107%¢V to strongly attractive A = 3.0eV interactions, with the calculations
reaching 0.5 ms of simulation time within 20-40 hours of real time. From these simulations, several
sanity checks have provided technical reassurance on the quality of the simulation framework. For
A = 0.00001 eV, which is supposed to model a hard-sphere-like behavior, the diffusivity of each
monodisperse system scales inversely with particle radius, thus confirming that the simulations are
able to reproduce behavior as expected by the Stokes-Einstein equation. Furthermore, the diffusion
coefficients agree with the first-order approximation to diffusivity dependence on the packing fraction,
to within +10% (where the error becomes larger the higher the packing and the larger the particles -
i.e. when hydrodynamic effects cannot be neglected). These confirmed that the choice of the Langevin
thermostat and NVE time-integration do not introduce any anomalies.

Beyond these baseline tests, two qualitative insights stand out as a result of the remaining simula-
tions. First, macromolecular size by itself is not enough to generate cytoplasm-like exponential tails,
at least on the sub 1 ms scale reached here. Neither dense packing (up to 45%), nor the high variety of
lognormal distributed radii in the range from 2 nm to 40 nm could alone distort the Gaussian step-size
distributions. Second, the colloid potential function is tricky and requires careful parametrization on a
per-interaction basis. This is because of the colloid potential function dependency on the a;a; terms,
where a; and a; are the radii of two interacting particles ¢ and j. For simplicity, and because this
work was primarily focused on achieving millisecond scale simulations, the same values of A and o
were applied for all particle interactions, regardless of their size. This in turn produces asymmetric
behavior, where for the same value of A, two smaller particles may interact under a soft-repulsion

mode, while two large particles may interact under a strong attraction mode. This clearly necessitates
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carefully tailoring and optimizing the A and o parameters for each individual interaction, until truly
biological behavior can be replicated. This is indeed confirmed by the findings that the inclusion of a
mild attraction with A = 0.1 eV can reproduce the exponential tails seen in the experimental step-size
distributions.

Although the biological questions remain unanswered, this thesis has made solid progress into
bringing the colloid potential equations into a reproducible and reliable pair style for modeling cyto-
plasmic crowding. Furthermore, it revealed that with appropriate parametrization, milliseconds-long
simulations are within reach. The immediate next steps that are going to be taken in the further
development of this project will involve a) careful parametrization, and possible modification of the
colloid potential function until the results can be fit to the data obtained by the experimentalists
in the group, b) going beyond simple Langevin thermostat and NVE integration, and attempting to
introduce hydrodynamic effects which are non-negligible for large particles and large densities, and c)
making further effort to reach 10-50 ps simulation times that are needed to truly capture all the subtle

effects at play in a complex system such as the cytoplasm.
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A Appendix A

The following is the default input script for the colloid example provided by LAMMPS. Throughout
this work, several modifications have been made to this input in order to adapt it to the objectives of
the project. Including the original version here allows the reader to clearly identify and compare the

changes implemented in the customized inputs discussed in the main text.
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units 1j
atom_style sphere

dimension 2

lattice sq 0.01
region box block 0 30 0 30 -0.5 0.5
create_box 2 box

create_atoms 1 box
set group all type/fraction 2 0.96 23984

set type 1 mass 9
set type 2 mass 1

velocity all create 1.44 87287 loop geom

neighbor 1 multi
neigh_modify delay O

comm_modify mode multi

pair_style colloid 12.5

pair_coeff 1 1 1.0 1.0 5.0 5.0 12.5
pair_coeff 1 2 5.0 1.0 5.0 0.0 7.0
pair_coeff 2 2 10.0 1.0 0.0 0.0 2.5

fix 1 all npt temp 2.0 2.0 1.0 iso 0.0 1.0 10.0 drag 1.0 &

mtk no pchain O tchain 1
fix 2 all enforce2d

thermo_style custom step temp epair etotal press vol
thermo 1000
timestep 0.005

run 50000
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B Appendix B

1) Number of H,O particles, approximately:
e V; = 50003 A°

o packing = 0.25 = V,, = 50003 — 0.25 - 5000% = 0.25 - 5000 A”
Vi =9.28 - 10720 m?
pi,0 ~ 1000 kg/m?

= My ~ 9.375-107 T kg =9.375- 10714 g

m  9.375-10"1g

— = ~ 5.21-107'% mol
M 18 g/mol e

= NH,0 =

= Npy,0o=n Ny~ 3.14- 10°  water molecules
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